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Abstract 16 

To reduce the spread of aquatic invasive species, the discharge of ballast water by ships will soon be 17 

compulsorily regulated by the International Maritime Organization (IMO) and the United States Coast Guard 18 

(USCG). Compliance with their regulations will have to be achieved by onboard ballast water management 19 

systems. To monitor the treatment system performance, rapid and easy compliance techniques are required. This 20 

paper reports on the suitability of Adenosine Triphosphate (ATP) to quantify living 10 to 50 µm organisms at 21 

<10 cells mL
-1

, which is the upper limit of the IMO D-2 and USCG regulations. Initial tests revealed that 22 

commercially available ATP assays lacked sufficient sensitivity to monitor ATP in treated ballast water. A rapid 23 

and easy concentration method was developed to increase sensitivity and remove interfering salts, non-target 24 

organisms (Micromonas pusilla) and dissolved ATP. Laboratory experiments revealed that salinity was reduced 25 

33 times and concentration efficiencies reached 85%. The ATP assay was tested in a UV-based full-scale ballast 26 

water management system, treating seawater and fresh water. ATP levels were compared with two alternative 27 

compliance tools: FDA and Photosystem II efficiency. Results showed a 10-fold decrease in ATP levels after 28 

treatment compared to a 5-fold decrease in alternative compliance techniques. Following refinements, the ATP 29 

assay’s detection limit reached 2.5 ± 0.5 cells mL
-1

, using a Thalassiosira rotula monoculture. Initial estimates 30 

of the pass and fail level were 50 and 6,000 relative luminescence units, respectively. Further validation is 31 

recommended. The ATP assay is a promising tool for ballast water compliance testing.  32 

Keywords: CME; ATP; ballast water; IMO D-2; PSII efficiency; FDA 33 

  34 
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1. Introduction 35 

Ballast water plays an essential function in a ship’s stability, trim, draft and structural integrity. Thus, ballast 36 

water is critical to enable safe shipping. However, through ballast water transport, huge quantities of viable (able 37 

to reproduce) organisms are transported around the world and discharged into to foreign ecosystems (Drake and 38 

Lodge 2007). These newly introduced species may become invasive and outcompete local species for habitat and 39 

food availability. The ongoing spread of aquatic invasive species can lead to major damage to biodiversity and 40 

economic losses (Molnar et al. 2008). To prevent the dispersal of aquatic invasive species through ballast water, 41 

the International Maritime Organization (IMO) and United States Coast Guard (USCG) have enacted legislation 42 

which limits the number of viable organisms that are allowed to be discharged through ballast water 43 

(Anonymous 2004; Anonymous 2012). Both IMO’s D-2 regulation and the USCG regulation limit, among 44 

others, the discharge of viable 10 to 50 µm organisms to <10 mL
-1

 and the discharge of viable >50 µm organisms 45 

to <10 m
-3

. 46 

 To comply with the upcoming discharge regulations, most ships will have to be fitted with ballast water 47 

management systems (BWMSs), to disinfect ballast water before discharge. After acquisition and 48 

implementation of a BWMS, ship owners may want to monitor the biological efficacy of their BWMS over time 49 

and in various water types and qualities. In addition, Port State Control (PSC) officers are obliged to monitor the 50 

compliance of ships to the ballast water convention. In accordance with the recommendations outlined in the 51 

IMO ballast water sampling guidelines (G2), a quick screening method to identify ships that are potentially in 52 

violation of the D-2 standard is needed (Anonymous 2008b). Sampling and monitoring obligations require that 53 

ballast water discharge should be analyzed for the presence of viable organisms. Due to their low abundance, 54 

accurate zooplankton (>50 µm) estimates require cubic meters of water to be sampled and analyzed 55 

microscopically. For the smaller phytoplankton and micro-zooplankton organisms (10 to 50 µm), analysis often 56 

requires expensive and complicated equipment such as flow cytometry. All of these analyses require trained 57 

personnel to produce reliable results. In practice therefore, detailed quantitative biological analysis of ballast 58 

water is time-consuming, tedious and expensive. 59 

 Commonly, ship owners and PSC will not have the capabilities to carry out specialistic quantitative 60 

biological analyses. Although they are authorized to sample ballast water, PSC inspectors will mainly focus on 61 

checking the presence of a treatment system, the availability of qualified personnel to run the system and 62 

whether the system has reported any errors in its mechanical or chemical operation specifications (personal 63 

communication K. Hak, inspector of the Ministry of Infrastructure and the Environment, The Netherlands). To 64 
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improve the capabilities of ship owners and PSC to monitor the biological efficacy of BWMS, tools are needed 65 

that can estimate the concentrations of viable organisms. In addition, these so-called Compliance, Monitoring 66 

and Enforcement (CME) techniques will have to be reliable, yet quick and simple enough to be used by 67 

minimally trained crew on board ships. In recent years several CME techniques have been developed to monitor 68 

viable organisms in discharged ballast water (Anonymous 2014; Delacroix and Liltved 2013; Welschmeyer and 69 

Maurer 2011). Usually, sexually reproducing large zooplankton are excluded from CME techniques, since 70 

sampling cubic meters of seawater would be too time-consuming and logistically challenging in a ship’s engine 71 

room. The development of the ATP assay presented here, solely focused on the 10-50 µm size fraction of the 72 

IMO and USCG discharge standards. 73 

 Whenever a chemical reaction inside a living organism is carried out that requires energy, this energy is 74 

provided by ATP (Lipmann 1939a; Lipmann 1939b; Lipmann 1940; Lipmann 1941). For decades, the presence 75 

of ATP has been considered a good indicator for the presence of metabolically active organisms (Karl 1993). 76 

Although metabolic activity does not guarantee viability it is considered to be a good viability indicator for 77 

unicellular organisms since they usually reproduce asexually. ATP quantification is usually based on 78 

bioluminescence derived from firefly (Photinus pyralis) luciferin/luciferase complexes. Several ATP assays are 79 

globally available such as the ENLITEN
®
 ATP assay (Promega, Wisconsin, USA), Molecular Probes

®
 ATP 80 

Determination Kit (Invitrogen, California, USA) and the Clean-Trace™ system (3M, Minnesota, USA). These 81 

commercial ATP assays require less than $5,000 to acquire and cost no more than $10 per analysis. In seawater 82 

however, the large amount of metal ions interfere with the luciferin/luciferase reaction which inhibits the light 83 

production (Sudhaharan and Reddy 2000). To solve this, elaborate pre-treatment steps were developed involving 84 

ATP extraction using boiling Tromethamine (Tris), H2SO4 or activated carbon (Hodson et al. 1976), which are 85 

still in use to date (Maurer 2013). Using these extractions techniques, much research has been devoted to 86 

correlate ATP to marine microbial biomass (Novitsky 1987), phytoplankton biomass (Hunter and Laws 1981) 87 

and zooplankton biomass (Maranda and Lacroix 1983). Though proven effective, these extraction techniques are 88 

too complicated and time consuming to be used by PSC officers and ship’s personnel.  89 

  In the present study, Clean Trace™ ATP assay (3M, Minnesota, USA) was applied. To remove metal 90 

ions, concentrate and extract ATP from relevant organisms, a simple and straightforward concentration method 91 

was developed. Ships sail in polar as well as tropical regions and both fresh water and seawater are used as 92 

ballast. Therefore, the ATP assay was tested at various ambient temperatures and salinities. Chlorine-disinfection 93 

is commonly used in BWMSs, therefore the effect of chlorine on the ATP assay was also examined.  94 
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 Early on in the development of the ATP-based CME technique, the opportunity arose to test the assay 95 

on a full-scale UV-based BWMS. The performance of the ATP assay was compared with three additional CME 96 

techniques. Firstly, esterase activity using bulk fluorescein-diacetate (FDA) fluorescence was determined using a 97 

proprietary system provided by Hach (Colorado, USA). Secondly, photosystem II (PSII) efficiency was 98 

estimated using [3-(3,4-dichlorophenyl)-1, 1-dimethylurea] (DCMU), also provided by Hach. Thirdly, PSII 99 

efficiency was determined using Pulse Amplitude Modulation (PAM) fluorometry (Walz 2000).  100 

  Esterase enzymes are exclusively produced by living organisms and thus considered a proxy for the 101 

presence of living organisms (Rotman and Papermaster 1966). Before the development of PAM fluorometry, the 102 

PSII efficiency of active chlorophyll was estimated using the photosynthetic inhibitor DCMU (Cullen and 103 

Renger 1979). Results of the tests using a full-scale BWMS are presented early on, to reflect the chronology of 104 

the development process. Following these tests, modifications to the concentration method were made to 105 

increase the usability, precision and sensitivity of the ATP assay. The practical use of the concentration method 106 

in combination with ATP analysis in ballast water compliance testing will be discussed.  107 



6 
 

2. Methods 108 

Firstly, all analytical methods applied in the research are explained. In order to comprehend the development 109 

process, a separate section was devoted to explaining all concentration methods applied during the research (see 110 

also Table 1). Finally, the experiments carried out are explained in detail (see also Table 2).  111 

2.1. Analytical methods 112 

The 3M Clean-Trace™ NG luminometer was used in combination with either the 3M Clean-Trace™ Biomass 113 

Detection Kit (BDK), or the 3M Clean-Trace™ Water Total ATP swabs (ATP swabs). The BDK was considered 114 

more appropriate in a laboratory setting and resulted in more accurate results, however due to the need for 115 

pipetting small volumes it was not deemed suitable for use by untrained crewmembers. The ATP swabs required 116 

immersing a dip-stick in the sample, which was considered more user-friendly. The methods were used as 117 

according to the manufacturers prescription: 118 

  BDK: Firstly, 100 µL sample was pipetted into a cuvette. Secondly, 100 µL of proprietary cell lysing 119 

extractant was added and incubated for one minute. Finally, 100 µL of 3M luciferin/luciferase reagent was added 120 

to the cuvette and mixed. The resulting luminescence was immediately determined using a luminometer and 121 

recorded as Relative Luminescence Units (RLU).  122 

 ATP swabs: The swabs arrived pre-moistened with extractant on delivery. A swap was dipped into a 123 

water sample and inserted into a tube containing the luciferin/luciferase reagents. The sample volume was 157 ± 124 

3 µL (average ± 95% CI). The sample was mixed with the reagents by pressing the dip-stick through two 125 

membranes and the RLU was immediately measured using the 3M luminometer . 126 

  FDA analysis: A 200 mL sample was filtered over a nylon screen filter (10 µm pore size, 25 mm 127 

diameter). The filter was transferred to a 4 ml polyethylene cuvette and immersed in 2 mL proprietary buffer. 128 

One drop of FDA was added to the cuvette and incubated for 30 minutes. During incubation, FDA was cleaved 129 

by intracellular esterase enzymes thereby producing green fluorescent fluorescein. After a vigorous shake, the 130 

filter was removed from the cuvette. The fluorescence in the cuvette was measured (495/517 nm, 131 

excitation/emission) using a proprietary Hach fluorometer (Welschmeyer and Maurer 2011). 132 

 The terminology for PSII efficiency analyses was adopted from Kromkamp and Forster (Kromkamp 133 

and Forster 2003). The Hach DCMU-based method was applied as follows. Initially, the fluorescence (F0) of a 2 134 

minutes dark-adapted sample was measured, with a proprietary Hach fluorometer using a single turnover (ST) 135 

light pulse. Subsequently, the chlorophyll was inactivated by adding DCMU and fluorescence was measured 136 

again after 2 minutes dark incubation (FDCMU). From the difference in fluorescence the PSII efficiency was 137 
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calculated: (FDCMU–F0)/FDCMU = Fv/FDCMU. 138 

  PAM fluorometry (Water-PAM, Walz, Bavaria, Germany), using a multiple turnover (MT) light pulse, 139 

was used to measure the PSII efficiency of active chlorophyll and expressed as: (F0-Fm)/Fm = Fv/Fm. Samples 140 

were dark acclimatized for 30 minutes.  141 

  To enumerate phytoplankton cells in laboratory trials, a BD Accuri™ C6 flow cytometer (Becton 142 

Dickinson, New Jersey, USA) was used. Particles were detected using a 488 nm laser. Phytoplankton cells were 143 

discriminated from other particles based on red auto fluorescence of the chlorophyll detected by the FL3 channel 144 

(670 nm long pass filter). 145 

 For a live/dead determination of phytoplankton 0.5 µM SYTOX
®
 Green nucleic acid stain (Invitrogen, 146 

California, USA) was used. This stain enters permeable cells where it causes green fluorescence when bound to 147 

DNA. The method is based on the assumption that permeable, stained cells are dead and non-stained cells are 148 

alive. Stained cells were discriminated from other cells using the FL1 channel (530 ± 30 nm band pass filter).  149 

2.2. Developing the concentration method 150 

Concentration method 1 (CM1), was based on a traditional flask-filter-beaker assembly. A sample of 200 mL 151 

was filtered (nylon screen; 10 µm pore size, 25 mm diameter) (Millipore, Massachusetts, USA) using a 1 L flask 152 

with filter beaker on top. After filtration the filter was placed in a 4 mL polyethylene cuvette with 2 mL of sterile 153 

milli-Q™ (Millipore), resulting in a 100 times concentration of >10 µm particles. After a vigorous shake the 154 

RLU was determined using ATP swaps. 155 

  To simplify the filtration procedure, concentration method 2 (CM2) was developed. A 100 mL sample 156 

was taken up using a 100 mL syringe (Plastipak™, Becton Dickinson). The sample was gently filtered over a 157 

nylon screen filter (10 µm pore size, 25 mm diameter, Millipore), contained in a stainless steel reusable filter 158 

holder (Millipore). Particles retained in the filter were flushed out with a 5 mL syringe (Terumo, Tokyo, Japan) 159 

containing 5 mL milli-Q™ into a 15 mL polypropylene tube (Greiner Bio-One, North Carolina, USA). The 160 

concentrate was analyzed for the RLU either with ATP swabs or the BDK.  161 

  To further simplify the procedure for onboard use, concentration method 3 (CM3) was developed. The 162 

stainless steel filter capsule of CM2 was replaced with a custom made polypropylene disposable filter capsule, 163 

containing a non-replaceable nylon screen filter (10 µm pore size, 25 mm diameter (Sterlitech, Washington, 164 

USA).  165 

  It was suspected that the concentrate was not extracted sufficiently by the single rinse of 5 mL milli-166 

Q™. To improve the extraction efficiency, concentration method 4 (CM4) was developed. Instead of directly 167 
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removing the 100 mL syringe after filtration, the 5 mL milli-Q™ was flushed back and forth into the 100 mL 168 

syringe five times, to release particles from the filter more effectively. 169 

  It was noted that in turbid water, 100 mL sample could easily clog the filter. Also, residual salinity 170 

could be substantial in concentrated samples. To avoid clogging and increase the salinity removal, concentration 171 

method 5 (CM5) was developed. The sample volume was reduced to 50 mL using 50 mL syringe (Terumo). 172 

After filtration, a 5 mL syringe containing 5 mL milli-Q™ was connected to the outlet side of the filter. The 50 173 

mL filter, contaminated with salts, was removed and on the inlet fitting of the filter a sterile 5 mL syringe 174 

(Terumo) was attached. The concentrate was flushed back and forth five times so that the concentrate ended up 175 

in the syringe connected to the inlet side of the filter. After removal of the piston the concentrate was sampled 176 

directly from the syringe using the ATP swabs.  177 

  Because various concentration factors among experiments were used it was deemed inappropriate to 178 

convert RLU values to absolute ATP concentrations. In addition, due to inherent uncertainties in concentration 179 

efficiencies, presenting absolute ATP levels would give a false impression of comparability among different 180 

experiments. To evaluate ATP analysis, it was considered most important that <10 cells mL
-1

 were above the 181 

detection limit of the device, and that substantial differences were observed between disinfected water (D-2 182 

compliant) and control water. For both objectives, reporting results in RLU was considered sufficient. 183 

2.3. Experimental design 184 

2.3.1. Linearity and abiotic influences on the ATP assay  185 

Many BWMS use electro-chlorination to produce hypochlorite (ClO
-
) as an active substance, to achieve 186 

disinfection of ballast water (Anonymous 2013). Therefore, the effect of hypochlorite on a standard solution of 187 

ATP was tested. Test solutions were made by diluting a 10-15% sodium hypochlorite solution (Sigma-Aldrich, 188 

Missouri, USA) in milli-Q™. Concentrations were determined using DPD Chlorine Total powder pillows for 189 

analysis in a Hach DR/890 Colorimeter (Anonymous 2009). As test concentrations 0, 0.25, 5 and 10 mg L
-1

 Cl2 190 

were used. The ATP concentration in all four test solutions was 0.6 ng mL
-1

 by adding an ATP standard 191 

(contained in bovine serum albumin, 3M). Test solutions were analyzed in triplicate using the BDK. 192 

  To verify the linearity between ATP concentration and RLU signal, a test solution was made using 193 

milli-Q™ water and an ATP standard. (contained in bovine serum albumin, 3M). A calibration series was 194 

prepared by dissolving the ATP standard with milli-Q™ water to reach a concentration of 0, 0.12, 0.6, 1.5, 3, 195 

7.5, 15, 30, 45 and 60 ng mL
-1

 ATP. The RLU signals were determined in triplicate for each of the dilutions. To 196 

investigate the effect of temperature, all equipment and test solutions were acclimated for one hour in climate 197 
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rooms at 4°C, 15°C and 26°C prior to analysis. 198 

  Salinity test solutions (30 mL) were prepared in 60 mL glass bottles with aluminum caps using mixtures 199 

of milli-Q™ and seawater (0.2 µm filtered and autoclaved) to reach the desired salinities of 0, 4.5, 9, 18, 27, 31.5 200 

and 36 g kg
-1

. Temperatures were set at 4°C, 15°C or 26°C by acclimating all test solutions and equipment into 201 

climate chambers at least one hour before starting the analyses. The test solutions were spiked with 6 ng mL
-1

 of 202 

ATP analyzed in triplicate using the BDK. 203 

 To test the effect of 0-2 g kg
-1

 salinity on ATP analysis, sterile seawater (0.2 µm filtered and 204 

autoclaved) was added to milli-Q™, to reach salinities of 0, 0.5, 1 and 2 g kg
-1

. Two salinity dilution series were 205 

prepared, containing 0.3 ng mL
-1

 and 3 ng mL
-1

 ATP respectively. The series were analyzed in triplicate using 206 

the BDK. 207 

2.3.2. UV-C treatment of Thalassiosira rotula 208 

The marine diatom Thalassiosira rotula (CCMP 1018) was obtained from the National Center for Marine Algae 209 

and Microbiota (NCMA). To investigate the effect of UV-C radiation on the survival of T. rotula and on ATP 210 

levels, a laboratory experiment was carried out. T. rotula is a chain forming species of approximately 15 µm in 211 

minimum dimension. T. rotula was cultured in 0.2 µm filtered and autoclaved seawater (salinity: 28 g kg
-1

) with 212 

excess nutrients at 15°C under a 16:8 light:dark regime (50 µmol photons m
-2

 s
-1

). When the culture was in the 213 

exponential growth phase, it was diluted with 0.2 µm filtered and autoclaved seawater to a final density of 1,000 214 

cells mL
-1

 (source culture: 94,970 cells mL
-1

). The dilution was pumped (Aqua-Flow 50 pump, Aquadistri, 215 

Klundert, The Netherlands) at 20 mL s
-1

 through a low pressure UV-C reactor (Van Gerven, Son, The 216 

Netherlands). The culture was treated with a dose of 139 mJ cm
-2

 of monochromatic UV-C light (254 nm). As a 217 

control the culture was pumped through the UV-C reactor with the lamps turned off to compensate for the effects 218 

of the pump. Subsequently the cultures were incubated in the dark at 15°C for five days. On day 5, a second UV-219 

C treatment was given to one part of the treated culture, simulating the usual UV treatment at ballast water 220 

discharge. The other half was pumped through the UV-C reactor with the lamps off serving as a secondary 221 

control. After five days the cultures, including the original control, were placed into a 15°C climate room under a 222 

16:8 hour light:dark cycle (50 µmol photons m
-2

 s
-1

). All cultures were sampled on day 0, day 5 and day 12. The 223 

cultures with the second UV treatment and second pump were also sampled on day 6. Samples were taken in 224 

triplicate for phytoplankton abundance, PSII efficiency (Walz PAM), FDA and ATP using CM2 and the BDK. 225 

2.3.3. Test CME techniques during IMO G8 land-based verification testing 226 

In the spring of 2012 land-based ballast water tests were performed using natural seawater and fresh water 227 



10 
 

according to the IMO G8 guidelines (Anonymous 2005; Anonymous 2008a). At uptake, the 200 m
3
 h

-1
 treatment 228 

system utilized 40 µm filtration and polychromatic UV radiation of 200-400 nm using two medium pressure UV 229 

lamps. After 5 days the water was discharged, during which a second UV dose was delivered.  230 

 Many biotic and abiotic characteristics of the water were monitored during uptake and discharge of the 231 

water (Peperzak 2013). ATP, FDA and DCMU analyses were carried out in triplicate using the same samples 232 

that were used for 10 to 50 µm organism abundance and PAM fluorometry analyses. ATP was analyzed using 233 

CM1 and ATP swabs. In total, 2 seawater control tanks, 4 freshwater control tanks, 3 seawater UV-treated tanks 234 

and 7 freshwater UV-treated tanks were included in the comparison.  235 

2.3.4. Detection limit, concentration efficiency and salinity reduction of the concentration method 236 

To investigate the lower limit of CM3 T. rotula was cultured at 15°C under a16:8 light:dark regime (50 µmol 237 

photons m
-2

 s
-1

) in f/2 medium with silicate. When the culture was in the exponential growth phase a dilution 238 

series was made using sterile seawater as diluent. Concentrations of 10, 20, 50 and 100 cells mL
-1

 of the culture 239 

were made and verified using flow cytometry. The cell dilutions were concentrated in triplicate using CM3 and 240 

analyzed for ATP content using the BDK and the ATP swabs.  241 

  To increase the flushing efficiency of the filter, CM4 was developed. Fresh water from lake NIOZ, 242 

adjacent to the institute, was collected and pre-filtered over a 50 µm screen filter to remove large particles. A 243 

fractionation was made using subsequent filtration steps of 0.2 µm and 10 µm to determine the ATP content of 244 

the organisms in the 10-50 µm fraction. A freshwater sample of 3 L was placed in a polypropylene beaker and 245 

stirred using a magnetic stirrer at 160 rotations per minute (rpm). ATP measurements were made in 7-fold using 246 

either CM3 or CM4 and ATP swabs. The RLU level corresponding with 100% concentration efficiency was 247 

determined by multiplying the RLU in the 10-50 µm size fraction 20 times, since concentrating 100 mL of 248 

sample into 5 mL of milli-Q™ should ideally result in a 20-fold concentration. 249 

 To improve the salinity reduction factor, CM5 was developed. Natural seawater (salinity: 27,4 g kg
-1

) 250 

was used for a salinity reduction comparison between CM4 and CM5 in 10-fold.  251 

  To test the precision of CM3 and CM5, seawater (salinity: 27 g kg
-1

) from the Marsdiep inlet was 252 

collected at high tide, transferred to a 3 L polyethylene beaker and stirred using a magnetic stirrer at 160 rpm. 253 

ATP content was concentrated in 12-fold using CM3 or CM5 and analyzed with ATP swabs. 254 

  To investigate the lower limit of CM5 and possible interference of <10 µm cells with the concentration 255 

method, T. rotula and the prasinophyte Micromonas pusilla (CCMP 1545, NCMA) with a 2 µm diameter were 256 

cultured at 15°C under a 16:8 hour light:dark regime (50 µmol photons m
-2

 s
-1

) in f/2 medium with silicate. 257 
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When the cultures reached the exponential growth phase, a dilution series was made using 0.2 µm filtered sterile 258 

seawater as diluent. A 1 L stock solution of ~160 cells mL
-1

 was quantified in 5-fold using flow cytometry. 259 

Subsequently, six consecutive T. rotula dilutions of 500 mL with sterile seawater were made using a glass 260 

cylinder (500 mL ± 0.5%, DURAN, Germany), resulting in solutions of 80, 40, 20, 10, 5 and 2.5 cells mL
-1

. In 261 

addition, three T.rotula/M. pusilla mixtures were made containing 20/20,000; 10/10,000 and 5/5,000 cells mL
-1

 262 

respectively. The respective CI’s of cell concentrations were calculated using the confidence interval (CI) of the 263 

initial analysis of the ~160 cells mL dilution. For each dilution step 1% error was added since the glass cylinder 264 

was used twice per dilution. Cell dilutions/mixtures of 40 T. rotula cells mL
-1

 or lower, were concentrated in 5-265 

fold using CM5 and analyzed for ATP content using ATP swabs. Following Box-Plot analysis, single outliers, 266 

exceeding 1.5x the interquartile range of the first or third quartile, were excluded from further analysis. 267 

2.4. Statistical analysis 268 

For all statistical test the null hypothesis was that there was no significant difference between treatment and 269 

control. As confidence level for statistical tests and CI’s 95% was chosen (α = 0.05). 270 

 When samples were analyzed in duplicate or more CI was calculated based on a Student’s t-distribution 271 

using the MS Excel 2010 function CONFIDENCE.T. The Student’s t-distribution was deemed more appropriate 272 

for small sample sizes than a normal distribution.  273 

 Least-squares linear regression models, Analyses of Variance (ANOVA) and Box-Plot analyses were 274 

calculated in SYSTAT 13 (SYSTAT Software Inc. California, USA).  275 
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3. Results 276 

3.1. Linearity and abiotic influences on the ATP assay 277 

A regression analysis was made where the RLU signal was plotted against the chlorine concentration (data not 278 

shown). The slope of the model was not significantly different from zero (ANOVA: P > 0.05), indicating that 279 

chlorine levels of ≤10 mg L
-1

 did not significantly affect ATP measurements. 280 

  The least squares regression models of RLU as function of ATP concentration were: 281 

y = 1,081x + 211 (4°C); y = 2,080x + 347 (15°C) and y = 2,104x + 150 (26°C) (Figure 1a). The intercepts were 282 

not significantly different from zero which means that no blank subtraction was needed. However, at 4°C the 283 

RLU signal decreased 50% compared to the measurements at 15°C and 26°C.  284 

  Increasing salinity caused the RLU signal to decline logarithmically (Figure 1b). At a salinity of 5 g kg
-1

 285 

already 50% of the original RLU signal was lost. At the average salinity of seawater (35 g kg
-1

) more than 90% 286 

of the original RLU signal was lost. The relative RLU decrease was similar for all three temperatures tested. 287 

 When the various types of concentration methods were applied, a residual level of salinity remained. 288 

The salinity usually ranged between 0.5-1.5 g kg
-1

 which had a significant effect on the resulting RLU signal. In 289 

Figure 1c the relative effect of the decrease in RLU signal resulting from a salinity of 0-2 g kg
-1

 is depicted. 290 

 When the measurements of 3 ng mL
-1

 ATP were divided by the measurements observed at 0.3 ng mL
-1

 291 

a factor of ±10 was observed. To investigate whether this factor (y) was constant at all salinities tested (x) a least 292 

squares linear regression was carried out resulting in the model: y = 0.18x + 9.6. The slope had a P-value of 293 

0.171, which exceeds α, so the salinity effect was similar at 0.3 and 3 ng mL
-1

 ATP for salinities of 0-2 g kg
-1

. To 294 

correct for the percentage RLU loss (y) due to residual salinity in g kg
-1

 (x) the model: y = -12.7x was used in 295 

further experiments. This model was derived from the observed RLU losses at 3 ng mL
-1

 ATP (Figure 1c). 296 

3.2. UV-C treatment of T. rotula 297 

None of the compliance methods showed a significant change directly after UV treatment. (Figure 2). The 298 

abundance of UV-treated cells increased significantly after five days (P < 0.05; Figure 2a). ATP levels decreased 299 

significantly after five days (P < 0.05; Figure 2b), but FDA levels remained unchanged in the UV-treated 300 

incubation (Figure 2c). ATP levels were unchanged in the control incubation, but FDA levels in the control 301 

almost doubled. The PSII efficiency was strongly reduced, but still detectable in the UV-treated culture (Figure 302 

2d). After the second UV treatment only the PSII efficiency was significantly lower than the pre-treatment value 303 

(P < 0.005). The other three compliance methods did not detect a significant change directly after the second UV 304 

treatment. 305 



13 
 

 Both ATP levels (P < 0.05) and PSII efficiency (P < 0.05) were significantly reduced one day after the 306 

second UV treatment. Also the PSII efficiency of the double pumped UV-treated culture showed a significant 307 

decline (P < 0.01) and was similar to the second UV-treated culture on day 6. The cell abundance and FDA 308 

fluorescence appeared unaffected by the second UV treatment. 309 

 On day 12, following 7 days of light incubation, the cell abundance in the control incubation increased 310 

to >45,000 cells mL
-1

. The cell abundance of the single and double UV-treated culture were significantly lower 311 

(P < 0.005; P < 0.05 respectively), but still well above 500 cells mL
-1

. ATP levels decreased to 100-250 RLU, 312 

which represents 1-2% of the original RLU level. PSII efficiency was below the detection limit for all UV-313 

treated cultures and remained at very high levels in the control. FDA levels did not significantly decrease 314 

between day 5 and day 12 in UV-treated incubations. In the control FDA and ATP levels increased 8-fold and 315 

25-fold respectively between day 5 and day 12 coinciding with the increase in cell density.  316 

 At day 5 numbers of living cells were 100-200 cells mL
-1

 in the various UV-treated incubations, which 317 

was 10-20 times exceeding the D-2 standard (Anonymous 2004). At day 12 no living cells were detected in all 318 

UV-treated cultures. ATP showed a good correlation between living T. rotula cells and RLU levels with R
2 
= 319 

0.73 (Figure 3a). However, at cell numbers above 50 cells mL
-1

 a plateau appeared. FDA levels showed no 320 

correlation with the number of living cells (Figure 3b). Although PSII efficiency is not a quantitative indicator it 321 

showed the best correlation with living cells indicated by R
2
 = 0.87 (Figure 3c). 322 

3.3. Test CME techniques during IMO G8 land-based verification testing 323 

The full-scale land-based test were successfully carried out according to the IMO G8 test guidelines using 324 

seawater and fresh water (Anonymous 2005; Anonymous 2008a; Peperzak 2013). All three compliance tools 325 

showed a significant reduction in their respective signals between samples from the uptake before treatment and 326 

discharge after treatment (Figure 4). The largest reduction was recorded for ATP analysis (91%) between 327 

untreated uptake samples and treated discharge samples (Figure 4a). FDA fluorescence showed a decrease of 328 

82% (Figure 4b). PSII efficiency levels derived from DCMU analysis resulted in decreases of 83% (Figure 4c). 329 

All compliance tools showed significant differences between untreated and treated water at uptake.  330 

 Official data for the G8 test protocol (10-50 µm cells mL
-1

 and PAM fluorometry derived PSII 331 

efficiencies) were compared with the three compliance tools (Figure 5). DCMU derived PSII efficiency data 332 

showed the highest correlation with cell concentrations (R
2
 = 0.72; Figure 5c), followed by ATP (R

2
 = 0.62; 333 

Figure 5a) and FDA (R
2
 = 0.43; Figure 5e). DCMU derived PSII efficiency data showed the highest correlation 334 
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with PAM fluorometry derived PSII efficiency data (R
2
 = 0.75; Figure 5h), followed by FDA and ATP analysis 335 

(R
2
 = 0.64 and 0.47, respectively).  336 

3.4. Detection limit, concentration efficiency and salinity reduction of the concentration method 337 

During the detection limit test of CM3, the BDK produced statistically different RLU values between all 338 

dilutions except between 10 and 20 cells mL
-1

. When the ATP swabs were used no significant difference was 339 

observed between 20 and 50 cells mL
-1

 (Data not shown). So, CM3 in combination with ATP swabs was not 340 

sensitive enough to distinguish T. rotula concentrations <50 cells mL
-1

.  341 

  The concentration efficiency of CM3 and CM4 was 63% ± 12% and 85% ± 25%, respectively (average 342 

± CI). Due to variability in the measurements the difference was not statistically significant (p = 0.15). However, 343 

CM4 was not statistically different from 100% concentration efficiency.  344 

 CM4 was detrimental to the salinity reduction factor due to mixing the milli-Q™ water with the 345 

residual sample in the 100 mL syringe. Using CM5 the salinity reduction factor was increased significantly from 346 

17 to 33 times (P = <0.001). This meant that a seawater sample containing 35 g kg
-1

 salts, after concentration 347 

typically contained 1.1 g kg
-1

 salts (35/33 = 1.1). This salinity reduction was deemed sufficient for typical 348 

seawater samples, since RLU signal loss is likely to be ~15% or less, at a residual salinity of 1.1 g kg
-1

.  349 

  Results of the precision test showed that at two replicates the 95% CI was larger than the average RLU 350 

signal observed for both concentration methods (Figure 6a). At five replicates, the average RLU levels of CM5 351 

stabilized and the CI was 24%, while the CI of CM3 still was 38% of the average. The average RLU values 352 

obtained using CM5 were not significantly different from CM3, whilst the concentration factor was 10 instead of 353 

20 which illustrated the improved flushing efficiency of CM5. The variability among measurements using CM5 354 

appeared to be lower than using CM3, which might be attributed to the improved resuspension efficiency of five 355 

times back and forth flushing.  356 

  The initial 1 L T. rotula solution for the detection limit test of CM5, contained 176 ± 15% cells mL
-1

 357 

(average ± %CI). Following 6 dilutions steps the error had increased to 21% (15+6). So the final dilution had a 358 

concentration of 2.5 ± 0.5 cells mL
-1

 (average ± CI). Significantly different RLU signals were observed for all T. 359 

rotula dilutions tested using CM5 and ATP swabs (Figure 6b). This indicated that the detection limit of CM5 is 360 

at least 2.5 ± 0.5 cells mL
-1

. The improvement of the detection limit compared to CM3 was mainly attributed to a 361 

reduction in variability among the replicates presumably due to the improved flushing of the filter. Adding M. 362 

pusilla cells to the dilutions did not result in significantly different RLU levels. This was a strong indication that 363 

the concentration method was highly effective in disregarding cells <10 µm whilst concentrating cells >10 µm.  364 
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  Using the regression model from Figure 6b, it is possible to estimate pass/fail levels for the ATP assay 365 

using CM5 and ATP swabs. According to the regression model (RLU = 23.1 * cell concentration + 10.6), the 366 

RLU level of 10 T. rotula cells is 241.6 RLU. T. rotula is a cylindrical cell of 15 µm in diameter and height. So, 367 

the volume of 10 cells is 26.507 µL
3
 (10 * Volume = π * 7.5

2
 * 15). Assuming that ATP levels remain constant 368 

among organism species and sizes, this translates to 0.009 RLU µL
-1

 cell volume (241.6 / 26.507). Using this 369 

value, it is possible to estimate the lower and upper limit of ATP assay at which ballast water is either D-2 370 

compliant or likely non-compliant. In further calculations, cells are assumed to be spherical. A spherical cell of 371 

10 µm would have a volume of 524 µL (Volume = 4/3 * π * 7.5
3
). So, 10 cells of 10 µm would result in 48 RLU 372 

(10 * 524 * 0.009), which is significantly higher than the blank measurement: 11 ± 6 RLU (average ± CI). The 373 

upper limit would be when 10 cells of 50µm are present in the sample. This would result in a RLU level of 5,951 374 

RLU (10 * 65,450 µL * 0.009). So, assuming constant ATP levels per cell volume, if the ATP assay yields a 375 

result of less than ~50 RLU, the ballast water sample is most likely D-2 compliant. If the ATP assay yields result 376 

of more than ~6,000 RLU the ballast water sample is most likely non-compliant. RLU levels between these two 377 

numbers are ambiguous, because a high abundance of small cells can give the same RLU signal as a few large 378 

cells.  379 

  380 
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4. Discussion 381 

4.1. Data quality 382 

Several aspects have been considered to assess the data quality obtained from the compliance tools. Firstly, it 383 

was shown that the ATP assay was not affected by chlorine conditions typically encountered in chlorine-treated 384 

ballast water. Moreover, the incorporation of the pre-concentration procedure tackled three major challenges at 385 

once. First, salinity interference was sufficiently eliminated by reducing the salinity 33 times. Second, non-target 386 

dissolved ATP and ATP derived from <10 µm organisms were effectively removed from the concentrate, shown 387 

by the lack of RLU signal increase after the addition of M. pusilla. Third, the detection limit was decreased to 388 

2.5 ± 0.5 cells mL
-1

. These developments contribute to ATP having a high potential to become a viable ballast 389 

water compliance tool. It should be noted that the ATP assay is affected by ambient temperature. So in order to 390 

obtain reliable results, all analyses should be carried out at room temperature. In Arctic regions, where ballast 391 

water temperatures are around freezing point, no problems are expected as long as the ATP-free water to flush 392 

the filter and other reagents and equipment are kept at room temperature.  393 

  In laboratory tests, of the three compliance techniques tested, ATP and PAM fluorometry showed the 394 

most promising results, since both demonstrated a reasonable to good correlation with the amount of living T. 395 

rotula cells (R
2
 = 0.73 and 0.87, respectively). The correlation of PSII efficiency and cell concentration was 396 

considered to be indirect because water disinfection both decreased cell densities as well as PSII efficiency 397 

simultaneously. In principle, high PSII efficiency can be detected both at low and high cell densities since it is a 398 

relative measurement. However, due to the high correlations observed between PSII efficiency and cell density it 399 

can be of value for indicative testing.  400 

  The absence of a correlation (R
2
 = 0.03) between FDA and living cells could be caused by intact 401 

enzymes still residing in the permeable cells. FDA fluorescence was based on esterase activity. However, UV-402 

treatment of T. rotula did not appear to inhibit esterase enzymes. The concentration method used for ATP 403 

analysis appeared to effectively discard the ATP content of permeable and dead cells, indicated by the relatively 404 

high correlation with living cells and RLU signal (R
2
 = 0.73). The living cells on day 5 in the UV-treated 405 

incubations were no longer viable, indicated by the absence of living cells on day 12 after 7 days of light 406 

incubation. The detection of living cells at day 5 clearly demonstrated the delayed effect of UV disinfection 407 

often observed after UV treatment (Stehouwer et al. 2010). Most compliance tools are designed to detect living 408 

cells instead of viable cells, whereas viability is the variable that is needed to establish whether ballast water 409 

discharge is in compliance with IMO and USCG regulations (Anonymous 2004; Anonymous 2012). 410 
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  In full-scale tests, major ATP differences between treated and untreated water were observed, both in 411 

seawater and fresh water. Correlation plots revealed that ATP correlates well with the concentration of 10-50 µm 412 

organisms. The strong correlation between DCMU and PAM fluorometry derived PSII efficiencies was 413 

expected, since both methods essentially aim to measure the same variable. It was surprising that DCMU showed 414 

a higher correlation with cell concentration than ATP or FDA. The latter two methods aim to quantify total 415 

metabolic activity and enzymatic activity, which is presumably a good indication for cell concentration. In 416 

contrast, DCMU aims to measure PSII efficiency which is independent of concentration. Previous studies 417 

however, have indicated that PSII efficiency was a poor predictor for phytoplankton regrowth potential (Van 418 

Slooten et al. 2014). Of the two quantitative methods, ATP was considered superior to FDA since ATP results 419 

correlated better with cell concentrations. 420 

  A major limitation of relying on the presence of PSII efficiency as compliance tool is that it only targets 421 

autotrophic organisms. Heterotrophic organisms such as ciliates, protozoa and many dinoflagellates cannot be 422 

detected using DCMU, Walz PAM or any other PSII-based method. Coastal ecosystems can rapidly shift from 423 

phytoplankton dominated to zooplankton dominated states in a matter of weeks (Peperzak et al. 1998) so the 424 

need for a compliance tool capable of detecting all types or organisms is evident. Both ATP and FDA are 425 

capable of detecting all types of organisms, however ATP analysis is much less time-consuming than FDA 426 

analysis.  427 

  Differences in delayed disinfection effect between laboratory studies and full-scale land-based studies 428 

could be caused by the use of different UV technologies. In the laboratory, a low pressure UV-C reactor was 429 

used which produced monochromatic UV-C radiation at 254 nm. The medium pressure UV reactor in the full-430 

scale land-based test produced a broad range of UV-C and UV-B radiation, ranging from 200-400 nm (personal 431 

communication M. Voigt, Cathelco, UK). Although disinfection efficiency is highest at a radiation of 254 nm, 432 

this wavelength is often quickly absorbed in natural freshwater due to dissolved organic matter. Each wavelength 433 

exhibits its own absorption rate which also tends to vary with various water qualities (Carter et al. 2012). Thus, it 434 

could be preferable to apply medium pressure UV systems to account for varying water qualities a ship 435 

encounters at different moments and locations.  436 

4.2. Sources of false-positive and -negative results 437 

Leaking filters might produce false-negative results. However, the five-fold replicates should ensure the 438 

detection of such events. Risks of damaged filters are relatively small, since the filters used in the ATP assay are 439 

contained in sturdy plastic capsules and are intended for single use only. As mentioned earlier, the risk of filter 440 
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damage or leakage is considerable using the FDA method. Moreover, similar risks for false-positive and -441 

negative results are present when using the FDA method. Using DCMU however, no risk of bacteria induced 442 

false-positives are present, since DCMU specifically target PSII efficiency which is exclusively present in 443 

phototrophic organisms. On the other hand, DCMU can lead to false-positive results when the phytoplankton 444 

present in a sample comprises mainly of <10 µm cells since no separation between large and small cells was 445 

made beforehand. In addition, false-negative results are also possible when using DCMU, since the absence PSII 446 

activity does not guarantee phytoplankton’s loss of regrowth potential. Moreover, even when phytoplankton is 447 

totally absent, micro-zooplankton might still be present in the ballast water, undetected, leading to false-negative 448 

results. 449 

4.3. Validation recommendations 450 

Despite a first attempt to calculate pass/fail levels for the ATP assay, several factors could pose additional 451 

challenges. During the growth cycle of phytoplankton, cellular ATP concentrations may vary (Holm-Hansen 452 

1970). During the exponential growth phase, ATP levels are expected to be elevated compared to phases where 453 

cells are no longer dividing e.g. under nutrient limited conditions. Also, different species can exhibit different 454 

ATP levels depending on size and species-related metabolic states. However, a decrease of ATP during 5 day 455 

dark incubations was not observed in full-scale tests (Figure 4a). So, it is recommended to measure the ATP 456 

levels of a wide variety of 10-50 µm organisms in various stages of their growth cycle between 5 and 50 cells 457 

mL
-1

 to obtain an expected ATP level of D-2 compliant ballast water. In addition, to corroborate the excellent 458 

separation capacity of the filtration method in T. rotula and M. pusilla culture mixes, species of more similar cell 459 

sizes could be tested as well. ATP measurements should be carried out alongside full-scale land-based and 460 

shipboard trials of various BWMS techniques to examine the typical ATP concentration of D-2 compliant test 461 

water. It can be expected that chlorine-treated ballast water contains different ATP concentrations than UV-462 

treated ballast water due to inherently different disinfection mechanisms. It is recommended that the ATP assay 463 

is tested using a representative number of available ballast water treatment techniques to investigate expected 464 

differences in typical ATP concentrations of D-2 compliant discharge water. 465 

  When ballast water with a high sediment load is taken up, bacteria adhered to the surface of sediment 466 

particles could end up in the concentrate and interfere with the ATP analysis, leading to false-positive results 467 

(First and Drake 2013). Sediment interference is only expected after short voyages since the larger particles will 468 

quickly sink out to the bottom of ballast tanks and typically will remain in the tank during ballast water 469 
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discharge. It is recommended to investigate the effect of high sediment loads with and without bacteria on the 470 

performance of the ATP assay.  471 

4.4. Comparison with previous ballast water-ATP studies 472 

Quantifying ATP to estimate living biomass after ballast water treatment has been attempted before. In all 473 

studies a pre-filtration procedure was performed using 10 µm or 0.2-0.7 µm filters to differentiate between 474 

microbial and >10 µm organisms. In congruence with the current findings, all studies reported a strong (-90% to 475 

-99%) decline in ATP content after ballast water disinfection using full-scale systems applying peracetic acid, 476 

peroxide and electro-chlorination (de Lafontaine et al. 2008; Welschmeyer and Davidson 2011). A delay in ATP 477 

degradation was observed in a laboratory study using UV radiation (First and Drake 2013), which was also 478 

observed in the current UV-based laboratory study. The delay was most likely caused by the delayed cell death 479 

caused by UV disinfection. Cells do not die right after treatment, but DNA damage inflicted by the radiation 480 

eventually leads to cell death. However, in the current research, the full-scale UV-based treatment test, ATP 481 

levels had strongly declined, leading to the suspicion that differences between low pressure and medium pressure 482 

UV systems could be of more significance than earlier expected.  483 

4.5. Usability and time 484 

The DCMU-based method was the most easy to use since the procedure involved very little equipment and 485 

sample handling which ensures an analysis time of <5 minutes. In stark contrast, the FDA-based method 486 

required at least 40 minutes to acquire a single measurement. During field tests, triplicates usually took one hour 487 

to obtain, since incubations could be run in parallel. Clogging of filters was a common issue with the FDA 488 

method, due to the large volume required to filter (200 mL) relative to the filter diameter (25 mm). The provided 489 

manifold required manual replacement of individual filters from the manifold, creating many opportunities for 490 

contamination and damaging of the filter before and after the filtration process.  491 

  Concerning the ATP assay, the concentration procedure to remove dissolved ATP and <10 µm 492 

organisms from the sample proved straightforward and easy to use. Syringes and filters were provided in sealed 493 

packages which proved clean due to consistently low blank measurements. It is of importance that a blank 494 

measurement is made using only ATP-free elution water to ensure cleanliness of the procedure. Contamination is 495 

unlikely if the operator uses a clean beaker to acquire the sample and any contact with the sample is limited to 496 

the syringes and filters. Variation among measurements can be considerable though, so it is advisable that at 497 

least five replicates are made for each ballast water sample. All equipment needed to use the ATP compliance 498 

tool can be transported in a lightweight briefcase. Setting up the equipment and carrying out the concentration 499 
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and analysis steps is done in a matter of minutes. In practice, the most time-consuming aspect of the procedure 500 

most likely will be the proper collection of a ballast water sample. 501 

 502 

5.  Conclusions 503 

 The concentration procedure solved three problems: Interference of high salinity. Interference of 504 

dissolved ATP and <10 µm organisms. The detection limit was sufficiently decreased. 505 

 Reagents for ATP analysis should be kept at room temperature. 506 

 ATP and DCMU results correlate well with living T. rotula cells (R
2
 = 0.73 and 0.87, respectively) but 507 

fail to predict viability. 508 

 ATP and DCMU analysis exhibited reasonable correlations with 10-50 µm cells mL
-1

 (R
2
 = 0.64 and 509 

0.73, respectively). 510 

 FDA analysis was considered too time-consuming (>40 minutes per analysis) to be an effective 511 

compliance method. 512 

 When assessing ballast water for D-2 compliance, the estimated pass level of the ATP assay using 513 

concentration method 5 is ~50 RLU and the estimated fail level is ~6,000 RLU.  514 

 Additional lab- and field-tests, incorporating phytoplankton monocultures, high sediment load and 515 

different treatment methods, are required to validate the ATP assay.  516 
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Table 1 Overview of all experiments conducted. The number of independent experiments is denoted as ‘n’. 

During each experiment, multiple replicated were analysed. The null-hypothesis describes the result if no 

effect was found 

Experiment n Null-hypothesis (H0) 

The influence of 

hypochlorite on ATP 

detection. 

 

1 Hypochlorite up to 10 mg L-1 does not influence the light output of 

the 3M Clean Trace™ ATP assaya using the BDKb. 

 

 

The relationship between 

the ATP concentration and 

the resulting RLU signal. 

1 There is no linear correlation between the ATP concentration and 

light produced during ATP analysis using the BDK. 

 

The influence of salinity 

on ATP detection at 4°C, 

15°C and 26°C. 

1 1. Salts have no effect on the light production of the ATP assay 

using the BDK. 

2. Temperatures of 4°C, 15°C and 26°C have no relative effect 

on the light production of the ATP assay using the BDK. 

 

UV-C treatment of T. 
rotula. 

1 1. A dose of 139 mJ cm-2 UV-C (254 nm) has no effect on the 
viability of T. rotula cells.  

2. The effect of UV-C treatment on T. rotula cannot  be 

effectively monitored using: 

a. Flow cytometry 

b. Variable fluorescence 

c. FDA analysis 

d. ATP analysis 

3. Data resulting from flow cytometry, variable fluorescence, 

FDA analysis and ATP analysis are not correlated. 

 

Test compliance kits 

during IMO G8 land-

based testing. 

6c/10d Organism concentrations derived from flow cytometry and 

microscopy (the official land based test data) cannot be correlated 

with the indicative compliance tools: 
a. DCMU 

b. FDA 

c. ATP 

 

Detection limit of ATP 

analysis using CM3. 

1 1. ATP analysis using the ATP assay with either the ATP swabs 

or the BDK following CM3 is not linearly correlated with the 

concentration of T. rotula. 

2. ATP analysis using either the ATP swabs or the BDK 

following CM3 is not able to detect <10 T. rotula cells mL-1. 

 

Improving the 

concentration efficiency 

and salinity reduction of 
the CM. 

1 1. Flushing 5 mL milli-Q™ back and forth five times instead of 

one flush does not improve the collection of particles from 

the concentration filter. 
2. Replacing the salt-contaminated 50 mL syringe with a sterile 

5 mL syringe when back flushing, does not improve the 

removal of salts in the concentrate.  

 

Comparing the precision 

of CM3 and CM5. 

1 Changes to the back flush procedure do not lead to less variation 

among replicate measurements of natural seawater. 

 

Detection limit of ATP 

analysis using CM5. 

1 1. ATP analysis using the ATP swabs following CM5 is not 

linearly correlated with the concentration of T. rotula. 

2. The ATP assay using the ATP swabs following CM5 is not 

able to detect <10 T. rotula cells mL-1. 

 
aAll ATP analyses were performed using the 3M Clean Trace™ ATP assay. bBDK: Biomass Detection Kit. cControl tanks. 
dTreated tanks 
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Table 2 Overview of the development process of the concentration method, compared with the FDA- and 

DCMU-based methods 

 Concentration Method (CM)   

Feature CM1 CM2 CM3 CM4 CM5  FDA DCMU 

Sample volume (mL) 200 100 100 100 50  200 3 

Extractant volume (mL) 2 5 5 5 5  2  

Concentration factor 100x 20x 20x 20x 10x  100x  

Salinity reduction factor ndb nd 17x nd 33x  nd  

Concentration efficiency nd nd 63% 85% 85%c  nd  

Detection limit (cells 
mL-1; average ± CI)a 

nd nd >50 nd 2.5 ± 0.5  nd nd 

Time required (minutes) ~5 ~3 ~3 ~3 ~3  ~40 ~5 

Usability at dock - - + + +  - ++ 

10 µm pore size / 25 mm 
Ø nylon screen filter 

X X X X X  X  

Beaker-flask-cuvette 
filtration manifold 

X      X  

Syringe filtration system  X X X X    

Reusable stainless steel 
syringe filter capsule 

 X       

Disposable 
polypropylene filter 

capsule 

  X X X    

Pipettes and tweezers 

needed 
X      X  

Five times back flush   X X X    

aUsing ATP swabs. bnot determined. cderived from CM4    
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Fig. 1 (a) ATP standard dilutions analyzed in triplicate with the biomass detection kit at 4°C, 15°C and 26°C. (b) 

ATP standard (6 ng mL
-1

) analyzed in triplicate with the biomass detection kit at 4°C, 15°C and 26°C. (c) ATP 

standard (6 ng mL
-1

) analyzed with the biomass detection kit. Error bars depict the 95% confidence interval 

Fig. 2 Thalassiosira rotula cells analyzed with (a) Flow cytometry and SYTOX
®
 Green. Living cells were not 

fluorescent after SYTOX
®
 Green staining. (b) ATP assay using concentration method 2 and the biomass 

detection kit. (c) FDA and (d) PAM fluorometry. The black and white bars between the graphs indicate the dark 

(black) an illuminated (white) periods during the incubation. Error bars depict the 95% confidence interval of 

triplicate measurements 

Fig. 3 Correlation plots comparing living Thalassiosira rotula cells to (a) ATP analysis using concentration 

method 2 and the biomass detection kit. (b) FDA and (c) PAM fluorometry. Error bars depict the 95% 

confidence interval of triplicate measurements 

Fig. 4 Three compliance tools used during the testing of a full-scale UV-based ballast water management 

system. (a) ATP analysis using concentration method 1 and ATP swabs, (b) FDA and (c) DCMU. Values 

represent the average of all tests carried out. Control: n=6. Treated: n=10. Error bars depict the 95% confidence 

interval 

Fig. 5 Correlation plots between the official IMO G8 test results and CME techniques. 10-50µm organism 

concentrations are based on phytoplankton and micro-zooplankton enumerations, obtained from the Cathelco test 

report (Peperzak 2013). Relative Luminescence Units (RLU) depict the results of the ATP assay using 

concentration method 1 and ATP swabs. Fv/FDCMU indicates the PSII efficiency estimation based on DCMU. 

Fv/Fm indicates the PSII determination based on PAM fluorometry  

Fig. 6 (a) Precision test comparing concentration method 3 and 5 using ATP swabs and natural seawater. RLU: 

relative luminescence units. (b) RLU: relative luminesce units resulting from concentration method 5 using ATP 

swabs. Closed circles indicate results of only T. rotula cells. Open circles represent solutions containing T. rotula 

and M. pusilla in a 1:1000 ratio. Open circles were moved to the right by 0.8 cells mL
-1

 to enhance visibility. 

Error bars depict the 95% confidence interval 
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