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‘If Antarctica were music it would be Mozart. Art, and it would be
Michelangelo. Literature, and it would be Shakespeare. And yet it is

something even greater; the only place on earth that is still as it should be.
May we never tame it.’

Andrew Denton
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PREFACE

1. The polar regions

The earth’s position within the solar system, its shape, orientation and rotation

determine the climate of our planet. The global thermal budget shows a strong

negative gradient from the equator towards the poles. As a result from their location,

polar regions are exposed to similarly low and strongly variable light conditions

and exhibit a series of extreme features which characterise these zones as some

of the most inhospitable places on earth. Due to these conditions, Northern and

Southern polar ecosystems are unique and apparently very similar. The Arctic

and Antarctic zones show very low average temperatures and apart from a few

high-altitude areas at lower latitudes, they are the coldest places on earth. Overall

light levels are particularly low and show a strong seasonality, with twenty-four

hour daylight in summer and continuous darkness during winter. Due to natural

and anthropogenic thinning of the ozone layer above the poles, UV light levels

are abnormally high at these latitudes. Polar regions are also very dry and the

limited precipitation accumulates almost entirely as ice, which permanently covers

most land areas and a large proportion of the sea surface in winter. In addition,

this extensive ice cover modifies the albedo of these surfaces and enhances the

cold climate. In both regions extremely strong winds are regularly recorded. Despite

these extreme conditions, the poles harbour a wide variety of different terrestrial

and aquatic biotopes, ranging from the surrounding oceans, sea-ice and marine

sediments to continental lakes, the ice sheet, soils and rocks.

However, major differences between these two polar zones exist (Grémillet &

Le Maho, 2003). The distribution of land and sea is completely different in the

Arctic and Antarctic, with Antarctica being a continent surrounded by water, whereas

the Arctic is actually an ocean surrounded by land (high latitude regions of the

Northern hemisphere continents) (see Fig. 1.1 and 1.2). Antarctica is more isolated

than the Arctic and this is not only the result of the large distance to the next

continent (South America; the Drake Passage between the Antarctic Peninsula

and Tierra del Fuego is 1800 km wide), but also because of the strong circumpolar
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currents of the Southern Ocean, which make the Antarctic continent even more

isolated. Due to this Antarctic Polar Front, the climatic features of the Antarctic

waters are more extreme and constant than those of the Arctic. In the Arctic isolation

is less stringent and the range of temperature variations is wider. The Antarctic as

a whole is also older than the Arctic. The Antarctic continent drifted away some

140 million years ago, and has been subjected to complete isolation and a cold

climate for at least 15 My. This is not the case for the Arctic which is a younger

system and the Northern polar ecosystems as we know them today evolved only

during the last 15 000 years.

Another example of these differences between the polar regions can be found

in their lake environments (Laybourn-Parry, 2003). Both have freshwater and saline

lakes but in Antarctica the spectrum spans from brackish to hypersaline, whereas

in the Arctic, saline lakes are less common and do not reach the salinity levels

seen in Antarctic lakes. Arctic lakes also have more complex plankton communities

than the Antarctic lakes. Generally, primary production is higher in the Arctic and

this is largely due to higher temperatures in these systems and a longer growing

season. In Antarctica the productivity continues during the winter months whereas

evidence suggests that in the Arctic lakes, organisms shut down their activity

during winter.

2. History of polar research

The polar regions are extreme environments and are of key importance for

our understanding of how the world functions. The processes taking place now in

the Arctic and Antarctic affect the world’s climate and its oceans, linking these

regions to what we experience thousands of kilometres away. In understanding

the global change, the poles also play a crucial role. Locked up in the thick ice

sheets is a record for past climate for the last 500 000 years. Trapped bubbles in

the ice hold an archive of atmospheric gasses and evidence for levels of global

pollution by industry, agriculture and atomic bombs is frozen into the ice. For all

these reasons, the poles are an extremely interesting and important subject for

scientific research. For the early explorers the Artic and Antarctic were the ultimate

survival contest. For scientists it remains a place of intellectual challenge whilst

for the modern tourist it is simply a wilderness of great beauty.

The history of polar research starts with the great explorers, heading to the

North and South poles to map out the world’s unknown continents, or the mysterious
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‘Terra Incognita’ like the Antarctic continent was named. William Barents led several

expeditions to the Arctic in search for a connection between the White Sea and

the Bering Sea and in 1596 he claimed Spitsbergen. In the 18th and 19th centuries,

the Russians conducted several expeditions to map and describe the coasts of

Siberia and North-America. James Cook was the first in 1773 to cross the Antarctic

Polar Circle and John Davis was the first man in 1821 to set foot on the Antarctic

Peninsula. In 1831 James Ross discovered the Northern magnetic pole and in

1841 he found the Antarctic Ross Sea. Captain Koldewey and his crew reached a

northerly latitude of 81° in 1868 and Alfred Wegener led numerous expeditions to

Greenland. In the period between 1877 and 1884, captain Dallman played a key

role in improving access to Siberia and a sea route to the estuaries of the rivers

Ob and Yenisey in Siberia was established. The first scientific expedition to the

South Pole was conducted by a Belgian marine officer, Adrien de Gerlache de

Gommery in 1897 and on the 16th of August they left with the three-master the

Belgica. In March 1898 they got locked in by the ice and had to pass winter on

Antarctic pack-ice, but despite this disaster, meteorological observations could

be made for the first time during a whole year. Several others followed the example

of De Gerlache and in 1901 the Discovery, conducted by Robert Scott, left England

to stay during winter on McMurdo Sound. Ernest Shakleton (1907-1909) got close

to the geographical South Pole (180 km) and other members of this expedition

reached the magnetic South Pole. But the honour was for Roald Amundsen who

reached in 1911 the geographical South Pole for the first time. In 1914, Shakleton

wanted to cross the Antarctic continent but his ship the Endurance sank in the

Weddel Sea. Wilkins was the first to fly over the Antarctic continent (1928) and in

1946, the US Navy organised a large scientific expedition to explore the Antarctic

coastal areas. Overall, the importance of scientific research in Antarctica (and in

the poles in general) was understood during the International Geophysical Year

(1957) and led to the Antarctic Treaty in 1959.

In the beginning the scientific expeditions were focused on geographical,

geomagnetic and meteorological questions, but the huge unexplored polar regions

also awakened the curiosity of geologists and biologists. Especially the Southern

ocean is biologically very rich but also the Arctic and Antarctic continents harbour

life, dominated by microorganisms, mosses, lichens and relatively few groups of

invertebrates. As such, these polar regions, where life approaches its environmental

limits are not only of great interest to zoologists, geologists and other scientists

but also for the microbiologists, a true paradise.
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3. Objectives of this work

This work will focus on the bacterial diversity in microbial mats from Antarctic

lakes and from polar seas, and several challenges regarding this research area

exist:

1. Polar areas contain extreme habitats where microorganisms are the

most abundant and often the only form of life. Research on microbial diversity

in these regions is still in its infancy and there is little information about the

bacteria that inhabit these extreme environments.

2. Several polar habitats, have not been studied into detail and only

specific areas have already been investigated, leaving a large part unexplored.

Additionally, most of this information is limited to certain seasons and due to

logistic constraints, most of these habitats have not been sampled during

winter.

3. The extreme environmental conditions in the polar habitats have led to

the origin of novel, endogenous species and only recently the information on

these new taxa is increasing, with the description of novel species.

4. These novel species also have new biochemical adaptations, like anti-

freeze proteins, cold-adapted enzymes, desiccation and salt tolerance, etc.

with potentially a large amount of unexplored biotechnological applications.

This work on the taxonomical research of polar prokaryotes was started in

the frame of the MICROMAT-project ‘Biodiversity of microbial mats in Antarctica’

(Project N° BIO4-CT98-0040), funded by the European Commission under the

Biotech Programme (see Annex III), and in the frame of the cooperation with T. L.

Tan from the Alfred Wegener Institut für Polar- und Meeresforschung (AWI,

Bremerhaven). The major aim of this thesis was to handle especially the first

three of these problems by characterising the bacterial diversity in Antarctic lakes

and polar seas. Firstly, this study focused on heterotrophic bacteria in the Antarctic

lakes and oligotrophic bacteria in the polar seas, and addresses the first problem

of a lack of information on bacterial functioning in polar environments.

Secondly, special attention was given to rather unexplored areas of these

polar habitats, with regard to the microbial Antarctic mats and several expeditions

in the Arctic and Antarctic seas. Samples from microbial mats in Antarctic lakes

were only taken during austral summer (from November to March 1999 & 2000),

whereas the samples from the Arctic Ocean were gathered during an expedition
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in June 1987 (Tan & Rüger, 1991) and samples from the Antarctic Ocean are from

March/ April 1990 (Tan et al., 1999). The information about the microbial diversity

in these polar regions is of huge importance for the better understanding of the

composition and functioning of microbial communities in extreme environments.

Through a polyphasic taxonomic approach this work should lead to the

description of several novel taxa, handling the third challenge. It will allow

generating unique collections of samples, isolates and genomic materials and

databases with genotypic and phenotypic properties of polar bacterial strains, by

using up to date techniques. These can be used in the future to identify new

isolates from similar habitats and to develop genomic primers for in situ detection.

The fourth challenge was also addressed during the MICROMAT-project,

since almost 800 bacterial isolates were made available for several industrial

partners (e.g. Genencor Holland, Merck Sharp and Dohme Madrid and Vicuron

Pharmaceuticals, formerly BioSearch Italia) who screened them for potentially

novel compounds such as cold-adapted enzymes (like proteases, cellulases and

lipases) and compounds with antimicrobial activity. Additionally, by describing

several of these new taxa from Antarctic lakes and polar seas, reference strains

will be deposited in different culture collections and as such these well

characterised strains will become publicly available for the scientific community,

which will make the search for novel biochemical adaptations easier.
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CHAPTER 1

Bacterial diversity in Antarctic lakes and polar
seas

1.1 Antarctic lakes and polar seas

Antarctica is characterised by its geographical and climatic isolation and most

of the continent has experienced little or no anthropogenic influence. Antarctica is

a very unique and extreme environment since only 2% of its surface is ice-free,

the lowest temperatures on earth occur here and the continent also has the lowest

precipitation and one of the lowest relative humidity levels. On the contrary, the

continent contains 70-90% of the world’s freshwater but most of the time the water

is frozen and the Antarctic lakes are either covered by perennial ice of variable

thickness, completely frozen or so saline they rarely freeze (Simmons et al., 1993).

Most lakes with thick ice covers thaw along their margins to form moats during

summer and are exposed to the atmosphere and running water for only a few

weeks of the year. Although most of the Antarctic continent is covered by ice,

desert like ice-free areas exist and these are often called ‘oases’. In these areas

the Antarctic lakes are located and there are several hypotheses to explain the

origin of these oases. Solopov (1969) stated that ice-free areas are formed when

the ice sheet thins sufficiently, because of global climatic change (the warming

trends of the Holocene) so areas with some degree of elevation become ice-free.

The positive radiation balance (associated with dark soils and rocks) maintains

these ice-free areas, basins in these areas would collect melt water and lakes are

formed. According to Priddle & Heywood (1980) the origin of Antarctic lakes can

be found in the accumulation of blown sand on the ice sheet. The sand will act as

a solar collector and the surrounding ice will melt. The formed depression will

collect more sand, enlarges and a proglacial lake is formed. These features are

often found on ice structures and are called ‘cryoconite holes’ (Wharton et al.,

1981). In section 1.2, more details are given about the lakes in three different
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Antarctic regions where samples were taken during the MICROMAT-project.

Polar oceans are cold and oligotrophic habitats, where most of the

microorganisms are found in the water column and in sediments and polar cooling

and the formation of sea-ice renders the water mass of the polar seas unique

characteristics. The annual cycle of sea-ice formation and melting, the exclusion

of salts during ice formation and the absence of wind mixing, result in a very

stable and highly stratified water column (Aagaard et al., 1981). The sea-ice itself

harbours a unique community dominated by microorganisms, often referred to as

the SIMCO (sea-ice microbial community) (Karl, 1993).

The Arctic Ocean is perennially ice covered, surrounded by continents (see

Fig. 1.1) and receives 10% of the freshwater flowing into the world’s ocean. The

Arctic Ocean communicates with the North Atlantic and the North Pacific only via

relatively narrow straits (Bering and Fram Straits, Norwegian Sea) and sea-ice

tends to accumulate here even in summer.

The Southern Ocean is quite different from the Arctic Ocean. It surrounds the

continent Antarctica (see Fig. 1.2) and when Antarctica and Australia separated,

the Antarctic Circumpolar Current originated, isolating the waters south of the

Polar Front from the southern parts of the Atlantic, Pacific and Indian Oceans.

Figure 1.1.  Location map of the Arctic Region with the Arctic Ocean and the surrounding

continents. The sampling site is indicated by a red star.

*
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These strong circumpolar currents dispatch a large fraction of the Antarctic sea-

ice as soon as it breaks up in springtime. The Southern Ocean receives almost no

freshwater inflow and no terrestrially derived nutrients (Kumar et al., 1995). A

large diversity of microbial habitats exists in this cold Antarctic Ocean ranging

from hypersaline and cold sea-ice environments to the open ocean habitats of the

Antarctic Circumpolar Current and the geothermally heated waters of the Scotia

Arc.

Figure 1.2. Map of Antarctica with the surrounding ocean. Sampling

sites are indicated by red stars.

*

*

*
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1.2 The Antarctic ice-free areas

1.2.1 McMurdo Dry Valleys

The McMurdo Dry Valleys of Southern Victoria Land represent the largest

ice-free area in Antarctica (about 4800 km2), located on the western coast of Ross

Sea (77°0’5”S-162°52’5”E) and are ice-free for approximately the last 4 million

years. They belong to the most extreme and cold deserts of the world with

temperatures ranging from –55°C to 5°C and a precipitation of less than 10 cm

per year. The Dry Valleys were formed by the advances and retreats of glaciers

through the coastal areas of the Transantarctic Mountains, which act as a barrier

to the flow of ice from the polar plateau. The McMurdo Dry Valleys presently

contain more than 20 permanent lakes and ponds, which vary in character and

are considered to be very old, probably hundreds of thousands of years. One of

the Dry Valleys, the Taylor Valley, has a few major lakes, Lake Fryxell, Lake Bonney

and Lake Hoare (see Fig. 1.3) and these are fed by 15 glaciers and are the

remnants of a large glacial lake, Lake Washburn, which existed 10 000-20 000

years ago (Doran et al., 1994). Some glaciers are in direct contact with the lakes,

for example, the Taylor Glacier for Lake Bonney and the Canada Glacier for Lake

Hoare. The Taylor Valley is a mosaic of ice-covered lakes, streams, arid soil,

permafrost and surrounding glaciers. Wind and water are the two forces

responsible for the transport of materials between different sites (Lyons et al.,

2000).

The lakes of the Taylor valley are different in many aspects (Roberts &

Laybourn-Parry, 1999; Takacs & Priscu, 1998; Roberts et al., 2000).

Lake Fryxell has a maximum depth of 20 m, a surface area of 7 km2 and is a

permanently stratified meromictic lake1 with a brackish monimolimnion. Water

temperatures during the summer range between 0.01 and 2.7 °C, with temperature

increasing with depth. The chemocline is situated at 9.5 m with an anoxic layer

below.

In contrast, Lake Hoare is effectively a freshwater, amictic system2. It has a

maximum depth of 34 m and a surface area of 3 km2. Summer temperatures in the

water column range between 0.01 and 1.0 °C. Some physico-chemical properties

1 In meromictic lakes the water is seasonally and partially mixed. These lakes have a mixed
upper oxic layer (mixolimnion), a lower stagnant anoxic layer (monimolimnion), which never
mixes with the upper layer and a pycnocline (density gradient) which forms a physical barrier to
the mixing of the water (Bowman et al., 2000b).
2 An amictic system is a lake where no mixing occurs.
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of lakes Fryxell and Hoare (sampled during the MICROMAT-project) are given in

Table 1.1.

Lake Bonney has a surface area of approximately 4 km2 and a maximum

depth of 40 m. The monimolimnia of both lobes of Lake Bonney are hypersaline.

Lakes in the Dry Valleys are perennially ice-covered. The ice is typically 3 to

6 m thick and contains a layer of sand and organic matter of aeolian3 origin below

the surface (Priscu et al., 1998). This rock dust and debris renders the ice opaque

and as a consequence, the light climate in the water column is poor. Strong

conductivity, nutrient and oxygen gradients and the presence of an ice cover,

create distinct layers in the water column in which the plankton lives.

Figure 1.3.  Location map of lakes Fryxell, Hoare and Bonney in the Taylor Valley, Southern

Victoria Land, Antarctica (from Lyons et al., 2000).

3 The term ‘aeolian’ means wind-born and is applicable for deposits.
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1.2.2 Vestfold Hills

The Vestfold Hills is an ice-free oasis of about 400 km2, which lies on the

eastern side of Prydz Bay on the Ingrid Christiansen Coast, East Antarctica (68°40’

S, 78°35’ E). The lakes of the Vestfold Hills are relatively young, about 8000-10

000 years old and were formed during isostatic uplift (Adamson & Pickard, 1986).

The climate of this area is cold, dry and windy, due to the dry winds from the

continental plateau and moist oceanic winds from the north-east. The resulting

landscape is seeded with hundreds of lakes ranging in size from small ponds to

large lakes up to 140 m deep. The lakes closer to the ice sheet are typically

freshwater (Laybourn-Parry & Marchant, 1992). In contrast, the lakes closer to

the coast are often saline to hypersaline and result from the entrapment of seawater

in depressions as the land rose out of the sea or from fjords cut off from the sea.

The salt of some of these marine lakes has subsequently been flushed out by

glacial meltwater and the lakes ultimately became freshwater (Bird et al., 1991).

The lakes of the Vestfold Hills range from large and deep freshwater ultra-

oligotrophic systems (Crooked Lake) to smaller oligotrophic freshwater lakes,

brackish lakes, saline meromictic lakes and hypersaline monomictic4 lakes. These

can be divided into different geographical groups (Gibson, 1999), see Fig. 1.4.

Long Peninsula has the greatest concentration of lakes in the Vestfold Hills

and these lakes are generally small and shallow. The largest lakes are Ace,

Pendant and Abraxas and are surrounded by marine terraces. Pendant Lake is a

lake with freshwater on top and salty underneath and a great deal of biological

activity. Organic Lake is a shallow meromictic lake with unusually high levels of

dimethylsulfide in its bottom waters (Franzmann et al., 1987). This hypersaline

lake is richly served by organic inputs from penguins. Highway Lake is a long,

narrow freshwater lake between Long Fjord and Taynaya Bay.  A lake at the northern

part of Long Peninsula, near the ice plateau is Grace Lake.

Broad Peninsula contains two groups of meromictic lakes and the first group

of lakes (Ekho, Shield, Oval and Farrell) lies in depressions that were once part of

a fjord-like system, which was isolated from the ocean. All these lakes are

surrounded by marine terraces and are hypersaline, suggesting the evaporation

of water after the connection with the sea was disrupted and probably a limited

input of freshwater.

4 A monomictic (or holomictic) lake is completely mixed in contrast to a meromictic system where
only the upper water layer is mixed.
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Figure 1.4.  Locations of the meromictic lakes of the Vestfold Hills, Antarctica (from Gibson,

1999). The lakes and basins are: 1. unnamed lake; 2. Organic Lake; 3. Pendant Lake; 4. Glider

Lake; 5. Ace Lake; 6. unnamed lake; 7. Williams lake; 8. Abraxas Lake; 9. Johnstone Lake; 10.

Ekho Lake; 11. Lake Farrell; 12. Shield Lake; 13. Oval Lake; 14. Ephyra Lake; 15. Scale Lake;

16. Lake Anderson; 17. Oblong Lake; 18. Lake McCallum; 19. Clear Lake; 20. Laternula Lake;

21. South Angle Lake; 22. Bayly Bay; 23. Lake Fletcher; 24. Franzmann Lake; 25. Deprez Basin;

26. ‘Small Meromictic Basin’, Ellis Fjord; 27. Burton Lake; 28. Burch Lake; 29. Tassie Lake; 30.

Club Lake; 31. Lake Jabs; 32. Deep Lake; 33. Lake Stinear; 34. Lake Dingle; 35. Lake Druzhby;

36. Watts Lake; 37. Lebed’ Lake; 38. Crooked Lake; 39. Grace Lake; 40. Highway Lake.  All

lakes and basin names are official except ‘Small Meromictic Basin’ and the unnamed lakes. The

stippling indicates continental ice. Lakes 39 and 40, indicated by a star (from Roberts & McMinn,

1999). In bold face: lakes investigated during the MICROMAT project.

*39

*40
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The second group of meromictic lakes on Broad Peninsula (Scale and Ephyra)

is characterised by relatively fresh surface water and salinity sharply increases

towards the base of the water column. Probably the salt in these lakes was blown

into them from hypersaline lakes located nearby.

The fourth group of lakes (Anderson and Oblong) was isolated from Ellis

Fjord during isostatic rebound and these lakes are hypersaline.

The last group of lakes is located at the western end of Mule Peninsula and

these lakes are quite diverse in salinity, depth and surface. There are six SIMBs

(Seasonally Isolated Marine Basins) located in the Vestfold Hills and these are

connected to the ocean during summer and isolated for the rest of the year when

they effectively become lakes. Environmental change leads to stratified lakes

losing their meromictic status and vice versa. The lakes in the Vestfold Hills are

fed by relatively small snow banks, which generally melt completely during summer.

The loading of the lake is thus a function of precipitation and the frequency of

storm events which transport the snow into the basins.

Some physico-chemical properties of the lakes sampled during the

MICROMAT-project (Ace, Druzhby, Grace, Highway, Pendant, Organic and Watts)

of the Vestfold Hills are given in Table 1.1.

1.2.3 Larsemann Hills

The Larsemann Hills are a series of ice-free peninsulas and islands along

the coast of East-Antarctica, about 100 km northwest of the Vestfold Hills (between

69°20’ S, 76°00’ E and 69°30’ S, 76°30’ E). The total ice-free area covers about

200 km2 and the highest elevations are around 180 m above sea level. There are

over 150 freshwater lakes in the hills, ranging from small ponds less than 1 m

deep to glacial lakes up to 10 ha and 38 m deep. The lakes are young with the

oldest basins being about 9000 years old. The characteristics of the lakes vary

and reflect their deglaciation history, proximity to the continental ice margin and

exposure to the ocean. The main source of water is snowmelt and for the more

exposed lakes, seaspray. The waters are well mixed by katabatic5 winds. The

lakes normally thaw fully or partially for up to 8 weeks during summer, but some

are permanently frozen. The ice cover can reach 2 m in thickness and make up

5 Katabatic winds are winds that flow from the high elevations of mountains, plateaus and hills
down their slopes to the valleys or plains below. These winds are observed at every latitude of
the globe, but nowhere are they as strong as they are in Antarctica.



32

Chapter 1

more than 50% of the lake volume in shallow lakes at the end of the winter (Gillieson

et al., 1990).

One of the lakes of the Larsemann Hills is the shallow, meromictic Lake Reid,

with a sharply stratified water column under a 1.6 m thick ice cover. It is an oval

lake about 0.4 km north of Law Base and it drains southwards into Lake Scandrett.

The water is heavily mineralised. Physico-chemical properties of Lake Reid

(sampled during the MICROMAT-project) are given in Table 1.1.

1.3 Polar microbial habitats

1.3.1 Heterotrophic bacteria in Antarctic lakes

1.3.1.1 The plankton in Antarctic lakes

Life on the Antarctic continent is well adapted to aquatic habitats, since the

aquatic communities are better protected against the extreme environmental

conditions than the terrestrial communities. This is why most of the Antarctic non-

marine biomass is found in the lakes. Antarctic lakes are pristine biotopes and

include freshwater and saline systems that are subject to long periods of ice and

snow cover, low temperatures and low levels of annual photosynthetically available

radiation (PAR). The presence of an ice cover reduces light penetration into the

water column and limits the interaction between the atmosphere and the lake,

creating unusual gas concentrations found in these lakes. Usually Antarctic lakes

are nutrient poor because the input of minerals is low during the short austral

summer, when glacial melt-streams and snowmelt occur. In combination, these

harsh environmental conditions and the isolation of the Antarctic continent, render

such lakes among the most unproductive in the world and impose a considerable

physiological stress on the organisms that inhabit them.

The survival of the organisms in these cold, dark aquatic environments is

enhanced by a variety of strategies. A large proportion of Protozoa in Antarctic

lakes is mixotrophic6 (Roberts & Laybourn-Parry, 1999) and photoautotrophs are

capable of extremely efficient photosynthesis at low levels of PAR. During winter,

the microbial activity continues, using for example endogenous energy reserves

and species enter the austral summer with relatively large, actively growing

populations (Bell & Laybourn-Parry, 1999). Many life forms and interactions

6 Mixotrophy is a combination of autotrophy and heterotrophy.
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normally found in temperate lakes and streams, do not occur in the Antarctic

lakes (Ellis-Evans, 1996). Their planktonic community is species poor and

dominated by microbial loop organisms, including bacteria, protozoa and

phytoplankton and little or no metazoans are present (Laybourn-Parry & Marchant,

1992; Laybourn-Parry et al., 1997). Many of the planktonic populations occur in

well-defined depth ranges within the water column (Spaulding et al., 1994),

indicating that stratification of food resources and environmental conditions may

control the position of the plankton in the water. Motility or buoyancy are important

properties of organisms living in these stable waters, enabling them to maintain

their position at the most appropriate level in the water column for physiological

functioning.

1.3.1.2 The benthic community in Antarctic lakes

The benthic areas of Antarctic lakes receive sufficient solar radiation and are

covered by microbial mats composed primarily of cyanobacteria, diatoms and

eubacteria (Vincent, 1988). These microbial mats not only differ in the relative

abundance of the species, which compose the mat, but they also belong to four

different morphological categories (Simmons et al., 1993; Doran et al., 1994).

Prostrate mats are the first category and their upper surfaces are smooth

and flocculous in texture and either highly pigmented (aerobic mats) or black with

a distinct H2S odour (anaerobic mats). Prostrate mats are formed by the gliding of

the filaments of the cyanobacteria over the lake bottom and form a cohesive tissue-

like structure. Local environmental parameters determine whether a mat remains

prostrate or develops into a different type.

Lift-off mats are the result of a combination of physical and biological processes

(Wharton et al., 1983). Parts of these mats tear lose from the lake bottom because

of elevated gas levels within the shallow parts of the lake, and in some cases they

tear completely lose and float to the ice cover where the material freezes into the

ice and makes its way out through ablation. Most of this mat material is still alive

and as such this is an important mechanism for the distribution of microorganisms

between lakes and other environmental areas.

Some of the lift-off mats remain in place and form vertically, stable sheets

and columnar structures (the third category of microbial mats). Calcite crystals

are observed and may have a stabilising effect.

Pinnacle mats have solid structures consisting of super-imposed mat layers
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without hollow central areas as observed in lift-off and columnar mats. These

pinnacles are formed when the gliding filaments get entrapped in each other and

move upward over one another towards the light (positive phototaxis).

Additionally, the mats are trapping and binding carbonates and various other

minerals and these organosedimentary structures can be classified as modern

stromatolites7. Sediment that is deposited through the perennial ice cover or carried

in glacial meltwater, will settle to the lake bottom and buries parts of the microbial

mats. Recolonization of these areas will probably be from cells of adjacent, unburied

parts of the mat. The absence of metazoans that would disrupt the mats, the

continuous influx of sediment, the availability of carbonate and the lack of strong

internal currents, promote the formation and preservation of these stromatolitic

structures in Antarctic lakes.

1.3.1.3 The food web in Antarctic lakes

In the Antarctic lakes, bacterial growth and production seems to mirror those

of the phytoplankton (Vincent, 1981) and is limited to zones of maximum

photosynthesis, suggesting nutrient cycling between these two groups. The majority

of the biomass and biological activity of plankton is found at the bottom of the

water column at the oxic-anoxic interface and this planktonic layer is often referred

to as the ‘Deep Chlorophyl Maximum’ or DCM. Total bacterial counts also increase

near the sediment-water interface and this is probably due to the presence of

dissolved organic matter from the microbial mat on the sediment surface (Mikell

et al., 1984).

In Ace Lake, stable stratification and the resulting physico-chemical conditions

have led to the development of two distinct communities: an aerobic mixolimnion

community of prokaryotic and eukaryotic microorganisms, with a small number of

metazoans, and an anaerobic community dominated by prokaryotes in the anoxic

waters of the monimolimnion (Bell & Laybourn-Parry, 1999). This pattern is typical

for Antarctic meromictic lakes, like for example lakes in the Vestfold Hills and

McMurdo Dry Valleys (Gibson, 1999; Laybourn-Parry et al., 1997; Roberts et al.,

2000). Winter is a period of reduced but sustained microbial activity in Antarctic

lakes and bacterial populations remain active and are not grazed to extinction

during the winter (Tacaks & Priscu, 1998). But the limited sampling season, due

7 Stromatolites are layered structures, sometimes of considerable size, normally formed in warm,
shallow waters by mats of cyanobacteria and fossils of similar structure have been found in
Precambrian rocks.
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to logistical constraints, has left the autumn and winter largely unstudied and

more has to be focused on winter microbial dynamics in the future to come to a

more complete understanding of these lakes.

1.3.2 Oligotrophic bacteria in polar seas

1.3.2.1 Different polar sea habitats

Bacteria and other microorganisms are ubiquitous in the oligotrophic, marine

environment, regardless of latitude, water depth, or distance from the coast and

Arctic and Antarctic waters are no exception. There are several habitats in the

polar oceans and a lot of microorganisms in these seas live in microenvironments,

frequently associated with suspended particles, plants or animal surfaces, or

discontinuities of the seawater and sea-ice column (Karl, 1982). In these diffusion-

controlled microenvironments, which have different properties than the surrounding

open waters, there is an enrichment of specialised groups of microorganisms.

Bacteria attached to these surfaces are generally larger and more metabolically

active than those that live free in the water column. In the sea-ice microbial

community (SIMCO) bacteria concentrate in diatom assemblages, which occur

either as surface populations, internal band assemblages or at the sea-ice/

seawater interface (Palmisano & Garrison, 1993).

Sea-ice is one of the most extreme environments for life on earth with

temperatures ranging from 0 to -12°C and salinities from 0,1 to five times normal

seawater concentration in the brine channels and pockets. Several sea-ice bacteria

produce vacuoles and these structures allow them to position themselves at certain

depths in the water column.

1.3.2.2 The food web in polar seas

Polar oceans suffer from extreme seasonality, since the daily light flux can

exceed that in the tropics during austral summer, as a result of the length of the

solar day, while this flux is significantly reduced during winter. This seasonal

increase of radiant energy is not only providing PAR for the growth of phototrophic

microorganisms, but is also responsible for the heating of the upper ocean, which

stabilises the surface waters, especially in coastal areas, protected from deep,
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wind-driven mixing and for the annual cycle of sea-ice formation. The ablation of

sea-ice further stabilises the water column through the addition of low-density

meltwater. As a result, during spring and summer, a phytoplankton bloom is formed,

which provides carbon and energy sources to sustain the entire polar food web.

Karl et al. (1993) formulated a hypothetical Antarctic trophic model, which

rejects the formerly, generally accepted concept of a highly efficient and simple

Antarctic marine food chain where the energy is transferred from large

phytoplankton cells to krill to higher trophic levels. This model however, still needs

a thorough and quantitative field evaluation and at least four different phases can

be hypothesised (Fig. 1.5), see Box.

Phase A (early spring) corresponds to the initiation of the phytoplankton bloom. Dissolved

inorganic nutrients are removed and converted to algal biomass, the microbial loop is absent

and benthic processes are dormant. Phase B (early summer) corresponds to the maximum

grazing by macrozooplankton and as a response, the algal biomass shifts to smaller cells.

The production of dissolved organic matter (DOM) by excretion, grazing, death and autolysis

is high, bacterial and microzooplankton populations expand and benthic metabolism is high.

Phase C (late summer) corresponds to the postbloom period. The phytoplankton standing

stocks and production are low, bacterial and protozoan productions are high and benthic

metabolism continues. Phase D corresponds to the austral winter period. Photoautotrophy is

low and supplemented by chemolitho-autotrophy, bacterial cells exhibit a ‘starvation-survival’

response (see 1.3.2.3) in absence of DOM, microzooplankton populations are low and particle

flux and benthic processes are at their annual minima. In other regions of the southern

ocean, where phytoplankton standing stocks are low throughout the year and where this

spring bloom does not develop, the microbial loop processes (phase C) may be more important.

The heterotrophic bacteria in this Antarctic marine microbial loop rely upon the availability of

low- and high-molecular-weight DOM for their carbon and energy demands. Bacterial biomass

is removed by the combined effects of grazing by protozoa and higher trophic levels (HTL),

death, autolysis and viral infections.
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1.3.2.3 The starvation-survival response

The starvation-survival response of bacteria consists of two independent

processes: the need to maintain cellular integrity and to cope with low nutrient

concentrations without losing the ability to respond quickly when nutrients become

available again, and the need to maintain themselves against all forms of cell loss

(death, predation, parasitism, etc.). The starved, non-growing cells are

metabolically active and during the first days of this response, cells change their

morphology from rod-shaped to coccoid and the cell diameter and optical density

decreases. The net result of these changes is an increase in the surface-to-volume

ratio, which increases the cells’ ability to take up substrates from nutrient-limited

environments (Morita, 1982) and may allow a better avoidance of predators, as

protozoa prefer consuming larger bacteria (Gonzalez et al., 1990).  Because of

the lack of energy in this low-nutrient, marine environments, the normal state of

most of the bacteria, living free in these habitats, is the starvation mode and

ultramicrocells are formed (Morita, 1985).

Figure 1.5.  Hypothetical Antarctic trophic model (from Karl et al., 1993). Phase A: early spring;

phase B: late spring- early summer; phase C: late summer and phase D: winter. Micro-AUTO:

autotrophic cells, primarly diatoms; PAR: photosynthetically available radiance; N: nutrients;

nano-AUTO: autotrophic cells, primarly flagellates; DOM: dissolved organic matter; HETERO:

heterotrophic bacteria; PROTO: protozoans; HTL: higher trophic levels; CHEMO: chemolitho-

autotrophic bacterial processes and RID: reduced inorganic detritus.
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It is assumed that bacteria in most polar marine environments do not grow

very rapidly and during austral winter may not grow at all. However, for members

of this bacterial community, starvation is not a permanent state and unbalanced

growth may be normal, with periods of growth at various rates, alternated with

periods of non-growth, starvation, recovery and regrowth (Kjelleberg et al., 1993),

depending on the availability of nutrients.

1.3.2.4 Psychrophily and oligotrophy

The active microbial components of most of the polar environments are either

psychrophilic or psychrotrophic. Psychrophilic bacteria have an optimal growth

temperature of 15-20°C or lower, a maximal growth temperature at about 20-25°C

and a minimal temperature at 0°C or lower. Psychrotrophic (also termed

psychrotolerant) bacteria have the ability to grow at low temperatures but have

their optimal and maximal growth temperatures above 15-20°C (Morita, 1975).

The seasonal process of sea-ice formation with the catchment of microorganisms

in the winter, exposure to severe winter conditions and release again in

summertime, is thought to be responsible for the seeding of the ocean with

psychrophiles.

Heterotrophic bacteria constitute the major biomass component of marine

ecosystems and most of them are oligotrophic, because of the low nutrient

concentrations and availability in these environments. Oligotrophic bacteria (also

called oligocarbophilic or low-nutrient bacteria) are those organisms able to grow

in low-nutrient media with 1-15 mg C l-1 or 10-50 mg C l-1 (Morita, 1992). Oligotrophs

can be divided in two categories: facultative oligotrophs are capable of being

adapted to grow at higher concentrations than the definition permits, while the

obligate oligotrophs cannot be adapted to grow at higher organic carbon

concentrations. Marine psychrophilic and oligotrophic bacteria are difficult to isolate

and cultivate but it became clear that their oligotrophic way of life is probably a

transient characteristic (Schut et al., 1997).
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1.4 Bacterial diversity in polar habitats

1.4.1 Diversity of heterotrophic bacteria in Antarctic lakes

Antarctic limnology has focused largely on processes and not on taxonomic

investigations. Only recently this has changed with the application of molecular

techniques and during the last years, bacterial diversity and taxonomy studies

are being published. Most of the studies on Antarctic lakes also focus on other

planktonic species than bacteria (primarily on phototrophs) and are often restricted

to bacterial counts and production measurements in the water column (Laybourn-

Parry et al., 1995; Laybourn-Parry et al., 1997; Takacs & Priscu, 1998; etc.). The

first detailed study of aerobic bacteria and yeasts in Antarctic freshwater lakes

was that reported for three Signy Island lakes by Ellis-Evans (1981a, b, 1982)

and Ellis-Evans & Sanders (1988). Volkman et al. (1988) reported that the major

species of bacterioplankton in Ace Lake were green sulfur bacteria and purple,

methanogenic and sulfate reducing bacteria were also identified. McMeekin (1988)

used culture and isolation techniques to study psychrotrophic and psychrophilic

bacteria from five habitats in the Vestfold Hills area. The majority of these isolates

were Pseudomonas spp., pigmented Flavobacterium spp. and non-pigmented

Moraxella spp. Some studies focused on specialised groups of bacteria in Antarctic

lakes, for example the ammonia-oxidizing bacteria, methanotrophs and

cyanobacteria (Galchenko, 1994; Fritsen & Priscu, 1998; Voytek et al., 1999).

Several of the novel microbes cultivated from lakes of the Vestfold Hills, containing

lakes of marine salinity, were found to be closely related to known marine bacteria

(Franzmann & Dobson, 1993; Franzmann, 1996).

The microbial composition within the sediments of three hypersaline Antarctic

lakes (Vestfold Hills) has been studied by Bowman et al. (2000a) using 16S rRNA

clone library analysis and compared to sediments of low to moderate saline

Antarctic lakes, the diversity of the hypersaline lake sediments was significantly

lower. The community of Deep Lake was almost entirely made up of halophilic

Archaea (Halobacteriales), while the sediment communities of Organic and Ekho

Lake were more complex, with phylotypes clustering within the Proteobacteria

(Sulfitobacter, Silicibacter, Roseovarius, Halomonas), Cytophagales

(Psychroflexus, Gelidibacter) and algal chloroplasts. Several phylotypes of these

lakes were related to taxa more adapted to marine-like salinity and perhaps these

bacteria derive from the lower salinity surface waters and were exported into the

sediment. In another study of Bowman et al. (2000b), the diversity and community
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structure within anoxic sediment from marine saline meromictic lakes and a coastal

meromictic marine basin in the Vestfold Hills was investigated. It was expected

that the cold, anoxic meromictic sediments would have a relatively limited diversity

but results indicate that diversity in these sediments is surprisingly high. 16S

rDNA clone library analysis revealed that the abundant phylotypes were related

to the low G+C Gram-positives, cyanobacteria, diatom chloroplasts, δ-

Proteobacteria and the orders Chlamydiales and Spirochaetales. Most of the

archaeal clones belonged to a group of Euryarchaeota and libraries of Burton

Lake and Taynaya Bay contained a high diversity of Cytophagales phylotypes.

However, it should be noticed that benthic sediments not only contain species

living naturally in the sediment and anoxic water layers of the lake, but also biomass

that has sunk from the upper mixing waters. Karr et al. (2003) reported a remarkable

diversity of phototrophic purple bacteria in Lake Fryxell by analysis of a

photosynthesis-specific gene, pufM. The distribution of these purple bacteria was

highly stratified and the isolates also contained gas vesicles, structures that may

be necessary for the organisms to position themselves in the water column at

certain depths. Sjoling & Cowan (2003) investigated the 16S rDNA bacterial

diversity in maritime meltwater lake sediments from Bratina Island and found that

the bacterial population was highly diverse. Sequenced clones fell into seven

major lineages of the Bacteria (α-, γ- and δ-Proteobacteria, Bacteroidetes,

Spirochaetaceae and Actinobacteria), and archaeal clones belonged to the group

of Crenarchaeota.

The conclusion of these diversity studies in Antarctic lakes, and especially in

their sediments, is that the bacterial diversity in these extreme and cold

environments is surprisingly high. However the more saline these lakes, the less

diverse their bacterial communities are and phylogenetically they can be assigned

to a few major lineages (Proteobacteria, Bacteroidetes and Gram-positives).

The extreme environmental conditions in the polar habitats have led to a

high selection pressure on the organisms that live there and as a consequence,

to the evolution of novel, endogenous species. The recent increase in taxonomic

studies on Antarctic lakes has lead to an enormous expansion of the description

of new species and in Table 1.2 this burst of new polar taxa, belonging to the

Eubacteria, during the last decade has been summarised. It is clear that most of

the novel taxa derive from sea-ice habitats or coastal areas, while 38 come from

Antarctic lakes and 22 of these have been isolated from the benthic microbial
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mats or sediments in the lakes. The list of bacteria isolated from these extreme

environments will undoubtedly continue to grow.

1.4.2 Bacterial diversity in polar seas

1.4.2.1 Diversity in the sea-ice community

Polar seas are perennially cold and in some locations permanently ice covered

and there is a large diversity of microbial habitats and assemblages, ranging from

the sea-ice community to the open-ocean waters and the deep, anoxic sediments.

Iizuka et al. (1966) first reported that Antarctic sea-ice contained a variety of bacteria

and Sullivan & Palmisano (1984) found that a variety of morphological types of

bacteria was associated with sea-ice, including rods, cocci, straight and branching

filaments and fusiform and prosthecate bacteria. Of these bacteria 70% were

free-living, while the other 30% were attached to living algal cells or to detritus.

Staley et al. (1989) isolated pigmented and gas vacuolate bacteria from both sea-

ice and underlaying water samples from McMurdo Sound and the bacterial isolates

from the sea-ice were filamentous and pigmented, while those isolated from the

water column were unicellular and non-pigmented. The highest concentrations of

bacteria in sea-ice were found in conjunction with the highest algal concentrations.

Phylogenetical analysis of these bacteria revealed that they belong to the

Proteobacteria and the Bacteroidetes (Gosink & Staley, 1995). The sea-ice

microbial community (SIMCO) contains algae (mostly diatoms), protozoa, and

bacteria and recent investigations of Arctic and Antarctic sea-ice samples (Bowman

et al., 1997a; Brown & Bowman, 2001) indicate that these bacteria belong to a

few major phylogenetic groups: the α- and γ-Proteobacteria, the Bacteroidetes,

the high and low mol % G+C Gram-positives and the orders Chlamydiales and

Verrucomicrobiales. Archaea associated with the SIMCO have also been reported

and in this SIMCO several novel bacterial genera and species have been

discovered, including Polaromonas, Polaribacter, Psychroflexus, Gelidibacter,

Octadecabacter, etc., see Table 1.2. Junge et al. (2002) performed a culture-

based survey of cold-adapted oligotrophs in Arctic sea-ice in order to assess the

phylogenetic diversity of heterotrophic bacteria that are numerically abundant in

sea-ice. The results indicate close relationships exclusively to known marine

psychrophiles within two bacterial divisions: the Proteobacteria (the genera

Alteromonas, Colwellia, Glaciecola, Octadecabacter, Pseudoalteromonas and
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Shewanella) and the Bacteroidetes (Cytophaga, Flavobacterium, Gelidibacter and

Polaribacter). A comprehensive assessment of bacterial diversity and community

composition in Arctic and Antarctic pack ice was conducted through cultivation

and cultivation-independent molecular techniques (Brinkmeyer et al., 2003).

Results confirmed that at both poles the α- and γ-Proteobacteria and the

Cytophaga-Flavobacterium group were the dominant taxonomic bacterial groups.

Overall, these results indicate a limited bacterial diversity for the numerically

important microorganisms in sea-ice compared to the water column and there are

several reasons to explain this lower genetic diversity. Firstly, the sea-ice

environments are geologically recent developments on Earth so relatively little

time has been available for the evolution of highly diverse sea-ice bacteria.

Secondly, the sea-ice environment is an extreme physical habitat and as a

consequence, the bacterial communities are dominated by a few populations

uniquely adapted to survive and grow under these extreme conditions. Finally,

sea-ice is also a porous habitat with many attachment sites that may select for

specific types of bacteria (Junge et al., 2002).

North and South Pole sea-ice communities also provide a special test case

for bacterial dispersal between the poles in a biogeographical study and finding

the same species at both poles would indicate that these bacteria are cosmopolitan

in distribution. However, several constraints exist on the dispersal between the

poles since the long distance between the polar regions makes the transport of

the microorganisms very difficult and the psychrophilic bacteria of the SIMCO

would probably not survive the warmer temperatures (>20°C) at the equator. The

polar oceans also evolved independently and exhibit differences in environmental

conditions. Until now, a bipolar species has not been found in sea-ice (Staley &

Gosink, 1999), supporting the polar endemism theory, however this is only

applicable at the species level and some psychrophilic, sea-ice genera are present

at both poles (for example Polaribacter and Octadecabacter). Only recently, a

bipolar distribution of a bacterial species (Shewanella frigidimarina) has been

suggested by Junge et al. (2002). Arguments against this polar endemism theory

are related to the efficient dispersal abilities of certain organisms (bacteria that

produce spores or cysts) and several aerobiological studies have demonstrated

the transport of a wide range of propagules from South America through Drake

Passage under ideal weather conditions (Clarke, 2003).  Another possibility for

transequatorial passage are the cold, deep underwater currents and deep bottom

water produced in the Antarctic Weddel Sea for example, which may act as a cold
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corridor driving northwards into the Atlantic Ocean. However, these currents take

hundreds of years to carry water from one pole to another and it is extremely

doubtful that these bacteria, which have been removed from their normal habitat,

could survive such a long transit. Alternatively, the passage across the equator in

ice crystals in the upper atmosphere could be another mechanism, but there is no

evidence to indicate that this occurs.

1.4.2.2 Diversity in the Southern ocean

There is little information on the phylogenetic composition of bacterial

assemblages in polar oceans (except for the sea-ice communities) and an important

question is whether the composition of bacterial communities in cold polar oceans

has diverged substantially from those in temperate and tropical waters. For

example, certain cyanobacteria are ubiquitous and important members of plankton

communities in temperate and tropical oceans, yet they are not found in polar

seas. Similarly, gas vacuolate bacteria are important in sea-ice communities, but

they have not been reported in temperate or tropical seas. Also, the question

whether the bacterioplankton communities in polar oceans are the same or

different, with important biogeographical information, still needs to be addressed.

In 1998, Murray et al. investigated the seasonal and spatial variability of bacterial

and archaeal assemblages in the coastal waters near Anvers Island, Antarctica.

Results revealed that the bacterial assemblage composition may reflect changes

in water column stability, depth or season. Lopez-Garcia et al. (2001) investigated

the diversity of free-living prokaryotes from a deep-sea site at the Antarctic Polar

Front using molecular techniques. This deep-sea planktonic community is

phylogenetically related to α- (SAR11), γ- and δ- (SAR324) Proteobacteria,

Cytophagales, Planctomyces, Gram-positives and the group of environmental

sequences SAR406. Among them γ-proteobacterial sequences were the most

abundant and diverse and within the Archaea, euryarchaeotal sequences were

retrieved. The sequences of uncultured SAR-groups are evolutionarily distant

from all known isolates and several of these groups appear to be widely distributed

in the world ocean. SAR11 for example, initially found in the Sargasso Sea, has

been identified in different seas and at different depths, including Antarctic surface

waters. Hollibaugh et al. (2002) analysed the phylogenetic compositions of

ammonia-oxidizing bacteria of the β-Proteobacteria from Southern Ocean samples.

They found a Nitrosospira-like 16S rRNA gene sequence in all samples and this
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sequence was also found in Arctic Ocean samples (Bano & Hollibaugh, 2000),

indicating a transpolar (if not global) distribution. However slight differences

between Arctic and Antarctic sequences may be evidence of polar endemism.

Bowman et al. (2003a; b) reported about the prokaryotic activity and community

structure in continental shelf sediments, located off eastern Antarctica. Biomass

and activity were maximal within the 0- to 3-cm depth range and declined rapidly

with sediment depths below 5 cm. The culturable bacterial population was

predominantly psychrophilic and many of the identified isolates belonged to genera

characteristic of deep-sea habitats, although most appear to be novel species.

Sequencing of DGGE bands, 16S rDNA clone library analysis and rRNA probe

hybridization analysis revealed that the major community members belonged to

δ-Proteobacteria, putative sulphide oxidizers of the γ-Proteobacteria, flavobacteria,

Planctomycetales and Archaea.

1.4.2.3 Diversity in the Arctic Ocean

As data are emerging for the Southern Ocean, the number of comparable

studies of the Arctic Ocean is also increasing. Ferrari & Hollibaugh (1999) used

DGGE banding patterns to compare the composition of bacterial assemblages in

the Arctic Ocean, however no sequence information was provided. Yager et al.

(2001) showed that the composition and physiological properties of bacterial

assemblages in the Chukchi Sea changed in response to an algal bloom and a

few 16S rDNA sequences were provided. Ravenschlag et al. (2001) investigated

the microbial community in marine Arctic sediments (Svalbard) through quantitative

molecular analysis and found that high fractions of Bacteria were present and

phylogenetically these belong to the β-, γ- and δ-Proteobacteria, the Bacteroidetes,

the Planctomycetales and Gram-positive bacteria. Besides δ-proteobacterial

sulphate-reducing bacteria, members of the Bacteroidetes were the most abundant

group detected in this sediment and these results are comparable with those of a

previous study of Ravenschlag et al. (1999) where cold, Arctic sediments were

investigated near Spitsbergen. They found a predominance of bacteria of the

sulphur cycle, of which several belonged to the γ-Proteobacteria. In a study of

Bano & Hollibaugh (2002) where Arctic Ocean samples collected over three

seasons were investigated by sequencing clones, evidence was found that the

Arctic bacterioplankton assemblage was composed of a mixture of uniquely polar

and cosmopolitan phylotypes. All clones fell into the α-, γ-, δ- and ε-Proteobacteria,
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the Bacteroidetes, the Verrucomicrobiales and the green non-sulfur bacteria. The

majority of clones belonged to the α- and γ-Proteobacteria while none of the clones

grouped with the β-Proteobacteria. Some of the phylotypes were similar to isolate

sequences but the majority were most closely related to uncultured, environmental

sequences. Prominent among these were members of the SAR11 group. DGGE

fingerprints showed that most of the bands were common to all samples in all

three seasons, but additional bands, representing sequences related to Cytophaga

and Polaribacter appeared in samples collected during summer and fall.

In conclusion, the continued diversity studies of bacterial communities in

polar seas suggest that the diversity of bacteria is high, with phylogenetic lineages

in the Proteobacteria, the Bacteroidetes, Gram-positives, Verrucomicrobiales and

Planctomycetales. However, more work on these extremely cold habitats has to

be done to allow comparison with studies about bacterial diversity of habitats in

moderate temperature regions.

1.5 Importance of polar microorganisms

1.5.1 Industrial applications

Prokaryotes dominate many polar ecosystems and play major roles in food

chains and biogeochemical cycles. The availability of novel Arctic and Antarctic

species, isolated from these extreme habitats, opens perspectives for possible

biotechnological exploration and these unique environments represent a

biodiversity resource of huge dimensions, of which relatively little is known. Culture

collections are important for the long-term availability of these strains and their

genes, and for the preservation of the strains and organisms for biotechnological

research. However, only few publicly accessible collections exist which hold

microorganisms isolated from Arctic and Antarctic habitats, for example ACAM

(Australian Collection of Antarctic Microorganisms), BCCM/LMG Bacteria

Collection (Laboratorium voor Microbiologie, Universiteit Gent, Belgium), DSMZ

(Deutsche Sammlung von Mikroorganismen und Zellkulturen), etc.
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1.5.1.1 PUFA-production

It is well known that lipid composition of the membrane changes in response

to temperature and psychrophilic and psychrotrophic bacteria contain more (poly)

unsaturated, branched and/or cyclic fatty acids (Rotert et al., 1993). Research

with polyunsaturated fatty acids (PUFA) producing, Antarctic strains revealed

undescribed new taxa within the genera Shewanella and Colwellia (Bowman et

al., 1997c; Bowman et al., 1998b). Several Shewanella species contained

proportions of eicosapentaenoic acid (EPA; 20:5ω3) and members of the genus

Colwellia produced docosahexaenic acid (DHA; 22:6ω3). Nichols et al. (1997)

reported about an Antarctic bacterium that produced both EPA and arachidonic

acid (AA; 20:4ω6) in response to the growth temperature, whereas Jøstensen &

Landfald (1997) found a high prevalence of PUFA producing bacteria in Arctic

invertebrates. It is considered that the benefit of PUFA to cold-adapted organisms

derives from their stabilisation of the lipid phase at low temperatures, in addition

to their fluidising effect in the membrane (Russell & Nichols, 1999). Nichols et al.

(1996) found a novel C31:9 polyene in sea-ice microbial communities and Helmke

et al. (2000) reported about a nearly symmetric polyene in cell extracts from some

psychrophilic and barophilic bacterial strains, isolated from sea-ice and deep-

sea samples. The polyene is considered to play a role in primary metabolism with

a possible function in temperature and pressure adaptation.

Provision of dietary PUFA, especially the fatty acids EPA and DHA, is essential

for normal growth and development of the larvae of many aquaculture species. In

addition to microalgae, PUFA producing bacteria can be used in aquaculture diets,

either as extracts or by direct addition to feed and this is an expanding area of

interest (Nichols et al., 1999). PUFA producing bacteria have been used to enrich

rotifers, a food organism for larval fish and PUFA’s are also added to human diets

since they proved to be beneficial for human health. Normally, most of these

PUFA’s derive from fish oils but since fish stocks are diminishing world wide,

PUFA producing bacteria may be an alternative solution. Several important stages

in the optimization of PUFA production and storage still need to be investigated.

1.5.1.2 Cold-adapted enzymes

Cold-adapted enzymes are produced by organisms living in permanently cold

habitats located in polar zones, at high altitudes or in the deep-sea, sea-ice,
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seawater, sediments, snow and permafrost. Low temperatures have a strong

negative effect on biochemical reactions, but organisms living in these cold

conditions can survive through adaptations in their membranes, proteins and

enzymes. These enzymes can be used to study the adaptations of life to low

temperatures and have potential biotechnological applications (McMeekin et al.,

1993; Nichols et al., 1999). A range of industries and products can benefit from

these enzymes, like for example cleaning agents and detergents, leather

processing, textile industry, food processing (fermentation, cheese manufacture,

meat industry and bakery), and molecular biology (heterologous gene expression)

with potential biomedical products.

Psychrophilic enzymes have maximal catalytic activity at temperatures below

30-50°C and usually display some degree of thermolability. Recently, much

research has focused on the protein structural characteristics of this cold adaptation

(Feller & Gerday, 1997). As temperature decreases, enzymes demonstrate a

decline of their catalytic rate due to the reduction of structural flexibility and

eventually they undergo cold denaturation. The tertiary and quaternary structures

of psychrophilic enzymes are more open and flexible with better access of

substrates to the active site at lower temperatures and show a high catalytic

efficiency (Gerday et al., 2000). Psychrophilic enzymes are not only useful for

their high specific activity, thereby reducing the amount of enzyme needed, but

also for their easy inactivation, which can prevent the prolonged action of some

enzymes.

Antarctic bacteria, especially those derived from ice, are good sources of

psychrophilic enzymes and the presence of protease, β-galactosidase,

phosphatase and amylase enzymes with strong cold adaptations has been found

in several of these strains. McCammon et al. (1998) isolated a lactose utilizing

bacterium from a freshwater Antarctic lake. The use of this cold-adapted β-

galactosidase can help in the processing of dairy foods to solve the problem of

lactose intolerance. Indeed, the optimal temperature for hydrolysis of lactose by

conventionally used β-galactosidases ranges between 30 and 40°C, which is also

the ideal temperature for mesophiles, contaminating and spoiling the dairy

products.
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1.5.1.3 Bioremediation

  Antarctica is generally considered one of the last remaining pristine

environments, however over the past decade, a number of fuel spills have occurred

and this has resulted in research about the hydrocarbon degradation by Antarctic

microorganisms (Delille et al., 1997; Cavanagh et al., 1998). Bacteria capable of

degrading n-alkanes and aromatics were isolated and novel intermediate products

suggest that these bacteria harbour novel degradation pathways. Organic Lake

is nutrient-rich and contains naturally occurring hydrocarbons. From this lake,

strains have been isolated with the ability to degrade various types of hydrocarbons,

like hexadecane and phenanthrene (McMeekin et al., 1993). The degradation of

xenobiotic compounds, more specific poly-chlorinated biphenyls in Arctic soil has

been demonstrated by Master & Mohn (1998). The high specificity and catalytic

activity of these cold-adapted enzymes, capable of hydrocarbon degradation,

makes them ideal candidates for the bioremediation of recalcitrant chemicals and

offers a feasible alternative to physicochemical methods.

1.5.1.4 Biocatalysis under low water conditions

The commercial synthesis of several valuable compounds (fatty acid esters,

peptides, oligosaccharide derivates) are often obtained from substrates with poor

solubility in aqueous media and this process might be improved by using enzymes

operating under low water conditions. In these systems, the level and distribution

of residual water is important because the catalytic efficiency of enzymes is often

a strong function of the hydration state and when the associated water falls below

a certain level, the enzymes become more rigid. Overall, under very low hydration

conditions, enzyme efficiency is generally poor and reaction kinetics are too slow.

Psychrophilic enzymes might therefore have a potential advantage for application

under low water conditions, because of their inherent greater flexibility. This will

be particularly useful in conditions wherein the activity of mesophilic and

thermophilic enzymes is severely impaired by an excess of rigidity (Gerday et al.,

2000).
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1.5.1.5 Anti-freeze proteins

The presence of anti-freeze proteins in many cold-adapted organisms prevents

the formation of ice and these proteins offer significant potential for biotechnological

exploitation. The exogenous addition of anti-freeze proteins in the manufacture of

frozen food stuffs to enhance freeze-thaw properties has been considered and

the in vivo expression of anti-freeze protein genes in transgenic plants or animals

offers opportunities for expanding crop-production or food storage properties

(Cowan, 1997). The functionally related ice-nucleation proteins from psychrotrophic

and phytopathogenic bacteria (Swings et al., 1990) have already commercially

been used in the process of snow-making, but also have potential applications in

the production of ice-cream and similar food stuffs and via transgenic expression,

in the prevention of frost damage in economic crops.

1.5.1.6 Pigments

Several microorganisms living in polar habitats produce pigments (for example

cyanobacteria which produce carotenoids, scytonemin, fucoxanthin, etc.) and these

pigments protect the microbial communities against the damaging effect of UV-

radiation on living cells. This is especially true for the poles, where solar radiation

is continuous in summer and the UV-dose is very high, due to the ozone hole.

However, the production of pigments may also be an adaptation to other forms of

environmental challenges experienced at low temperatures, such as salt stress

and research on carotenoids (and perhaps pigments in general) in bacteria from

the briny pockets of sea-ice probably will reveal new links between psychrophily

and halophily (or halotolerance) (Fong et al., 2001). The production of these novel

pigments opens perspectives for several industries like the food and textile industry.

1.5.2 Exobiology

Exobiology considers the question of the origin and distribution of life in the

universe and the most likely candidates for harbouring microbial life in our solar

system, now and in the past, are Mars and Europa. Mars is a cold and dry planet

with a thin atmosphere and there are indications of present polar ice caps and

past water. The recent Mars exploration mission in search of answers about the



53

Overview of the literature

history of water and the presence of life on Mars shows that this subject is still

very up to date. Antarctic ecosystems are relevant for Mars’ exobiology in two

ways: they provide models for possible Martian habitats and the study of

microorganisms in Antarctic environments can be used for the development of

methods to locate and identify microbial forms on Mars (Wynn-Williams & Edwards,

2000). Not only the Antarctic ice-covered lakes provide possible Martian analogs,

but also the cryptoendolithic communities in Antarctic rocks and the volcanoes on

the Antarctic continent may act as relevant models.

Europa, one of the moons of Jupiter, is also of interest to exobiology, because

of the possibility of a liquid water ocean under an outer shell of ice. The subglacial

Antarctic lake Vostok possesses a perennially thick ice cover of 3 km and provides

a good model for the potential europan biosphere (McKay, 1993).

The theory of ‘panspermia’ holds that reproductive bodies of living organisms

can exist throughout the universe and develop wherever the environment is

favourable with transport of life from one planet to the other. Since space is

extremely cold and suffers from severe radiation and other extreme conditions,

research in analogous extreme terrestrial habitats may help to test this theory

(Rothschild & Mancinelli, 2001).

1.6 Conceptual framework

The first section of this thesis will focus on the diversity of heterotrophic

bacteria of the mat communities in diverse freshwater and saline Antarctic lakes.

With the MICROMAT-project almost 800 bacterial strains were isolated in the lab

of Microbiology (Ghent) from mats collected from 10 different lakes from the

McMurdo Dry Valleys (lakes Hoare and Fryxell), the Vestfold Hills (lakes Ace,

Pendant, Druzhby, Organic, Grace, and Watts) and the Larsemann Hills (Lake

Reid) (Van Trappen et al., 2002). These strains could be assigned to 41 clusters

by numerical analysis of their fatty acid profiles and 31 strains formed single

branches. 16S rDNA sequence analysis of representative strains revealed that

they belong to the α-, β- and γ- Proteobacteria, the high and low percent G+C

Gram-positives and to the Bacteroidetes and many clusters represent as yet

unnamed new taxa (see chapter 2). More detailed analysis is needed to determine

the species diversity within each of the FAA clusters and several novel taxa can

be described using a polyphasic taxonomic approach (Vandamme et al., 1996),

which combines different genotypic and phenotypic methods.
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My PhD-work started with the investigation of the genomic diversity of these

bacterial strains from Antarctic microbial mats, belonging to the fatty acid clusters

1 to 15 (phylogenetically related to the Bacteroidetes) and fatty acid cluster 41

(related to the α-subclass of the Proteobacteria),  by using the repetitive extragenic

palindromic DNA (rep)-PCR fingerprinting technique (Rademaker & de Bruijn,

1997). Rep-PCR fingerprinting of the isolates allowed a further subclustering at

the genotypic level and it is clear, through studies that compare rep-PCR genomic

fingerprint analysis with DNA-DNA relatedness methods, that both techniques

yield results that are in close agreement (Nick et al., 1999; Rademaker et al.,

2000). Therefore, rep-PCR fingerprinting was used as a genomic screening method

to differentiate at the species- to subspecies-level and to select representatives

for additional 16S rDNA sequence analysis, to obtain a phylogenetic allocation of

the different rep-groups, and DNA-DNA hybridizations. The rep-PCR results

illustrate that the diversity of the heterotrophic bacterial strains in Antarctic microbial

mats is much higher than estimated by fatty acid analysis and preliminary 16S

rDNA sequencing. In total, eight new species could be delineated belonging to

the Bacteroidetes (with six new Flavobacterium species, one new Algoriphagus

species and a new genus, Gillisia of the family Flavobacteriaceae). These results

are presented in chapter 3. From FAA-cluster 41, related to the α-Proteobacteria,

three new species of a new genus Loktanella were described and results are

presented in chapter 4.

The second section of this work will handle about the diversity of oligotrophic

bacteria in polar seas and a collection of 173 bacterial strains, which were isolated

after enrichment under oligotrophic, psychrophilic conditions from Arctic (98 strains)

and Antarctic (75 strains) seawater (Tan & Rüger, 1991; Tan et al., 1999), was

available. These strains have been previously analysed by their substrate utilization

patterns using the Biolog system (Tan, 1997; Tan & Rüger, 1999) and by fatty acid

analysis and 16S rDNA sequence analysis of representatives (Mergaert et al.,

2001b). They belong to six metabolic groups and eight FAA-clusters, containing

two to 59 strains, could be delineated, while eight strains formed separate branches.

Results of the 16S rDNA sequence analysis indicate that they belong to the α-

and γ- Proteobacteria, the high percent G+C Gram-positives and to the

Bacteroidetes. Additionally, several clusters represent as yet unnamed, new taxa,

since they show less than 97% 16S rDNA sequence similarity to their nearest

named neighbours.
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In the meantime, 56 additional strains, isolated using the same methods,

were also analysed using the Biolog system. For my PhD-work these additional

strains were included in fatty acid analysis and they belong to FAA-clusters B, C,

D, E and F (as delineated in Mergaert et al., 2001b) and three new clusters (I, J

and K) were found. The genomic diversity of 19 strains from clusters E and F and

two related, unclustered strains, was further investigated by rep-PCR genomic

fingerprinting and, using a polyphasic taxonomic approach, seven Antarctic strains

could be assigned to a novel species within the genus Alteromonas, while another

four strains could be assigned to the genus Glaciecola, with the description of a

novel Glaciecola species. These results are presented in chapter 5.
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CHAPTER 2

Diversity of 746 heterotrophic bacteria isolated
from microbial mats from ten Antarctic lakes

Stefanie Van Trappen, Joris Mergaert, Sylvie Van Eygen, Peter Dawyndt,

Margo C. Cnockaert and Jean Swings

Systematic and Applied Microbiology 25: 603-610 (2002)

Microbial mats, growing in Antarctic lakes constitute unique and very diverse

habitats. In these mats microorganisms are confronted with extreme life conditions.

We isolated 746 bacterial strains from mats collected from ten lakes in the Dry

Valleys (lakes Hoare and Fryxell), the Vestfold Hills (lakes Ace, Druzhby, Grace,

Highway, Pendant, Organic and Watts) and the Larsemann Hills (lake Reid), using

heterotrophic growth conditions. These strains were investigated by fatty acid

analysis, and by numerical analysis, 41 clusters, containing 2 to 77 strains, could

be delineated, whereas 31 strains formed single branches. Several fatty acid

groups consisted of strains from different lakes from the same region, or from

different regions. The 16S rRNA genes from 40 strains, representing 35 different

fatty acid groups were sequenced. The strains belonged to the alpha, beta and

gamma subclasses of the Proteobacteria, the high and low percent G+C Gram-

positives, and to the Bacteroidetes. For strains representing 16 fatty acid clusters,

validly named nearest phylogenetic neighbours showed pairwise sequence

similarities of less than 97%. This indicates that the clusters they represent, belong

to taxa that have not been sequenced yet or as yet unnamed new taxa, related to

Alteromonas, Bacillus, Clavibacter, Cyclobacterium, Flavobacterium, Marinobacter,

Mesorhizobium, Microbacterium, Pseudomonas, Salegentibacter, Sphingomonas

and Sulfitobacter.
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Introduction

Antarctica is characterised by its geographical and climatic isolation, and

most of the continent has experienced little or no anthropogenic influence. Antarctic

lakes harbour pristine biotopes and include freshwater and saline systems that

are subject to long periods of ice and snow cover, low temperatures and low

levels of photosynthetically active radiation. As such these oligotrophic lakes are

among the most unproductive in the world. Their planktonic community is

dominated by microbial loop organisms, including bacteria, protozoa and

phytoplankton, and little or no metazoans are present (Ellis-Evans, 1996; Laybourn-

Parry et al., 1997; Laybourn-Parry & Marchant, 1992). The benthic areas that

receive sufficient solar radiation are covered by microbial mats composed primarily

of cyanobacteria, diatoms and bacteria. These complex microbial communities

have accumulated during thousands of years and the microorganisms are

confronted with extreme life conditions, such as low temperatures, freezing-thawing

cycli, UV-irradiation, desiccation and varying light conditions, salinities and nutrient

concentrations. As a consequence they have been under a high selection pressure

and are potentially belonging to endogenous, as yet undescribed new taxa (Ellis-

Evans et al., 1998) with potential novel biochemical adaptations like anti-freeze

proteins, cold-adapted enzymes, desiccation and salt tolerance. Indeed, several

new bacterial species have been isolated from these Antarctic benthic microbial

communities, e.g. Flavobacterium tegetincola (McCammon & Bowman, 2000),

Arthrobacter flavus (Reddy et al., 2000), Rhodoferax antarcticus (Madigan et al.,

2000), and the anaerobes Psychromonas antarcticus (Mountfort et al., 1998) and

Clostridium vincentii (Mountfort et al., 1997).

During expeditions on the Antarctic continent (MICROMAT project, http://

www.nerc-bas.ac.uk/public/mlsd/micromat) mat samples were collected from lakes

in three Antarctic regions (Vestfold Hills, McMurdo Dry Valleys and Larsemann

Hills). One of these samples, taken from Lake Fryxell, McMurdo Dry Valleys, has

been investigated by Tindall et al. (2000) and Brambilla et al. (2001), using culturing

and culture independent methods. Their results show that a high phylogenetic

diversity of bacteria is present in the mat, including partial 16S rDNA sequences

related to anaerobes, Proteobacteria, Gram-positives, Verrucomicrobiales, and

the Bacteroidetes.

Although it is established that only part of the community can be isolated

(Spring et al., 2000), the obvious advantage of the culturing technique is that
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strains of new taxa can be preserved for detailed taxonomic analysis, physiological

characterization, as well as for screening for potential applications, such as the

production of cold-adapted enzymes, pigments, antibiotics and other bioactive

compounds. Brambilla et al. (2001) also demonstrated the incongruence between

the results obtained by culturing and culture independent methods. Indeed, both

approaches yielded complementary results with almost no overlap. Similar

conclusions were drawn from a study on the diversity of bacteria involved in the

biodeterioration of mural paintings (Gurtner et al., 2000).

We extended the study of the bacterial diversity in Antarctic microbial mats

by investigating 17 samples from ten different lakes in three regions of the Antarctic,

using direct cultivation under heterotrophic conditions, chemotaxonomic

characterization by fatty acid analysis (FAA) and numerical grouping of 746

isolates, and phylogenetic analysis by 16S rDNA sequencing of 40 representative

strains.

Materials and Methods

Source of samples

Samples were taken from two lakes in the Dry Valleys (Lake Fryxell and Lake

Hoare), seven lakes in the Vestfold Hills (Ace Lake, Grace Lake, Organic Lake,

Pendant Lake, Watts Lake, Lake Druzhby, and Highway Lake) and from Lake

Reid in the Larsemann Hills, and dispatched to Belgium in ice-cooled sterile tubes.

Sample designations, date of sampling and date of processing are given in Table

2.1. Several lakes were sampled twice. The samples FR1 and FR2 were duplicate

samples, collected from the littoral zone in the moated area of the lake. The sample

PE2 was taken from the littoral zone at a water depth of 30 cm. All other samples

were taken at a water depth of 3-4m. Sample RE1 of lake Reid, that had been

preserved frozen since sampling, was processed in January 2000.

Dry weight of the mat samples ranged from 7 to 81 %. The higher dry weights

were obtained with samples having a soily aspect, the lower ones from more

flocculous mat samples. The salinity from the lakes ranges from fresh (Druzhby,

Grace, Watts and Hoare) over hyposaline-saline (Ace, Highway, Pendant, Fryxell

and Reid) to hypersaline (Organic).
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Enumeration and isolation of heterotrophic bacteria

Per sample, 1 g (wet weight) was aseptically weighed and homogenized in 9

ml sterile physiological water (0.86 % NaCl) during 1 minute in a Stomacher

apparatus and subsamples were taken for the preparation of ten-fold dilution series.

A first subsample was diluted in sterile physiological water and plated on R2A

(Oxoid) and Reinforced Clostridial Agar (RCA, Oxoid), a second subsample was

diluted in sterile, filtered seawater and plated on Marine Agar 2216 (Difco). All

media were inoculated in duplo using a Whitley Automatic Spiral Plater (Don

Whitley Scientific Ltd, Shipley, England), and were incubated either in an anaerobic

chamber at room temperature (about 20°C, RCA plates), or aerobically at 4°C or

20°C (all other plates). Colony forming units (CFU) were counted, and selected

colonies grown on the most diluted plates over a period of four weeks were isolated

and purified on the same media. Pure cultures were cryopreserved using the

MicroBank system (PRO-LAB Diagnostics, Ontario, Canada).

Fatty acid analysis

The strains were investigated by fatty acid analysis (FAA), according to the

methods described by Mergaert et al. (1993), with the following modifications.

Cells were cultivated at 20°C on R2A or Marine Agar. Preliminary results showed

that differences between extracts prepared from cells of the same strains grown

on these two media were negligible. After preparation, gas-liquid chromatographic

separation of fatty acid methyl esters was achieved using the MIDI system

(MICROBIAL ID Inc., Newark, Delaware, USA) and fatty acid methyl esters were

identified by comparison to the peak library version 4.00. The fatty acid profiles

were grouped according to their Canberra metric similarities (Scanb) with the UPGMA

clustering method, using the Bionumerics software package (Applied Maths, Sint

Martens-Latem, Belgium).

16S rDNA sequencing

DNA preparations and almost complete 16S rDNA sequences (1388-1550

bp) were obtained using the methods described by Mergaert et al. (2001b). The

sequencing primers were those described by Coenye et al. (1999). Sequence

assembly was performed using the program AutoAssembler 1.4.0 (Perkin-Elmer
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Applied Biosystems). The closest related sequences in the EMBL database were

found using the FASTA programme (http://www2.ebi.ac.uk/fasta3/). Phylogenetic

analysis was performed using the Bionumerics sofware package (Applied Maths,

Sint Martens-Latem, Belgium), taking into account the homologous nucleotide

positions after discarding all unknown bases and gaps. Using the same software

package, a neighbour joining dendrogram (Saitou & Nei, 1987) was constructed

based on global alignment of the sequences.

Nucleotide sequence accession numbers

The 16S rDNA sequences determined in this study have been deposited in

the EMBL data base and the accession numbers are given in Table 2.5.

Results and Discussion

Enumeration and isolation of heterotrophic aerobic bacteria from Antarctic
microbial mats

Seventeen microbial mat samples from ten Antarctic lakes from three different

regions (McMurdo Dry Valleys, Vestfold Hills and Larsemann Hills) were

investigated using culturing techniques. Colonies grown at 20°C or 4°C were

enumerated after 4-5 days or 12-14 days, respectively, when the count curves

reached the asymptote. Log numbers of CFU/g (dry weight) ranged between 5

and 10. The data obtained with incubations at 20°C are shown in Table 2.1. For

most mats, counts on Marine Agar, a medium rich in salt, were similar to those on

R2A, a medium poor in salt. The exceptions are the mat sample from the

hypersaline Organic Lake and the sample AC2 from the saline Ace Lake, which

showed much higher counts on Marine Agar, and from the freshwater lakes Grace

and Druzhby and the sample RE2 from the hyposaline lake Reid, which showed

higher counts on R2A. Plates incubated at 4 °C contained similar or slightly lower

numbers of colonies than the plates incubated at 20 °C (data not shown). In general,

prolonged incubation resulted in additional colonies showing up. None of the

samples yielded growth of colonies after 14 days anaerobic incubation on RCA

(detection limit 4.3 Log CFU/g). In total, 746 colonies, grown on the most diluted

plates were isolated. The number of isolates per sample is given in Table 2.1.
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Chemotaxonomic and phylogenetic diversity of the isolates

Gas-liquid chromatographic analysis of the whole-cell fatty acid compositions

was used to characterize all isolates. Indeed, fatty acid analysis has been widely

applied for the characterization of bacteria from polar environments (Bowman et

al., 1997c; Bozal et al., 1997; Franzman & Tindal, 1990; Gosink & Staley, 1995;

Mergaert et al., 2001b; Pukall et al., 1999), and provides a suitable method for

rapidly grouping large numbers of strains into chemotaxonomically similar entities,

to form a basis for the selection of representative strains for phylogenetic analysis

(Heyrman et al., 1999; Mergaert et al., 2001a, b). A dendrogram was constructed

based on the fatty acid compositions of the strains. At Scanb >75%, 41 FAA clusters,

containing 2 to 77 strains, could be delineated, and 31 strains formed single

branches (Fig. 2.1). Twenty-eight clusters (clusters 1 to 21, 32 to 34, 36, 37, and

40) consisted of strains forming pigmented colonies (mainly yellow or orange,

some pink, red, or bordeau red), the remaining clusters consisted mainly of

unpigmented strains.

The lakes from which the strains were isolated are indicated in Fig. 2.1. Most

clusters contained strains from different lakes, and often from different regions.

Several clusters contained strains isolated from almost all samples, suggesting

that taxa showing these fatty acid compositions might be ubiquitous in Antarctic

lakes. In clusters 38, 40 and 41 strains isolated from the hypersaline lake Organic

grouped with strains from freshwater lakes Hoare and Watts, indicating that these

strains show a broad salinity tolerance. Highly similar FAA cluster composition

was observed in the duplicate samples FR1 and FR2, from each of which a large

and comparable number of isolates was investigated. Indeed, 13 out of 16 clusters,

with at least two strains from Lake Fryxell, were in common for both samples. For

the two samples of Lake Reid there was a significant difference in composition (4

out of 18 clusters, with at least two strains from that lake, in common), and this

can be explained by their different times of sampling, the presumably different

sampling location in the lake and the fact that the frozen sample RE1 was processed

almost two years after sampling. For other lakes, too low numbers of strains (Ace,

Pendant, Highway, Watts) were isolated for at least one sample to allow comparison

between samples.

A wide variety of different fatty acid profiles were obtained and a total of 90

different fatty acids were detected among the strains. The results are summarized

in Tables 2.2, 2.3 and 2.4. The extracts of the strains from the clusters 1 to 15
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Figure 2.1. Abridged dendrogram obtained by numerical analysis of the fatty acid compositions

of 746 strains, isolated from microbial mats from Antarctic lakes, using the Canberra metric

similarity coefficient (S
canb

) and UPGMA clustering. Single strain branches are not shown. The

branch of the Gram-positive bacteria is designated “Gram+”. The abbreviations FR, HO, DR,

OR, GR, AC, WA, PE, HI and RE stand for lakes Fryxell, Hoare (in the McMurdo Dry Valleys),

Druzhby, Organic, Grace, Ace, Watts, Pendant, Highway (in the Vestfold Hills) and Reid (in the

Larsemann Hills).

Bacteroidetes
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(affiliated with the Bacteroidetes, see below) mainly contained branched fatty acids.

Straight chain saturated and unsaturated fatty acids were also present. Within

the unidentified fatty acids, summed feature 3 (consisting of either 15:0 iso 2OH

or 16:1ω7c, or both) predominated in the extracts from clusters 14 and 15.

The extracts of the strains from clusters 16 to 20 (affiliated with the Gram-

positives, see below) contained mainly saturated branched fatty acids and no

hydroxylated fatty acids were detected. The alcohol derivate of 16:1ω7c was found

in the extracts from the strains from cluster 20 in relatively high amounts.

The extracts of the strains from clusters 21 to 41 (affiliated with the

Proteobacteria, see below) contained high amounts of straight chain fatty acids

and summed feature 3. The straight chain fatty acids were mainly unsaturated in

the extracts of the strains from clusters 21 and 32 to 41, while the saturated

straight chain fatty acids dominated in the extracts from clusters 22 to 31. The

extracts from the strains from cluster 41 primarily contained one fatty acid, 18:1ω7c

(83.7%). In the extracts from the clusters 21, 22 and 31 a relatively high amount

of saturated branched fatty acids were found.

To determine their phylogenetic affiliation, 16S rDNA sequence analysis was

performed on 40 strains representing 35 clusters obtained by fatty acid analysis.

These sequences were compared to each other and to related sequences from

the EMBL database. The results are shown in Table 2.5. The strains belonged to

the α-, β- and γ-Proteobacteria, the Bacteroidetes and the high and low percent

G+C Gram-positives.

The nearest validly named phylogenetic neighbours of the strains often belong

to taxa isolated from cold, aquatic environments, such as Shewanella baltica,

Psychrobacter glacincola, Sulfitobacter pontiacus, Flavobacterium frigidarium,

Flavobacterium gillisiae, Salegentibacter salegens and Gelidibacter algens.

Sequences from sixteen strains showed pairwise sequence similarities of less

than 97% to their nearest validly named neighbours, indicating that they represent

as yet unnamed new taxa or belong to species for which no sequences are yet

available (Table 2.5) (Stackebrandt & Goebel, 1994). The latter authors, as well

as many others, also demonstrated that strains showing sequence similarities of

more than 97% may show low DNA-DNA reassociation values and thus constitute

different species.

For FAA clusters 5 (related to Flavobacterium), 29 and 30 (β-Proteobacteria)

and 41 (α-Proteobacteria) we sequenced two or three representatives, selected

on the basis of their remote positions within the FAA clusters in the dendrogram,
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and the sequence similarity between the strains within these clusters was 96.5 to

97.9%, 95.5%, 90.3%, and 90.8%, respectively. This indicates that these, and

most probably also other FAA clusters, contain multiple taxa with similar fatty acid

profiles. On the other hand, in some cases more than 97% similarity was found

between representatives from different FAA clusters, i.e. clusters 1, 5, 6 and 7

(related to Flavobacterium), clusters 2 and 10 (related to Flavobacterium), clusters

28, 29 and 30 (β-Proteobacteria), clusters 26 and 31 (related to Pseudomonas),

and clusters 33 and 34 (related to Porphyrobacter), demonstrating that

phylogenetically closely related taxa are sometimes quite different in their fatty

acid compositions. These observations were also made by Mergaert et al. (2001b),

who characterized polar marine bacteria using the same methods. Although fatty

acid analysis has been proven a convenient method for rapid screening of large

numbers of bacteria from different phylogenetic affiliation, our results indicate

that higher resolution techniques are to be applied to investigate the genomic

diversity within each fatty acid cluster in more detail. Indeed, when a higher

similarity level (80%) for the delineation of clusters in the FAA dendrogram, shown

in Fig. 2.1, is used, and which is comparable to the level used by Mergaert et al.

(2001b), 13 additional clusters and 20 additional singles were found that potentially

belong to additional phylogenetic lineages.

Brambilla et al. (2001) and Tindall et al. (2000) focussed on a sample taken

from Lake Fryxell, which was derived from the same sampling master batch as

our samples FR1 and FR2. Their results show that a high phylogenetic diversity

Table 2.3. Fatty acid composition of isolates belonging to the Gram-positives, expressed 

as mean percentages of total. a

Fatty acid class  Fatty acid cluster (number of isolates) 

16 (9) 17 (5) 18 (64) 19 (10) 20 (12) 

saturated, straight 1.4 1.1 4.4 1.6 2.2

unsaturated, straight TR - TR - 4.6

saturated, branched 92.0     

     

     

92.1 76.2 89.3 64.1

unsaturated, branched 2.2 5.1 9.9 9.0 12.2

alcohol derivate of 16:1 7c 2.4 - - - 16.8

not classified b TR 1.5 8.9 - -

a See footnotes in Table 2.2. Symbols: - , not detected; TR, trace amounts (< 1% of total).
b Not classified: Summed feature 1, 3 and unknown fatty acids 13.565, 14.959 and 15.669.  

Summed feature 1 comprises any combination of 15:1 iso H, 15:1 iso I and 13:0 3OH.  

Summed feature 3 comprises 15:0 iso 2OH, 16:1 7c, or both. 
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of bacteria is present in the mats and that the results from the culturing and culture

independent methods they used, showed almost no overlap. We compared the

complete sequences of our strains to the 7 almost complete and 126 partial

sequences (320 nucleotides from the 5’ terminus) of 12 cultured and 121 uncultered

bacteria, reported by these authors, by a FASTA search. Only five of our sequences,

four of which were from isolates from Lake Fryxell, showed a significant similarity

to the sequences determined for the clones and isolates by Tindall et al. (2000)

and Brambilla et al. (2001). The partial sequence of clone 391 ev (AJ287642) is

identical to the corresponding part of the sequence of our strain R-7724 (cluster

29), and the partial sequence of clone 204 ev (AJ287671) showed a sequence

similarity of 99.7% to the corresponding part of the full sequence of our strain R-

7933 (cluster 5). Strain R-8160 (cluster 38), showed a sequence similarity of 99.3%

to the full sequence of isolate A1/C-aer/OII (AJ297439). Strains R-7550 (cluster

5) and R-9003 (cluster 1; isolated from Grace Lake) showed a sequence similarity

of respectively 97.5% and 97.1% to the full sequence of isolate A1/C-aer/OIV

(AJ297440) of Brambilla et al. (2001).

Although a high amount of bias on the assessment of the diversity of the

heterotrophic isolates was introduced due to the limited number of samplings and

culturing procedures, and the limited number of strains isolated from several

samples, our results combined with those reported by Tindall et al. (2000) and

Brambilla et al. (2001), demonstrate that the numbers and diversity of heterotrophic

bacteria in microbial mats from Antarctic lakes is extremely high and that the

strains isolated constitute a unique collection for further taxonomic analysis,

physiological characterization and screening. More detailed genomic analysis

will be needed to determine the species diversity within each of the FAA clusters

delineated in this paper.
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New taxa from Antarctic lakes within the
Bacteroidetes

3.1 Polyphasic taxonomy of FAA clusters 1 to 15

Fatty acid clusters 1 to 15 (as delineated in Van Trappen et al. (2002), see

chapter 2), which belong to the Bacteroidetes, were further investigated using a

polyphasic taxonomic approach. The phylum of the Bacteroidetes, can be

subdivided into 3 different classes, the ‘Bacteroidetes’, the ‘Flavobacteria’ and

the ‘Sphingobacteria’ (as illustrated in Fig. 3A) with the families Bacteroidaceae,

Sphingobacteriaceae, ‘Flexibacteriaceae’ and Flavobacteriaceae (Bernardet et al.,

2002).

The genomic diversity of the strains of fatty acid clusters 1 to 15 (as delineated

in Van Trappen et al. (2002), see chapter 2), which belong to the Bacteroidetes,

was investigated by rep-PCR fingerprinting, using the GTG5-primer (Rademaker

& de Bruijn, 1997). In total, 161 fingerprinting patterns were obtained (for strain

R-9191 of FAA cluster 5, no DNA could be extracted after several attempts) and

27 clusters could be delineated, whereas 38 strains formed single branches, at a

cut-off value of 70% (Pearson correlation coefficient) (see Fig. 3.1). These results

illustrate that the diversity of heterotrophic bacteria in Antarctic microbial mats is

extremely high, and strains showing the same pattern are often isolated from

different lakes (rep-clusters II, VI, XXII, XXVII) and even from different Antarctic

regions (rep-clusters I, IX, X, XII, XVII, XVIII, XXI, XXIV).  Reference strains of

nine related Flavobacterium species were also included in this rep-clustering, but

it is clear that none of their fingerprinting patterns, showing only a few bands, is

closely related to the patterns of the Antarctic strains (see Fig. 3.1).

Overall this rep-clustering is consistent with the delineation of fatty acid

clusters with strains from the same rep-cluster belonging to the same FAA cluster

(see Fig. 3.1). However, a few exceptions can be found. For example, strains of
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Figure 3A. Neighbour-joining dendrogram showing the estimated phylogenetic relationships of

representatives of the Bacteroidetes phylum on the basis of 16S rRNA gene sequences.

Oceanospirillum linum was choosen as outgroup and the different classes of the Bacteroidetes

phylum (Flavobacteria, Bacteroidetes and Sphingobacteria) are indicated. Bootstrap values

(percentages of 100 replicates) are shown. GenBank accession numbers for each reference

strain are shown in parentheses. Bar, 1 nucleotide substitution per 10 nucleotides.
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Blattabacterium cuenoti (X75626)

Myroides odoratus (M58777)

Polaribacter filamentus (U73726)

Flavobacterium aquatile (M62797)

Rikenella microfusus (L16498)

Chitinophaga pinensis (AF078775)

Cellulophaga lytica (M62796)

Ornithobacterium rhinotracheale (U87101)

Porphyromonas asaccharolytica (L16490)

Riemerella anatipestifer (U10877)

Haliscomenobacter hydrossis (M58790)

Spirosoma linguale (M62789)

Microscilla marina (M58793)

Hymenobacter roseosalivarius (Y18833)

Salegentibacter salegens (M92279)

Psychroflexus torquis (U85881)

Psychroserpens burtonensis (U62913)

Gelidibacter algens (U62914)

Coenonia anatina (Y17612)

Capnocytophaga ochracea (U41350)

Weeksella virosa (M93152)

Empedobacter brevis (M59052)

Chryseobacterium gleum (M58772)

Bergeyella zoohelcum (M93153)

Prevotella melaninogenica (L16469)

Bacteroides fragilis (X83935)

Pedobacter heparinus (M11657)

Sphingobacterium spiritivorum (M58778)

Persicobacter diffluens (M58765)

Flexithrix dorotheae (AF039296)

Flexibacter flexilis (M62794)

Cytophaga hutchinsonii (M58768)

Dyadobacter fermentens (AF137029)

Runella slithyformis (M62786)

Saprospira grandis (M58795)

Lewinella cohaerens (AF039292)

Rhodothermus marinus (X80994)

Thermonema lapsum (L11703)

100

100

100

20

70

66

100

23

100

30

69

43

25

61

57

92

89

99

55

97

98

100

100

60

36

29

98

97

96

100

100

100

100

98

91

100

58

51

0.1

“ ”Flavobacteria

“ ”Bacteroidetes

“ ”Sphingobacteria

fatty acid clusters 5 and 6 group within the same rep-cluster (I) and show almost

identical profiles. This can be explained by the fact that their fatty acid compositions

are very similar and differences are largely due to different amounts of fatty acids

C
15:0

, iso C
15:0

, anteiso C
15:1

 and summed feature 3. Indeed, principal component

analysis (PCA) confirms that there is no clear separation between FAA clusters 5

and 6. Rep-cluster X (FAA clusters 3 and 5) and rep-cluster XVI (FAA clusters 1

and 5) for example also contain strains from different FAA clusters but clear

differences can be found in their rep-profiles after visual comparison. Cluster
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analysis is mostly used to present data in an organized way but when the number

of fingerprints is high, the situation gets complex and it is more difficult to assign

reliable groups (Rademaker & de Bruijn, 1997). Especially rep-profiles with very

few clear bands, concentrated in a specific area of the rep-profile can lead to

anomalies in the clustering (Versalovic et al., 1994).

The sub-clustering on the basis of rep-PCR patterns, allowed us to select

representatives for additional 16S rDNA sequence analysis and DNA-DNA

hybridization. In Table 3.1, 16S rDNA sequence similarities of representative strains

of the different rep-clusters, with their nearest phylogenetic neighbours are given.

For several of these strains, validly named nearest phylogenetic neighbours

showed sequence similarities of less than 97%, indicating that the clusters they

represent belong to unnamed new taxa (Stackebrandt & Goebel, 1994). We focused

on rep-clusters with minimum three strains and with clear and a sufficient number

of bands in their rep-patterns.

For 14 reference strains of eight different rep-clusters belonging to the large

FAA cluster 5, DNA-DNA hybridizations were performed, to get a first glimpse of

their relatedness at the species level (see Table 3.2). The hybridization values

between strains of the same rep-cluster (rep-clusters I, II and XXII) are high (>

70%) and according to Wayne et al. (1987), these strains belong to the same

species. Indeed, Versalovic et al. (1994) have shown that strains with the same

rep-PCR profile are always closely related, and this has been confirmed by several

authors (e.g. Rademaker & de Bruijn, 1997; Rademaker et al., 2000). However,

hybridization values between strains of different clusters are sometimes high (>

70%), indicating that the rep-clusters they represent belong to the same species

(rep-clusters XXII and XXVII; clusters XXI and XXIV). Indeed, when looking at

these patterns into more detail, similarities between the different rep-profiles can

be found (see Fig. 3.1). For several of these rep-clusters, additional hybridizations

were performed, to confirm their genomic relatedness:

� Rep-cluster I contains 16 strains which belong to FAA clusters 5 and 6.

Hybridizations were performed between strains R-9106 (FAA cluster 5), R-

9122 (FAA cluster 6) and R-9123 (FAA cluster 6; showing, together with strain

R-9132 of FAA cluster 5, a different pattern than the other strains of rep-

cluster I, with only one clear band instead of four). A low hybridization level is

obtained between R-9123 and the other strains (19.6%), so strains R-9123

and R-9132 were omitted from further experiments. A high hybridization value
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Table 3.1. Phylogenetic relationship of strains representative for FAA clusters 1 to 15 belonging 

to the Bacteroidetes.

Strain
No.

Rep-
cluster a

FAA
cluster b

16S rDNA 
similarity (%) c

Validly named nearest 
phylogenetic neighbour 

R-9003 XVI 1  98.0 Flavobacterium frigidarium 

R-11271 XV 2  98.7 Flavobacterium limicola 

R-9033 NC 2  95.3 Flavobacterium tegetincola 

R-8282 XII 4  92.8 Salegentibacter salegens 

R-9192 VII 5  97.4 F. saccharophilum, F. pectinovorum 

R-9106 I 5  98.5 Flavobacterium gillisiae 

R-7582 II 5  98.5 Flavobacterium limicola 

R-8023 II 5  98.7 Flavobacterium limicola 

R-7585 XX 5  96.0 Flavobacterium limicola 

R-7581 IV 5  95.3 Flavobacterium tegetincola 

R-9014 XXIV 5  98.4 Flavobacterium gillisiae 

R-8022 XXI 5  98.4 Flavobacterium gillisiae 

R-7518 XXI 5  98.1 Flavobacterium gillisiae 

R-9010 XXII 5  99.0 Flavobacterium xanthum 

R-7548 NC 5  97.9 Flavobacterium tegetincola 

R-7933 NC 5  97.7 Flavobacterium limicola 

R-7550 NC 5  98.9 Flavobacterium limicola 

R-9122 I 6 98.4 Flavobacterium gillisiae 

R-7579 XIX 7  97.3 Flavobacterium limicola 

R-7515 VI 9  95.0 Flavobacterium limicola 

R-9046 V 10  98.6 Algoriphagus chordae 

R-10847 XI 10  98.5 Flavobacterium limicola 

R-8899 XVII 10  95.1 Flavobacterium flevense 

R-8885 XVII 10  95.1 Flavobacterium flevense 

R-8893 NC 10  94.5 Flavobacterium aquatile 

R-11385 XXVI 11 98.5 Flavobacterium omnivorum 

R-8963 NC 11 98.2 Flavobacterium tegetincola 

R-9331 NC 11 98.2 Flavobacterium tegetincola 

R-7666 XIV 12 95.7 Flavobacterium limicola 

R-9217 VIII 13 99.7 Gelidibacter algens 

R-7572 NC 14 97.3 Hymenobacter actinosclerus 

R-9286 IX 15 98.7 Algoriphagus chordae, A. ratkowskyi 

R-10710 XII 15 98.7 Algoriphagus chordae, A. ratkowskyi 

R-11427 XII 15 98.7 Algoriphagus chordae, A. ratkowskyi 

R-9476 XVIII 15 96.4 Flavobacterium limicola 

a Rep-clusters are as delineated in Fig. 3.1.
b FAA clusters are as delineated in Van Trappen et al. (2002), see chapter 2. NC, not clustered. 
c The 16S rDNA sequence similarities are based on pairwise alignments. 
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between strains R-9106 and R-9122 of rep-cluster I (97.6%) shows that the

strains they represent are genotypically closely related and most probably

belong to the same species, which is also novel since hybridization values

with nearest phylogenetic neighbours are low. Phenotypic results confirm

this species delineation and the name Flavobacterium degerlachei sp. nov.

is proposed (see section 3.3).

� For rep-cluster VII, hybridizations were performed between the two strains

(R-9192 and R-9193) and strain R-8016, with a very similar rep-profile, and

type strains of nearest phylogenetic neighbours. The results show clearly

that these three strains belong to a single and novel species, for which the

name Flavobacterium micromati sp. nov. is proposed (see section 3.3).

� For rep-clusters XXI and XXIV, additional hybridization results between

strains of these clusters and nearest phylogenetic neighbours, show that

they represent a new species within the genus Flavobacterium for which the

name F. frigoris sp. nov. is proposed (see section 3.3 and 3.4).

� The four strains of rep-cluster II belong to another new Flavobacterium

species, with the name F. psychrolimnae sp. nov., according to additional

hybridization results with nearest phylogenetic neighbours (see section 3.4).

� The three strains R-8284, R-8019 and R-7548 show similar rep-profiles

and high hybridization values, and represent a novel species for which the

name Flavobacterium fryxellicola sp. nov. is proposed (see section 3.4).

� Strain R-9010 shows a high sequence similarity (99.0%) with the type

strain of Flavobacterium xanthum and hybridization results (91.0%) confirm

that the strains of rep-cluster XXII and related clusters XXIII and XXVII most

probably belong to this validly described Flavobacterium species (see section

3.4).

� For the 22 strains of rep-cluster XVII, belonging to FAA cluster 10, the low

sequence similarity (95.1%) with Flavobacterium flevense indicates that they

belong to a novel species (Stackebrandt & Goebel, 1994), for which the name

Flavobacterium gelidilacus sp. nov. is proposed (see section 3.2).



83

Polyphasic taxonomy of Bacteroidetes

� The three strains of FAA cluster 4 (of which two belong to rep-cluster XIII)

showed only 92.8% sequence similarity to Salegentibacter salegens, their

nearest phylogenetic neighbour, and hybridization results together with

phenotypic features confirm that they belong to a single species within a

novel genus, for which the name Gillisia limnaea gen. nov., sp. nov. is proposed

(see section 3.5).

� The eight strains of FAA cluster 15 belong to three different rep-clusters

(IX, XII and XVIII) and 16S rDNA sequences show that rep-clusters IX and

XII are phylogenetically related to Cyclobacterium marinum (with only 92%

similarity) while rep-cluster XVIII is related to Flavobacterium limicola (96.4%

similarity). Only the strains related to Cyclobacterium were investigated further

and hybridizations between six of them (from strain R-10750, no DNA could

be extracted after several attempts) show that they belong to a single species

of the recently described genus Algoriphagus. They are classified as

Algoriphagus antarcticus sp. nov. (see section 3.6).
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3.2 Flavobacterium gelidilacus sp. nov., isolated
from microbial mats in Antarctic lakes

Stefanie Van Trappen, Joris Mergaert and Jean Swings

Redrafted from: International Journal of Systematic and Evolutionary

Microbiology 53: 1241-1245 (2003)

Twenty-two isolates from microbial mats in eastern Antarctic lakes showed similar

fatty acid compositions and were investigated further using a polyphasic taxonomic

approach. Repetitive extragenic palindromic DNA - PCR fingerprinting of the 22

strains revealed three groups, and DNA-DNA hybridizations between

representatives showed more than 87 % DNA-DNA reassociation with each other.

16S rRNA gene sequence analysis placed two representative strains, LMG 21477T

and LMG 21619 within the genus Flavobacterium, with 95.1 % sequence similarity

to Flavobacterium flevense, 95.0 % to Flavobacterium tegetincola, less than 95 %

to other Flavobacterium species and less than 90 % to representatives of other

genera. The name Flavobacterium gelidilacus sp. nov. is proposed, with LMG

21477T (= DSM 15343T) as the type strain, and a description of the species is

given on the basis of morphological, biochemical and physiological characteristics

and fatty acid composition. The G+C content of the genomic DNA is 30.0-30.4

mol%.
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Introduction

Members of the genus Flavobacterium have been isolated from diverse

habitats such as freshwater (Flavobacterium aquatile, Flavobacterium flevense,

Flavobacterium hibernum, Flavobacterium saccharophilum), soil (Flavobacterium

johnsoniae, Flavobacterium pectinovorum, Flavobacterium xanthum) and sea-

ice (Flavobacterium gillisiae); some are known as important fish pathogens

(Flavobacterium branchiophilum, Flavobacterium columnare, Flavobacterium

psychrophilum). They are abundant in freshwater and marine ecosystems, and

these heterotrophic bacteria may have a specialized role in the uptake and

degradation of the high-molecular-mass fraction of dissolved organic matter in

these environments (Kirchman, 2002).

Several novel species, added to the genus since 1996, were derived from

Antarctic habitats, and several new genera containing polar organisms have

recently been described within the family Flavobacteriaceae (Gelidibacter,

Psychroserpens, Polaribacter, Psychroflexus, Salegentibacter). So far, only one

species, Flavobacterium tegetincola, has been isolated from a cyanobacterial mat,

collected from the Antarctic saline Ace Lake located in the Vestfold Hills

(McCammon & Bowman, 2000).

During the MICROMAT project (November 1998 to February 2001), 746

bacterial strains were isolated under heterotrophic conditions from microbial mat

samples, collected from 10 Antarctic lakes in the Vestfold Hills (lakes Ace, Druzhby,

Grace, Highway, Pendant, Organic and Watts), the Larsemann Hills (lake Reid)

and the McMurdo Dry Valleys (lakes Hoare and Fryxell) (Van Trappen et al., 2002).

Numerical analysis of their fatty acid composition revealed 41 clusters, and 16S

rRNA gene sequence analysis, performed on representative strains, showed that

they belong to the α-, β- and γ-subclasses of the Proteobacteria, the high- and

low-G+C-content Gram-positives and to the Bacteroidetes (Van Trappen et al.,

2002). The results of the fatty acid analysis and 16S rRNA gene sequence analysis

showed that the diversity of heterotrophic bacteria in microbial mats from Antarctic

lakes is very high. Moreover, many fatty acid clusters contain multiple taxa, as

defined by repetitive extragenic palindromic DNA-PCR (rep-PCR) fingerprinting,

a technique used to investigate the genomic diversity of each fatty acid cluster in

more detail (Van Trappen et al., 2001).

In the present work, we studied further the taxonomic relationships of 22

strains from fatty acid cluster 10 (as delineated by Van Trappen et al., 2002),
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related to the genus Flavobacterium, by genomic and phenotypic characterization.

Van Trappen et al. (2002) found less than 96 % 16S rRNA gene sequence similarity

to the closest relatives within the genus Flavobacterium, indicating that these

strains constitute a new species (Stackebrandt & Goebel, 1994).

Materials and Methods

The isolates investigated, together with their sources, are listed in Table

3.3. The strains were routinely cultivated on R2A medium (Difco) at 20 °C for 48 h

or, for strain LMG 8328T on TSA medium (BBL) at 20 °C for 48 h, except where

mentioned otherwise.

DNA was prepared according to the method of Pitcher et al. (1989), and rep-

PCR fingerprinting was performed on all strains of fatty acid analysis cluster 10 of

Van Trappen et al. (2002), using the primer GTG5 (Versalovic et al., 1991), as

described by Rademaker & de Bruijn (1997) and Rademaker et al. (2000).

Numerical analysis was carried out using the BIONUMERICS software package

(Applied Maths), as described by the same authors.

DNA-DNA hybridizations were carried out with photobiotin-labelled probes

in microplate wells, as described by Ezaki et al. (1989), using a HTS7000 Bio

Assay Reader (Perkin Elmer) for the fluorescence measurements. The

hybridization temperature was 30 °C and reciprocal experiments were performed

for every pair of strains.

The G+C content of the DNA’s from reference strains was determined using

a HPLC method. DNA was enzymically degraded into nucleosides as described

by Mesbah et al. (1989). The nucleoside mixture obtained was then separated by

HPLC using a Waters Symmetry Shield C8 column thermostatted at 37 °C. The

solvent was 0.02 M NH4H2PO4, pH 4.0, with 1.5 % acetonitrile. Non-methylated λ-

phage DNA (Sigma) was used as the calibration reference.

Almost complete 16S rRNA gene sequences of two reference strains were

obtained as described previously (Mergaert et al., 2001b). The most closely related

sequences were found using the FASTA program. Phylogenetic analysis was

performed using the BIONUMERICS software package, taking into account

homologous nucleotide positions after discarding all unknown bases and gaps. A

neighbour-joining dendrogram (Saitou & Nei, 1987) with the nearest phylogenetic

relatives was constructed on the basis of global alignment of the sequences,

using the same software package.
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The fatty acid compositions are based on the data generated by Van Trappen

et al. (2002), or were determined as described by the same authors.

The following morphological, physiological and biochemical tests were

performed. Colony morphology was determined on R2A medium after 6 days. In

addition, growth and adherence of colonies on marine and nutrient agars, TSA

and Anacker and Ordal’s agar (Anacker & Ordal, 1955) were tested after 14 days

growth. Cells were tested for their reaction to the Gram stain and for catalase and

oxidase activity. Tests in the commercial systems API ZYM, API 20NE and API

20E (bioMérieux) were performed according to the instructions of the manufacturer.

API ZYM tests were read after 4 h incubation at 20 °C; other API tests were read

after 48 h at 20 °C. Congo red absorption (Bernardet et al., 2002), production of

flexirubine-type pigments (Reichenbach, 1989), the presence of gliding motility,

degradation of casein and chitin (Reichenbach & Dworkin, 1981), alginate (West

& Colwell, 1984), DNA (using DNA agar from Difco, supplemented with 0.01 %

toluidine blue from Merck), pectin (Paton, 1959), starch and L-tyrosine (Barrow &

Feltham, 1993), the production of a brown diffusible pigment on L-tyrosine agar

and the precipitation of egg-yolk agar (Barrow & Feltham, 1993) were also

investigated; reactions were read after 5 days.  Hydrolysis of carboxy-

methylcellulose was tested in Anacker & Ordal’s broth gelified with 3 %

carboxymethylcellulose sodium salt (high viscosity; Sigma). This medium was

stab-inoculated, and liquefaction of the medium within 7 days was scored as a

positive reaction. Growth at different temperatures was assessed after 5 days

incubation. Salt tolerance was tested on R2A medium supplemented with 1-10 %

NaCl after 14 days incubation.

Results and discussion

Twenty-two strains of fatty acid analysis cluster 10, listed in Table 3.3, showed

similar rep-PCR profiles (see also Fig. 3.2) and they could be divided into three

clusters according to their profile type, hereafter referred to as rep-PCR profile

type I (with 9 strains), rep-PCR profile type II (with 12 strains), and rep-PCR

profile type III (containing the single strain LMG 21620). Versalovic et al. (1994)

have shown that strains with the same rep-PCR profile are always closely related,

and this has been confirmed by several authors (e.g. Rademaker & de Bruijn,

1997).

Five strains (LMG 21477T, LMG 21618, LMG 21619, LMG 21620 and LMG
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21621) representing the three rep-PCR profile types and chosen on the basis of

their isolation source were used for DNA-DNA hybridizations to investigate their

genomic relatedness. The DNA-DNA binding values among the five strains were

high, ranging from 87 % to 97 %, and differences between reciprocal experiments

were less than 13 %. These DNA-DNA binding values confirm that the 22 strains

belong to a single species (Wayne et al., 1987).

The G+C content of the DNA’s from strains LMG 21477T, LMG 21618, LMG

21619, LMG 21620 and LMG 21621 was determined and the G+C contents of the

novel strains were 30.0-30.4 mol%, which is slightly below the range (32-37 mol

% G+C) mentioned by Bernardet et al. (1996) for the genus Flavobacterium.

Almost complete 16S rRNA gene sequences (1467-1468 base pairs) of strains

LMG 21477T (rep-profile type I) and LMG 21619 (rep-profile type II) were obtained.

A neighbour-joining dendrogram with the nearest phylogenetic relatives is shown

in Fig. 3.3. Dendrograms obtained using maximum-parsimony and maximum-

likelihood analyses showed essentially the same topography. The 16S rRNA gene

sequences of strains LMG 21477T and LMG 21619 differed by only one base, and

showed 95.1 % similarity to that of F. flevense, 95.0 % to that of F. tegetincola,

less than 95 % to sequences of other Flavobacterium species and less than 90 %

to sequences of other genera, indicating that they belong to a novel Flavobacterium

species.

Table 3.3. Strains investigated in this study. 

Strain  Isolation source

Rep-PCR profile type I 
LMG 21477T (= DSM 15343T = R-8899T), R-8897, R-8908,  

R-8969, R-8972, R-9283 

Ace Lake, Vestfold Hills 

R-9024 Lake Watts, Vestfold Hills 

R-11278 Pendant Lake, Vestfold Hills 

LMG 21618 (= R-12566) Lake Reid, Larsemann Hills 

Rep-PCR profile type II 
LMG 21619 (= R-8885), R-8888, R-8898, R-9104, R-9110, R-9158 Ace Lake, Vestfold Hills 

LMG 21621 (= R-9330), R-9004, R-9019 Lake Watts, Vestfold Hills 

R-11078, R-11277, R-8983 Pendant Lake, Vestfold Hills 

Rep-PCR profile type III 
LMG 21620 (= R-9056) Pendant Lake, Vestfold Hills 

Numbers with an ‘R-‘prefix refer to strains from the research collection of the LMG, as used by Van 

Trappen et al. (2002).  
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The 22 novel strains yielded very similar fatty acid profiles. The mean

composition was 4% 14:0 iso, 10% 15:0, 1% 15:0 3-OH, 8% 15:0 anteiso, 12%

15:0 iso, 6% 15:0 iso 3-OH, 1% 15:1 anteiso, 10% 15:1 iso, 6% 15:1ω6c, 8% 16:0

iso, 10% 16:0 iso 3-OH, 4% 16:1 iso, 6% 17:0 iso 3-OH, 3% 17:1ω6c, 2% 17:1 iso

ω9c, 1% 18:1ω5c and 2% 15:0 iso 2-OH and/or 16:1ω6c. Other fatty acids each

accounted for less than 1%. The fatty acid profiles of the novel strains resemble

those determined for other Flavobacterium species (Bernardet et al., 1996), but

differ in terms of the relative amounts of 15:0 anteiso, 15:0 iso, 16:0 iso and 16:0

iso 3-OH.

The strains showed morphological characteristics typical of Flavobacterium

(Bernardet et al., 2002) and were almost identical in their physiological and

biochemical characteristics (see Description). The novel species can be clearly

Figure 3.2. Digitized representation of normalized rep-PCR profiles (GTG
5
-primer) of 22 strains

belonging to fatty acid cluster 10. Dendrogram derived from the UPGMA-clustering of the profiles

with the Pearson correlation coefficient.
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differentiated from other Flavobacterium species by several phenotypic

characteristics (Table 3.4).

The results of the polyphasic analysis support the recognition of a novel

species within the genus Flavobacterium, for which the name Flavobacterium

gelidilacus sp. nov. is proposed.

Description of Flavobacterium gelidilacus sp. nov.

Flavobacterium gelidilacus (ge.li.di.la’cus. L. adj. gelidus ice-cold; L. n. lacus

lake; N. L. gen. n. gelidilacus of the ice-cold lake, referring to the isolation source,

microbial mats in Antarctic lakes).

Gram-negative rods, <1 x 2-4 µm, that exhibit gliding motility on nutrient-

poor medium (R2A), except for strains LMG 21477T and LMG 21619, for which no

gliding motility is detected. The strains grow at 5-25°C, with optimal growth at 20

5%

Flavobacterium psychrophilum ATCC 49418T (AF090991)

Flavobacterium aquatile ATCC 11947T (M62797)100

Flavobacterium gelidilacus LMG 21477T (AJ440996)100 100
Flavobacterium gelidilacus LMG 21619  (AJ507151)

Flavobacterium tegetincola ACAM 602T (U85887)

Flavobacterium flevense ATCC 27944T (M58767)

Flavobacterium johnsoniae ATCC 17601T (M59051)

Flavobacterium frigidarium ATCC 700810T (AF162266)

Flavobacterium xanthum ACAM 81T (AF030380)

Flavobacterium gillisiae ACAM 601T (U85889)

Flavobacterium hydatis ATCC 29551T (M58764)

Flavobacterium columnare ATCC 24643T (M58781)

Flavobacterium pectinovorum ATCC 19366T (D12669)

Flavobacterium saccharophilum NCIMB 2072T (D12671)

Flavobacterium branchiophilum ATCC 27944T (D14017)

Flavobacterium hibernum ACAM 376T (L39067)

Flavobacterium succinicans NCIMB 2277T (D12673)

Polaribacter franzmannii ATCC 700399T (U14586)

Figure 3.3. Neighbour-joining dendrogram based on 16S rDNA sequences showing the estimated

phylogenetic relationships of Flavobacterium gelidilacus sp. nov., other Flavobacterium species

and Polaribacter franzmannii (outgroup). Bootstrap values are shown as percentages of 1000

replicates, if higher than 95 %. Bar, 5 % sequence divergence.
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°C; no growth at 30 °C. Yellow to orange, convex, translucent colonies, 1–4 mm in

diameter and with entire margins, are formed on R2A plates after 6 days at 20 °C.

Colonies on Anacker & Ordal’s agar are flat, round with entire margins and 0.5-1

mm in diameter after 14 days incubation. Growth also occurs on TSA, nutrient

agar and marine agar, and colonies do not adhere to the agar. Degrades casein

and starch. Gelatinase activity is observed, except in the case of strain LMG

21619. Catalase- and oxidase-positive. No growth is observed on glucose,

arabinose, mannose, mannitol, N-acetylglucosamine, maltose, gluconate, caprate,

adipate, malate, citrate and phenylacetate. Acid is not produced from glucose,

mannitol, inositol, sorbitol, rhamnose, sucrose, melobiose, amygdalin, arabinose.

Agar, alginate, pectin, chitin, aesculin, carboxymethylcellulose, DNA, tyrosine and

urea are not degraded. Congo red is not absorbed and no flexirubin-type pigments

are present. There is no production of a brown diffusible pigment on L-tyrosine

agar and no precipitate is formed on egg-yolk agar. The Voges-Proskauer reaction

and tests for indole production, citrate utilization, nitrate reduction and hydrogen

sulfide production are negative. None of the strains shows activity for arginine

dihydrolase, lysine decarboxylase, ornithine decarboxylase, tryptophan

deaminase, lipase (C14), α-chymotrypsine, α-galactosidase, β-galactosidase, β-

glucuronidase, α-mannosidase, and α-fucosidase. Weak enzymic activity is

observed for cystine arylamidase, medium activity is found for acid phosphatase,

esterase lipase (C8), phosphohydrolase and α-glucosidase, and strong activity is

found for alkaline phophatase, leucine arylamidase and valine arylamidase. No

β-glucosidase or N-acetyl-β-glucosaminidase activity is detected, except for strain

LMG 21621. Different reactions are obtained for esterase (C4) and trypsin. The

cells contain the fatty acids 15:0 iso, 16:0 iso 3-OH, 15:1 iso, 15:0, 15:0 anteiso

and 16:0 iso as the main constituents. Growth occurs in the absence of NaCl and

in the presence of 1-5 %NaCl, but not 10% NaCl, indicating that the strains are

not halophilic but merely halotolerant. The G+C content is 30.0-30.4 mol%.

The type strain is LMG 21477T (= DSM 15343T). Twenty-two strains were

isolated from microbial mats from freshwater and saline lakes in eastern Antarctica

(Table 3.3).
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3.3 Flavobacterium degerlachei sp. nov.,
Flavobacterium frigoris sp. nov. and

Flavobacterium micromati sp. nov., novel
psychrophilic bacteria isolated from microbial

mats in Antarctic lakes

Stefanie Van Trappen, Ilse Vandecandelaere, Joris Mergaert and Jean Swings

Redrafted from: International Journal of Systematic and Evolutionary

Microbiology 54, 85-92 (2004)

Taxonomic studies were performed on thirty-six strains that were isolated from

microbial mats in Antarctic lakes of the Vestfold Hills, the Larsemann Hills and the

McMurdo Dry Valleys. Phylogenetic analyses based on 16S rRNA gene sequences

indicated that these strains are related to members of the genus Flavobacterium;

sequence similarity values with their nearest phylogenetic neighbours ranged

from 96.8% to 98.5%. Results of DNA-DNA hybridization and comparison of

repetitive extragenic palindromic DNA-PCR fingerprinting patterns revealed that

these strains are members of three distinct species. Genotypic results, together

with phenotypic characteristics, allowed the differentiation of these species from

related Flavobacterium species with validly published names. The isolates are

Gram-negative, chemoheterotrophic, rod-shaped cells that are psychrophilic and

moderately halotolerant; their DNA G + C contents range from 33.1 to 34.5 mol%.

Their whole-cell fatty acid profiles are similar and include C15:0, anteiso-C15:0, iso-

C15:0, C15:1ω6c, iso-C16:0, iso-C16:03-OH and summed feature 3 (which comprises

iso-C
15:0

 2-OH, C
16:1

ω7c, or both) as major fatty acid components. On the basis of

these results, three novel species are proposed, namely Flavobacterium

degerlachei sp. nov. (consisting of 14 strains, with LMG 21915T = DSM 15718T as

the type strain), Flavobacterium micromati sp. nov. (consisting of 3 strains, with

LMG 21919T = CIP 108161T as the type strain) and Flavobacterium frigoris sp.

nov. (consisting of 19 strains, with LMG 21922T = DSM 15719T as the type strain).
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Introduction

The genus Flavobacterium belongs to the Bacteroidetes and was proposed

by Frankland in 1889. Since then, the description of this genus has been revised

several times (Bernardet et al., 1996). Flavobacterium species have been isolated

from diverse habitats such as fresh- and salt water, soil, sediment, sea-ice,

diseased fish and microbial mats. Members of the Bacteroidetes are highly

abundant in freshwater and marine ecosystems and became dominant in response

to the input of organic substrates (Höfle, 1992; Rossello-Mora et al., 1999). These

findings suggest that these bacteria may have a specialized role in the uptake

and degradation of organic matter in cold, aquatic environments (Kirchman, 2002).

Indeed, many species of the genus Flavobacterium are capable of the hydrolysis

of organic polymers such as complex polysaccharides (Bernardet et al., 1996).

Several novel species that have been added to the genus Flavobacterium

since 1996 originated from Antarctic habitats, e.g. Flavobacterium hibernum

(McCammon et al., 1998), Flavobacterium gillisiae (McCammon & Bowman, 2000)

and Flavobacterium frigidarium (Humphry et al., 2001), but only two species have

so far been isolated from cyanobacterial mats: Flavobacterium tegetincola

(McCammon & Bowman, 2000) and Flavobacterium gelidilacus (Van Trappen et

al., 2003), which were collected from Antarctic lakes. Recently, three novel

psychrophilic Flavobacterium species have been described: Flavobacterium

limicola from freshwater sediments (Tamaki et al., 2003) and Flavobacterium

xinjiangense and Flavobacterium omnivorum from the China No.1 glacier (Zhu et

al., 2003).

During the MICROMAT project (November 1998 - February 2001), 746

bacterial strains were isolated under heterotrophic conditions from microbial mat

samples that were collected from 10 Antarctic lakes in the Vestfold Hills (lakes

Ace, Druzhby, Grace, Highway, Pendant, Organic and Watts), the Larsemann

Hills (lake Reid) and the McMurdo Dry Valleys (lakes Hoare and Fryxell) (Van

Trappen et al., 2002). Salinity of these lakes ranges from fresh (Druzhby, Grace,

Watts and Hoare) over hyposaline/saline (Ace, Highway, Pendant, Fryxell and

Reid) to hypersaline (Organic). Numerical analysis of the fatty acid composition

of the isolates revealed 41 clusters and 16S rRNA gene sequence analysis,

performed on representative strains, showed that they belong to the α-, β- and γ-

subclasses of the Proteobacteria, the high and low percent G+C Gram-positives

and to the Bacteroidetes (Van Trappen et al., 2002). Results of fatty acid and 16S
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rRNA gene sequence analyses showed that the diversity of heterotrophic bacteria

in microbial mats from Antarctic lakes is very high. Moreover, many fatty acid

clusters were shown to contain multiple taxa when tested by repetitive extragenic

palindromic DNA (rep)-PCR fingerprinting, a technique used to investigate the

genomic diversity of each fatty acid cluster more in detail (Van Trappen et al.,

2001). Twenty-two isolates from fatty acid cluster 10 have already been described

as a novel species, F. gelidilacus (Van Trappen et al., 2003).

In the present work, we have studied the taxonomic relationships of 36 strains

from fatty acid clusters 5 and 6 (as delineated by Van Trappen et al., 2002) that

are related to the genus Flavobacterium by polyphasic taxonomic characterization.

Materials and Methods

The isolates investigated are listed in Table 3.5. Strains were cultivated

routinely on R2A medium (Difco) at 20 °C for 48 h or longer (LMG 21919T) or [for

strains LMG 4031T (Flavobacterium pectinovorum) and LMG 8384T (Flavobacterium

saccharophilum)] on TSA medium (BBL) at 20 °C for 48 h, except when mentioned

otherwise.

DNA  was prepared according to the method of Pitcher et al. (1989) and rep-

PCR fingerprinting (based on primers that targeted the repetitive extragenic

palindromic sequence) was performed on all strains of fatty acid clusters 5 (75

strains) and 6 (five strains) of Van Trappen et al. (2002) using the primer GTG5

(Versalovic et al., 1991), as described by Rademaker & de Bruijn (1997) and

Rademaker et al. (2000). Numerical analysis was carried out by using the

Bionumerics software package (Applied Maths; available at http://www.applied-

maths.com), as described by the same authors.

Small-scale DNA extracts were prepared by using the method of Pitcher et

al. (1989) and the almost-complete 16S rRNA gene sequences of reference strains

were amplified by PCR with conserved primers (Coenye et al., 1999). PCR products

were purified by using a QIAquick PCR Purification kit (Qiagen) according to the

instructions of the manufacturer. Sequence analysis was performed by using an

ABI Prism 3100 automatic DNA sequencer (Applied Biosystems), applying a

BigDye Terminator Cycle Sequencing Ready Reaction kit (version 2.0; PerkinElmer

Applied Biosystems), following the protocols of the manufacturer. Sequence
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assembly was performed by using the program AutoAssembler 1.4.0 (PerkinElmer

Applied Biosystems). The most closely related sequences were found by using

the FASTA program; sequences from reference strains were aligned and editing

of the alignment and reformatting were performed with the BIOEDIT program (Hall,

1999) and ForCon (Raes & Van de Peer, 1999). Evolutionary distances were

calculated using the Jukes-Cantor evolutionary model and a phylogenetic tree

was constructed by using the neighbour-joining method (Saitou & Nei, 1987) with

the TREECON program (Van de Peer & De Wachter, 1994).

DNA was prepared according to the method of Pitcher et al. (1989) and

DNA-DNA hybridizations were carried out with photobiotin-labelled probes in

microplate wells as described by Ezaki et al. (1989), using an HTS7000 BioAssay

reader (PerkinElmer) for fluorescence measurements. The hybridization

temperature was 32 °C and reciprocal experiments were performed for every pair

of strains.

DNA G+C contents of the Antarctic strains were determined by using an

HPLC-based method as described by Van Trappen et al. (2003).

The following morphological, physiological and biochemical tests were

performed. Colony morphology was determined on R2A medium after 6 days. In

addition, growth and adherence of colonies on marine, nutrient and trypticase

soy agars and on Anacker and Ordal’s agar (Anacker & Ordal, 1955) after 14

days were tested. Cells were tested for their Gram-stain reaction and for catalase

and oxidase activities. Tests in the commercial API ZYM, API 20NE and API 20E

systems (bioMérieux) were generally performed according to the instructions of

the manufacturer. The API ZYM tests were read after 4 h incubation at 20 °C and

other API tests were read after 48 h at 20 °C. Congo red absorption (Bernardet et

al., 2002), production of flexirubine-type pigments (Reichenbach, 1989), presence

of gliding motility, degradation of casein and chitin (Reichenbach & Dworkin, 1981),

alginate (West & Colwell, 1984), DNA [using DNA agar (Difco), supplemented

with 0.01 % toluidine blue (Merck)], pectin (Paton, 1959), starch and L-tyrosine

(Barrow & Feltham, 1993), production of brown diffusible pigment on L-tyrosine

agar and precipitation of egg-yolk agar (Barrow & Feltham, 1993) were also

investigated; reactions were read after 5 days.  Hydrolysis of CM-cellulose was

tested in Anacker & Ordal’s broth (Anacker & Ordal, 1955) gelidified with 3 %

high-viscosity CM-cellulose sodium salt (Sigma). This medium was stab-inoculated

and liquefaction of the medium within 7 days was scored as a positive reaction.

Growth at different temperatures was assessed after 5 days incubation. Salt
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tolerance was tested on R2A medium supplemented with 1-10 % NaCl after 14

days incubation.

Results and discussion

Thirty-six strains of fatty acid clusters 5 and 6, listed in Table 3.5, showed

similar rep-PCR profiles (see also Fig. 3.4), and they could be divided into four

different clusters according to their profile type, hereafter referred to as rep-PCR

profile type I (which comprises 14 strains), II (with three strains), III (with eight

strains) and IV (with 11 strains). Versalovic et al. (1994) have shown that strains

with the same rep-PCR profile are always closely related and this has been

confirmed by several authors (e.g. Rademaker & De Bruijn, 1997).

Almost-complete 16S rRNA gene sequences (1457-1480 nt) of strains LMG

21915T, LMG 21474, LMG 21919T, LMG 21922T and LMG 21471 were obtained. A

neighbour-joining dendrogram with the nearest phylogenetic relatives within the

genus Flavobacterium is shown (Fig. 3.5). Dendrograms obtained by maximum-

parsimony and maximum-likelihood analyses showed essentially the same

topography (data not shown).

The novel Antarctic strains form three distinct branches within the genus

Flavobacterium, which are supported by high bootstrap values, and they belong

to a clade of the phylogenetic tree that consists only of recently described

Flavobacterium species from cold environments, such as F. gillisiae, F. xinjiangense,

F. xanthum, F. omnivorum, F. frigidarium, F. gelidilacus and F. limicola. However,

other Antarctic Flavobacterium species, F. hibernum and F. tegetincola, do not

belong to this clade and form separate branches.

The 16S rRNA gene sequences of the two representative strains of rep-PCR

profile type I  (LMG 21915T and LMG 21474) were almost identical (99.9%

sequence similarity) and showed 98.5 % similarity to F. gillisiae, 97.7 % to F.

xinjiangense, 97.5 % to F. limicola, 96.9 % to F. omnivorum and 96.8 % to F.

xanthum. The sequence of strain LMG 21919T, which belongs to rep-PCR profile

type II, showed 97.4 % similarity to F. saccharophilum, 97.4 % to F. pectinovorum,

97.2 % to F. limicola and 96.9 % to F. omnivorum. The 16S rRNA gene sequences

of the two representative strains of rep-PCR profile types III and IV (LMG 21922T

and LMG 21471, respectively) show 99.1 % sequence similarity to each other

and 98.4 % to F. gillisiae, 97.4 % to F. xinjiangense, 97.3 % to F. xanthum, 97.2%
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to F. omnivorum and 97.1 % to F. limicola. Strains LMG 21922T and LMG 21915T

showed 98.7% sequence similarity to each other and only 96.4% to strain LMG

21919T.

Genomic relatedness between the novel Antarctic strains (representing

the four different rep-PCR profile types) and their most closely related phylogenetic

Table 3.5. Strains investigated, isolation site, fatty acid cluster and rep-PCR profile type. 

Species and strain Fatty acid 
cluster

Rep-PCR 
cluster

Isolation site 

F. degerlachei sp. nov.:
LMG 21915 T = R-9106 5 I Lake Ace, Vestfold Hills 

LMG 21916 = R-8982 5 I Pendant Lake, Vestfold Hills 

LMG 21917 = R-8988 5 I Pendant Lake, Vestfold Hills 

LMG 21474 = R-9122 6 I Pendant Lake, Vestfold Hills 

LMG 21918 = R-9125 6 I Pendant Lake, Vestfold Hills 

R-8991, R-8992, R-8993, R-9119, R-11356 5 I Pendant Lake, Vestfold Hills 

R-12608 5 I Lake Reid, Larsemann Hills 

R-11563 5 I Highway Lake, Vestfold Hills 

R-9118, R-9124 6 I Pendant Lake, Vestfold Hills 

F. micromati sp. nov.:
LMG 21919 T = R-9192 5 II Grace Lake, Vestfold Hills 

LMG 21920 = R-9193 5 II Grace Lake, Vestfold Hills 

LMG 21921 = R-8016 5 II Lake Fryxell, Dry Valleys 

F. frigoris sp. nov.:
LMG 21922T = R-9014 5 III Watts Lake, Vestfold Hills 

LMG 21924 = R-12606 5 III Lake Reid, Larsemann Hills 

LMG 21471 = R-8022 5 IV Lake Fryxell, Dry Valleys  

LMG 21923 = R-9000 5 IV Grace Lake, Vestfold Hills 

LMG 21925 = R-12627 5 IV Lake Reid, Larsemann Hills 

R-9002, R-9144, R-9149 5 III Grace Lake, Vestfold Hills 

R-9138 5 III Watts Lake, Vestfold Hills 

R-12591, R-12625 5 III Lake Reid, Larsemann Hills 

R-8017, R-8020, R-8359 5 IV Lake Fryxell, Dry Valleys 

R-8996 5 IV Grace Lake, Vestfold Hills 

R-9134, R-9137 5 IV Watts Lake, Vestfold Hills 

R-9227 5 IV Lake Druzhby, Vestfold Hills 

R-9228 5 IV Grace Lake, Vestfold Hills 

Abbreviations: LMG, BCCM/LMG Bacteria Collection, Laboratorium voor Microbiologie, Universiteit Gent, 

Belgium; R-, strain numbers from the research collection of the Laboratorium voor Microbiologie, 

Universiteit Gent, Belgium, and as used by Van Trappen et al. (2002); fatty acid clusters are as delineated 

by Van Trappen et al. (2002). 
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Figure 3.4. Digitized representation of normalized rep-PCR profiles (GTG
5
-primer) of 36 strains

belonging to fatty acid clusters 5 and 6. Dendrogram derived from the UPGMA-clustering of the

profiles with the Pearson correlation coefficient and rep-clusters were delineated at a cut-off

value of 50%. Rep-cluster I, F. degerlachei  sp. nov.; rep-cluster II, F. micromati  sp. nov.; rep-

cluster III and IV, F. frigoris sp. nov.
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neighbours (Flavobacterium gillisiae for rep-PCR profile types I, III and IV and F.

pectinovorum and F. saccharophilum for rep-PCR profile type II) was determined

by DNA-DNA hybridization. The hybridization level between strains LMG 21915T,

LMG 21916, LMG 21917 and LMG 21474 of rep-PCR profile type I was ranging

between 93.6-97.7 %, indicating that the 14 strains of rep-PCR profile type I belong

Figure 3.5. Neighbour-joining dendrogram showing the estimated phylogenetic relationships of

Flavobacterium degerlachei sp. nov., Flavobacterium micromati sp. nov., Flavobacterium frigoris

sp. nov. and other Flavobacterium species on the basis of 16S rRNA gene sequences. Polaribacter

franzmannii was choosen as outgroup. Bootstrap values (percentages of 500 replicates) of > 50

% are shown. GenBank accession numbers for each reference strain are shown in parentheses.

Bar, 10% sequence divergence.

Polaribacter franzmannii ATCC 700399 (U14586)
T

Flavobacterium psychrophilum ATCC 49418 (AF090991)
T

Flavobacterium aquatile ATCC 11947 (M62797)
T

Flavobacterium micromati LMG 21919 (AJ557888)
T

Flavobacterium limicola DSM 15094 (AB075230)
T

Flavobacterium xinjiangense ZF-6 (AF433173)
T

Flavobacterium gelidilacus LMG 21477 (AJ440996)
T

Flavobacterium frigoris LMG 21922 (AJ557887)
T

Flavobacterium frigoris LMG 21471 (AJ440988)

Flavobacterium hydatis ATCC 29551 (M58764)
T

Flavobacterium succinicans NCIMB 2277 (D12673)
T

Flavobacterium frigidarium ATCC 700810 (AF162266)
T

Flavobacterium gillisiae LMG 21422 (U85889)
T

Flavobacterium flevense ATCC 27944 (M58767)
T

Flavobacterium columnare ATCC 24643 (M58781)
T

Flavobacterium degerlachei LMG 21474 (AJ441005)

Flavobacterium degerlachei LMG 21915 (AJ557886)
T

Flavobacterium omnivorum ZF-8
T
(AF433174)

Flavobacterium xanthum LMG 8372 (AF030380)
T

Flavobacterium branchiophilum ATCC 35035 (D14017)
T

Flavobacterium hibernum ACAM 376 (L39067)
T

Flavobacterium saccharophilum LMG 8384 (D12671)
T

Flavobacterium pectinovorum LMG 4031 (D12669)
T

Flavobacterium tegetincola ACAM 602 (U85887)
T

Flavobacterium johnsoniae ATCC 1706 (M59051)
T100
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72

73

87

100

10%
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to one single species (Wayne et al., 1987). Hybridization values of LMG 21915T

with its nearest phylogenetic neighbours, F. gillisiae (LMG 21422T), F. xanthum

(LMG 8372T) and LMG 21922T, were respectively 28.9, 18.4 and 28.4%, indicating

that the strains of rep-PCR profile type I represent a novel Flavobacterium species,

for which the name Flavobacterium degerlachei sp. nov. is proposed.

High hybridization values (81.1%-84.7%) were obtained between strains

LMG 21919T, LMG 21920 and LMG 21921 of rep-PCR profile type II. The low

hybridization level (13.2-16.1%) between LMG 21919T and its nearest phylogenetic

neighbours F. pectinovorum (LMG 4031T) and F. saccharophilum (LMG 8384T)

reveals that the three strains of rep-PCR profile type II constitute a new species,

for which the name Flavobacterium micromati sp. nov. is proposed.

Hybridization results between strains LMG 21922T, LMG 21923, LMG 21924

and LMG 21925 of rep-PCR profile types III and IV (82.5 - 91.2 %) showed that

the strains of these two different rep-PCR profile types represent a single species

that is clearly different from related Flavobacterium species. LMG 21922T showed

only 52% hybridization with F. gillisiae (LMG 21422T) and 4.1% with F. xanthum

(LMG 8372T); the name Flavobacterium frigoris sp. nov. is proposed for this species.

Differences between reciprocal experiments were < 14 %. These results

show clearly that the novel Antarctic isolates are genotypically distinct from related

Flavobacterium species, although the isolates share > 97% (up to 98.7%) 16S

rRNA gene sequence similarity with their closest phylogenetic neighbours, and

that they constitute three novel species within the genus Flavobacterium.

The DNA G+C contents of strains LMG 21915T, LMG 21916, LMG 21917,

LMG 21474 and LMG 21918 of F. degerlachei sp. nov. are 34.2, 34.2, 34.1, 33.8

and 34.2 mol%, respectively. The DNA G+C contents of strains LMG 21919T,

LMG 21920 and LMG 21921 of F. micromati sp. nov. are 34.4, 33.1 and 33.1

mol%, respectively and those of strains LMG 21922T, LMG 21923, LMG 21924

and LMG 21925 of F. frigoris sp. nov. are 34.5, 34.2, 34.4 and 33.8 mol%,

respectively. These values are consistent with the DNA G+C contents of members

of the genus Flavobacterium, which range from 30 to 37 mol % G+C (Bernardet et

al., 1996; Van Trappen et al., 2003).

Cellular fatty acid patterns of the Antarctic strains are based on the data

generated by Van Trappen et al. (2002). The strains showed similar fatty acid
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profiles (Table 3.6); major constituents included C
15:0

, iso- C
15:0

, iso-C
16:0

3-OH and

summed feature 3 (which comprises iso-C15:02-OH, C16:1ω7c, or both). Strains of F.

degerlachei sp. nov. and F. frigoris sp. nov. also possessed relatively large amounts

of anteiso-C15:0 and C15:1ω6c, whilst strains of F. micromati sp. nov. showed relatively

large amounts of iso-C16:0. Hydroxylated fatty acids and iso- and anteiso-branched

fatty acids were also present as minor components. Their fatty acid profiles

resemble those determined for other Flavobacterium species (Bernardet et al.,

1996), but differ in the relative amounts of anteiso-C15:0, iso-C15:0 and iso-C17:03-

OH.

The strains showed typical morphological characteristics of the genus

Flavobacterium (Bernardet et al., 2002) and their physiological and biochemical

Table 3.6. Fatty acid compositions of the novel Antarctic species:  Flavobacterium degerlachei sp. 

nov., Flavobacterium micromati sp. nov. and Flavobacterium frigoris sp. nov. 

Fatty acid F. degerlachei (n = 14) F. micromati (n = 3) F. frigoris (n = 19) 

iso-C14:0 2.7  0.5 2.2  0.5 3.3  1.0 

C15:0 7.2  2.3 7.7  0.9 6.9  1.2 

C15:03-OH 1.5  0.5 TR 1.2  0.5 

anteiso-C15:0 7.7  1.4 5.9  1.1 10.2  2.7 

iso-C15:0 5.8  2.2 6.7  1.8 7.4  1.4 

iso-C15:03-OH 5.1  1.1 3.7  1.0 3.9  0.9 

anteiso-C15:1 1.3  1.6 TR TR

iso-C15:1 5.1  1.2 3.6  1.2 2.7  0.7 

C15:1 6c 10.5  2.0 6.4  0.4 11.3  2.2 

C16:0 1.3  0.7 4.5  0.4 1.8  0.5 

C16:03-OH 1.9  0.8 2.9  0.2 1.8  0.5 

iso-C16:0 3.9  0.9 9.1  2.9 6.9  1.6 

iso-C16:03-OH 9.7  1.8 10.5  1.4 7.8  2.0 

iso-C16:1 3.9  0.9 4.2  1.2 4.4  1.2 

Iso-C17:03-OH 4.7  1.2 4.5  1.4 3.4  1.3 

C17:1 6c 6.8  2.0 4.9  0.3 3.7  1.2 

C17:1 8c 1.0  0.4 1.0  0.1 1.1  0.3 

iso-C17:1 9c 1.3  0.4 1.3  0.6 2.0  0.5 

Summed feature 3 13.2  2.5 15.7  0.9 14.5  3.0 

Mean percentages + SD of total fatty acids are given. Other fatty acids accounted for < 1% 

each. Summed feature 3 comprises iso-C15:02-OH, C16:1 7c, or both. TR, Trace, < 1% of total. 
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characteristics are given in the species descriptions. F. degerlachei sp. nov., F.

micromati  sp. nov. and F. frigoris sp. nov. can be differentiated clearly from each

other and from related Flavobacterium species by several phenotypic

characteristics (Table 3.7).

The results of the polyphasic analysis support the recognition of three novel

Antarctic species within the genus Flavobacterium, for which the names

Flavobacterium degerlachei sp. nov., Flavobacterium micromati sp. nov. and

Flavobacterium frigoris sp. nov. are proposed.

Description of Flavobacterium degerlachei sp. nov.

Flavobacterium degerlachei (de.ger.lach’e.i. N. L. gen. n. degerlachei of Adrien

de Gerlache, in honour of the Belgian pioneer who conducted the first scientific

expedition to Antarctica in 1897-1899).

Cells are Gram-negative, short rods (<1 x 3-4 µm), that often form pairs or

short chains. Gliding motility is not observed. Growth occurs at 5-30°C with an

optimal growth temperature of 20 °C, whereas no growth occurs at 37 °C. Yellow,

convex, translucent colonies with entire margins and a diameter of 1–3 mm are

formed on R2A plates after 6 days incubation. Colonies on Anacker & Ordal’s

agar are flat, round with entire margins and 0.5-1 mm in diameter after 14 days

incubation. Growth also occurs on trypticase soy agar, nutrient agar and marine

agar; colonies do not adhere to the agar. Aesculin and starch are degraded.

Catalase and oxidase tests are positive. Growth is observed (API 20NE) on

glucose, mannose and maltose, whereas no growth is detected on arabinose,

mannitol, N-acetyl-glucosamine, gluconate, caprate, adipate, malate, citrate or

phenylacetate. Acids are not produced from carbohydrates (API 20E). Agar,

alginate, pectin, chitin, casein, CM-cellulose, DNA, gelatin, tyrosine and urea are

not degraded. Congo red is not absorbed and no flexirubin-type pigments are

present. No production of brown diffusible pigment occurs on L-tyrosine agar and

no precipitate is formed on egg-yolk agar. Tests for indole production, citrate

utilization, nitrate reduction, Voges-Proskauer reaction and hydrogen sulfide

production are negative. None of the strains shows activity for the enzymes arginine

dihydrolase, lysine decarboxylase, ornithine decarboxylase, tryptophan deaminase

(API 20E), lipase (C14), α-chymotrypsine, trypsin, α-galactosidase, β-
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Table 3.7. Phenotypic characteristics that differentiate Flavobacterium 

degerlachei sp. nov., Flavobacterium micromati sp. nov. and Flavobacterium 

frigoris sp. nov. from related Flavobacterium species.  

Characteristic 1 2 3 4 5 6

Growth on:  

Trypticase soy agar + (+) + + + +

Nutrient agar + + - + + +

Growth at 25°C on agar + (+) (+) (+) + +

Flexirubin-type pigment - - - - + +

Voges-Proskauer reaction - + - - ND ND

Glucose utilization + - + + + +

Acid from carbohydrates - - - + + +

Degradation of: 

Gelatin - - - - + +

Casein - - + + + +

Starch + - + + + +

CM-cellulose - - - - + +

Agar - - - - - +

Alginate - - - - + ND

Pectin - - - - + +

Chitin - - - + + -

DNA - - - - + -

Tyrosine - - + - + +

-Galactosidase activity - - - - + +

H2S production - - - - ND +

Nitrate reduction - - v - + +

Mean G+C content (mol%) 34 33 34 32 35 33

Flavobacterium species: 1, F. degerlachei; 2, F. micromati; 3, F. frigoris; 4, F.

gillisiae; 5, F. pectinovorum; 6, F. saccharophilum. Data from Bernardet et al.

(1996), McCammon & Bowman (2000) and this study. Symbols: +, positive 

test; (+), positive test, weak or delayed response; -, negative test; v, test 

results vary between strains of species; ND, no available data. All species 

shown here are negative for Congo red absorption and precipitate formation 

on egg-yolk agar and are positive for degradation of aesculin. 
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galactosidase, β-glucuronidase, α-mannosidase, and α-fucosidase (API ZYM).

Weak enzymic activity is observed for cystine arylamidase, medium activity is

observed for esterase (C4), esterase lipase (C8), α-glucosidase, β-glucosidase

and N-acetyl-β-glucosaminidase, and strong activity is observed for alkaline

phosphatase, leucine arylamidase, valine arylamidase, acid phosphatase,

naphthol-AS-BI-phosphohydrolase (API ZYM). Cells contain the fatty acids C15:0,

anteiso-C15:0, iso-C15:0, C15:1ω6c, iso-C16:03-OH, C17:1ω6c and summed feature 3

(which comprises iso-C15:02-OH, C16:1ω7c, or both) as the main constituents. Growth

occurs in 0-5% NaCl but not in 10% NaCl, indicating that the strains are not

halophilic, but are moderately halotolerant. DNA G+C content is 33.8-34.2 mol%.

The type strain is LMG 21915T (= DSM 15718T). Isolated from microbial mats

from Lakes Ace and Pendant in the Vestfold Hills and lake Reid in the Larsemann

Hills, Antarctica.

Description of Flavobacterium micromati sp. nov.

Flavobacterium micromati (mi.cro.mat’i. N.L. gen. n. micromati referring to

the MICROMAT project).

Cells are Gram-negative, short rods (<1 x 3-4 µm); gliding motility is not

observed. Growth occurs at 5°C to 20°C, very weak growth is observed at 25°C

and no growth occurs at 30 °C. Orange-red, convex, translucent colonies with

entire margins and a diameter of 1–3 mm are formed on R2A plates after 6 days

of incubation. Colonies on Anacker & Ordal’s agar are flat, round with entire margins

and 0.5-1 mm in diameter after 14 days incubation. Growth also occurs on trypticase

soy agar (weak), nutrient agar and marine agar (weak). Colonies do not adhere to

the agar. Aesculin is degraded. Catalase and oxidase tests are positive. Growth

on carbohydrates (API 20NE) is not observed and acids from carbohydrates are

not produced (API 20E). Voges-Proskauer reaction is positive for all strains. Agar,

alginate, pectin, chitin, casein, CM-cellulose, DNA, gelatin, tyrosine, starch and

urea are not degraded. Congo red is not absorbed and no flexirubin-type pigments

are present. No production of brown diffusible pigment occurs on L-tyrosine agar

and no precipitate is formed on egg-yolk agar. Tests for indole production, citrate

utilization, nitrate reduction and hydrogen sulfide production are negative. None

of the strains shows activity for the enzymes arginine dihydrolase, lysine
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decarboxylase, ornithine decarboxylase, tryptophan deaminase (API 20E), lipase

(C14), cystine arylamidase, α-chymotrypsine, trypsin, α-galactosidase, β-

galactosidase, β-glucuronidase, β-glucosidase, N-acetyl-β-glucosaminidase, α-

mannosidase, and α-fucosidase (API ZYM). Medium enzymic activity is observed

for esterase (C4) and esterase lipase (C8) and strong activity  is observed for

alkaline phosphatase, leucine arylamidase, valine arylamidase, acid phosphatase,

naphthol-AS-BI-phosphohydrolase and α-glucosidase (API ZYM). Cells contain

the fatty acids C15:0, anteiso-C15:0, iso-C15:0, C15:1ω6c, iso-C16:0, iso-C16:03-OH and

summed feature 3 (which comprises iso-C
15:0

2-OH, C
16:1

ω7c, or both) as the main

constituents. Growth occurs in 0-2 % NaCl, but not in 5 % NaCl. DNA G+C content

is 33.1-34.4 mol%.

The type strain is LMG 21919T (= CIP 108161T). Isolated from microbial mats

from Lake Grace in the Vestfold Hills and Lake Fryxell in the McMurdo Dry Valleys,

Antarctica.

Description of Flavobacterium frigoris sp. nov.

Flavobacterium frigoris (fri’go.ris. L. gen. n. frigoris of the cold).

Cells are Gram-negative, short rods (<1 x 4-6 µm); gliding motility is not observed.

Growth occurs at 5-20°C, weak growth is observed at 25°C and no growth occurs

at 37 °C. Yellow, convex, translucent colonies with entire margins and a diameter

of 2–5 mm are formed on R2A plates after 6 days incubation. Colonies on Anacker

& Ordal’s agar are flat, round with entire margins and 0.5-1 mm in diameter after

14 days incubation. Growth also occurs on trypticase soy agar and marine agar,

but not on nutrient agar. Colonies do not adhere to the agar. Aesculin, casein,

tyrosine and starch are degraded. Catalase and oxidase tests are positive. Growth

on carbohydrates (API 20NE) is observed for glucose, mannose and maltose;

acids are not produced from carbohydrates (API 20E). Agar, alginate, pectin, chitin,

CM-cellulose, DNA, gelatin and urea are not degraded. Congo red is not absorbed

and no flexirubin-type pigments are present. No production of brown diffusible

pigment occurs on L-tyrosine agar and no precipitate is formed on egg-yolk agar.

Tests for indole production, citrate utilization, Voges Proskauer reaction and

hydrogen sulfide production are negative. Strain LMG 21924 is able to reduce

nitrate to nitrite. None of the strains shows activity for the enzymes arginine
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dihydrolase, lysine decarboxylase, ornithine decarboxylase, tryptophan deaminase

(API 20E), α-chymotrypsin, trypsin, α-galactosidase, β-galactosidase, β-

glucuronidase, α-mannosidase and α-fucosidase (API ZYM). Weak enzymic

activity is observed for cystine arylamidase, medium activity is observed for

esterase (C4), esterase lipase (C8) and N-acetyl-β-glucosaminidase, and strong

activity is observed for alkaline phosphatase, leucine arylamidase, valine

arylamidase, acid phosphatase, naphthol-AS-BI-phosphohydrolase and α-

glucosidase (API ZYM). Only strain LMG 21924 showed medium activity for β-

glucosidase and strain LMG 21922 for lipase (C14). Cells contain the fatty acids

C15:0, anteiso-C15:0, iso-C15:0, C15:1ω6c, iso-C16:0, iso-C16:03-OH and summed feature

3 (which comprises iso-C15:02-OH, C16:1ω7c, or both) as the main constituents.

Growth occurs in 0-5 % NaCl, but not in 10% NaCl, indicating that the strains are

not halophilic, but moderately halotolerant. DNA G+C content is 33.8-34.5 mol%.

The type strain is LMG 21922T (= DSM 15719T). Isolated from microbial mats

from Lakes Watts, Grace and Druzhby in the Vestfold Hills, Lake Fryxell in the

McMurdo Dry Valleys and Lake Reid in the Larsemann Hills, Antarctica.
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3.4 Flavobacterium fryxellicola sp. nov. and
Flavobacterium psychrolimnae sp. nov., novel
psychrophilic bacteria isolated from microbial

mats in Antarctic lakes

Stefanie Van Trappen, Ilse Vandecandelaere, Joris Mergaert and Jean Swings

Redrafted from: International Journal of Systematic and Evolutionary

Microbiology, in press (DOI10.1099/ijs.0.03056-0)

Taxonomic studies were performed on seven strains isolated from microbial mats

in Antarctic lakes of the McMurdo Dry Valleys. Phylogenetic analysis based on

16S rRNA gene sequences indicated that these strains are related to the genus

Flavobacterium; sequence similarity values with their nearest phylogenetic

neighbours ranged from 97.0 to 98.7%. The results of DNA-DNA hybridization

and comparison of repetitive extragenic palindromic DNA-PCR fingerprinting

patterns revealed that these strains are members of two distinct species. Genotypic

results, together with phenotypic characteristics, allowed the differentiation of these

species from related Flavobacterium species with validly published names. The

isolates are Gram-negative, chemoheterotrophic, rod-shaped cells that are

psychrophilic. Their whole-cell fatty acid profiles are similar and include C15:0,

anteiso-C15:0, iso-C15:0, C15:1ω6c, iso-C16:0, iso-C16:03-OH, iso-C16:1 and summed

feature 3 (which comprises iso-C
15:0

2-OH, C
16:1

ω7c, or both) as major fatty acid

components. On the basis of these results, two new species are proposed, namely

Flavobacterium fryxellicola sp. nov. (consisting of 3 strains with LMG 22022T =

CIP 108325T as type strain) and Flavobacterium psychrolimnae sp. nov. (consisting

of 4 strains with LMG 22018T = CIP 108326T as type strain). DNA G + C contents

of Flavobacterium fryxellicola and Flavobacterium psychrolimnae are 35.5 and

34.1 mol%, respectively.
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Introduction

Members of the Bacteroidetes show a high abundance in freshwater and

marine ecosystems and these bacteria may have a specialized role in the uptake

and degradation of organic matter in cold, aquatic environments (Kirchman, 2002).

Several new species, added to the genus Flavobacterium since 1996, originated

from Antarctic habitats (Van Trappen et al., 2003; 2004a; and references cited

therein).

During the MICROMAT project (November 1998 - February 2001), 746

bacterial strains were isolated under heterotrophic conditions from microbial mat

samples that were collected from ten Antarctic lakes (Van Trappen et al., 2002).

Numerical analysis of the fatty acid composition of the isolates and 16S rRNA

gene sequence analysis, performed on representative strains, showed that the

diversity of heterotrophic bacteria in microbial mats from Antarctic lakes is very

high. Moreover, many fatty acid clusters were shown to contain multiple taxa when

tested by repetitive extragenic palindromic DNA-PCR (rep-PCR) fingerprinting, a

technique used to investigate the genomic diversity of each fatty acid cluster

more in detail (Van Trappen et al., 2003; 2004a). Several of these strains belonging

to fatty acid clusters 5, 6 and 10 were already described as new Flavobacterium

species: Flavobacterium gelidilacus sp. nov., Flavobacterium degerlachei sp. nov.,

Flavobacterium frigoris sp. nov. and Flavobacterium micromati sp. nov. (Van

Trappen et al., 2003; 2004a).

In the present work, we studied further the taxonomic relationships of twenty-

two additional strains from fatty acid cluster 5 (as delineated by Van Trappen et

al., 2002). A group of eleven of these strains was identified as Flavobacterium

xanthum, while another rep-cluster of four strains was identified as the recently

described Flavobacterium frigoris (Van Trappen et al., 2004a), based on 16S rDNA

sequence analysis (Fig. 3.7) and DNA-DNA hybridizations (S. Van Trappen,

unpublished results). These strains were not further investigated, and are listed

in Table 3.8. Seven strains, also listed in Table 3.8, proved to belong to new taxa,

and were studied by polyphasic taxonomic analysis.
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Materials and Methods

Strains were cultivated routinely on R2A medium (Difco) at 20 °C for 48 h or

[for strains LMG 4031T (Flavobacterium pectinovorum) and LMG 8384T (F.

saccharophilum)] on TSA medium (BBL) at 20 °C for 48 h, and [for strains LMG

21985T (F. xinjiangense) and LMG 21986T (F. omnivorum)] on R2A medium at

11°C for 5 days, except when mentioned otherwise.

DNA was prepared according to the method of Pitcher et al. (1989) and rep-

PCR fingerprinting (based on primers targeting the repetitive extragenic palindromic

sequence) was performed on all strains of FAA clusters 5 (75 strains) of Van

Trappen et al. (2002), using the primer GTG5 (Versalovic et al., 1991), as described

previously (Van Trappen et al., 2003). Numerical analysis was carried using the

Bionumerics software package (Applied Maths), as described by the same authors.

Almost-complete 16S rRNA gene sequences of reference strains were

determined as described earlier (Van Trappen et al., 2004a). The most closely

related sequences were found using the FASTA program; sequences were aligned

and editing of the alignment and reformatting was performed with the BIOEDIT

program (Hall, 1999) and ForCon (Raes & Van de Peer, 1999). Evolutionary

distances were calculated by using the Jukes-Cantor evolutionary model and a

phylogenetic tree was constructed by using the neighbour-joining method (Saitou

& Nei, 1987) with the TREECON program (Van de Peer & De Wachter, 1994).

DNA-DNA hybridizations were carried out with photobiotin-labelled probes

in microplate wells as described by Ezaki et al. (1989), using a HTS7000 BioAssay

reader (PerkinElmer) for the fluorescence measurements. The hybridization

temperature was 30 °C and reciprocal experiments were performed for every pair

of strains.

DNA G+C contents of the Antarctic strains were determined using an HPLC

method as described by Van Trappen et al. (2003).

Morphological, physiological and biochemical tests were performed, as

described previously (Van Trappen et al., 2003).
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Results and discussion

Seven strains of fatty acid cluster 5, listed in Table 3.8, showed similar rep-

PCR profiles (see also Fig. 3.6), and could be divided into two different clusters

according to their profile type, hereafter referred to as rep-PCR profile type I

(comprising 3 strains) and type II (with 4 strains).

Almost-complete 16S rRNA gene sequences (1466-1479 nt) of strains LMG

22022T, LMG 22018T, LMG 22020, R-9010 and R-7518 were determined and a

phylogenetic tree is shown (Fig. 3.7). The seven novel Antarctic strains form two

distinct branches within the genus Flavobacterium, which are supported by high

bootstrap values, and they belong to a clade of the phylogenetic tree that consists

almost exclusively of recently described Flavobacterium species from cold

environments, such as F. gillisiae, F. degerlachei, F. frigoris, F. xinjiangense, F.

xanthum, F. omnivorum, F. frigidarium, F. gelidilacus, F. limicola, F. tegetincola and

F. micromati. Other psychrophilic Flavobacterium species, like F. hibernum and F.

psychrophilum, do not belong to this clade and form separate branches.

The 16S rRNA gene sequence of the representative strain of rep-PCR profile

type I (LMG 22022T) showed 97.9 % similarity to F. tegetincola, 97.2 % to F.

flevense, 96.0% to F. johnsoniae and less than 96.0 % to other Flavobacterium

species. The sequences of the representative strains of rep-PCR profile type II

(LMG 22018T and LMG 22020), are identical and showed 98.7 %sequence

similarity  to F. limicola, 98.4 % to F. omnivorum, 97.9% to F. xinjiangense, 97.7 %

to F. degerlachei, 97.6% to F. frigoris, 97.5% to F. gillisiae, 97.3 % to F. xanthum

and less than 97.0% to other Flavobacterium species.

Genomic relatedness between the novel Antarctic strains (representing the

two different rep-PCR profile types) and their most closely related phylogenetic

neighbours was determined by DNA-DNA hybridization. The hybridization level

between strains LMG 22022T, LMG 22023 and LMG 22024 of rep-PCR profile

type I was 79.0-93.3 %, indicating that these three strains belong to one single

species (Wayne et al., 1987).

Hybridization values of LMG 22022T with its nearest phylogenetic neighbours,

F. tegetincola (LMG 21423T) and F. flevense (LMG 8328T), were less than 19%,

indicating that the strains from rep-PCR profile type I represent a new

Flavobacterium species, for which the name Flavobacterium fryxellicola sp. nov.
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Table 3.8. Strains investigated, isolation site, and rep-PCR profile type. 

Species and strain Isolation site 

F. xanthum:

R-8994, R-8999, R-9141, R-9147, R-9148 Grace lake, Vestfold Hills 

R-9009, R-9010, R-9013, R-9329, R-11545 Watts lake, Vestfold Hills 

R-9127 Lake Druzhby, Vestfold Hills 

F. frigoris:
R-9005 Watts lake, Vestfold Hills 

R-9142, R-9145 Grace lake, Vestfold Hills 

R-7518 Lake Fryxell, Dry Valleys  

F. fryxellicola sp. nov. (rep-PCR cluster I): 

LMG 22022T = R-7548 Lake Fryxell, Dry Valleys 

LMG 22023 = R-8019 Lake Fryxell, Dry Valleys 

LMG 22024 = R-8284 Lake Fryxell, Dry Valleys 

F. psychrolimnae sp. nov. (rep-PCR cluster II): 

LMG 22018T = R-7582 Lake Fryxell, Dry Valleys 

LMG 22019 = R-7681 Lake Hoare, Dry Valleys 

LMG 22020 = R-8023 Lake Fryxell, Dry Valleys 

LMG 22021 = R-8283 Lake Fryxell, Dry Valleys 

Abbreviations: LMG, BCCM/LMG Bacteria Collection, Laboratorium voor 

Microbiologie, Universiteit Gent, Belgium; R-, strain numbers from the research 

collection of the Laboratorium voor Microbiologie, Universiteit Gent, Belgium, and as 

used by Van Trappen et al. (2002). 

is proposed. Hybridization results between strains LMG 22018T and LMG 22020

of rep-PCR profile type II (96.5%) showed that the strains of rep-PCR profile type

II belong to a single species. It is now well established that similar rep-PCR profiles

are correlated to high genomic DNA-DNA hybridization values (Versalovic et al.,

1994; Rademaker & De Bruijn, 1997; Rademaker et al., 2000; Van Trappen et al.,

2003; 2004a). The low hybridization level (21.9-48.8%) between LMG 22018T

and the nearest phylogenetic neighbours F. limicola (LMG 21930T), F. omnivorum

(LMG 21986T), F. xinjiangense (LMG 21985T), F. degerlachei (LMG 21915T), F.

frigoris (LMG 21922T), F. gillisiae (LMG 21422T) and F. xanthum (LMG 8372T),

reveals that the four strains of rep-PCR profile type II constitute a new species,

for which the name Flavobacterium psychrolimnae sp. nov. is proposed. Differences

between reciprocal experiments were less than 11 %. These results clearly show
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Figure 3.6. Digitized representation of normalized rep-PCR profiles (GTG
5
-primer) of seven

strains belonging to fatty acid cluster 5. Dendrogram derived from the UPGMA clustering of the

profiles with the Pearson correlation coefficient and rep-clusters were delineated at a cut-off

value of 50%. Rep-cluster I, F. fryxellicola sp. nov.; rep-cluster II, F. psychrolimnae sp. nov..

that the novel Antarctic isolates are genotypically distinct from related

Flavobacterium species, although the new isolates share more then 97% (up to

98.7%) 16S rRNA gene sequence similarity with their closest phylogenetic

neighbours.

The DNA G+C contents of strains LMG 22022T, LMG 22023 and LMG 22024

of F. fryxellicola sp. nov. are 35.2, 35.9 and 35.5 mol%, respectively. The DNA G +

C contents of strains LMG 22018T, LMG 22019, LMG 22020 and LMG 22021 of F.

psychrolimnae sp. nov. are 34.5, 33.9, 34.1 and 33.8 mol%, respectively. These

values are consistent with the G+C contents of members the genus Flavobacterium,

which range from 30 to 37 mol % (Bernardet et al., 1996; Van Trappen et al.,

2003).

Cellular fatty acid patterns of the Antarctic strains are based on the data

generated by Van Trappen et al. (2002) and are very similar (Table 3.9). The

major constituents include C
15:0

, iso-C
15:0

, C
15:1

ω6c, iso-C
16:0

3-OH and summed

feature 3 (which comprises iso-C15:02-OH, C16:1ω7c, or both). Hydroxylated fatty

acids and iso- and anteiso-branched fatty acids were present as minor components.

The strains of F. psychrolimnae sp. nov. also possessed relatively large amounts

of iso-C16:0. Their fatty acid profiles resemble those determined for other

Flavobacterium species (Bernardet et al., 1996).
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The strains showed typical morphological characteristics of the genus

Flavobacterium (Bernardet et al., 2002). Their physiological and biochemical

characteristics are given in the species descriptions. F. fryxellicola sp. nov. and F.

psychrolimnae sp. nov. can be differentiated clearly from each other and from

related Flavobacterium species by several phenotypic characteristics (Table 3.10);

Flavobacterium species not mentioned in the table are also different from these

novel species.

Description of Flavobacterium fryxellicola sp. nov.

Flavobacterium fryxellicola (fry.xel.li’co.la. N.L. n. Fryxellum or Fryxellus Lake

Fryxell; L. suffix -cola an inhabitant; N.L. n. fryxellicola inhabitant of Lake Fryxell).

Cells are Gram-negative, short rods (1-1.5 x 3-4 µm), that often form short

chains. Gliding motility was not observed. Growth at 5-25°C with an optimal growth

Figure 3.7. Neighbour-joining dendrogram showing the estimated phylogenetic relationships of

Flavobacterium fryxellicola sp. nov., Flavobacterium psychrolimnae sp. nov. and nearest

phylogenetic neighbours on the basis of 16S rRNA gene sequences. Bootstrap values (percentages

of 500 replicates) of > 50 % are shown. GenBank accession numbers for each reference strain

are shown in parentheses. Bar, 1 nucleotide substitution per 10 nucleotides.
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Table 3.9. Fatty acid composition of the novel Antarctic species 

Flavobacterium fryxellicola sp. nov. and F. psychrolimnae sp. nov. 

Fatty acid F. fryxellicola (n = 3) F. psychrolimnae (n = 4) 

iso-C14:0 3.4  0.3 3.8  0.2 

C15:0 6.9  1.7 5.4  0.3 

C15:03-OH 1.0  0.1 1.4  0.1 

anteiso-C15:0 3.5  0.2 5.1  0.3 

iso-C15:0 8.1  0.1 6.9  0.5 

iso-C15:03-OH 4.6  1.0 4.1  0.4 

iso-C15:1 3.4  0.3 3.9  0.2 

C15:1 6c 7.9  1.3 7.8  0.5 

C16:0 3.3  0.3 1.6  0.2 

C16:03-OH 1.9  0.4 TR

iso-C16:0 9.8  1.5 9.7  0.6 

iso-C16:0 3-OH 10.7  1.9 10.4  1.5 

iso-C16:1 4.5  0.5 8.2  0.6 

iso-C17:03-OH 4.9  0.5 4.0  0.7 

C17:1 6c 5.3  0.8 4.8  0.4 

C17:1 8c 1.0  0.2 TR

C18:1 5c TR 1.2  0.2 

iso-C17:1 9c 1.6  0.03 3.5  0.1 

Summed feature 3 13.9  2.2 13.1  0.7 

Mean percentages + SD of total fatty acids are given. Other fatty acids 

accounted for < 1% each. Summed feature 3 comprises iso-C15:02-OH,

C16:1 7c, or both. TR, Trace, < 1% of total. 

temperature of 20 °C, whereas no growth occurs at 30 °C. Yellow-orange, convex,

translucent colonies with entire margins and a diameter of 1–3 mm are formed on

R2A plates after 6 days incubation. Colonies on Anacker & Ordal’s agar (Anacker

& Ordal, 1955) are flat, round with entire margins and 0.5-1 mm in diameter after

14 days incubation. Growth also occurs on trypticase soy agar (weak) and nutrient

agar; there is no growth on marine agar. Colonies do not adhere to the agar.

Growth occurs in 0-2% NaCl but not in 5-10% NaCl. Aesculin is degraded. Catalase

and oxidase tests are positive. Growth is observed (API 20NE) on glucose and

maltose, whereas no growth is detected on arabinose, mannitol, mannose, N-
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acetyl-glucosamine, gluconate, caprate, adipate, malate, citrate and phenylacetate.

Acids are not produced from carbohydrates (API 20E). Agar, alginate, pectin,

chitin, casein, CM-cellulose, DNA, gelatin, starch, tyrosine and urea are not

degraded. Congo red is not absorbed and no flexirubin-type pigments are present.

No production of brown diffusible pigment occurs on L-tyrosine agar and no

precipitate is formed on egg-yolk agar. Tests for indole production, citrate utilization,

nitrate reduction and hydrogen sulfide production are negative. Voges-Proskauer

reaction is positive for all strains. None of the strains shows activity for the enzymes

arginine dihydrolase, lysine decarboxylase, ornithine decarboxylase, tryptophan

deaminase (API 20E), lipase (C14), α-chymotrypsin, trypsin, β-galactosidase, β-

glucuronidase, β-glucosidase, N-acetyl-β-glucosaminidase, α-mannosidase and

α-fucosidase (API ZYM). Weak enzymic activity is observed for esterase lipase

(C8), cystine arylamidase and α-galactosidase, medium activity is observed for

esterase (C4) and α-glucosidase, and strong activity is observed for alkaline

phosphatase, leucine arylamidase, valine arylamidase, acid phosphatase and

naphthol-AS-BI-phosphohydrolase (API ZYM). Cells contain the fatty acids C
15:0

,

iso-C15:0, C15:1ω6c, iso-C16:0, iso-C16:03-OH and summed feature 3 (which comprises

iso-C15:02-OH, C16:1ω7c, or both) as the main constituents. DNA G+C content is

35.2-35.9 mol%.

The type strain is LMG 22022T (= CIP 108325T). Isolated from microbial mats

from Lake Fryxell (fresh/brackish) in the McMurdo Dry Valleys, Antarctica.

Description of Flavobacterium psychrolimnae sp. nov.

Flavobacterium psychrolimnae (psy.chro’lim.nae. Gr. adj. psychros cold; Gr.

f. n. limna lake; M.L. gen. n. psychrolimnae of the cold lake).

Cells are Gram-negative, short rods (0.5 x 2 µm); gliding motility is not

observed. Growth occurs at 5-25°C, whereas weak growth is observed at 30°C

and no growth occurs at 37 °C. The optimal growth temperature is 20°C. Yellow,

convex, translucent colonies with entire margins and a diameter of 1–3 mm are

formed on R2A plates after 6 days incubation. Colonies on Anacker & Ordal’s

agar (Anacker & Ordal, 1955) are flat, round with entire margins and 0.5-1 mm in

diameter after 14 days incubation. Growth also occurs on trypticase soy agar and

nutrient agar, whereas no growth is detected on marine agar. Colonies do not
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adhere to the agar. Growth occurs in 0-2 % NaCl, but not in 5-10 % NaCl. Aesculin,

casein and starch are degraded. Catalase and oxidase tests are positive. Growth

is observed (API 20NE) on glucose, mannose and maltose, whereas no growth is

detected on arabinose, mannitol, N-acetyl-glucosamine, gluconate, caprate,

adipate, malate, citrate and phenylacetate. Acids are not produced from

carbohydrates (API 20E). Agar, alginate, pectin, chitin, CM-cellulose, DNA, gelatin,

tyrosine and urea are not degraded. Congo red is not absorbed and no flexirubin-

Table 3.10. Phenotypic characteristics that differentiate Flavobacterium fryxellicola sp. nov. and F. psychrolimnae 

sp. nov. from other Flavobacterium species.  

Characteristic 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Growth on:  

Trypticase soy agar (+) + + + + - + + + + + + + + (+)

Nutrient agar + + + - + (+) + + + + + + + + +

Growth at 25°C on agar (+) + + (+) + - - (+) + + (+) (+) - + (+) 

Flexirubin pigment type - - - - - - - - - + - - - - -

Congo red absorption - - - - + ND ND - - V - - + - -

Glucose utilization + + + + + + + + + + + + + - -

Acid from carbohydrates - - - - - - - + + + + + - - -

Degradation of: 

Gelatin - - - - + + - - - + - + + V -

Casein - + - + + + + - - + + + + + -

Starch - + + + + - + - ND + + + - + -

CM-cellulose - - - - - - + - - + - - - - -

Agar - - - - + - - - + - - - - - -

Alginate - - - - - - + - - + - - - - -

Pectin - - - - - - + - + + - - - - -

Chitin - - - - - + + - - + + - - - -

Aesculin + + + + + + + - + + + + + - +

DNA - - - - - - - - - + - - - - -

Tyrosine - - - + + - - - - + - - - - -

Precipitate on egg-yolk 

agar

- - - - - - - - - - - - - - -

-galactosidase activity - + - - - - + - + + - - - - -

H2S production - - - - - + - - - - - + - - -

Nitrate reduction - - - v - - + - ND + - + - - -

Mol% G+C (mean) 35 34 34 34 35 34 35 32 35 34 32 36 35 30 33

Flavobacterium species: 1, F. fryxellicola; 2, F. psychrolimnae; 3, F. degerlachei; 4, F. frigoris; 5, F. limicola; 6, F.

xinjiangense; 7, F. omnivorum; 8, F. tegetincola; 9, F. flevense; 10, F. johnsoniae; 11, F. gillisiae; 12, F. xanthum,

13, F. frigidarium; 14, F. gelidilacus; 15, F. micromati. * Data from Bernardet et al. (1996), McCammon & Bowman 

(2000), Humphry et al. (2001), Zhu et al. (2003), Tamaki et al. (2003), Van Trappen et al. (2004a) and this study. 

Symbols: +, positive test; (+), positive test, weak or delayed response; -, negative test; V, test results are variable; 

ND, no available data. 
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type pigments are present. No production of brown diffusible pigment occurs on

L-tyrosine agar and no precipitate is formed on egg-yolk agar. Tests for indole

production, citrate utilization, nitrate reduction, Voges-Proskauer reaction and

hydrogen sulfide production are negative. None of the strains shows activity for

the enzymes arginine dihydrolase, lysine decarboxylase, ornithine decarboxylase,

tryptophan deaminase (API 20E), lipase (C14), α-galactosidase, β-galactosidase,

β-glucuronidase, α-mannosidase and α-fucosidase (API ZYM). Weak enzymic

activity is observed for esterase (C4), esterase lipase (C8), cystine arylamidase,

α-chymotrypsin, trypsin and β-glucosidase, medium activity is observed for N-

acetyl-β-glucosaminidase, acid phosphatase, α-glucosidase and naphthol-AS-

BI-phosphohydrolase, and strong activity is observed for alkaline phosphatase,

leucine arylamidase and valine arylamidase (API ZYM). Cells contain the fatty

acids C15:0, iso-C15:0, C15:1ω6c, iso-C16:0, iso-C16:03-OH, iso-C16:1 and summed feature

3 (which comprises iso-C15:02-OH, C16:1ω7c, or both) as the main constituents.

DNA G+C content is 33.8-34.5 mol%.

The type strain is LMG 22018T (= CIP 108326T). Isolated from microbial mats

from the freshwater lakes Fryxell (fresh/ brackish) and Hoare in the McMurdo Dry

Valleys, Antarctica.
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A taxonomic study was performed on three strains isolated from microbial mats in

Lake Fryxell, McMurdo Dry Valleys, Antarctica. Phylogenetic analysis based on

16S rRNA gene sequences indicated that these strains belong to the family

Flavobacteriaceae, in which they form a distinct lineage. The isolates are Gram-

negative, chemoheterotrophic, aerobic, rod-shaped cells. They are psychrophilic

and yellow-pigmented, with DNA G + C contents in the range of 37.8-38.9 mol%.

Whole-cell fatty acid profiles revealed mainly branched fatty acids and C17:02-OH.

On the basis of genotypic, phenotypic, chemotaxonomic and phylogenetic results,

it is proposed that the isolates represent a novel species in a new genus, Gillisia

limnaea gen. nov., sp. nov. The type strain is LMG 21470T (= DSM 15749T).
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Introduction

 Members of the Cytophaga-Flavobacterium cluster constitute one of the

dominant bacterial groups in marine and freshwater environments (Bowman et

al., 1997a; Pinhassi et al., 1997; Glöckner et al., 1999). In addition, it is now

thought that flavobacteria play an important role in the uptake and degradation of

complex dissolved and particulate organic matter (Kirchman, 2002). Therefore,

this group has an important and central role in remineralization processes in aquatic

systems. Recently, several new genera of the family Flavobacteriaceae have been

described, i.e. Cellulophaga, Zobellia, Muricauda, Arenibacter, Tenacibaculum,

Vitellibacter, Mesonia and Ulvibacter (Johansen et al., 1999; Barbeyron et al.,

2001; Bruns et al., 2001; Ivanova et al., 2001; Suzuki et al.; 2001; Nedashkovskaya

et al., 2003c, 2003a, 2004). Members of several of these genera, i.e. Gelidibacter,

Psychroserpens, Psychroflexus, Polaribacter, and Salegentibacter (Bowman et

al., 1997b, 1998d; Gosink et al., 1998; McCammon & Bowman, 2000), were

originally isolated from Antarctic maritime lakes and the surrounding Southern

Ocean, whereas isolates of the genus Aequorivita were found in terrestrial and

marine Antarctic habitats (Bowman & Nichols, 2002).

 During the MICROMAT project (November 1998 - February 2001), 746

bacterial strains were isolated under heterotrophic conditions from microbial mat

samples collected from 10 Antarctic lakes in the Vestfold Hills (lakes Ace, Druzhby,

Grace, Highway, Pendant, Organic and Watts), the Larsemann Hills (lake Reid)

and the McMurdo Dry Valleys (lakes Hoare and Fryxell) (Van Trappen et al., 2002).

Numerical analysis of their fatty acid composition revealed 41 clusters and 16S

rRNA gene sequence analysis, performed on representative strains, showed that

they belong to the α-, β- and γ-subclasses of the Proteobacteria, the high- and

low-G+C-containing Gram-positives and the phylum Bacteroidetes (Van Trappen

et al., 2002).

In the present work, the taxonomic relationship between the three strains

from fatty acid cluster 4 (as delineated by Van Trappen et al., 2002) was studied

by a polyphasic taxonomic approach. A novel genus of the family Flavobacteriaceae

is described, Gillisia gen. nov., with Gillisia limnaea sp. nov. as the type species.
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Materials and Methods

 The strains investigated were LMG 21470T (= DSM 15749T = R-8282T), LMG

21966 (= R-7730) and LMG 21965 (= R-7610), isolated as described by Van

Trappen et al. (2002) from microbial mat samples (FR1 and FR2) taken from Lake

Fryxell, McMurdo Dry Valleys, Antarctica. The strains were routinely cultivated on

marine agar 2216 (Difco) at 20 °C for 48 h, except when mentioned otherwise.

 DNA extracts were prepared using the method of Pitcher et al. (1989). DNA-

DNA hybridizations were carried out with photobiotin-labelled probes in microplate

wells as described by Willems et al. (2001), using an HTS7000 BioAssay reader

(Perkin Elmer) for fluorescence measurements. The hybridization temperature

was 30 °C and reciprocal experiments were performed for every pair of strains.

 The almost complete 16S rRNA gene sequence of one representative strain

of fatty acid cluster 4 was obtained as described earlier (Van Trappen et al., 2002).

The closest related sequences were found using the program FASTA. Sequences

from reference strains were aligned and editing of the alignment and reformatting

was performed with BIOEDIT (Hall, 1999) and FORCON (Raes & Van de Peer,

1999). Evolutionary distances were calculated using the Jukes & Cantor

evolutionary model and a phylogenetic tree was constructed by using the

neighbour-joining method (Saitou & Nei, 1987) with TREECON (Van de Peer &

De Wachter, 1994).

The G+C content of DNA from the Antarctic strains was determined using an

HPLC method, as described by Van Trappen et al. (2003).

Morphological, physiological and biochemical tests were performed, as

described previously (Van Trappen et al., 2003).

Results and discussion

Genomic relatedness between the novel strains was determined by DNA-

DNA hybridizations. The mean hybridization level between strains LMG 21470T,

LMG 21966 and LMG 21965 was 81-91 %, indicating that the strains belong to a

single species (Wayne et al., 1987). Differences between reciprocal experiments

were less than 14 %.

The almost complete 16S rRNA gene sequence (1483 nt) of strain LMG 21470T

was obtained and a phylogenetic tree is shown in Fig. 3.8. Dendrograms obtained

by maximum-parsimony and maximum-likelihood analyses showed essentially the



126

Chapter 3

same topography (data not shown). Results of the phylogenetic analysis revealed

that the novel strains form a distinct lineage within the family Flavobacteriaceae

(Bernardet et al., 2002) and belong to a cluster of species: Salegentibacter

salegens, Mesonia algae, Psychroflexus torquis, Psychroflexus gondwanensis,

Gelidibacter algens, Gelidibacter mesophilus, Psychroserpens burtonensis and

the misclassified strains [Flexibacter] tractuosus IFO 15980 and [Cytophaga]

latercula ATCC 23177T (see Fig. 3.8). The 16S rDNA sequence similarity values

between strain LMG 21470T and its closest relatives [F.] tractuosus, S. salegens

and Psychroflexus gondwanensis, were 93.0, 92.8 and 92.0%, respectively. The

16S rDNA sequence of the recently described M. algae (Nedashkovskaya et al.,

2003a) showed only 91.5% similarity with that of strain LMG 21470T. The low

Figure 3.8. Neighbour-joining dendrogram showing the estimated phylogenetic relationship of

Gillisia limnaea gen. nov., sp. nov. and related members of the family Flavobacteriaceae on the

basis of 16S rRNA gene sequences. Weeksella zoohelcum was choosen as the outgroup. Bootstrap

values over 50% are shown (percentages of 500 replicates). Bar, 1 nt substitution per 10 nt.

EMBL accession numbers for reference strains are shown in parentheses.
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level of sequence similarity between the novel strains and other bacteria belonging

to the Flavobacteriaceae (87.4-93.0%) clearly demonstrates that they represent

a new genus.

The G+C contents of strains LMG 21470T, LMG 21966 and LMG 21965

were 37.8, 38.7 and 38.9 mol%, respectively. These values are consistent with

G+C contents observed in the family Flavobacteriaceae (27-44 mol %) (Bernardet

et al., 2002).

Cellular fatty acid patterns of the novel strains have been published previously

(Van Trappen et al., 2002; cluster 4). The strains showed similar fatty acid profiles

and the major constituents were branched fatty acids (<65 % of total), which is

typical for members of the Flavobacteriaceae (Bernardet et al., 2002). Significant

differences in the fatty acid compositions of the novel strains and related taxa

were found, e.g. extracts of Gillisia limnaea strains contained considerable amounts

of C17:02-OH (13.1% of total), iso-C17:1ω9c (7.1%), anteiso-C17:1ω9c (7.4 %) and

summed feature 3 (8.2 %; comprises iso-C
15:0

2-OH and/or C
16:1

ω7c or both),

whereas these fatty acids were not detected in S. salegens, Psychroflexus

gondwanensis and [C.] latercula (Bowman et al., 1998d).

The strains show the typical morphological characteristics of members of the

Flavobacteriaceae (Bernardet et al., 2002) and their physiological and biochemical

characteristics are given in the species description. Results of the polyphasic

analysis support the formation of a new genus within the family Flavobacteriaceae,

Gillisia gen. nov., with Gillisia limnaea sp. nov. as the type species. The new genus

can be clearly differentiated from related members of the Flavobacteriaceae by

several phenotypic characteristics (Table 3.11).

Description of Gillisia gen. nov.

Gillisia (Gil.lis’i.a. N.L. fem. n. Gillisia after Monique Gillis, a Belgian

bacteriologist who has made major contributions to bacterial taxonomy).

Gram-negative, rod-shaped cells which are strictly aerobic, moderately

halotolerant, psychrophilic and chemoheterotrophic. Produces yellow pigments.

No flexirubins are formed. Gliding motility is not detected. Does not form

endospores. Positive for cytochrome oxidase, catalase and β-galactosidase. The

main cellular fatty acids are iso-C
15:0

, anteiso-C
15:0

, iso-C
15:1

, iso-C
16:0

, C
17:0

2-OH,

iso-C
17:0

3-OH, iso-C
17:1

ω9c, anteiso-C
17:1

ω9c and summed feature 3 (comprising
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iso-C15:02-OH and/or C16:1ω7c, or both). 16S rRNA gene sequence analysis reveals

that the genus Gillisia belongs to the family Flavobacteriaceae of the phylum

Bacteroidetes. The type species is Gillisia limnaea.

Description of Gillisia limnaea sp. nov.

Gillisia limnaea (lim.nae’a. Gr. adj. limnaeos pertaining to, living in lakes; N.L.

fem. adj. limnaea living in the water, referring to the isolation source, microbial

mats in Lake Fryxell).

The main characteristics are the same as given for the genus. In addition,

cells are 3 x 0.7 µm. Grows at 5-25°C; optimal growth at 20 °C. Weak growth is

observed at 30°C and no growth occurs at 37 °C. Yellow, convex, translucent

colonies with diameters of 1–3 mm and entire margins are formed on marine agar

plates after 6 days incubation. Colonies on Anacker & Ordal’s agar are flat, round

Table 3.11. Phenotypic characteristics that differentiate Gillisia gen. nov. from related members of the 

Flavobacteriaceae.

Characteristic 1 2 3 4 5 6 7 8

Gliding motility - - - V - - + +

Oxidase + + + + + - - +

Catalase + + + + - + + +

Pigments Y Y Y O O-R Y Y O-Y

Growth in > 10% NaCl - + + V - ND ND -

Acid from carbohydrates - - - + + - + +

Hydrolysis of: 

Agar - - - - + - - +

Casein - - + - + + V V

Gelatin + + + + - V V +

Starch - + - + + - + +

DNA - + - + + - + +

Nitrate reduction - + - - + - - V

H2S production - + + - + ND ND -

G+C content (mol%) 37-39 37-38 32-34 32-36 34 27-29 36-38 33-38 

Genera/ species: 1, Gillisia gen. nov.; 2, Salegentibacter; 3, Mesonia; 4, Psychroflexus; 5, [Cytophaga]

latercula; 6, Psychroserpens;  7, Gelidibacter; 8, Cellulophaga. Abbreviations: -, negative; +, positive; V, 

variable; ND, not determined; O, orange; Y, yellow; O-R, orange-red. Data for Gillisia are from this study; 

data for the other genera/ species shown are from Bowman et al. (1997a, 1998), Reichenbach (1989), 

Johansen et al. (1999), McCammon & Bowman (2000) and Nedashkovskaya et al. (2003a).   
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with entire margins and 0.7-0.9 mm in diameter after 14 days incubation. Growth

also occurs on nutrient agar and R2A and colonies do not adhere to the agar. No

growth on trypticase soy agar. Degrades aesculin and gelatin. Growth is not

observed (API 20NE) on glucose, mannose, maltose, L-arabinose, mannitol, N-

acetyl-glucosamine, gluconate, caprate, adipate, malate, citrate and phenylacetate.

Acids are not produced from carbohydrates (API 20E). Agar, alginate, pectin,

chitin, casein, carboxymethylcellulose, DNA, starch, Tween 80, tyrosine and urea

are not degraded. Congo red is not absorbed. No brown diffusible pigment is

produced on L-tyrosine agar and no precipitate is formed on egg-yolk agar. Tests

for indole production, citrate utilization, nitrate reduction, the Voges-Proskauer

reaction and hydrogen sulfide production are negative. None of the strains has

the following enzyme activities: arginine dihydrolase, lysine decarboxylase,

ornithine decarboxylase, tryptophan deaminase (API 20E), lipase (C14), α-

galactosidase, β-galactosidase, β-glucosidase, N-acetyl-β-glucosaminidase, α-

mannosidase, and α-fucosidase (API ZYM). Weak enzymic activity is observed

for cystine arylamidase, β-glucuronidase and α-glucosidase, medium activity for

esterase (C4), esterase lipase (C8) and trypsin and strong activity for alkaline

and acid phophatases, leucine arylamidase, valine arylamidase and naphthol-

AS-BI-phosphohydrolase. Variable results are observed for α-chymotrypsin activity.

Growth occurs in up to 5% NaCl, but not in 10% NaCl, indicating that strains are

moderately halotolerant but not halophilic. DNA G+C content is 37.8-38.9 mol%.

The type strain is LMG 21470T (= DSM 15749T). Isolated from microbial mats

from Lake Fryxell in the McMurdo Dry Valleys, Antarctica.
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A taxonomic study was performed on six strains isolated from microbial mats of

lakes Reid, Fryxell and Ace in Antarctica. Phylogenetic analysis based on 16S

rRNA gene sequences indicated that these strains belong to the family

‘Flexibacteriaceae’ and are closely related to the recently described genera

Algoriphagus and Hongiella. The isolates are Gram-negative, chemoheterotrophic,

aerobic, psychrophilic and orange-red-pigmented bacteria; their DNA G + C

contents range from 39.9 to 41.0 mol%. Their whole-cell fatty acid profiles include

mainly branched fatty acids and summed feature 3 (which comprises iso-C
15:0

2-

OH, C
16:1

ω7c, or both). On the basis of genotypic, phenotypic, chemotaxonomic

and phylogenetic results, the novel bacteria are classified as Algoriphagus

antarcticus sp. nov. The type strain is LMG 21980T (= DSM 15986T).
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Introduction

Members of the Cytophaga-Flavobacterium cluster constitute one of the

dominant bacterial groups in the marine environment (Bowman et al., 1997a;

Pinhassi et al., 1997; Glöckner et al., 1999) and it is now thought that they play an

important role in remineralization processes in aquatic systems (Kirchman, 2002).

Recently, new genera of the ‘Flexibacteriaceae’ have been described like

Reichenbachia, Algoriphagus, Hongiella and Belliella (Nedashkovskaya et al.,

2003b; Bowman et al., 2003c; Yi & Chun, 2004; Brettar et al., 2004) isolated from

seawater, sea-ice, algal mats of saline lakes and tidal flat sediment. Only one

strain (strain A230 of Algoriphagus ratkowskyi) was isolated from a cyanobacterial

mat sample from Ace Lake, Antarctica.

During the MICROMAT project (November 1998 - February 2001), 746

bacterial strains were isolated under heterotrophic conditions from microbial mat

samples that were collected from 10 Antarctic lakes in the Vestfold Hills (lakes

Ace, Druzhby, Grace, Highway, Pendant, Organic and Watts), the Larsemann

Hills (lake Reid) and the McMurdo Dry Valleys (lakes Hoare and Fryxell) (Van

Trappen et al., 2002). Numerical analysis of their fatty acid composition revealed

41 clusters, and 16S rRNA gene sequence analysis, performed on representative

strains, showed that they belong to the α-, β- and γ-subclasses of the

Proteobacteria, the high and low percent G+C Gram-positives and to the

Bacteroidetes phylum (Van Trappen et al., 2002).

In the present work we studied the taxonomic relationships of six strains

from fatty acid cluster 15 (as delineated by Van Trappen et al., 2002), by a

polyphasic taxonomic approach. A novel species of the genus Algoriphagus is

described as Algoriphagus antarcticus sp. nov.

Materials and Methods

The investigated strains are LMG 21980T (= DSM 15986T = R-10710T), LMG

21981 (= R-10749), LMG 21982 (= R-10752), LMG 21983 (= R-11427), from Lake

Reid, Larsemann Hills, Antarctica; LMG 21984 (= R-8290), from Lake Fryxell,

McMurdo Dry Valleys, Antarctica and LMG 21482 (= R-9286), from Ace Lake,

Vestfold Hills, Antarctica. The strains were isolated as described by Van Trappen

et al. (2002). They were cultivated routinely on marine agar 2216 (Difco) at 20 °C

for 4 days, except when mentioned otherwise. Strains LMG 21435T (Algoriphagus
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ratkowskyi), LMG 21969T (Algoriphagus winogradskyi), LMG 21970T (Algoriphagus

chordae) and LMG 21971T (Algoriphagus aquimarinus) were cultivated routinely

on marine agar 2216 (Difco) at 20°C, whilst strain LMG 22067T (Algoriphagus

halophilus) was cultivated on marine agar 2216 (Difco) at 28°C.

DNA extracts were prepared by using the method of Pitcher et al. (1989).

Almost complete 16S rRNA gene sequences of representative strains were

amplified by PCR with conserved primers (Coenye et al., 1999). PCR products

were purified by using a QIAquick PCR Purification kit (Qiagen) according to the

instructions of the manufacturer. Sequence analysis was performed by using an

ABI Prism 3100 DNA sequencer (Applied Biosystems), applying a BigDye

Terminator Cycle Sequencing Ready Reaction kit (version 2.0; PerkinElmer Applied

Biosystems), following the protocols of the manufacturer. Sequence assembly

was performed by using the program AutoAssembler (version1.4.0; PerkinElmer

Applied Biosystems). The most closely related sequences were found by using

the FASTA program; sequences were aligned and editing of the alignment and

reformatting was performed with the BioEdit program (Hall, 1999) and ForCon

(Raes & Van de Peer, 1999). Evolutionary distances were calculated using the

Jukes-Cantor evolutionary model and a phylogenetic tree was constructed using

the neighbour-joining method (Saitou & Nei, 1987) with the TREECON program

(Van de Peer & De Wachter, 1994).

DNA-DNA hybridizations were carried out with photobiotin-labelled probes

in microplate wells as described by Willems et al. (2001), using an HTS7000

BioAssay reader (PerkinElmer) for the fluorescence measurements. The

hybridization temperature was 34 °C and reciprocal experiments were performed

for every pair of strains.

DNA G+C contents of the novel strains were determined using an HPLC

method, as described by Van Trappen et al. (2003).

Morphological, physiological and biochemical tests were performed, as

described earlier (Van Trappen et al., 2003).
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Results and discussion

Almost complete 16S rRNA gene sequences (1462-1491 nt) of strains LMG

21482, LMG 21980T and LMG 21983 were obtained and a phylogenetic tree is

shown in Fig. 3.9. Dendrograms obtained by maximum parsimony and maximum

likelihood analyses showed essentially the same topography (data not shown).

The results of the phylogenetic analysis reveal that the novel strains belong to

the recently described genus Algoriphagus within the family ‘Flexibacteriaceae’

(Bowman et al., 2003c; Nedashkovskaya et al., in press), which is most closely

related to the genera Hongiella, Belliella and Cyclobacterium (see Fig. 3.9). The

Antarctic strains form a robust branch, supported by a high bootstrap value (all

methods, 100% of the bootstrap replications).

The 16S rRNA gene sequences of strains LMG 21980T and LMG 21983 are

identical to each other, whilst the sequence of LMG 21482 differs by only one

base from these sequences (99.9% similarity). The 16S rRNA gene sequences of

the novel strains show 98.7% sequence similarity to Algoriphagus chordae, 98.7%

to A. ratkowskyi, 98.6% to A. winogradskyi, 98.5% to A. aquimarinus, 97.4% to A.

halophilus, 94.7% to H. ornithinivorans, 93.8% to H. mannitolivorans, 92.9% to

Belliella baltica, 92.9% to Cyclobacterium marinum and less than 90% to sequences

of other related genera.

Genomic relatedness between the novel strains and their most closely related

phylogenetic neighbours (Algoriphagus ratkowskyi, A. chordae, A. aquimarinus,

A. winogradskyi and A. halophilus) was determined by DNA-DNA hybridization.

The hybridization level between strains LMG 21980T, LMG 21981, LMG 21982,

LMG 21983 and LMG 21984 was 89.0-98.7 %, whereas strain LMG 21482 showed

a hybridization value of only 74.2 + 3.9% to strain LMG 21980T and 72.7 + 0.5%

to strain LMG 21983. Hybridization values of LMG 21980T and LMG 21983 with

their nearest phylogenetic neighbours Algoriphagus ratkowskyi (LMG 21435T), A.

chordae (LMG 21970T), A. aquimarinus (LMG 21971T) and A. winogradskyi (LMG

21969T), were 20.5-38.6%. The hybridization value between strains LMG 21983

and LMG 22067T (A. halophilus) was only 7.2%. Differences between reciprocal

experiments were less than 8 %. These results show clearly that the Antarctic

strains represent a new species within the genus Algoriphagus.

The DNA G+C contents of strains LMG 21482, LMG 21980T, LMG 21981,

LMG 21982, LMG 21983 and LMG 21984 are 40.8, 40.6, 40.6, 40.6, 39.9 and
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Figure 3.9. Neighbour-joining dendrogram showing the estimated phylogenetic relationships of

Algoriphagus antarcticus sp. nov. and related members of the family ‘Flexibacteriaceae’ on the

basis of 16S rRNA gene sequences. Bacteroides fragilis was choosen as outgroup. Bootstrap

values (percentages of 500 replicates) of > 50 % are shown. GenBank accession numbers for

each reference strain are shown in parentheses. Bar, 1 nucleotide substitution per 10 nucleotides.

41.0 mol%, respectively. These values are consistent with the DNA G+C contents

of members of the genus Algoriphagus, which range from 35 to 42 mol % (Bowman

et al., 2003c; Nedashkovskaya et al., in press).

Cellular fatty acid patterns of the novel strains are based on the data generated

by Van Trappen et al. (2002). The strains show similar fatty acid profiles and the

mean fatty acid composition includes 3.4% anteiso-C
15:0

, 23.1% iso-C
15:0

, 4.1%

iso-C15:03-OH, 9.3% iso-C15:1, 1.8% C16:03-OH, 1.9% iso-C16:0, 2.5% iso-C16:03-OH,

2.9% iso-C16:1, 4.9% C16:1ω5c, 12.5% iso-C17:03-OH, 3.4% iso-C17:1ω9c, 24.3% iso-

C15:02-OH and/or C16:1ω6c. Other fatty acids each account for less than 1%. The

fatty acid profiles of the novel strains resemble those determined for the other

Algoriphagus species but differ in terms of relative amounts of iso-C15:0, iso-C15:1,

iso-C
17:0

3-OH and iso-C
15:0

2-OH/C
16:1

ω6c (Bowman et al., 2003c; Nedashkovskaya

et al., in press).

The strains showed typical morphological characteristics of the genus

Algoriphagus (Bowman et al., 2003c; Nedashkovskaya et al., in press) and their
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physiological and biochemical characteristics are given in the species description.

The results of the polyphasic analysis support the recognition of a new species

within the genus Algoriphagus, for which the name Algoriphagus antarcticus sp.

nov. is proposed. The new species can be clearly differentiated from related

Algoriphagus and Hongiella species by several phenotypic characteristics (Table

3.12).

Description of Algoriphagus antarcticus sp. nov.

Algoriphagus antarcticus (ant.arc’ti.cus. L. masc. adj. antarcticus of the

Antarctic environment, from where the strains were isolated).

Cells are Gram-negative, short rods (2-3 µm x 0.5 µm); motility was not

detected. Growth occurs at 5-20°C, with weak growth at 25°C and an optimal

growth temperature of 20 °C. No growth occurs at 30 °C. Orange-red pigmented,

convex, opaque colonies with entire margins and a diameter of 0.5–3 mm are

formed on marine agar plates after 6 days incubation. Colonies on Anacker &

Ordal’s agar are flat, round with entire margins and 0.5-0.7 mm in diameter after

14 days incubation. Growth also occurs on nutrient agar and R2A; colonies do

not adhere to the agar. No growth occurs on trypticase soy agar. Catalase and

oxidase tests are positive. Aesculin is degraded. Growth is not observed (API

20NE) on glucose, mannose, maltose, L-arabinose, mannitol, N-acetyl-

glucosamine, gluconate, caprate, adipate, malate, citrate and phenylacetate. Acids

are not produced from carbohydrates (API 20E). Agar, alginate, pectin, chitin,

casein, CM-cellulose, DNA, starch, gelatin, tyrosine and urea are not degraded.

Congo red is not absorbed. No production of brown diffusible pigment occurs on

L-tyrosine agar and no precipitate is formed on egg-yolk agar. Tests for indole

production, citrate utilization, nitrate reduction, Voges-Proskauer reaction and

hydrogen sulfide production are negative. None of the strains shows activity for

the enzymes arginine dihydrolase, lysine decarboxylase, ornithine decarboxylase,

tryptophan deaminase (API 20E), lipase (C14), cystine arylamidase (except strain

LMG 21983), α-galactosidase, β-glucuronidase, α-mannosidase, and α-fucosidase

(API ZYM).
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Weak enzymic activity is observed for esterase (C4), esterase lipase (C8),

α-glucosidase, and β-glucosidase, medium activity is observed for valine

arylamidase, and β-galactosidase, and strong activity is observed for alkaline

and acid phophatases, leucine arylamidase, trypsin, α-chymotrypsin, and naphthol-

AS-BI-phosphohydrolase. Variable results were obtained for N-acetyl-β-

glucosaminidase. Growth occurs in up to 5% NaCl but not in 10% NaCl, indicating

that the strains are not halophilic but moderately halotolerant. DNA G+C content

is 39.9-41.0 mol%.

The type strain is LMG 21980T (= DSM 15986T). Isolated from microbial

mats from lakes Reid, Fryxell and Ace, Antarctica.
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New taxa from Antarctic lakes within the ααααα-
Proteobacteria

4.1 Polyphasic taxonomy of FAA cluster 41

Fatty acid cluster 41 (as delineated in Van Trappen et al. (2002), see chapter

2), belonging to the α-Proteobacteria, was further investigated using a polyphasic

taxonomic approach. The phylogenetic position of the α-Proteobacteria with

different families (e. g. Acetobacteriaceae, Rhodospirillaceae, Sphingo-

monadaceae, the Rhodobacter group, Caulobacteriaceae, Rhizobiaceae and

Hyphomicrobiaceae) is illustrated in Fig. 4A and 4B.

The genomic diversity of the 59 strains of fatty acid cluster 41 (as delineated

in Van Trappen et al. (2002), see chapter 2), belonging to the α-Proteobacteria,

was investigated by rep-PCR fingerprinting, using REP1R-I and REP2-I primers

and the GTG
5
-primer (Rademaker & de Bruijn, 1997). In total, 57 combined

fingerprinting patterns were obtained (from strains R-9063 and R-9178, no DNA

could be extracted because of poor growth) and 10 clusters could be delineated,

whereas 12 strains formed single branches, at a cut off value of 70% (Pearson

correlation coefficient) (see Fig. 4.1). Looking at the REP- and GTG5-clustering

separately, it is clear that, although the GTG5-primer leads to profiles with much

more bands, the GTG5-clustering is often too detailed. For example at a cut-off

value of 70% (Pearson correlation), 11 different GTG
5
-groups can be delineated

and only seven REP-groups (data not shown). For rep-clusters I and IX there is a

good correlation between the clustering based on the two different primers (see

Fig. 4.1). However, for rep-clusters IV, V, VI and VII, the clustering based on the

REP-primers is more suitable, since less and more dense clusters are obtained,

with overall higher Pearson correlations compared to the GTG5-derived clusters.

Hybridization results between representatives of the rep-clusters IV, V and VII

confirmed that they are very closely related (see later).
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Figure 4A. Simplified neigbour-joining phylogenetic tree of the Proteobacteria based on the 16S

rDNA sequences of the type strains of the proteobacterial genera. Distances were calculated

using the substitution rate calibration method in TREECON 3.1 (Van de Peer and De Wachter,

1994). The bar indicates 10% estimated sequence divergence. Bacillus subtilis was used as

outgroup (not shown). The width of the triangles is proportional to the number of genera within

each cluster (from Kersters et al., 2002).
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Burkholderia cepacia (X87275)

Rhodospirillum rubrum (D30778)
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Figure 4B. Neighbour-joining dendrogram showing the estimated phylogenetic relationships of

representatives of the α-Proteobacteria on the basis of 16S rRNA gene sequences. Burkholderia

cepacia was choosen as outgroup. Bootstrap values (percentages of 100 replicates) are shown.

GenBank accession numbers for each reference strain are shown in parentheses. Bar, 1 nucleotide

substitution per 10 nucleotides.
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Figure 4.1. Digitized representation of normalized and combined rep-PCR profiles (REP1R-I

and REP2-I primers and the GTG5-primer) of 57 strains belonging to FAA cluster 41. Dendrogram

derived from the UPGMA-clustering of the profiles with the Pearson correlation coefficient and

rep-clusters were delineated at a cut-off value of 70%.
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These results illustrate that the diversity of heterotrophic bacteria in Antarctic

microbial mats is much higher than estimated by fatty acid and 16S rDNA sequence

analyses. In contrast to the Bacteroidetes, the different profile types correlate

well with the geographical origin of the strains. Strains showing the same rep-

PCR profile are often isolated from the same or geographically close lakes (for

rep-clusters I and II lakes Ace and Pendant; for rep-clusters IV, V, VI and VII lakes

Ace and Organic) and strains from rep-cluster IX are almost exclusively originating

from Lake Fryxell (except strain R-10890, isolated from Lake Reid). Reference

strains of related species were also included in this rep-clustering (only REP-

primers), but it is clear that none of their fingerprinting patterns is similar to the

patterns of the Antarctic strains (see Fig. 4.2).

16S rDNA sequences of two representative strains from FAA cluster 41 were

obtained from a previous study (see chapter 2). Strain R-9219 (unclustered)

showed a sequence similarity of 96.9% to Mesorhizobium loti and strain R-8904

(rep-cluster V) showed a sequence similarity of 93.5% to Sulfitobacter pontiacus.

Additional sequences were determined for representative strains of rep-clusters

I, IV, VII and IX and results show that they are phylogenetically related to the

Rhodobacter group within the α-Proteobacteria, showing low similarities (94,2-

95,8%) to Jannaschia helgolandensis, Octadecabacter antarcticus and

Ketogulonicigenium vulgare, their nearest phylogenetic neighbours.

We focused on 26 strains belonging to five different rep-groups: four strains

from rep-cluster I, 12 strains from rep-cluster IX and a selection of 10 strains from

rep-clusters IV, V and VII, with the most similar rep-profiles. Hybridization values

between representative strains of the three different rep-clusters I, V and IX were

low (10.5-17.6%), indicating that they belong to three different species (Wayne et

al., 1987). Hybridization results between representative strains from rep-clusters

IV, V and VII indicated that these rep-clusters are closely related (showing

hybridization values of 78.2-85.5%) and they constitute a single species of a

Figure 4.2. Digitized representation of normalized rep-PCR profiles (REP1R-I and REP2-I primers)

of type strains of related species of the ‘Roseobacter- Sulfitobacter- Silicibacter’ group within the

α-Proteobacteria. Dendrogram derived from UPGMA-clustering of the profiles with the Pearson

correlation coefficient.

Pearson correlation
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novel genus for which the name Loktanella salsilacus sp. nov. is proposed. 16S

rDNA sequence analysis and phenotypic results, showed that the strains from

rep-cluster I also belong to a single species of this novel genus, for which the

name L. vestfoldensis sp. nov. is proposed, whereas the strains from rep-cluster

IX constitute a new species within this genus, for which the name Loktanella

fryxellensis sp. nov. is proposed (see section 4.2).
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4.2 Loktanella fryxellensis gen. nov., sp. nov.,
Loktanella vestfoldensis sp. nov. and Loktanella

salsilacus sp. nov., new members of the
Rhodobacter group, isolated from microbial mats

in Antarctic lakes

Stefanie Van Trappen, Joris Mergaert and Jean Swings

Redrafted from: International Journal of Systematic and Evolutionary

Microbiology, in press (DOI10.1099/ijs.0.03006-0)

A taxonomic study was performed on twenty-six strains isolated from microbial

mats in Antarctic lakes of the Vestfold Hills and the McMurdo Dry Valleys.

Phylogenetic analysis based on 16S rRNA gene sequences placed these strains

within the Rhodobacter group of the α-subclass of the Proteobacteria; sequence

similarity values with their nearest phylogenetic neighbours (Jannaschia,

Octadecabacter and Ketogulonicigenium) ranged from 94.0 to 95.8%. Results of

DNA-DNA hybridization and comparison of repetitive extragenic palindromic DNA-

PCR fingerprinting patterns revealed that these strains are members of three

distinct species. The isolates are Gram-negative, chemoheterotrophic, non-motile

rods; their DNA G + C contents range from 59.4 to 66.4 mol%. Their whole-cell

fatty acid profiles are similar and the primary fatty acid in all the strains is C18:1ω7c

(74.1-87.7% of total content). Genotypic results, together with phenotypic

characteristics, allowed the differentiation of these species from related species

of the α-subclass of the Proteobacteria with validly published names. The strains

are assigned to a new genus with three new species: Loktanella salsilacus sp.

nov., which is the type species (consisting of 10 strains with LMG 21507T = CIP

108322T as type strain), Loktanella fryxellensis sp. nov. (consisting of 12 strains

with LMG 22007T = CIP 108323T as type strain), and Loktanella vestfoldensis sp.

nov. (consisting of 4 strains with LMG 22003T = CIP 108321T as type strain).
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Introduction

During the last few years, there has been an increase in the isolation and

description of novel marine and freshwater bacteria and several of these new

isolates are members of the α-subclass of the Proteobacteria, in which they are

phylogenetically related to the genus Rhodobacter. The abundance of some

members of the Rhodobacter group (like Sulfitobacter) in these aquatic

environments has been correlated with the presence of algal blooms and it has

been suggested that they play an important role in sulfur cycling (Gonzalez et al.,

1999; 2000).

Several of these novel members originate from Antarctic habitats:

Antarctobacter heliothermus (Labrenz et al., 1998), Roseovarius tolerans (Labrenz

et al., 1999), Staleya guttiformis and Sulfitobacter brevis (Labrenz et al., 2000)

from Ekho Lake, and Octadecabacter arcticus and O. antarcticus (Gosink et al.,

1997) from polar sea-ice and seawater. Recently, two new genera have been

added to this Rhodobacter group: Ketogulonicigenium (Urbance et al., 2001),

isolated from soil, which oxidizes L-sorbose to 2-keto-L-gulonic acid, and

Jannaschia helgolandensis (Wagner-Döbler et al., 2003), isolated from the North

Sea.

During the MICROMAT project (November 1998 - February 2001), 746

heterotrophic bacterial strains were isolated from microbial mat samples that were

collected from 10 Antarctic lakes (Van Trappen et al., 2002). Numerical analysis

of the fatty acid composition of the isolates revealed 41 clusters and 16S rRNA

gene sequence analysis, performed on representative strains, showed that they

belong to the α-, β- and γ-subclasses of the Proteobacteria, the Gram-positives,

and the Bacteroidetes (Van Trappen et al., 2002). Results of fatty acid and 16S

rRNA gene sequence analyses showed that the diversity of heterotrophic bacteria

in microbial mats from Antarctic lakes is very high. Moreover, many fatty acid

clusters were shown to contain multiple taxa when tested by repetitive extragenic

palindromic DNA-PCR fingerprinting, a technique used to investigate the genomic

diversity of each fatty acid cluster more in detail, especially those belonging to

the Bacteroidetes group (Van Trappen et al., 2003; 2004a, b).

In the present work, we studied the relationship of 26 strains from fatty acid

cluster 41 (as delineated by Van Trappen et al., 2002; belonging to the α-subclass

of the Proteobacteria), by polyphasic taxonomic characterization.
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Materials and Methods

The investigated isolates, their origin and genomic profile grouping are listed

in Table 4.1. Strains were cultivated routinely on marine agar 2216 (Difco) at 25

°C for 48 h, except when mentioned otherwise.

DNA was prepared according to the method of Pitcher et al. (1989) and rep-

PCR fingerprinting (based on primers targeting the repetitive extragenic palindromic

sequence) was performed on all the strains of fatty acid cluster 41 (59 strains) of

Van Trappen et al. (2002), using the primers GTG
5
 and REP1R-I and REP2-I

(Versalovic et al., 1991), as described by Rademaker & de Bruijn (1997) and

Rademaker et al. (2000). Numerical analysis was carried out using the Bionumerics

software package (Applied Maths).

Almost complete 16S rRNA gene sequences of representative strains were

determined as described earlier (Van Trappen et al., 2004a). The most closely

related sequences were found using the FASTA program; sequences were aligned

and editing of the alignment and reformatting was performed with the BIOEDIT

program (Hall, 1999) and ForCon (Raes & Van de Peer, 1999). Evolutionary

distances were calculated using the Jukes-Cantor evolutionary model and a

phylogenetic tree was constructed using the neighbour-joining method (Saitou &

Nei, 1987) with the TREECON program (Van de Peer & De Wachter, 1994).

DNA was prepared according to the method of Marmur (1961) and DNA-

DNA hybridizations were carried out with photobiotin-labelled probes in microplate

wells as described by Ezaki et al. (1989), using an HTS7000 BioAssay reader

(PerkinElmer) for the fluorescence measurements. The hybridization temperature

was 45°C and reciprocal experiments were performed for every pair of strains.

DNA G+C contents of the Antarctic strains were determined using an HPLC

method, as described by Van Trappen et al. (2003).

The following morphological, physiological and biochemical tests were

performed. Growth at different temperatures (5-45°C) was tested on marine agar,

whereas salt tolerance was tested on R2A agar (composition per liter: 0.5 g yeast

extract, 0.5 g proteose peptone No.3, 0.5 g casamino acids, 0.5 g dextrose, 0.5 g

soluble starch, 0.3 g sodium pyruvate, 0.3 g dipotassium phosphate, 0.05 g

magnesium sulfate and 15.0 g agar), supplemented with 1 to 20% NaCl at 25°C.

Colony morphology was determined on marine agar after 7 days incubation. In

addition, growth and adherence of colonies on R2A, nutrient and trypticase soy

agars were tested. Cells were tested for their reaction to the Gram stain and for
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catalase and oxidase activity. Tests in the commercial systems API ZYM, API

20NE and API 20E (bioMérieux) were generally performed according to the

instructions of the manufacturer. The API ZYM tests were read after 4 h incubation

at 25 °C, other API tests after 48 h incubation at 25 °C. Degradation of casein

(Reichenbach & Dworkin, 1981), DNA [using DNA agar (Difco), supplemented

with 0.01 % toluidine blue from Merck], starch, Tween 80 and L-tyrosine (Barrow

& Feltham, 1993) were tested; reactions were read after 5 days.

Results and discussion

Twenty-six strains of fatty acid cluster 41 (Table 4.1), showed similar rep-

PCR profiles and they could be divided into three different clusters according to

their combined profile type (Fig. 4.3), and these clusters were delineated by

numerical analysis at a Pearson correlation coefficient level of 50%. They are

hereafter referred to as rep-PCR profile type I (comprising 12 strains), type II

(with 4 strains) and type III (with 10 strains). It is now well established that similar

rep-PCR profiles are correlated to high total genomic DNA-DNA hybridization

values (Versalovic et al., 1994; Rademaker & De Bruijn, 1997; Rademaker et al.,

2000; Van Trappen et al., 2003; 2004a).

Almost complete 16S rRNA gene sequences (1404-1449 nt) of strains LMG

22003T, LMG 22006, LMG 22007T, LMG 21507T, LMG 22000 and LMG 22002

were obtained and a phylogenetic tree is shown in Fig. 4.4. Dendrograms obtained

by maximum parsimony and maximum likelihood analyses showed essentially

the same topography (data not shown).

The novel Antarctic strains form a distinct evolutionary clade, supported by

high bootstrap values, within the α-subclass of the Proteobacteria and are

associated with the Rhodobacter group. The 16S rRNA gene sequence of strain

LMG 22007T (representative for the strains of rep-PCR profile type I) revealed

98.6% similarity to strain LMG 21507T (identical to LMG 22000 and LMG 22002;

representing rep-PCR profile type III) and 95.4% to strain LMG 22003T

(representing rep-PCR profile type II and which sequence is identical to that of

strain LMG 22006). The strains with nearest related sequences to that of strain

LMG 22007T (rep-PCR profile I) are Jannaschia helgolandensis Hel10T (95.8%),

Octadecabacter antarcticus 307T (94.5%) and the currently unclassified marine

alpha proteobacterium strain QSSC9-5 (97.3%). The 16S rRNA gene sequence
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of strain LMG 22003T (rep-PCR profile type II) showed 95.4% sequence similarity

to Jannaschia helgolandensis Hel10T, 94.2% to Ketogulonicigenium vulgare DSM

4025T, 94.3% to Ruegeria algicola DSM 10251T and 96.2% to the currently

unclassified strain AS-26. The 16S rRNA gene sequence of strain LMG 21507T

(rep-PCR profile type III) showed 95.7% similarity to Jannaschia helgolandensis

Hel10T, 94.2% to Octadecabacter antarcticus 307T, 94.2% to Ketogulonicigenium

vulgare DSM 4025T and 98.4% to strain QSSC9. The low level of sequence

similarities of the novel strains with other to date described bacteria belonging to

the Rhodobacter group of the α-subclass of the Proteobacteria (91.0-95.8%),

clearly demonstrates that they represent a new genus.

Genomic relatedness between the novel Antarctic strains, representing the

three different rep-PCR profile types was determined by DNA-DNA hybridization.

The hybridization level between strains LMG 22007T (rep-PCR profile type I),

LMG 22003T (rep-PCR profile type II) and LMG 21507T (rep-PCR profile type III)

Table 4.1. Strains investigated, source of isolation and rep-PCR profile type.

Species Strain No. Isolation site 

Loktanella fryxellensis sp. nov. LMG 22007 
T

(= R-7670) Lake Fryxell, Dry Valleys 

(rep-PCR cluster I) LMG 22008 (= R-7672) Lake Fryxell, Dry Valleys 

LMG 22009 (= R-7726) Lake Fryxell, Dry Valleys 

LMG 22010 (= R-7728) Lake Fryxell, Dry Valleys 

R-7601, R-7605, R-7671, R-

7729, R-7732, R-7735, R-8013, 

R-8014 Lake Fryxell, Dry Valleys 

Loktanella vestfoldensis sp. nov. LMG 22003 
T
 (= R-9477) Ace Lake, Vestfold Hills 

(rep-PCR cluster II) LMG 22006 (= R-9184) Ace Lake, Vestfold Hills 

LMG 22004 (= R-9054) Pendant Lake, Vestfold Hills 

 LMG 22005 (= R-9057) Pendant Lake, Vestfold Hills 

Loktanella salsilacus sp. nov. LMG 21507 
T
 (= R-8904) Ace Lake, Vestfold Hills 

(rep -PCR cluster III) LMG 21999 (= R-8968) Ace Lake, Vestfold Hills 

 R-8884, R-8901, R-9036 Ace Lake, Vestfold Hills 

 LMG 22000 (= R-9030) Organic Lake, Vestfold Hills 

 LMG 22001 (= R-9066) Organic Lake, Vestfold Hills 

 LMG 22002 (= R-9068) Organic Lake, Vestfold Hills 

 R-9064, R-9186 Organic Lake, Vestfold Hills 

Abbreviations: LMG, BCCM/LMG Bacteria Collection, Laboratorium voor Microbiologie, Gent, Belgium; 

R-, strain numbers from the research collection of the Laboratorium voor Microbiologie, Universiteit 

Gent, Belgium, and as used by Van Trappen et al. (2002). 
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was 10.5-17.6 %, indicating that they belong to three different species (Wayne et

al., 1987). Differences between reciprocal experiments were less than 10 %. The

rep-PCR profiles within each of the clusters I and II were almost identical (see

Fig. 4.3), indicating that within each of these clusters, strains belong to a single

species (Versalovic et al., 1994). Indeed the 16S rRNA gene sequences of two

strains of rep-PCR group II are identical. The hybridization values of the three

representative strains (LMG 21507T, LMG 22000 and LMG 22002) of rep-PCR

profile type III, showing slight differences in their rep-PCR profiles, were 78.2%

and 85.5% respectively, proving that they constitute a single new species, as

Figure 4.3. Digitized representation of normalized rep-PCR profiles (combined profiles of REP-

and GTG5-primers) of 26 strains from fatty acid cluster 41. Dendrogram derived from the UPGMA

clustering of the profiles with the Pearson correlation coefficient and rep-clusters were delineated

at a cut-off value of 50%. Rep-cluster I, Loktanella fryxellensis sp. nov.; rep-cluster II, L.

vestfoldensis  sp. nov.; rep-cluster III and IV, L. salsilacus sp. nov.
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would be expected from their identical 16S rRNA gene sequences.

DNA G+C values of strains LMG 22007T, LMG 22008, LMG 22009 and LMG

22010 from rep-PCR cluster I are 65.7, 66.2, 66.4 and 66.3 mol%, respectively.

The values of the strains LMG 22003T, LMG 22004, LMG 22005 and LMG 22006

from rep-PCR cluster II are 62.1, 62.6, 62.3 and 63.1 mol%, respectively and

those of strains LMG 21507T, LMG 21999, LMG 22000, LMG 22001 and LMG

22002 of rep-PCR cluster III are 60.4, 60.3, 59.7, 60.1 and 59.4 mol%, respectively.

Figure 4.4. Neighbour-joining dendrogram showing the estimated phylogenetic relationships of

Loktanella salsilacus sp. nov., Loktanella fryxellensis sp. nov., Loktanella vestfoldensis sp. nov.

and other related genera of the α-subclass of the Proteobacteria on the basis of 16S rRNA gene

sequences. Porphyrobacter neustonensis was choosen as outgroup. Bootstrap values (percentages

of 500 replicates) of > 50 % are shown. GenBank accession numbers for each reference strain

are shown in parentheses. Bar, 1 nucleotide substitution per 10 nucleotides.
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These values are consistent with the DNA G+C contents of members of the

Rhodobacter group, which range from 52.1 to 65 mol % (Labrenz et al., 2000;

Urbance et al., 2001; Wagner-Döbler et al., 2003; Gonzalez et al., 2003).

Cellular fatty acid patterns of the Antarctic strains are based on the data

generated by Van Trappen et al. (2002). The strains show similar fatty acid profiles

(Table 4.2) and the most abundant fatty acid is C
18:1

ω7c, accounting for 74.1-87.7

% of the total fatty acids. This feature is characteristic for several major phylogenetic

groups of the α-subclass of the Proteobacteria. Other fatty acids, in lower

proportions, are C10:03-OH, C16:0, C18:0 and summed feature 7 (comprising the

unknown fatty acid 18.846, C19:1ω6c and cyclo-C19:0ω10c). The Antarctic strains

can be differentiated from their phylogenetic neighbours Jannaschia helgolandensis

by the relative amount of C
18:1

ω7c (45-52%) and cyclo-C
19:0 

(20-25%), and from

Ketogulonicigenium by the relative amount of C16:0 (32-39%) and C18:1ω7c (41-

55%). The strains belonging to the different rep-PCR clusters can be differentiated

from each other by the presence or absence of e.g. summed feature 2 (comprising

any combination of C12:0 aldehyde, unknown 10.928, iso I-C16:1 and C14:03-OH), 11

methyl-C18:1ω7c and the unknown fatty acid 11.799.

Table 4.2. Fatty acid composition of the three novel species within the genus Loktanella.

Fatty acid L. salsilacus (n = 10) L. fryxellensis (n = 12) L. vestfoldensis (n = 4) 

C10:0 3-OH 2.4  0.7 3.7  1.1 6.1  1.5 

C12:13-OH - - 5.6  1.4 

C16:0 2.9  0.9 2.7  1.1 2.9  0.7 

C18:0 1.4  0.8 1.6  0.9 1.8  0.3 

C18:1 7c 87.7  1.9 84.9  3.7 74.1  3.1 

C18:1 7c-11 methyl TR - 1.9  0.8 

Summed feature 2 TR 1.7  0.7 -

Summed feature 3 2.8  0.9 - -

Summed feature 7 1.2  1.0 4.7  2.0 4.7  0.7 

Unknown 11.799 - - 2.3  1.2 

Mean percentages + SD of total fatty acids are given. -, Not detected; TR, trace (<1% of total). Other 

fatty acids accounted for < 1% each. Summed feature 2 comprises any combination of C12:0 aldehyde, 

unknown 10.928, iso I-C16:1 and C14:03-OH. Summed feature 3 comprises iso-C15:02-OH, C16:1 7c, or 

both. Summed feature 7 comprises any combination of unknown 18.846, C19:1 6c and cyclo-C19:0

10c. Unknown fatty acids are designated by their equivalent chain lengths, relative to the chain 

lengths of known straight chain saturated fatty acids. 
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The strains are aerobic and chemoheterotrophic, and there is no growth under

anaerobic conditions. Strains of rep-PCR cluster III and rep-PCR cluster I are

able to grow between 5°C and 30°C, and 5°C and 25°C respectively, whereas

strains of rep-PCR cluster II tolerate temperatures up to 37°C. None of the strains

grows at 40°C. Growth appears on R2A agar with up to 10% NaCl for the strains

of rep-PCR cluster III and rep-PCR cluster II, whereas strains of rep-PCR cluster

I only grow with up to 5% NaCl.

The strains show the typical morphological characteristics of the Rhodobacter

group (Labrenz et al., 2000; Urbance et al., 2001; Wagner-Döbler et al., 2003;

Gonzalez et al., 2003) and their physiological and biochemical characteristics

are given in the species descriptions. The strains of rep-PCR clusters I, II and III

can be differentiated from each other and related genera by several phenotypic

characteristics (Table 4.3 and 4.4).

On the basis of these results a new genus with the name Loktanella gen. nov.

is proposed with three species, Loktanella salsilacus sp. nov. (rep-PCR cluster III,
Table 4.3: Phenotypic characteristics that differentiate the three species of the genus 

Loktanella.

Characteristic L. salsilacus L. fryxellensis L. vestfoldensis 

Pigmentation Beige Pink-beige Pink

Growth on : 

Trypticase soy agar - - (+)

Nutrient agar - - (+) 

Salinity range (% NaCl) 0-10 0-5 0-10

Temperature range (°C) 5-30 5-25 5-37

Hydrolysis of: 

Urea - - +

Production of: 

Trypsin - - +

-Galactosidase + - -

Mean G+C content (mol%) 59.4-60.4 65.7-66.4 62.1-63.1 

Symbols: +, positive test; (+), positive test, weak or delayed response; -, negative test.  
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type species), Loktanella fryxellensis sp. nov. (rep-PCR cluster I), and Loktanella

vestfoldensis sp. nov. (rep-PCR cluster II).

Description of Loktanella gen. nov.

Loktanella (Lok.tan.el.la. N.L. fem. n. Loktanella named after Tjhing-Lok Tan

from the Alfred Wegener Institute in Bremerhaven, who contributed to our

understanding of marine and polar bacteriology and ecology).

Gram-negative, rod-shaped cells which are strictly aerobic, moderately

halotolerant and chemoheterotrophic. They do not form spores and the optimal

growth temperature is 25°C. Motility was not observed. The catalase test was

positive and activities for cytochrome oxidase and β-galactosidase were detected.

The dominant fatty acid is C18:1ω7c and other characteristic fatty acids are C10:03-

OH, C16:0, C18:0 and summed feature 7 (which comprises the unknown fatty acid

18.846, C19:1ω6c and cyclo-C19:0ω10c). DNA G+C contents range from 59.4-66.4%.

As determined by 16S rRNA gene sequence analysis, the genus Loktanella belongs

to the Rhodobacter group of the α-subclass of the Proteobacteria. The type species

is Loktanella salsilacus sp. nov.

Description of Loktanella salsilacus sp. nov.

Loktanella salsilacus (sal.si.la’cus. L. adj. salsus salt, salty; L. gen. n. lacus

of a lake; N. L. gen. n. salsilacus of a salt lake, referring to the isolation source,

Ace Lake and Organic Lake, Vestfold Hills, Antarctica).

Cells are Gram-negative, short rods (<1µm x 3-4 µm), that often form pairs or

short chains. Growth occurs at 5-30°C, whereas a weak growth is observed at

37°C and no growth occurs at 45°C. Beige, convex, translucent colonies with

entire margins and a diameter of 1-2 mm are formed on marine agar plates. Growth

also occurs on R2A, while no growth is observed on trypticase soy agar and

nutrient agar. Colonies do not adhere to the agar. Aesculin, Tween 80 and citrate

are degraded. Growth on carbohydrates (API 20NE) is not observed and acids

from carbohydrates are not produced (API 20E). Agar, casein, DNA, gelatin, starch,

tyrosine and urea are not degraded. Tests for indole production, nitrate reduction,
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Voges Proskauer reaction and hydrogen sulfide production are negative. None of

the strains shows activity for the enzymes arginine dihydrolase, lysine

decarboxylase, ornithine decarboxylase, tryptophan deaminase (API 20E), lipase

(C14), valine arylamidase, cystine arylamidase, α-chymotrypsin, trypsin, β-

galactosidase, β-glucuronidase, N-acetyl-β-glucosaminidase, α-mannosidase and

α-fucosidase (API ZYM). Weak enzymic activity was observed for alkaline

phosphatase, acid phosphatase, naphthol-AS-BI-phosphohydrolase, α-

glucosidase and β-glucosidase, medium activity is observed for esterase (C4),

esterase lipase (C8) and leucine arylamidase, and strong activity is observed for

α-galactosidase (API ZYM). Growth occurs in 0-5 % NaCl, with a weak growth in

10% NaCl, indicating that the strains are not halophilic but moderately halotolerant.

DNA G+C content is 59.4-60.4 mol%.

The type strain is LMG 21507T (= CIP 108322T). Isolated from microbial mats

from lakes Ace and Organic in the Vestfold Hills, Antarctica.

Description of Loktanella fryxellensis sp. nov.

Loktanella fryxellensis (fry.xell.en’sis. N. L. fem. adj. fryxellensis, referring to

the isolation source, Lake Fryxell, Antarctica).

Cells are Gram-negative, short rods (<1µm x 2-3 µm), that often form pairs or

short chains. Growth occurs at 5-25°C, with an optimal growth temperature of 25

°C, whereas a weak growth occurs at 30 °C. Pale pink, convex, translucent colonies

with entire margins and a diameter of 1 mm are formed on marine agar plates

after 6 days incubation. Strain LMG 22007T forms beige colonies on marine agar.

Growth also occurs on R2A while the strains do not grow on nutrient agar and

trypticase soy agar; colonies do not adhere to the agar. Aesculin, Tween 80 and

citrate (weak reaction) are degraded. No growth is observed (API 20NE) on

carbohydrates and acids are not produced from carbohydrates (API 20E). Agar,

casein, DNA, gelatin, tyrosine and urea are not degraded. Tests for indole

production, nitrate reduction, Voges-Proskauer reaction and hydrogen sulfide

production are negative. None of the strains shows activity for the enzymes arginine

dihydrolase, lysine decarboxylase, ornithine decarboxylase, tryptophan deaminase

(API 20E), lipase (C14), cystine arylamidase, α-chymotrypsine, trypsin, α-

galactosidase, β-glucuronidase, N-acetyl-β-glucosaminidase, α-mannosidase, and
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α-fucosidase (API ZYM). Weak enzymic activity is observed for valine arylamidase,

acid phosphatase, naphthol-AS-BI-phosphohydrolase and α-glucosidase, medium

activity is observed for alkaline phosphatase,  esterase (C4), esterase lipase (C8),

β-galactosidase and leucine arylamidase, and strong activity is observed for β-

glucosidase (API ZYM). Growth occurs in 0-5% NaCl but not in 10% NaCl,

indicating that the strains are not halophilic but moderately halotolerant. DNA

G+C content is 65.7-66.4 mol%.

The type strain is LMG 22007T (= CIP 108323T). Isolated from microbial mats

from Lake Fryxell, in the McMurdo Dry Valleys, Antarctica.

Description of Loktanella vestfoldensis sp. nov.

Loktanella vestfoldensis (vest.fold.en’sis. N. L. fem. adj. vestfoldensis, referring

to the isolation source, lakes Ace & Pendant, Vestfold Hills, Antarctica).

Cells are Gram-negative, short rods (<1µm x 3-4 µm), that often form pairs or

short chains. Growth occurs at 5-37°C, whereas no growth is observed at 45 °C.

Pale pink, convex, translucent colonies with entire margins and a diameter of <1

mm are formed on marine agar plates. Growth also occurs on trypticase soy agar

(weak), nutrient agar (weak) and R2A. Colonies do not adhere to the agar. Aesculin,

Tween 80, citrate and urea are degraded. No growth is observed (API 20NE) on

carbohydrates and acids are not produced from carbohydrates (API 20E). Agar,

casein, DNA, gelatin, tyrosine and starch are not degraded. Tests for indole

production, nitrate reduction, hydrogen sulfide production and Voges-Proskauer

reaction are negative. None of the strains shows activity for the enzymes arginine

dihydrolase, lysine decarboxylase, ornithine decarboxylase, tryptophan deaminase

(API 20E), lipase (C14), valine arylamidase, cystine arylamidase, α-chymotrypsine,

α-galactosidase, β-glucuronidase, N-acetyl-β-glucosaminidase, α-mannosidase,

and α-fucosidase (API ZYM). Weak enzymic activity is observed for alkaline

phosphatase, leucine arylamidase, naphthol-AS-BI-phosphohydrolase, β-

galactosidase, α-glucosidase and β-glucosidase, medium activity is observed for

esterase (C4), esterase lipase (C8) and acid phosphatase, and strong activity is

observed for trypsin (API ZYM). Growth occurs in 0-5 % NaCl and a weak growth

in 10% NaCl. DNA G+C content is 62.1-63.1 mol%.
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The type strain is LMG 22003T (= CIP 108321T). Isolated from microbial mats

from lakes Ace and Pendant in the Vestfold Hills, Antarctica.
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New taxa from polar seas within the γγγγγ-
Proteobacteria

5.1 Polyphasic taxonomy of FAA clusters E, F and related
strains

In a previous study the diversity of oligotrophic bacteria in polar seas was

investigated (Mergaert et al., 2001b). After enrichment under oligotrophic and

psychrophilic conditions, 173 bacterial strains were isolated from Arctic (98 strains)

and Antarctic (75 strains) seawater (Tan & Rüger, 1991; Tan et al., 1999). These

strains had been previously analysed by their substrate utilization patterns using

the Biolog system (Tan, 1997; Tan & Rüger, 1999) and they belong to six metabolic

groups. The strains were included in fatty acid analysis and 16S rDNA sequence

analysis of representatives (Mergaert et al., 2001b) and eight FAA-clusters,

containing two to 59 strains, could be delineated, whereas eight strains formed

separate branches (see Fig. 5.1). The clusters A, C, D, E and H contained isolates

both from Arctica as well as Antarctica. Clusters B and F contained only Arctic

strains, cluster G, only Antarctic strains. Results of the 16S rDNA sequence analysis

indicate that they belong to the α- and γ- Proteobacteria (FAA clusters A and B

belong to the α- Proteobacteria and clusters C, D, E and F to the γ- Proteobacteria)

the high percent G+C Gram-positives (cluster H) and to the Bacteroidetes (cluster

G). The sequences from four clusters and seven unclustered strains were closely

related (with sequence similarities above 97%) to reference sequences of

Sulfitobacter, Halomonas, Alteromonas, Pseudoaltermonas, Shewanella and

Rhodococcus. The other four clusters and one unclustered strain showed sequence

similarities below 97% with nearest named neighbours, including Rhizobium,

Glaciecola, Pseudomonas and Alteromonas, indicating that they represent as yet

unnamed, new taxa.

In the meantime, 56 additional strains, isolated using the same methods,
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Figure 5.1. Abridged dendrogram obtained by numerical analysis of the fatty acid compositions

of 173 strains from Arctic (ARK) and Antarctic (ANT) seawater using the Euclidian distance

coefficient and UPGMA clustering. Clusters were delineated at a Euclidian distance of ∆ < 14

(from Mergaert et al., 2001b).

4 17

39 20
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Figure 5.2. Abridged dendrogram obtained by numerical analysis of the fatty acid compositions

of 229 strains from Arctic (ARK) and Antarctic (ANT) seawater using the Canberra metric similarity

coefficient (S
canb

) and UPGMA clustering. Clusters were delineated at a cut-off value of 80%.
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were also analysed using the Biolog system. In this study, these additional strains

were included in fatty acid analysis and they belong to FAA-clusters B, C, D, E

and F (as delineated in Mergaert et al., 2001b) and three new clusters (I, J and K)

were found (see Fig. 5.2 and Annex II). All clusters contain strains from both

Arctica as well as Antarctica, except clusters G, I, J and K, which solely consist of

Antarctic strains.

The fatty acid clusters E and F and two similar (in fatty acid analysis),

unclustered strains, phylogenetically allocated to the γ-Proteobacteria, were further

investigated using a polyphasic taxonomic approach. The phylogenetic position

of the γ-Proteobacteria with different families (e.g. Enterobacteriaceae,

Aeromonadaceae, Alteromonadaceae, the ‘Xanthomonas group’, the

‘Oceanospirillum group’, Pseudomonaceae, Legionellaceae and

Halomonadeaceae) is illustrated in Fig. 4A and 5A.

The genomic diversity of 19 strains from clusters E and F and two unclustered

strains, was further investigated by rep-PCR genomic fingerprinting using the

GTG5-primer (Rademaker & de Bruijn, 1997). In total, 21 fingerprinting patterns

were obtained (for strain ARK 101 no rep-profile could be obtained since this

culture was not viable anymore and strain ANT 31 proved to be phylogenetically

related to the Gram-positives) (Mergaert et al., 2001b). Five clusters could be

delineated, whereas four strains formed single branches, at a cut-off value of

70% (Pearson correlation coefficient) (see Fig. 5.3). These results illustrate that

the genomic diversity of these two FAA clusters (E and F) is higher than estimated

by fatty acid and 16S rDNA sequence analyses. Most of these rep-clusters contain

strains isolated from only one pole, either Arctic for rep-clusters I and V, or Antarctic

for rep-clusters II and III, whereas rep-cluster IV contains strains from both poles.

16S rDNA sequence analysis of strains from rep-clusters I and IV (FAA cluster

E and F) showed that they are related to the genus Pseudoalteromonas, with

similarities of 97.7-99.7% (Mergaert et al., 2001b) and buds and prosthecate

formations were observed in strains ARK 140, ARK 142 and ARK 102 from rep-

cluster I and strains ANT 224, ARK 108 and ANT 223 from rep-cluster IV (personal

communication, T.-L. Tan). Rep-cluster II (FAA cluster E) is phylogenetically related

to Alteromonas, with strain ANT 69a showing 98.3% sequence similarity to A.

macleodii. The unclustered strain ARK 158 is related to Shewanella frigidimarina

(99.9%). Strains from rep-clusters III and V (FAA cluster F), are related to

Glaciecola, with sequence similarities of 98.0-99.7% to G. mesophila. Hybridizations
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Bacteroides fragilis X83935( )
Francisella tularensis Z21931( )

Cardiobacterium hominis M35014( )

Aeromonas hydrophila X60411( )

Beggiatoa alba L40994( )

Proteus vulgaris (AJ233425)
Brenneria salicis Z96097( )

Ferrimonas balearica X93021( )

Achromatium oxaliferum L42543( )

Yersinia pestis Z75317( )

Thiocapsa roseopersicina Y12364( )

Shigella dysenteriae X96966( )

Halochromatium salexigens X98597( )

Photobacterium phosphoreum X74687( )

Succinivibrio dextrinosolvens Y17600( )

Acinetobacter calcoaceticus Z93434( )

Idiomarina abyssalis AF052740( )

Hydrogenovibrio marinus D86374( )

Ectothiorhodospira mobilis X93481( )

Microbulbifer hydrolyticus U58338( )

Frateuria aurantia AJ010481( )

Stenotrophomonas maltophilia AB008509( )

Methylococcus capsulatus X72770( )

Citrobacter freundii AJ233408( )
Enterobacter cloacae AJ251469( )
Serratia marcescens M59160( )
Pectobacterium carotovora Z96089( )

Actinobacillus lignieresii M75068( )
Pasteurella multocida M35018( )

Glaciecola punicea U85853( )
Alteromonas macleodii L10938( )

Thalassomonas viridans AJ294748( )
Colwellia psychroerythraea AB011364( )

Moritella marina X74709( )
Pseudoalteromonas haloplanktis X67024( )

Psychrobacter immobilis U39399( )
Moraxella lacunata D64049( )

Halomonas elongata M93355( )
Zymobacter palmae D14555( )

Pseudomonas aeruginosa Z76651( )
Cellvibrio mixtus AJ289160( )

Marinobacterium georgiense U58339( )
Marinomonas vaga X67025( )

Oceanospirillum linum M22365( )
Oceanobacter kriegii AB006767( )

Pseudoxanthomonas broegbernensis AJ012231( )
Xanthomonas campestris X95917( )

Thermomonas haemolytica AJ300185( )
Lysobacter enzymogenes AJ298291( )

Rhodanobacter lindanoclasticus AF039167( )
Fulvimonas soli AJ311653( )

Methylosphaera hansonii U67929( )
Methylomicrobium agile X72767( )

Legionella pneumophila M59157( )
Coxiella burnetii M21291( )

Arhodomonas aquaeolei M26631( )
Nitrococcus mobilis L35510( )

Leucothrix mucor X87277( )
Thiothrix nivea L40993( )

Thermochromatium tepidum M59150( )
Chromatium okenii AJ223234( )

Isochromatium buderi AJ224430( )
Thiorhodovibrio winogradskyi AB016986( )

Thiomicrospira pelophila L40809( )
Thioalcalomicrobium aerophilum AF126548( )
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Figure 5A. Neighbour-joining dendrogram showing the estimated phylogenetic relationships of

representatives of the γ-Proteobacteria on the basis of 16S rRNA gene sequences. Bacteroides

fragilis was choosen as outgroup. Bootstrap values (percentages of 100 replicates) are shown.

GenBank accession numbers for each reference strain are shown in parentheses. Bar, 1 nucleotide

substitution per 10 nucleotides.
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Figure 5.3. Digitized representation of normalized rep-PCR profiles (GTG
5
-primer) of 21 strains

belonging to FAA cluster E, F and similar, unclustered strains (NC: not clustered). Dendrogram

derived from the UPGMA-clustering of the profiles with the Pearson correlation coefficient and

rep-clusters were delineated at a cut-off value of 70%.
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and additional 16S rDNA sequence analysis were performed for the strains of

rep-clusters II, III and V.

Hybridization results together with phenotypic characteristics showed that

the seven strains of rep-cluster II belong to a novel Alteromonas species that

produces buds and prosthecae and for which the name Alteromonas stellipolaris

is proposed (see section 5.2).

The two strains from rep-cluster V also belong to novel budding and

prosthecate bacteria, phylogenetically related to Glaciecola and the name G. polaris

is proposed. The two strains from rep-cluster III were proven to belong to the

validly described species Glaciecola mesophila (see section 5.3).
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5.2 Alteromonas stellipolaris sp. nov.: novel
budding and prosthecate bacteria from Antarctic

seas

Stefanie Van Trappen, Tjhing-Lok Tan, Jifang Yang, Joris Mergaert and Jean

Swings

Redrafted from: International Journal of Systematic and Evolutionary

Microbiology, in press (DOI10.1099/ijs.0.02862-0)

Seven novel strains of cold-adapted, strictly aerobic and facultative oligotrophic

bacteria, isolated from Antarctic seawater, were investigated using a polyphasic

taxonomic approach. The isolates are Gram-negative, chemoheterotrophic, motile,

rod-shaped cells which are psychrotrophic and moderately halophilic. Buds can

be produced on mother and daughter cells and on prosthecae. Prostheca formation

is peritrich and prosthecae can be branched. Phylogenetic analysis based on

16S rRNA gene sequences indicated that these strains belong to the γ-subclass

of the Proteobacteria and are related to the genus Alteromonas, with 98.3%

sequence similarity to Alteromonas macleodii and 98.0% to Alteromonas marina,

their nearest phylogenetic neighbours. Their whole-cell fatty acid profiles are very

similar and include C16:0, C16:1ω7c, C17:1ω8c and C18:1ω8c as major fatty acid

components. These results support the affiliation of the new isolates to the genus

Alteromonas. DNA-DNA hybridization results and differences in phenotypic

characteristics show that the strains represent a new species within the genus

Alteromonas. Their DNA G+C content ranges from 43 to 45 mol%. The name

Alteromonas stellipolaris sp. nov. (with the isolate ANT 69aT = LMG 21861T =

DSM 15691T as type strain), is proposed. An emended description of the genus

Alteromonas is given.
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Introduction

The genus Alteromonas belongs to the γ-subclass of the Proteobacteria and

was created by Baumann et al. (1972) for marine Gram-negative heterotrophic

bacteria, motile by a single polar flagellum. On the basis of 16S rDNA sequence

analysis, the genus was revised in 1995 to contain a single species, Alteromonas

macleodii and the remaining species were reclassified as Pseudoalteromonas

(Gauthier et al., 1995). In 1993, the yellow-gray pigmented ‘Alteromonas rava’

which is able to produce novel antibiotics, was described (Kodama et al., 1993),

but the species has not been validated yet. A mesophilic, heterotrophic bacterium,

isolated from seawater collected near a deep-sea hydrothermal vent, was identified

as Alteromonas macleodii but the authors classified it as a new subspecies, ‘A.

macleodii subsp. fijiensis’ on the basis of a relatively low DNA-DNA hybridization

level (lower than 90%, but higher than 70%), metabolic differences between the

type strain and the new strain, the ability of the new bacterium to produce a novel

exopolysaccharide and the isolation source (Raguénès et al., 1996). The

subspecies name fijiensis has not yet been validated. In 1997, Raguénès et al.

proposed a new Alteromonas species, ‘Alteromonas infernus’, for a polysaccharide-

producing bacterium, isolated from the surface of the vestimentiferan worm Riftia

pachyptila, which inhabits sites near hydrothermal vents. This new species,

however, has also not been validated. In 1994, Romanenko et al. described a

new species, Alteromonas fuligenea but phylogenetic analysis based on 16S rDNA

sequence data, pointed out that it is more closely related to Pseudoalteromonas

haloplanktis and therefore needs to be reclassified as a member of the genus

Pseudoalteromonas (Yoon et al., 2003). Recently, a new species Alteromonas

marina, isolated from the East Sea in Korea (Yoon et al., 2003), has been validly

described. As such, there are only two validly described species within the genus

Alteromonas, namely A. macleodii (the type species) and A. marina.

The novel species Alteromonas stellipolaris sp. nov. described here, belongs

to novel budding and prosthecate bacteria from the γ-subclass of the

Proteobacteria. New strains of marine prosthecate and budding bacteria belonging

to the genus Hyphomonas, a taxon of the α-Proteobacteria, have been described

(Weiner et al., 2000), and this is the first report of budding and prosthecate bacteria

from the γ-subclass of the Proteobacteria. It is evident now that budding and

prosthecate bacteria are abundant in marine and polar environments (Weiner et

al., 2000; Labrenz et al., 1998; Labrenz et al., 1999). Moreover, bud and prosthecate
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formations are a common strategy for rod-shaped bacteria to enhance their surface

to volume ratio, thus enabling the organisms for efficient substrate uptakes in

oligotrophic habitats (van Gemerden & Kuenen, 1984).

During expeditions in the Arctic (Tan & Rüger, 1991) and Antarctic seas (Tan

& Rüger, 1999), facultatively oligotrophic and psychrotrophic bacteria were isolated.

These 173 strains have been previously analysed by their substrate utilization

patterns using the Biolog system (Tan, 1997; Tan & Rüger, 1999), and by fatty

acid and 16S rDNA sequence analyses of representatives (Mergaert et al., 2001b).

They belong to six metabolic groups and eight different fatty acid clusters containing

two to 59 strains. In the meantime, 56 additional strains were isolated using the

same methods and were also analysed using the Biolog system and fatty acid

analysis. These additional strains belong to clusters B, C, D, E and F (as delineated

in Mergaert et al., 2001b) and three new clusters (I, J and K) were found (S. Van

Trappen, unpublished results). The genomic diversity of 19 strains from clusters

E and F and two related, unclustered strains, was further investigated and, using

a polyphasic taxonomic approach, seven Antarctic strains could be assigned to a

novel species within the genus Alteromonas, named A. stellipolaris sp. nov.

Materials and Methods

Antarctic strains were isolated from seawater after an enrichment technique

in dialysis chambers as previously described (Tan & Rüger, 1999; Tan, 1997; Tan,

1986). The seven Antarctic strains (with the prefix ‘ANT’) are listed in Table 5.1,

together with their source of isolation. The reference strains LMG 2843T

(Alteromonas macleodii) and LMG 22057T (A. marina) were included in some

experiments. The strains were cultivated routinely on marine agar 2216 (Difco) at

20 °C for 48 h, except when mentioned otherwise.

Strains were arranged in similarity groups based upon the results of repetitive

extragenic palindromic DNA-PCR fingerprinting using the GTG5 primer (Versalovic

et al., 1991; Rademaker & de Bruijn, 1997; Rademaker et al., 2000). Numerical

analysis was carried out using the Bionumerics software package, as described

by the same authors.

The almost complete 16S rRNA gene sequence of one strain was determined

as previously described by Mergaert et al. (2001b). Partial 16S rRNA gene

sequences of the other strains were determined by QIAGEN, 40724 Hilden,

Germany, using the forward primer 8F (AGA GTT TGA TCC TGG CTC AG) and
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the reverse primer 1492R (TAC GGY TAC CTT GTT ACG ACT T). The most

closely related sequences were found by using the FASTA program; sequences

were aligned and editing of the alignment and reformatting was performed with

the BIOEDIT program (Hall, 1999) and ForCon (Raes & Van de Peer, 1999).

Evolutionary distances were calculated by using the Jukes-Cantor evolutionary

model and a phylogenetic tree was constructed by using the neighbour-joining

method with the TREECON program (Van de Peer & De Wachter, 1994).

DNA was prepared according to the method of Pitcher et al. (1989) and DNA-

DNA hybridizations were carried out with photobiotin-labelled probes in microplate

wells as described by Ezaki et al. (1989), using an HTS7000 BioAssay reader

(PerkinElmer) for the fluorescence measurements. The hybridization temperature

was 37 °C and reciprocal experiments were performed for every pair of strains.

DNA G+C contents of the Antarctic strains were determined using an HPLC

method. DNA was enzymically degraded into nucleosides as described by Mesbah

et al. (1989). The obtained nucleoside mixture was then separated by HPLC using

a Waters Symmetry Shield C8 column thermostatted at 37 °C. The solvent was

0.02 M NH4H2PO4, pH 4.0, with 1.5 % acetonitrile. Non-methylated λ-phage DNA

(Sigma) was used as the calibration reference.

Growth of the strains at different temperatures (5-40°C) was tested on marine

agar 2216 (Difco), whereas salt tolerance was tested on R2A agar (Oxoid),

supplemented with 1 to 20% NaCl at 20°C. The effect of the pH on the growth rate

was determined from 5.0 to 10 (with an interval of 0.5 pH unit), using tubes with

10 ml of 2216E liquid medium, incubated at 20°C after inoculation. The turbidity

was measured by spectrophotometry at 590 nm (Vitalab 10, Vital Scientific, The

Netherlands). The biochemical characteristics were determined using standard

protocols (Smibert & Krieg, 1994; West & Colwell, 1984; Reichenbach & Dworkin,

1981; Bowman et al., 1998c; Van Trappen et al., 2003), and API kits (API 20E, API

20NE, API ZYM and API32 ID, bioMérieux). Bacterial suspensions were made in

sterile, chilled artificial seawater (Instant Ocean, synthetic sea salt, Aquarium

Systems) and marine agar 2216 (Difco) was used as the basal medium. For

BIOLOG GN2 microplates, the bacteria were grown on PYG agar at 20°C for 5 d;

the cells were harvested and suspended in “Inoculating Fluid” (IF). The salinity of

the IF was adjusted to 26 ‰ with NaCl. The microplates were incubated at 20°C

and substrate utilizations were measured after 3, 5, 7, 14, 21, and 28 d at 590 nm

with an eight-canal-photometer (Spectra 2, SLT Labinstruments). Methylpyruvate,

L-asparagine, L-aspartic acid and glycyl-L-aspartic acid had been utilized by the
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seven strains, if the microplates were incubated at 12°C (see cluster 3 in Tan &

Rüger, 1999).

Results and discussion

The nineteen strains of FAA clusters E and F and two related, unclustered

strains were arranged in similarity groups based upon the results of rep-PCR

fingerprinting using the GTG5 primer. One cluster of seven Antarctic strains (LMG

21861T, LMG 21856, LMG 21859, LMG 21860, LMG 21862, LMG 21863, LMG

21864) belonging to FAA cluster E, with almost identical rep-PCR-profiles could

be delineated (Fig. 5.4), of which 16S rRNA gene sequence analysis revealed

that they belong to the genus Alteromonas within the γ-subclass of the

Proteobacteria.

The almost complete 16S rRNA gene sequence (1482 nucleotides) of strain

LMG 21861T was determined and has accession number AJ295715. Partial 16S

rRNA gene sequences (735-766 nucleotides long) of strains LMG 21856, LMG

21859, LMG 21860, LMG 21862, LMG 21863 and LMG 21864 were also obtained

Table 5.1. Strains investigated in this study and their isolation source. 

Strain Isolation source 

Alteromonas stellipolaris  sp. nov.  

LMG 21 861
T
 = DSM 15691

T
= ANT 69a

T
Seawater, 25 m: 66 20.0'S; 08 53.4'E

LMG 21 856 = DSM 15672 = ANT 52  Seawater, 25 m: 66 21.9'S; 33 46.7'E

LMG 21 859 = ANT 60b Seawater, 25 m: 67 03.9'S; 37 27.6'E

LMG 21 860 = ANT 62a  Seawater, 25 m: 66 55.1'S; 34 18.2'E

LMG 21 862 = ANT 73 Seawater, 25 m: 65 01.6'S; 09 11.2'E

LMG 21 863 = ANT 81a Seawater, 25 m: 65 49.3'S; 14 08.5'E

LMG 21 864 = ANT 82a Seawater, 25 m: 65 44.7'S; 13 39.6'E

Alteromonas macleodii subsp. macleodii  

IAM 12920
T
 = LMG 2843

T
 Seawater 

Alteromonas marina  

JCM 11804
T
 = LMG 22057

T
 Seawater, East Sea, Korea 

Abbreviations: LMG, BCCM/LMG Bacteria Collection, Laboratorium voor Microbiologie, Gent, 

Belgium; DSM, Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, 

Braunschweig, Germany. 
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and have accession numbers AJ564723, AJ564724, AJ564725, AJ564726,

AJ564727, AJ564728 respectively. A phylogenetic tree is shown in Fig. 5.5.

Dendrograms obtained by maximum parsimony and maximum likelihood analyses

showed essentially the same topography (data not shown).

The 16S rRNA gene sequence of strain LMG 21861T showed 98.3 % similarity

to Alteromonas macleodii, 98.0% to Alteromonas marina and 97.9 % to

‘Alteromonas infernus’, whereas the partial sequences of the Antarctic strains

(LMG 21856, LMG 21859, LMG 21860, LMG 21862, LMG 21863 and LMG 21864)

were almost identical to each other and to the according sequence of strain LMG

21861T (99.5% - 99.8%). The phylogenetic tree in Fig. 5.5 illustrates that the new

Antarctic isolates form a distinct branch within the genus Alteromonas, supported

by high bootstrap values.

Genomic relatedness between strains LMG 21861T, LMG 21863 and most

closely related strains LMG 2843T (Alteromonas macleodii) and LMG 22057T

(Alteromonas marina), was determined by DNA-DNA hybridization. The DNA

hybridization level between both strains LMG 21861T and LMG 21863, and

Alteromonas macleodii (LMG 2843T) and Alteromonas marina (LMG 22057T), was

very low (12.4-15.6%, respectively). The DNA-DNA binding value between LMG

21861T and LMG 21863 was high, namely 93.9%, indicating that the strains they

represent belong to a single species. Indeed, Versalovic et al. (1994) have shown

that strains with the same rep-PCR profile are always closely related and this has

been confirmed by several authors (e.g. Rademaker & De Bruijn, 1997). Differences

between reciprocal experiments were less than 12 %. From these hybridization

Figure 5.4. Digitized representation of normalized rep-PCR profiles (GTG
5
-primer) of seven

strains from fatty acid cluster E. Dendrogram derived from UPGMA clustering of the profiles with

the Pearson correlation coefficient.
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results it can be concluded that the seven Antarctic isolates are genotypically

distinct from Alteromonas macleodii and A. marina, their phylogenetically nearest

neighbours and thus constitute a new species within the genus Alteromonas

(Wayne et al., 1987).

DNA G+C contents of strains LMG 21861T, LMG 21856, LMG 21859, LMG

21860, LMG 21862, LMG 21863 and LMG 21864 are 43.3%, 44.0%, 44.8%, 44.7%,

44.7%, 43.3% and 44.7%, respectively. These values are consistent with the DNA

G+C content of the genus Alteromonas, which ranges between 44 and 46 mol%

(Baumann et al., 1972; Yoon et al., 2003).

Cellular fatty acid patterns of the Antarctic strains are based on the data

generated by Mergaert et al. (2001b) or were determined as described by the

same authors. The Antarctic strains showed very similar fatty acid patterns and

the major constituents include C
16:0

 (12.6 ± 1.3), C
17:1

ω8c (9.4 ± 2.3), C
18:1

ω7c

Figure 5.5. Neighbour-joining dendrogram showing the estimated phylogenetic relationship of

Alteromonas stellipolaris sp. nov. and related marine chemoheterotrophs of the γ-subclass of the

Proteobacteria. Bootstrap values (percentages of 500 replicates) of > 50 % are shown. The

GenBank accession number for each reference strain is shown in parentheses. Bar, 1 nucleotide

substitution per 10 nucleotides.
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(18.0 ± 2.1) and summed feature 3 (27.3 ± 3.0) which comprises iso-C15:02-OH,

C
16:1

ω7c, or both. Hydroxylated fatty acids and alcohol derivatives of fatty acids

C
16:0

 and C
16:1

ω7c were also present as minor components or at trace levels. The

fatty acid profiles of the Antarctic strains clearly resemble those determined for

other marine genera of the γ-subclass of the Proteobacteria, such as Alteromonas,

Pseudoalteromonas and Glaciecola (Ivanova et al., 2000; Mikhailov et al., 2002).

The polar strains are Gram-negative, rod-shaped, small cells (0.4µm in width

and 2-7 µm in length), possessing a single polar flagellum (Fig. 5.6). Prosthecae

are formed peritrichously, and can be branched. Buds can be produced on mother

and daughter cells, but also at the end of the prosthecae when grown on Peptone-

Yeast extract-Glucose agar (PYG according to Tan & Rüger, 1999) at 12°C for 7

days (Fig. 5.6 and 5.7). Strain LMG 21856 releases a brown, diffusible pigment in

the medium. This property is shared by several reclassified Alteromonas species

(Gauthier & Breittmayer, 1992) and this brown-black pigment on solid media is

often characterized as melanin, a high molecular weight amorphous polymer of

indole quinone. The first biosynthesis step involves the hydroxylation of L-tyrosine

to form L-3, 4-dihydroxyphenylalanine (L-dopa), which is used in the treatment of

Parkinson´s disease. Attempts have therefore been made to adapt melanin-

producing microorganisms for the commercial production of L-dopa.

Figure 5.6. Electron micrographs of negatively stained preparations of strains LMG 21859 (A),

LMG 21863 (B), LMG 21856 (C) and LMG 21861T (D) cells, showing a polar flagellum (f),

prosthecae (p), and buds (b). Colonies used for analysis were grown on PYG agar at 12°C for 7

d. Cells were stained with 1% uranyl acetate in 0.4% sucrose. Bars, 300 nm.



181

Alteromonas stellipolaris sp. nov.

For most of the phenotypic characteristics, all the strains are identical (see

description), and these properties are typical for species of the genus Alteromonas

and Pseudoalteromonas of the γ-subclass of the Proteobacteria (Baumann et al.,

1972).

The Antarctic strains can be differentiated from their nearest phylogenetic

neighbours, Alteromonas macleodii and Alteromonas marina by several phenotypic

characteristics (Table 5.2). On the basis of this polyphasic taxonomic study the

Antarctic strains can be assigned to a new species for which the name Alteromonas

stellipolaris sp. nov. is proposed. Our results also require the emendation of the

genus Alteromonas with regard to the cell morphology.

Emended description of the genus Alteromonas (Gauthier et
al., 1995), emend. Van Trappen et al.

The description is as described by Gauthier et al. (1995) with the following

additional morphological features. When grown on marine or PYG agar at low

temperatures (12-20°C) for three days or more, cells of Alteromonas macleodii

(LMG 2843T), Alteromonas marina (LMG 22057T) and Alteromonas stellipolaris

(LMG 21861T, LMG 21856, LMG 21859, LMG 21860, LMG 21863) produce buds

and prosthecae (see Fig. 5.6 -5.7 -5.8). Cells of Alteromonas macleodii and A.

Figure 5.7. Electron micrographs of thin section preparations of strains LMG 21861T (A + C) and

LMG 21860 (B) cells, showing bud (b) formations not only on the cell surface but also at the end

of the prostheca (p). Colonies used for analysis were grown on PYG agar at 12°C for 7 d. Thin

section preparations were stained with lead citrate and 1% uranyl acetate. Bars, 300 nm.
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marina only form short and straight prosthecae; branching was not observed (Fig.

5.8).

Description of Alteromonas stellipolaris sp. nov.

Alteromonas stellipolaris (stel.li.po.la.ris. L. fem. n. stella star; L. adj. polaris

polar; M.L. gen. n. stellipolaris, referring to the POLARSTERN (AWI, Bremerhaven),

the name of the vessel used to collect the samples from which the organisms

were isolated).

Cells are Gram-negative, short rods (0.4 x 2-7 µm), having a single polar

flagellum. Prosthecae are produced peritrichously, and can be branched. Buds

can be formed on mother and daughter cells, also at the end of the prostheca.

They form creamy-white, circular, flat to low convex, shiny, opaque and slimy

colonies that are slightly adherent to agar, with entire margins and a diameter of

2-5 mm on marine agar plates after 3 days incubation at 20 °C. Growth occurs on

Table 5.2. Differential phenotypic characteristics of Alteromonas species. 

Characteristic A. stellipolaris A. marina A. macleodii* 

Branching of prosthecae + - -

Utilization of:

D-Mannitol + - v (-§)

Acid production from: 

D-Mannitol w - +

Enzyme activity (API ZYM) 

Valine arylamidase + - +

Growth at 4°C + + -

Growth at 40°C - + v (-§) 

Mean G+C content (mol%) 43-45 44-45 45-46 

Symbols: +, positive; -, negative; w, weakly positive; v, variable. All the strains are 

straight and rod-shaped cells with polar flagella. * Data from Baumann et al. (1972). § 

Data are for the type strain (Yoon et al., 2003, and this study). Tests positive for all 

strains: motility, oxidase, catalase, hydrolysis of Tween 80, acid production from 

sucrose and utilization of D-galactose, D-fructose, sucrose, maltose and acetate. Tests 

negative for all strains: Gram stain, spore formation, growth at 45°C, acid production 

from L-arabinose and L-rhamnose and utilization of D-sorbitol, succinate, citrate and L-

malate.
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marine agar and PYG agar, and a slight growth on nutrient agar; there is no

growth on TSA and R2A agar. Strain LMG 21856 releases a brown, diffusible

pigment in the medium. The range of growth temperature is 5- 37°C, while no

growth occurs at 40°C or higher temperatures. Growth is supported on R2A agar

with up to 10% NaCl. These results indicate that they are moderately halophilic

and psychrotrophic. The strains can grow between pH 6 and 9, while the optimum

pH is 7-8.5. There is no evidence for growth under anaerobic conditions and the

catalase and cytochrome oxidase tests are positive. No polyhydroxybutyrate is

accumulated and spores are not formed. Precipitation on egg-yolk agar is positive

for some strains (LMG 21861T, LMG 21856, LMG 21860, LMG 21862, LMG 21863).

Strains are negative for indole and acetoine production, Voges-Proskauer test,

citrate utilization, hydrolysis of urea, nitrate reduction and production of hydrogen

sulfide. Degradation of starch, aesculin, gelatin and DNA is positive for all strains,

and β-galactosidase activity is detected. All the strains are able to utilize Tween

40, Tween 80, D-fructose, D-galactose, gentiobiose, α-D-glucose, maltose, D-

mannitol, D-melibiose, D-trehalose, furanose, acetic acid, propionic acid,

alaninamide, L-alanyl-glycine, L-glutamic acid and glycyl-L-glutamic acid; all the

strains except strain LMG 21862 are able to utilize dextrin, α-D-lactose, lactulose,

D-raffinose, sucrose, D-galacturonic acid and β-hydroxybutyric acid; all the strains

except strain LMG 21864 are able to utilize glycogen; all the strains except LMG

Figure 5.8. Electron micrographs of negatively stained preparations of Alteromonas macleodii

(A) and Alteromonas marina (B) cells, showing prosthecae (p) and buds (b). Colonies used for

analysis were grown on marine agar at 20°C for 12 d, or on PYG agar at 20°C for 3 d. Cells were

stained with 1% uranyl acetate in 0.4% sucrose. Bars, 1000 nm.
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21863 are able to utilize cellobiose; all the strains except strain LMG 21860 are

able to utilize D-mannose; all the strains except strain LMG 21859 are able to

utilize D-psicose. Variable results are obtained for α-cyclodextrin, β-methyl-D-

glucose, D-gluconic acid, α-keto-butyric acid, succinic acid, L-alanine, L-leucine,

L-proline, L-serine, L-threonine, inosine, uridine and glycerol. No metabolic activity

is observed on adonitol, L-arabinose, D-arabitol, N-acetyl-glucosamine, N-acetyl-

galactosamine, iso-erythritol, L-fucose, meso-inositol, L-rhamnose, D-sorbitol,

xylitol, methylpyruvate, mono-methyl-succinate, cis-aconitic acid, citric acid, formic

acid, D-galactonic acid lactone, D-glucosaminic acid, D-glucuronic acid, α-

hydroxybutyric acid, γ-hydroxybutyric acid, p-hydroxyphenylacetic acid, itaconic

acid, α-keto-glutaric acid, α-keto-valeric acid, D,L-lactic acid, malonic acid, quinic

acid, D-saccharic acid, sebacic acid, bromosuccinic acid, succinamic acid,

glucuronamide, D-alanine, L-asparagine, L-aspartic acid, glycyl-L-aspartic acid,

L-histidine, hydroxy-L-proline, L-ornithine, L-phenylalanine, L-pyro-glutamic acid,

D-serine, D,L-carnitine, γ-amino-butyric acid, urocanic acid, thymidine,

phenylethylamine, putrescine, 2-aminoethanol, 2,3-butanediol, D,L-α-

glycerolphosphate, glucose-1-phosphate, and glucose-6-phosphate. For all

strains, acids are produced for amygdaline in a clear positive reaction, whereas

an intermediate-positive reaction is detected for mannitol, sucrose and melibiose.

No acids are produced from glucose, inositol, sorbitol, rhamnose and arabinose,

and the degradation tests of alginate and chitin are negative. There is no activity

for arginine dihydrolase, lysine decarboxylase, ornithine decarboxylase, tryptophan

deaminase, cystine arylamidase, α-chymotrypsine, β-glucuronidase, β-

glucosidase, N-acetyl-β-glucosaminidase, α-mannosidase, and α-fucosidase. For

all strains, low activity (score 1) or no activity is obtained for lipase (C14), medium

activity (score 2 or 3) is observed for esterase (C4), esterase lipase (C8), valine

arylamidase, trypsine, α-galactosidase, and high activity (score 4 or 5) is observed

for alkaline phosphatase, leucine arylamidase, acid phosphatase, naphthol-AS-

BI-phosphohydrolase, β-galactosidase and α-glucosidase. Cells contain fatty acids

C16:0, C16:1ω7c, C17:1ω8c and C18:1ω8c as the main constituents. DNA G+C content

is 43-45 %. The type strain is LMG 21861T (= DSM 15691T).



185

Alteromonas stellipolaris sp. nov.





187

5.3 Glaciecola polaris sp. nov., novel budding
and prosthecate bacteria from the Arctic Ocean,

and emended description of the genus
Glaciecola

Stefanie Van Trappen, Tjhing-Lok Tan, Jifang Yang, Joris Mergaert  and Jean

Swings

Redrafted from: International Journal of Systematic and Evolutionary

Microbiology, in press (DOI10.1099/ijs.0.63123-0)

Four strains of cold-adapted, strictly aerobic and facultative oligotrophic bacteria

were isolated from polar seas and investigated using a polyphasic taxonomic

approach. Two strains (LMG 21857T and LMG 21854) derive from Arctic seawater

whereas the other two strains (LMG 21855 and LMG 21858) were isolated from

Antarctic seawater. Phylogenetic analysis based on 16S rRNA gene sequences

indicated that these strains belong to the γ-subclass of the Proteobacteria and

are related to the genus Glaciecola, with 98.0-99.7% sequence similarity to

Glaciecola mesophila and 94.2-95.3% to Glaciecola pallidula, their nearest

phylogenetic neighbours. Two strains (LMG 21855 and LMG 21858) are identified

as Glaciecola mesophila, whereas DNA-DNA hybridization results and differences

in phenotypic characteristics show that the other two strains (LMG 21857T and

LMG 21854) constitute a new species within the genus Glaciecola, with a DNA

G+C content of  44.0 mol%. The isolates are Gram-negative, chemoheterotrophic,

motile, rod-shaped cells which are psychrotrophic and moderately halophilic. Buds

can be produced on mother cells and on prosthecae. Branch formation of

prosthecae occurs. Whole-cell fatty acid profiles of the isolates are very similar

and include C16:0 and C16:1ω7c as the major fatty acid components. On the basis of

genotypic and phenotypic properties, a novel species of the genus Glaciecola is

described as Glaciecola polaris sp. nov. with the isolate LMG 21857T ( CIP 108324T

= ARK 150T) as type strain. An emended description of the genus Glaciecola is

given.
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Introduction

The genus Glaciecola was proposed by Bowman et al. (1998c) for two groups

of psychrophilic bacteria isolated from sea-ice diatom assemblages from the coastal

areas of eastern Antarctica and forms a separate lineage within the γ-subclass of

the Proteobacteria, distantly related to Alteromonas macleodii. Recently, another

species of the genus Glaciecola has been described, Glaciecola mesophila isolated

from marine invertebrate specimens (Romanenko et al., 2003). Many genera of

this class of Proteobacteria (Alteromonas, Pseudoalteromonas, Glaciecola,

Idiomarina and Colwellia) are common inhabitants of the marine part of the

biosphere and have very diverse habitats like coastal and open water areas,

deep-sea and hydrothermal vents, marine sediments and sea-ice (Mikhailov et

al., 2002).

In another study, we reported that seven Antarctic strains belong to a novel

species within the genus Alteromonas, i.e. A. stellipolaris (Van Trappen et al., in

press). Together with the new Glaciecola species described here, they all belong

to novel budding and prosthecate bacteria from the γ-subclass of the

Proteobacteria. It is evident now that budding and prosthecate bacteria are

abundant in marine and polar environments (Weiner et al., 2000; Labrenz et al.,

1998; Labrenz et al., 1999). Moreover, bud and prosthecate formations are a

common strategy for rod-shaped bacteria to enhance their surface to volume

ratio, thus enabling the organisms for efficient substrate uptakes in oligotrophic

habitats (van Gemerden & Kuenen, 1984).

During expeditions in the Arctic (Tan & Rüger, 1991) and Antarctic seas (Tan

& Rüger, 1999), facultative oligotrophic and psychrotrophic bacteria were isolated.

These strains (173) have been previously analysed by their substrate utilization

patterns using the Biolog system (Tan, 1997; Tan & Rüger, 1999) and by fatty acid

and 16S rDNA sequence analyses of representatives (Mergaert et al., 2001b).

They belong to six metabolic groups and eight different fatty acid clusters containing

two to 59 strains. In the meantime, additional strains (56) were isolated using the

same methods and were also analysed using the Biolog system and fatty acid

analysis. The new strains belong to fatty acid clusters B, C, D, E and F (as

delineated in Mergaert et al., 2001b) and three new fatty acid clusters (I, J and K;

S. Van Trappen, unpublished results) were found. The genomic diversity of the 19

strains from fatty acid clusters E and F and two related, unclustered strains, was
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further investigated (see also Van Trappen et al., in press). Using a polyphasic

taxonomic approach, four strains (two Arctic and two Antarctic) could be assigned

to the genus Glaciecola.

Materials and Methods

Strains were isolated from seawater after enrichment in dialysis chambers as

previously described (Tan, 1986; Tan, 1997). The investigated strains are LMG

21857T =  CIP 108324T = ARK 150T and LMG 21854 = ARK 149 isolated from

Arctic seawater and LMG 21855 = ANT 12a and LMG 21858 = ANT 12b from

Antarctic seawater. The reference strains LMG 21426TGlaciecola punicea, LMG

21427T Glaciecola pallidula and LMG 22017T Glaciecola mesophila were included

in some experiments. Strains were routinely cultivated on marine agar 2216 (Difco)

at 20°C for 48 h, or for strains LMG 21426T and LMG 21427T on marine agar at

10°C for 6 days, and for strain LMG 22017T on marine agar at 28°C for 24 h,

except when mentioned otherwise.

Strains were arranged in similarity groups based upon the results of repetitive

extragenic palindromic DNA-PCR fingerprinting using the GTG
5 
primer (Versalovic

et al., 1991; Rademaker & de Bruijn, 1997; Rademaker et al., 2000). Numerical

analysis was carried out using the Bionumerics software package, as described

by the same authors.

Small scale DNA extracts were prepared using the method of Pitcher et al.

(1989) and almost complete 16S rRNA gene sequences of strains were amplified

by PCR using conserved primers (Coenye et al., 1999). PCR products were purified

using a QIAquick PCR Purification kit (Qiagen) according to the instructions of

the manufacturer. Sequence analysis was performed as described earlier (Van

Trappen et al., 2004a). Evolutionary distances were calculated using the algorithm

of Jukes-Cantor and a phylogenetic tree was constructed using the neighbour-

joining method with the TREECON program (Van de Peer & De Wachter, 1994).

DNA was prepared according to the method of Pitcher et al. (1989) and

DNA-DNA hybridizations were carried out with photobiotin-labelled probes in

microplate wells as described by Ezaki et al. (1989), using an HTS7000 BioAssay

reader (PerkinElmer) for the fluorescence measurements. The hybridization

temperature was 35 °C and reciprocal experiments were performed for every pair

of strains.

DNA G+C contents of the Arctic and Antarctic strains were determined using
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an HPLC method as described by Van Trappen et al. (2003).

The growth of the strains at different temperatures (5-37 °C) was tested on

marine agar, whereas salt tolerance was tested on R2A agar, supplemented with

1-20 % NaCl at 20 °C. Biochemical characteristics were determined using standard

protocols (Smibert & Krieg, 1994; West & Colwell, 1984; Reichenbach & Dworkin,

1981; Bowman et al., 1998c; Van Trappen et al., 2003) and API kits (API 20E, API

20NE, API ZYM and API32 ID, bioMérieux). Bacterial suspensions were made in

sterile, chilled seawater and marine agar was used as the basal medium. For

BIOLOG GN2 microplates, the bacteria were grown on PYG agar at 20°C for 5 d;

the cells were harvested and suspended in “Inoculating Fluid” (IF). The salinity of

the IF was adjusted to 26 parts per thousand with NaCl. The microplates were

incubated at 20°C and substrate utilizations were measured after 3-28 d at 590

nm with an eight-canal-photometer (Spectra 2, SLT Labinstruments).

Results and discussion

Strains of fatty acid clusters E and F and two related, unclustered strains

were arranged in similarity groups based upon the results of rep-PCR fingerprinting

using the GTG
5 
primer. One Arctic (LMG 21857T, LMG 21854) and one Antarctic

(LMG 21855, LMG 21858) cluster of each two strains, belonging to FAA cluster F,

with almost identical rep-PCR-profiles could be delineated (Fig. 5.9), of which

16S rRNA gene sequence analysis revealed that they belong to the genus

Glaciecola within the γ-subclass of the Proteobacteria.

Almost complete 16S rRNA gene sequences (1485 nucleotides) of strains

LMG 21857T, LMG 21854, LMG 21855 and LMG 21858 were obtained and a

phylogenetic tree is shown in Fig. 5.10. Dendrograms obtained by maximum

parsimony and maximum likelihood analyses showed essentially the same

topography (data not shown).

The 16S rRNA gene sequences of the two Arctic strains (LMG 21857T and

LMG 21854) are identical (100 % sequence similarity) and showed 98.0 % similarity

to G. mesophila, 94.2 % to G. punicea and 93.5 % to G. pallidula, whereas the

sequences of the Antarctic strains (LMG 21855 and LMG 21858), which are also

identical to each other, showed 99.7% sequence similarity to G. mesophila, 95.3

% to G. punicea and 94.9 % to G. pallidula. The sequence similarity between the

Arctic and Antarctic strains is 98.4 %. The phylogenetic tree in Fig. 5.10 illustrates
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the phylogenetic relationships of the polar isolates within the genus Glaciecola.

Strains LMG 21855 and LMG 21858 are very closely related to G. mesophila

whilst strains LMG 21857T and LMG 21854 form a distinct branch supported by a

high bootstrap value.

The genomic relatedness between the strains LMG 21857T, LMG 21855 and

the most closely related strains G. mesophila LMG 22017T  and G. punicea LMG

21426T, was determined by DNA-DNA hybridizations. The hybridization level

between strain LMG 21857T and G. mesophila LMG 22017T and G. punicea LMG

21426T was 17.2 % and 4.0 % respectively, whereas the DNA-DNA binding value

between LMG 21857T and LMG 21855 was 23.4%. The hybridization level between

strain LMG 21855 and G. mesophila LMG 22017T and G. punicea LMG 21426T

was 67.7 % and 6.0 % respectively. Differences between reciprocal experiments

were less than 10 %. DNA-DNA hybridizations between strains of the same rep-

PCR-cluster were not performed since Versalovic et al. (1994) have shown that

strains with the same rep-PCR profile are always closely related and this has

been confirmed by several authors (e.g. Rademaker & De Bruijn, 1997). These

results suggest that the two Arctic isolates are genotypically distinct from G.

mesophila and G. punicea, their phylogenetically nearest neighbours and constitute

a new species within the genus Glaciecola. The two Antarctic isolates are closely

related to G. mesophila, showing a DNA-DNA reassociation value near 70 %,

which is generally accepted as the borderline for species delineation (Wayne et

al., 1987).

DNA G+C contents of strains LMG 21857T, LMG 21854, LMG 21855 and

LMG 21858 are 44.2%, 43.6%, 43.9% and 44.2%, respectively. These values are

Figure 5.9. Digitized representation of normalized rep-PCR profiles (GTG
5
-primer) of four strains

from fatty acid cluster F and dendrogram derived from the UPGMA clustering of the profiles with

the Pearson correlation coefficient.
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Figure 5.10. Neighbour-joining dendrogram showing the estimated phylogenetic relationships of

the Arctic and Antarctic isolates, and other marine chemoheterotrophs of the γ-subclass of the

Proteobacteria. Bootstrap values (percentages of 500 replicates) of > 70 % are shown. The

GenBank accession number for each reference strain is shown in parentheses. Bar, 1 nucleotide

substitution per 10 nucleotides.

consistent with the G+C content of the genus Glaciecola, which ranges between

40-46 mol% (Bowman et al., 1998c).

Cellular fatty acid patterns of the polar strains are based on the data generated

by Mergaert et al. (2001b) or were determined as described by the same authors.

The Arctic strains show very similar fatty acid profiles and the mean composition

is 3.1% C12:0, 5.5 % C12:03-OH, 4.1% C14:0, 2.0% C15:0, 23.3% C16:0, 1.7 % C16:02-OH,

2.0 % C16:12-OH, 2.6 % C17:1ω8c, 4.8 % C18:1ω7c, 1.4 % 10 Me-C18:0 and 41.7 %

summed feature 3 which comprises iso-C15:02-OH, C16:1ω7c, or both. The Antarctic

strains show very similar fatty acid patterns to strains KMM 241T and KMM 642

(G. mesophila), with C16:0, C16:1ω7c, C17:1ω8c and C18:1ω7c as the dominant fatty

acids. Hydroxylated fatty acids and iso-branched fatty acids are also present as

minor components or at trace levels in the Arctic strains. The fatty acid profiles of

the polar strains clearly resemble those determined for other marine genera of

the γ-subclass of the Proteobacteria like Alteromonas, Pseudoalteromonas and

Glaciecola (Ivanova et al., 2000).
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The Antarctic strains are Gram-negative, rod-shaped cells (0.4 µm in width

and 2-3 µm in length), which are flagellated. Buds and prosthecae can be produced

(see Fig.5.11). The strains are able to grow between 5-30 °C, whereas no growth

occurs at 37 °C; growth is supported on R2A agar with up to 10 % NaCl. Strains

possess a mucoid consistency and show very similar reactions to strains KMM

241T and KMM 642 of G. mesophila and reduce nitrate. They differ from these

strains in the degradation of agar, the utilization of D-fructose, D-trehalose, L-

glutamate and L-proline, and the Antarctic strains can grow at 4 °C and in 10 %

NaCl (see Table 5.3). The Antarctic strains LMG 21855 and LMG 21858 are

identified as G. mesophila since there are only a few phenotypic differences and

these could be due to the different protocols used, and DNA-DNA hybridization

results together with the 16S rRNA gene sequence similarities also support that

the Antarctic isolates are very closely related to G. mesophila.

The Arctic strains are Gram-negative, rod-shaped cells (0.4 µm in width and

2-3 µm in length), which are polarly or subpolarly flagellated. Buds  can be produced

on mother cells or on prosthecae (see Fig.5.12). Prostheca formation is peritrich;

prostheca can be branched. The strains are able to grow between 5-30 °C, whereas

no growth occurs at 37 °C; growth is supported on R2A agar with up to 10 %

NaCl,  indicating that they  are moderately halophilic and psychrotropic. This is in

contrast to G. punicea and G. pallidula which are psychrophilic and have an absolute

requirement for seawater (Bowman et al., 1998c), and G. mesophila which is slightly

halophilic and mesophilic (Romanenko et al., 2003). The strains are aerobic,

chemoheterotrophic bacteria and there is no evidence for growth under anaerobic

conditions. Only strain LMG 21854 possesses a mucoid consistency. The Arctic

strains are positive for precipitation on egg-yolk agar and show the typical

properties of the genus Glaciecola (see species description).

On the basis of this polyphasic taxonomic analysis, the Arctic strains can be

clearly differentiated from the other species within the genus Glaciecola (see Table

5.3) and can be assigned to a new species for which the name Glaciecola polaris

sp. nov. is proposed.
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Figure 5.11. Electron micrographs of negatively stained preparations of strain LMG 21857T (a-c)

cells, showing flagella (F), prosthecae (P) and buds (B). Colonies used for analysis were grown

on PYG-agar at 12°C for 7 d. Cells were stained with 1% uranyl acetate in 0.4% sucrose. Bars,

300 nm.

Figure 5.12. Electron micrographs of negatively stained preparations of strains LMG 21855 (a-

c) and LMG 21858 (d) cells, showing flagella (F), prosthecae (P), buds (B) and extracellular

products (EP). Methods, see legend to Fig. 5.11.
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Emended description of the genus Glaciecola (Bowman et al.,
1998), emend. Van Trappen et al.

The description is as described by Bowman et al. (1998c) with the following

additional morphological features. When grown on marine or PYG agar at low

temperatures (12-20°C) for three days or more, some strains can produce buds

and prosthecae (see Fig. 5.11-5.13).

Description of Glaciecola  polaris sp. nov.

Glaciecola polaris (po.la.ris. N. L. fem. adj. polaris polar; referring to the origin

of the strains, the Arctic Ocean).

Cells are Gram-negative, short rods (0.4 x 2-3 µm) and motile by the presence

of a polar or subpolar flagellum. Buds can be produced on mother cells or on

prosthecae. Prostheca formation is peritrich and prostheca can be branched

(Fig.5.11-5.13). They form non-pigmented, circular, low convex, shiny and opaque

colonies that are not adherent to agar, with entire margins and a diameter of 1-4

Figure 5.13. Electron micrographs of negatively stained preparations of strains Glaciecola

punicea LMG 21426T (a), Glaciecola  pallidula LMG 21427T (b) and Glaciecola mesophila LMG

22017T (c) cells showing prosthecae (P), buds (B), and extracellular products (EP). Colonies

used for analysis were grown on PYG agar at 20 °C for 3 d (G. mesophila), or on Marine Agar

at 12 °C for 21 d (G. punicea) and 12 d (G. pallidula), respectively. Cells were stained with 1%

uranyl acetate in 0.4% sucrose. Bars, 1000 nm.
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Table 5.3. Phenotypic characteristics that differentiate Glaciecola polaris sp. nov. from its 

nearest phylogenetic neighbours.

Characteristic 1 2 3 4

Pigmentation - - pink-red pale pink 

Growth at 25°C + + + -

Growth in 10% NaCl + v- - -

Hydrolysis of: 

Egg yolk + - - -

Starch + + - v +

Aesculin + + v + -

DNA + + - -

-Galactosidase + + + -

Nitrate reduction - + - -

Utilization of:

D-Glucose, D-mannitol, cellobiose + + - -

Sucrose, maltose + v+ - -

D-Galactose + v+ - -

D-Fructose, D-trehalose + v+ - -

D-Mannose + v+ - -

Glycerol - - - +

Acetate + - - +

Glycogen, dextrin + + - +

DL-Lactate - - - +

Propionate + - - -

L-Glutamate + v+ - +

L-Malate - - + -

Mean G+C content (mol%) 44 44 44-46 40

Glaciecola species: 1, G. polaris; 2, G. mesophila; 3, G. punicea; 4, G. pallidula. Data 

from Bowman et al. (1998c), Romanenko et al. (2003) and this study. Symbols: +, 

positive test; -, negative test; v +, variable between strains, type strain positive; v -, 

variable between strains, type strain negative. All strains were positive for the following 

tests: motility, sodium ion requirement for growth, oxidase, catalase, growth at 7-20°C 

and growth in 1-6% NaCl. All strains are negative for growth at 37-40°C, indole reaction, 

arginine dihydrolase, chitin hydrolase and utilization of L-arabinose, citrate, L-histidine, L-

ornithine, L-threonine and N-acetylglucosamine.   
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mm on marine agar plates after 7 days incubation at 20 °C. Growth occurs on

marine and PYG agar, and a slight growth on nutrient agar; there’s no growth on

TSA and R2A agar. The range of growth temperature is 5-30°C, whereas no growth

occurs at 37°C or higher temperatures; growth is observed on R2A agar with up

to 10% NaCl, indicating that they are moderately halophilic and psychrotrophic.

There is no evidence for growth under anaerobic conditions and the catalase and

cytochrome oxidase tests are positive. The degradation of starch, aesculin and

DNA is positive and precipitation on egg-yolk agar occurs. β-Galactosidase activity

is detected for both strains. They are able to utilize α-cyclodextrin, dextrin,

glycogen, Tween 40, Tween 80, D-arabitol, cellobiose, D-fructose, D-galactose,

gentiobiose, α-D-glucose, α-D-lactose, lactulose, maltose, D-mannitol, D-

mannose, D-melibiose, β-methyl-D-glucoside, D-raffinose, sucrose, D-trehalose,

D-saccharose, furanose, methylpyruvate, acetic acid, β-hydroxybutyric acid,

propionic acid, L-alanine, L-alanyl-glycine, L-glutamic acid, glycyl-L-glutamic acid,

L-leucine, L-pyro-glutamic acid and salicin. Both strains are negative for indole

and acetoine production, Voges-Proskauer test, citrate utilization, nitrate reduction

and production of hydrogen sulfide. No growth is observed on arabinose, N-acetyl-

glucosamine, caprate, adipate, malate, citrate, phenylacetate, L-fucose, D-sorbitol,

valerate, histidine, 2-keto-gluconate, 3-hydroxy-butyrate, 4-hydroxy-benzoate,

rhamnose, D-ribose, inositol, itaconate, suberate, malonate, DL-lactate, 5-keto-

gluconate, 3-hydroxy-benzoate, L-serine, alaninamide, L-threonine and glycerol.

No acids are produced from the carbohydrates glucose, mannitol, inositol, sorbitol,

rhamnose, sucrose, melobiose, amygdalin, arabinose and the degradation tests

of alginate, chitin, casein, gelatin and urea are negative. There is no activity of

arginine dihydrolase, lysine decarboxylase, ornithine decarboxylase and

tryptophane deaminase. There is no activity for the enzymes lipase (C14), cystine

arylamidase, α-chymotrypsine, β-glucuronidase, N-acetyl-β-glucosaminidase, α-

mannosidase, and α-fucosidase. For both strains low activity (score 1) is observed

for valine arylamidase, trypsine, α-glucosidase and β-glucosidase, medium activity

(score 2 or 3) is observed for esterase (C4), esterase lipase (C8), acid phosphatase,

naphtol-AS-BI-phosphohydrolase and α-galactosidase, and high activity (score 4

or 5) is observed for alkaline phophatase and leucine arylamidase. Cells contain

fatty acids C16:0 and summed feature 3 (iso-C15:02-OH, C16:1ω7c, or both) as main

constituents. DNA G+C content is 44.0 %. The type strain is LMG 21857T (= CIP

108324T).
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Conclusions & future perspectives

In this chapter the research challenges regarding bacterial diversity in Antarctic

lakes and polar seas as stated in the Objectives of this work (see Preface), are

discussed again in the light of the obtained results (chapters 2 to 5). Also, the

strategy followed and the techniques used in this study, are evaluated. Finally,

future perspectives for the bacterial diversity studies in different polar habitats

are discussed.

6.1 Polyphasic taxonomy of polar bacteria

6.1.1 Fatty acid analysis

In this work a polyphasic taxonomic approach, combining different genotypic

(rep-PCR genomic fingerprinting, 16S rDNA sequence analysis, DNA-DNA

hybridization, % G + C determination) and phenotypic methods (fatty acid analysis,

study of morphological, biochemical and physiological characteristics) was applied

to study bacterial diversity in Antarctic lakes and polar seas. In previous studies

(Mergaert et al., 2001b; Van Trappen et al., 2002), fatty acid analysis (FAA) was

used to obtain a first grouping of the isolates into different clusters. For the Antarctic

lake isolates, 41 clusters were delineated at 75 % Canberra metric similarity and

31 strains formed single branches. For the polar sea strains, eight clusters were

found and 8 strains formed separate branches at a Euclidian distance of < 14,

which is comparable to 80% Canberra metric similarity. Representatives of these

clusters were analysed by 16S rDNA sequencing. Additional polar sea isolates

(56) were also included in fatty acid analysis and they proved to belong to FAA-

clusters B, C, D, E and F (as delineated in Mergaert et al., 2001b) and three new

clusters (I, J and K) (see Fig. 5.2). An overall clustering of the fatty acid profiles

(see Annex VI) based on Canberra metric similarities of the Antarctic lake and
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polar sea isolates, showed that the different FAA-clusters were maintained. Some

clusters were further subdivided (e.g. 5, 10, 16, 18, 22, 23, 25, 40, 41, see chapter

2; A, C, E, F, G, see section 5.1) and the new clusters I and K grouped together

with FAA clusters 1 to 15 (phylogenetically related to the Bacteroidetes), whereas

cluster J formed a branch together with FAA clusters 35 and 36, which belong to

the α-Proteobacteria.

Several of the FAA clusters were found to contain multiple taxa with similar

fatty acid profiles, whereas phylogenetically closely related taxa are sometimes

quite different in their fatty acid compositions and belong to different FAA clusters.

These results indicate that a dendrogram based on fatty acid profiles does not

allow a straightforward taxonomic interpretation. Indeed, when a higher similarity

level for the cluster delineation in the dendrogram is used, additional clusters and

singles show up, which potentially belong to additional phylogenetic lineages.

Our fatty acid profiles also didn’t allow identification with the TSBA4.0 database,

since different growth conditions were used (for example incubation time and

temperature, see chapter 2), than the standard conditions. However, despite the

restraints of this technique, fatty acid analysis is a convenient method for the

rapid screening of a large number of bacteria, belonging to different phylogenetic

groups. But techniques with a higher resolution had to be applied to investigate

the genomic diversity of each fatty acid cluster in more detail.

6.1.2 Rep-PCR fingerprinting

 Several fatty acid clusters were further investigated by rep-PCR genomic

fingerprinting (using GTG
5
- and REP-primers, depending on the group) to assess

their genomic variability. These FAA clusters were mainly chosen on the basis of

a low 16S rDNA sequence similarity (< 97%) of representative strains with their

nearest phylogenetic neighbours, indicating the novelty of these bacteria. Rep-

PCR fingerprinting of the isolates allowed a further sub-clustering at the genotypic

level and overall this sub-clustering was consistent with the delineation of fatty

acid clusters (see chapter 2 and sections 3.1, 4.1 and 5.1). One exception was

found (see 3.3) where strains of fatty acid clusters 5 and 6 belonged to the same

rep-cluster and proved to be members of the same species, namely Flavobacterium

degerlachei. The differences in fatty acid compositions between strains from FAA

clusters 5 and 6 are largely due to different amounts of certain fatty acids (see

section 3.1). For the three strains of FAA cluster 4, different rep-profiles were
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obtained with only few bands (1-3 clear bands) and strain R-8282 clustered together

with strains of FAA cluster 15 (see Fig. 3.1). However, DNA-DNA hybridization

results confirmed the delineation on the basis of fatty acid composition, since the

strains of FAA cluster 4 constitute one species within a novel genus (Gillisia limnaea)

whereas members of FAA cluster 15 belong to another genus (Algoriphagus

antarcticus). These results illustrate that only rep-profiles with a sufficient number

of clear bands spread over the low and high molecular weight areas of the rep-

profile, are reliable. Therefore, the most dominant rep-clusters with at least three

strains and clear profiles with a sufficient number of different bands were

investigated further.

Several DNA-based typing methods exist (e.g. RFLP, AFLP, ARDRA and

RAPD) but the major advantage of rep-PCR, besides its high reproducibility and

taxonomic resolution, is that it is a very rapid method (Versalovic et al., 1994;

Rademaker & de Bruijn, 1997), ideal to investigate a large number of strains.

Rep-PCR fingerprinting allows phylogenetically closely related strains to be further

sub-divided into different groups and no prior genotypic knowledge on the bacterial

strains is required. Several rep-primers can be used (REP, GTG5, ERIC, BOX)

depending on the bacterial group investigated. REP-primers for example, yielded

no clear profiles with a sufficient number of bands for the strains belonging to the

Bacteroidetes, in contrast to the GTG5-primer. Rep-profiles obtained by using

different primers can also be combined, resulting in more information about the

reliability of clusters delineated with a certain primer (see section 4.1).

6.1.3 16S rDNA sequence analysis

Representative strains were analysed by using additional 16S rDNA

sequencing to allow a phylogenetic allocation of the different rep-clusters. The

complete 16S rDNA sequence of 35 representative strains belonging to FAA

clusters 1 to 15 (see Table 3.1) was determined and of these, ten showed a

sequence similarity of less than 97% with their nearest phylogenetic neighbours.

For FAA cluster 41, seven strains were sequenced and similarities below 97%

were found with Mesorhizobium loti and members of the Rhodobacter group as

closest relatives. For strains of FAA clusters E, F and two related unclustered

strains, 16S rDNA sequence similarities of more than 97% were found with

Alteromonas, Pseudoalteromonas and Glaciecola species. An overall dendrogram

(see Annex VI) based on the 16S rDNA sequence analysis of both the Antarctic
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lake isolates and polar sea isolates, shows that no high sequence similarities can

be found between strains isolated from these different habitats, indicating that

they belong to separate species. However, they have a few genera in common.

For the γ-Proteobacteria the genera Glaciecola, Shewanella and Pseudomonas

were found in both Antarctic lake and polar sea isolates and for the α-Proteobacteria

representatives of the Rhodobacter group and the genera Rhizobium/

Mesorhizobium were found in both habitats. The genera belonging to the

Bacteroidetes are clearly different, with only a few FAA clusters (G, I and K) related

to Cytophaga in the polar sea isolates, and a lot of FAA clusters (1 to 15) related

to the genera Flavobacterium, Algoriphagus, Gelidibacter, Hymenobacter and

Gillisia for the Antarctic lake isolates.

According to Stackebrandt & Goebel (1994), 97% sequence similarity is

considered as a threshold value below which two strains are expected to belong

to different bacterial species. However, the latter authors, as well as many others,

also demonstrated that strains with more than 97% sequence similarity may show

low DNA-DNA reassociation values and thus constitute different species. This

has been confirmed by our results within the genus Flavobacterium, where isolates

sharing more then 97% (up to 98.7%) 16S rDNA sequence similarity with their

closest relatives, proved to be genotypically distinct from these related

Flavobacterium species on the basis of hybridization results (see chapter 3). The

type strains of Flavobacterium frigoris and Flavobacterium degerlachei for example

share a 98.7% homology of their 16S rRNA sequence and proved to belong to

seperate species. This is another clear example of the fact that 16S rDNA sequence

similarity higher than 97 % is not sufficient to demonstrate that two strains belong

to the same species. As such, much more of these polar bacterial strains possibly

belong to as yet undescribed new species as can be predicted on the basis of this

97% threshold value.

16S rDNA sequence analysis is a technique that has been widely applied in

bacterial taxonomy and is used to study the phylogenetic relationships among

bacteria. The major advantage of this technique is its high reproducibility and use

in comparative studies because of the availability of large publicly accessible

databases (EMBL) of bacterial rDNA sequences.
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6.1.4 DNA-DNA hybridizations

It is clear, through studies that compare rep-PCR genomic fingerprint analysis

with DNA-DNA relatedness methods that both techniques yield results that are in

close agreement (Nick et al., 1999; Rademaker et al., 2000), suggesting that

genomic fingerprinting techniques truly reveal genotypic relationships of organisms.

Indeed, for the different investigated rep-clusters with identical profiles, DNA-

relatedness values were found above 70%, the level recommended for species

delineation (Wayne et al., 1987) and 16S rDNA sequence similarities between

strains of these rep-clusters were always very high (99-100%). However, strains

which showed a different rep-profile sometimes proved to belong to the same

species, showing hybridization values of more than 70% (e.g. Flavobacterium

frigoris, Flavobacterium micromati and Flavobacterium fryxellicola).

These results indicate that, although the resolution of rep-PCR fingerprinting

is sometimes too high with clustering at the subspecies level, this technique is

useful to reduce the number of strains needed for the labourious DNA-DNA

hybridization studies. This rapid and highly discriminatory screening technique,

together with 16S rDNA sequence analysis of representative strains, can be used

to determine the taxonomic diversity and phylogenetic structure of large bacterial

collections. Several novel genospecies could be delineated and phenotypic

analysis resulted in a final description of 13 new species (see chapters 3, 4 and

5).

6.2 Bacterial diversity in Antarctic lakes and polar seas

One of the main objectives of this work was to explore the general taxonomic

diversity of bacterial isolates from microbial mats in Antarctic lakes and polar

seas. Therefore, samples were taken from very different lakes instead of multiple

samples from a single lake and water samples were collected from different stations

in the polar seas and at different water depths, in order to obtain an as much

diverse collection of strains as possible. For FAA clusters 1 to 15 (161 strains)

belonging to the Bacteroidetes, rep-PCR fingerprinting revealed 27 clusters and

38 singles, and for strains of FAA cluster 41 (57 strains) belonging to the α-

Proteobacteria, 10 clusters and 12 singles could be delineated (cut off value of

70% Pearson correlation coefficient). This wealth of different fingerprinting patterns
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demonstrates that the bacterial genomic diversity in microbial mats from Antarctic

lakes is extremely high and is much higher than previously estimated by fatty acid

and 16S rDNA sequence analyses (see chapter 2). Similar results were found for

the polar sea isolates and for the investigated strains (21, belonging to FAA clusters

E, F and two related unclustered strains; see section 5.1) five clusters could be

delineated and four strains formed separate branches.

Only part of the bacterial diversity in Antarctic lakes and polar seas has been

investigated into depth (15 FAA clusters related to the Bacteroidetes, one cluster

belonging to the α-Proteobacteria and 21 polar sea isolates of two FAA clusters

related to the γ-Proteobacteria) with the identification of some isolates to previously

known species (Flavobacterium xanthum and Glaciecola mesophila) and the

description of several novel bacterial species [six new Flavobacterium species,

one new Algoriphagus species and a new genus, Gillisia of the family

Flavobacteriaceae (see Chapter 3); three species of a new genus Loktanella of

the α-Proteobacteria (see Chapter 4) and a new Alteromonas and Glaciecola

species (see Chapter 5)] and already the estimated diversity is very high. Further

investigations within the other phylogenetic groups (Gram-positives, α-, β- and γ-

Proteobacteria) would provide a more complete picture of the bacterial diversity

in these polar habitats. Through the description of these novel species, unique

databases with several of their genotypic and phenotypic properties, using highly

reproducible techniques (rep-PCR fingerprinting, FAA analysis, 16S rDNA

sequencing), are available and will make the characterization and identification

of other polar isolates much easier.

Our results are consistent with the data found by the other partners of the

MICROMAT-project. Brambilla et al. (2001) investigated the diversity of aerobic

and anaerobic bacterial isolates, together with the bacterial and archaeal 16S

rDNA clones of a mat sample of Lake Fryxell, and results indicate that the diversity

is very high. The cyanobacterial diversity in microbial mats from Lake Fryxell was

studied by Taton et al. (2003) and evidence was provided that the molecular

diversity of cyanobacteria is quite high with a few Antarctic endemic species. In

contrast, the fungal flora in these biomats was dominated by a relatively small

number of species belonging to a few genera (Göttlich et al., 2003) and this is

unexpected since fungi are among the organisms with highest tolerance of extreme

conditions. The (cultivated and ‘yet-to-be’ cultivated) diversity of protists and

eukaryotic photosynthetic microorganisms from these Antarctic mats, investigated

by several other partners, was also very high and regional differences can be
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seen. The diversity of eukaryotes seems lower than in less extreme biotopes.

Overall, the surprisingly high diversity of the different microorganisms in the mats

demonstrates an enormous complexity of the microbial communities in Antarctic

lakes and this is more than would be expected from an extreme environment.

6.3 Geographical distribution of bacterial taxa

Although a high amount of bias on the assessment of the diversity of the

heterotrophic isolates from Antarctic lakes was introduced due to the limited number

of samplings and culturing procedures, and the limited number of strains isolated

from several samples (see chapter 2), results allow to make, to some extent,

observations on the geographical distribution of some taxa. Table 6.1 summarizes

the sources of the strains from each of the FAA clusters (see Fig. 2.1) and all

samples contained representatives of the γ-Proteobacteria, whereas all samples,

except the one from Organic Lake, yielded members of the Bacteroidetes. Gram-

positives were not found in the samples from lakes Watts and Pendant. No α-

Proteobacteria were isolated from samples from lakes Hoare and Grace while no

β-Proteobacteria were isolated from samples from lakes Watts, Highway and

Organic Lake. Several major FAA clusters (with more than 30 isolates) contained

strains isolated from almost all samples, suggesting that taxa showing these fatty

acid compositions might be ubiquitous in Antarctic lakes, e.g. cluster 5 and 10,

related to Flavobacterium (see Fig. 2.1). Members of other FAA clusters (with

more than 10 isolates) were not detected in the McMurdo Dry Valley lakes, e.g.

cluster 22, related to Shewanella, or were almost exclusively detected in these

lakes, such as cluster 18, related to Arthrobacter, and cluster 28, related to

Janthinobacterium. Other clusters (with more than 4 strains) were only detected

in samples from a single lake, like cluster 6, related to Flavobacterium, isolated

from Pendant Lake.

It is clear that the bacterial diversity in polar habitats and in Antarctic lakes is

extremely high and due to the unique and harsh conditions that prevail here,

microorganisms are potentially belonging to endogenous, as yet undescribed new

taxa. Through a polyphasic approach, several of these novel taxa could be

described (see Table 6.2). Some general assumptions can be made about the

relationship between these novel taxa and the lakes from which they were isolated

since it is impossible to draw firm conclusions on the ecological implications of

these lakes due to the constraints on the sampling and culturing methods used.
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Firstly, most of these novel taxa derive from a small number of lakes, namely

lakes Ace, Pendant, Watts, Reid and Fryxell. Only two species come from Grace

Lake (Flavobacterium micromati and F. frigoris), whereas separate single species

Loktanella salsilacus, F. degerlachei, F. psychrolimnae and F. frigoris, originate

from lakes Organic, Highway, Hoare and Druzhby, respectively. The potential new

species (see Table 6.3) also derive from a small number of lakes and they mainly

come from lakes Ace and Fryxell. The reason for this can be found in the fact that

from lakes Fryxell and Ace, a higher number of bacterial strains were isolated

(see chapter 2; 188 and 122 isolates, respectively) compared to lakes Hoare,

Organic, Grace and Druzhby (31-34 isolates). As a consequence, strains from

the latter lakes are likely to belong to fewer phylogenetic groups and to less of

these novel taxa than isolates from lakes Fryxell and Ace. However, another

explanation for the striking fact that a lot of these novel species (seven out of

thirteen) derive from Lake Fryxell in the Dry Valleys, can also be found in the age

of these lakes. Indeed, Dry Valley lakes are very old (hundreds of thousands of

years compared to only 8000-10 000 years old for the lakes of the Vestfold Hills

and the Larsemann Hills) so they have had more time for the evolution of potentially

novel taxa to occur.

Some of these new species were isolated from a certain Antarctic region

(Flavobacterium fryxellicola, F. psychrolimnae, Gillisia limnaea and Loktanella sp.),

whereas others derive from different Antarctic regions, suggesting that they might

be more or less ubiquitous on the Antarctic continent (F. gelidilacus, F. degerlachei,

F. micromati, F. frigoris and Algoriphagus antarcticus). Again, this ubiquity is

probably due to the larger number of isolates belonging to the latter species.

Some Antarctic lake isolates were identified as Flavobacterium xanthum,

originally isolated from Antarctic soil, whereas two polar sea isolates (Antarctic

sea) were identified as the recently described Glaciecola mesophila from the Sea

of Japan in Russia. Another two polar sea isolates (Arctic sea) belonged to a

novel species within the genus Glaciecola, Glaciecola polaris, showing that this

genus has a bipolar distribution. For the polar sea isolates most of the FAA clusters

contain isolates both from Antarctica as well as Arctica and only clusters G, I, J

and K consist solely of Antarctic strains.
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Table 6.3. Source, FAA clustering and phylogenetical affiliation of potential novel taxa from Antarctic lakes and 

polar seas. 

Strain
No.

FAA
cluster a

Phylogenetic 
branch

Nearest phylogenetic neighbour Sequence 
similarity 

Isolation
source

Antarctic lakes 
R-9033 2 Bacteroidetes Flavobacterium tegetincola 95.3 AC

R-7581 5 Bacteroidetes Flavobacterium tegetincola 95.3 FR

R-7585 5 Bacteroidetes Flavobacterium limicola 96.0 FR

R-7515 9 Bacteroidetes Flavobacterium limicola 95.0 FR

R-8893 10 Bacteroidetes Flavobacterium aquatile 94.5 AC

R-7666 12 Bacteroidetes Flavobacterium limicola 95.7 FR

R-9476 15 Bacteroidetes Flavobacterium limicola  96.4 AC

R-9112 16 Gram-positives Microbacterium keratanolyticum 96.0 GR

R-8287 19 Gram-positives Clavibacter michiganensis 96.1 FR

R-8161 20 Gram-positives Bacillus oleronius 93.2 FR

R-8971 23 -Proteobacteria Pseudomonas migulae 95.8 AC

R-11381 25 -Proteobacteria Alteromonas macleodii 93.9 HI

R-9221 36 -Proteobacteria Sphingomonas natatoria 94.5 AC

R-9035 39 -Proteobacteria Marinobacter hydrocarbonoclasticus 95.6 AC

R-9219 41 -Proteobacteria Mesorizhobium loti 96.9 AC

Polar seas 
ARK 177 NC -Proteobacteria Roseobacter litoralis 93.8 Arctic sea 

ARK 126 B -Proteobacteria Rhizobium mediterraneum 95.0 Arctic sea 

ANT43 C -Proteobacteria Pseudomonas migulae 96.5 Antarctic sea 

ARK 104 C -Proteobacteria Pseudomonas migulae 96.5 Antarctic sea 

ARK 161 C -Proteobacteria Pseudomonas migulae 96.5 Antarctic sea 

a
 The FAA clusters are as delineated in Van Trappen et al. (2002) for strains originating from Antarctic lakes and 

in Mergaert et al. (2001) for strains from polar seas. 
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6.4 Ecological considerations

It was not our objective to compare the Antarctic lake samples from a

physicochemical point of view and the salinity of the samples was not determined.

However, information on the salinity class of the lakes is known and some

temptative reflexions about the correlation between the lakes and the salt tolerance

of these novel taxa can also be made. Generally, strains from Organic Lake

phylogenetically belong to the Proteobacteria and the Gram-positives (Bacillus),

based on fatty acid and 16S rDNA sequence analyses (see chapter 2). From the

novel taxa, only Loktanella salsilacus consists of strains from the saline/ hypersaline

lakes Organic and Ace. When looking at the physiological characteristics of these

strains, they are moderately halotolerant and are able to grow with up to 10%

NaCl. Moreover, there is a clear link between the salinity of the lakes from which

strains were isolated and their salt tolerance (see Table 6.2). Strains that are only

able to grow with up to 2% salt derive from fresh/ brackish lakes (F. micromati, F.

fryxellicola and F. psychrolimnae from lakes Grace, Hoare and Fryxell), whereas

strains that tolerate up to 5-10% NaCl come from more saline lakes (e.g. F.

gelidilacus and Loktanella vestfoldensis from lakes Ace, Pendant and Reid). The

new species from the polar seas are moderately halophilic (no growth without

NaCl) in contrast to the Antarctic lake isolates, which are moderately halotolerant

(able to grow without NaCl). A possible explanation might be their different way of

isolation by using enrichment methods with seawater for the sea isolates, compared

to the more classical isolation methods used for the Antarctic lake isolates.

From all the novel taxa, the ones that are psychrophilic (with an optimal growth

temperature of 20°C and a maximum of 25-30°C) belong to the Bacteroidetes,

whereas the psychrotrophic taxa rather belong to the Proteobacteria (with an

optimal growth temperature of 20-25°C and a maximum of 30-37°C). Several new

psychrophilic Flavobacterium species have been recently described (e.g. F.

limicola, F. omnivorum and F. xinjiangense) and a lot of strains of the Bacteroidetes

group have been characterized by their adaptability to low temperatures (Bernardet

et al., 1996; Bowman et al., 1997a). Their counterparts of the Proteobacteria seem

to grow in a broader range of temperatures and this is certainly true for the genus

Glaciecola with psychrophilic species (G. punicea, G. pallidula) isolated from sea-

ice assemblages and the recently described, mesophilic G. mesophila, isolated

from the Sea of Japan in Russia. In the MICROMAT-project, artificial mats from

Lake Fryxell were cultivated to get a first glimpse of the ecology of the mats and

evidence was found that the microbial community was cold-adapted (Buffan-Dubau



213

Concluding remarks

et al., 2001; Pringault et al., 2001). However, it remains unknown whether

psychrophiles dominate in Antarctic mat communities or whether they only

constitute a minority.

In Organic Lake, high levels of dimethylsulfide were detected and it may not

be a coincidence that the new species we described (Loktanella salsilacus) with

strains isolated from this lake, belongs to the Rhodobacter group, of which certain

members (for example Sulfitobacter) potentially play an important role in the sulphur

cycle. However for L. salsilacus, evidence for its participation in sulphur cycling

has not been found (there is no production of hydrogen sulphide) and the oxidation

of reduced sulphur still needs to be investigated.

6.5 Biotechnological applications

In the last decade, the discovery of novel structural classes of different

pharmaceuticals has declined and therefore, there is a renewed interest in

examining microorganisms for the production of these novel compounds, especially

the ones that live in unexplored ecological niches. The polar areas and their

surrounding marine sites for example, offer a unique opportunity to investigate

the unexplored microbial diversity since the extreme conditions that thrive here,

have led to the evolution of new endogenous taxa with potentially novel biochemical

adaptations. In these extreme environments the production of several metabolic

compounds against bacteria and fungi, can confer a competitive survival

advantage, just like the production of pigments offers a protection against strong

UV irradiation and the production of resistant spores in fungi may represent a

survival tool to desiccation, low temperatures and high salinities often found in

Antarctic lakes.

In the context of the MICROMAT-project, the biotechnological exploitation of

the microbial richness in microbial mats from Antarctic lakes, particularly of bacteria

and fungi, was investigated for the production of novel cold-adapted enzymes

and antimicrobial compounds of interest against human pathogens of clinical

relevance. Data about the extra-cellular hydrolytic activity of the Antarctic bacterial

and fungal isolates indicated a relatively low frequency of extra-cellular enzyme

activities. Results show that every type of enzyme activity screened for was

represented in the investigated strains. For the bacteria, amylase, cellulase,

esterase, lipase and protease activity was observed in 17%, 20%, 48%, 17% and

34% of the strains, respectively (see Table 6.4). For the fungi, esterases were
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observed in 93% of the strains, whereas lipase was found in 37% of the strains.

Production of amylase, cellulase and protease was detected in 59%, 62% and

75% of the strains, respectively. No single genus could be especially linked to

any one particular enzyme activity, due probably to the low number of strains in

the test sample (Ciciliato et al., 2001).

Table 6.4. Extra-cellular enzyme activities of Antarctic bacterial strains. 

FAA
cluster a

Tested
strains b

Positive 
strains c

Number of strains with enzyme activity: 

Amylase Cellulase Esterase Lipase Protease 

1 2 2 0 2 0 0 2

5 17 10 5 2 3 4 6

6 2 1 1 0 0 0 0

10 5 2 2 0 1 0 0

11 2 1 ND 1 ND ND ND

14 1 1 0 1 1 1 1

16 8 3 1 1 1 1 1

17 5 4 0 2 1 2 1

18 63 54 20 37 38 9 13

19 5 1 ND 1 ND ND ND

20 12 6 0 1 0 1 5

21 2 2 0 1 1 2 1

22 73 66 22 1 39 7 61

23 64 42 3 3 39 12 8

25 6 5 1 4 1 0 1

26 37 30 4 4 26 3 22

27 2 1 1 0 1 0 0

28 12 6 1 1 4 2 5

30 13 7 0 1 5 3 3

36 5 4 ND 3 1 ND 0

38 42 34 3 16 29 19 3

39 1 1 0 0 1 1 0

40 4 1 0 0 1 0 0

41 11 5 1 1 3 2 3

NC 11 5 4 2 3 0 4

Total 405 294 69 84 200 69 140

a
 FAA clusters are as delineated in Van Trappen et al. (2002).  

b
 Total number of tested strains of the FAA clusters containing positive isolates. 

c
 Number of strains that are positive for at least one enzyme. For FAA clusters 2, 3, 4, 7, 8, 9, 12, 13, 15, 

24, 29, 31, 32, 33, 34, 35 and 37 no positive isolates were found. ND: enzyme activity was not detectable 

because strains were unable to grow under standard incubation conditions.  
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Marinelli et al. (personal communication, see Annex IV) reported about the

screening of heterotrophic bacteria and fungi from Antarctic lakes for the production

of new antibiotics. They found unexpected high antimicrobial activity rates for the

Antarctic isolates (29% from fungi and 17% from bacteria) and the frequency of

antibacterial activity is particularly high against the Gram-positive Staphylococcus

aureus and the Gram-negative Escherichia coli, both among bacterial and fungal

isolates. Most of the antifungal activities against the fungi Candida albicans,

Aspergillus fumigatus and Cryptococcus neoformans were obtained from fungi.

Further studies were performed with a subset of the bacterial hits exhibiting

potential activities against bacterial human pathogens and two isolates from the

McMurdo Dry Valleys (R-7513 and R-7941) were studied in more detail. The

isolates correspond to coccoid high % G + C Gram-positives with antibacterial

activities against Bacillus subtilis, S. aureus and Enterococcus faecium and are

phylogenetically related to Arthrobacter agilis. They produce similar compounds

which belong to the cyclic thiazolyl peptide antibiotics with activities against Gram-

positive bacteria. Further work is now in progress to study the chemical and

biological profiling of the metabolites produced by the bacterial and fungal hits

and the assessment of their novelty will help to understand to which extent the

chemical diversity correlates with the taxonomic diversity, so far discovered in

these microbial communities of Antarctic lakes.

 6.6 Future perspectives

Although polar regions have been regarded as inhospitable and isolated

environments, inhabited by simple and species-poor communities, several studies

have revealed a large microbial diversity and should encourage scientists to look

in more detail at these extreme environments. With the MICROMAT-project, the

cultivated and ‘not-yet-cultivated’ microbial diversity in microbial mats from Antarctic

lakes was studied. However, our study on the bacterial diversity was exploratory

rather than thoroughly and samples of ten lakes in three different Antarctic regions

were investigated. In most cases, comparisons about the diversity in different

samples from the same lake could not be made because too low numbers of

strains were isolated for at least one sample (see chapter 2). To get a more complete

picture about this microbial diversity in Antarctic lakes, and in polar habitats in

general, much more samples would be needed and additional areas should be

investigated. More samples will also allow a better understanding of the variation
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in diversity and composition between the different lakes and may shed light on

how these communities have evolved and how dispersal affects local biodiversity.

The same is true for the polar oceans where microbial processes are beginning to

be understood and more comprehensive field studies need to be conducted to

get a better idea of the functioning of the microbial communities in these habitats,

especially in the deep-sea, mesopelagic and benthic areas, that have been virtually

ignored. The spatial and temporal variability that exists in polar environments

needs to be carefully documented before any conclusions can be drawn about

the precise role of bacteria in the food web. Recently, research about the microbial

taxonomy in polar regions has become better focused by using molecular genetic

approaches and combining culture-independent molecular techniques with the

results from culturing studies, will allow a better understanding of these microbial

communities.

Our results will not only help to understand the composition and functioning

of cold extreme environments, but also have implications for fundamental and

applied microbiology. Firstly, studying polar regions is important to have a clearer

view on the response of these ecosystems to environmental changes, especially

in the form of global warming since the polar areas act as a beacon for this change.

Indeed, many lakes of the McMurdo Dry Valleys in Antarctica have risen significantly

during the last century and evidence has been found that this phenomenon is a

direct result of an increase in summertime air temperatures. The polar regions of

the Earth, especially the Arctic, are undergoing relatively rapid environmental

changes on a global perspective, such that inhabitants of sea-ice communities for

example become threatened with extinction in this century. The particularly diverse

and rich microbial mat communities are one of the most complex ecological systems

known on the Antarctic continent and may serve as useful monitors of past and

present climatic change.

Secondly, another area of interest regarding the study of the poles is the

increasing effect of human activities on these pristine ecosystems. The potential

environmental impact of pollution from research vessels, scientific bases and

tourism on the polar communities must be carefully monitored, since the magnitude

of research activities on the poles will certainly accelerate in the near future.

Thirdly, the novel taxa found in these polar environments potentially have

new biochemical adaptations which can be used to find novel biotechnological

and pharmaceutical applications. Screening research on our bacterial isolates

has already indicated interesting activities in several strains and has lead to a
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renewed interest in the microbial exploitation of polar habitats (see section 6.5).

Finally, a better understanding of the complexity of microbial communities

under extreme conditions, might be relevant for the search for life in similar extreme

environments, like Lake Vostok (3 km underneath the ice sheet) and other planets

(for example Mars and Europa, moon of Jupiter). Polar habitats provide models

for possible extraterrestrial habitats and the study of microorganisms in these

cold, extreme environments can be used for the development of methods to locate

and identify microbial forms of life elsewhere.

In conclusion, bacterial diversity in polar seas and microbial mats from Antarctic

lakes is very high and these unique habitats harbour a wealth of potentially

endogenous, new taxa, which offer great promise for future research.
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SUMMARY

The polar regions suffer from extreme environmental conditions and as such,

these areas are some of the most inhospitable places on earth. However, the

poles harbour a wide variety of different terrestrial and aquatic biotopes, where

microorganisms are the most abundant and often the only form of life. Several

polar habitats have not been explored into detail and especially the bacterial

component of the microbial food web has been poorly investigated. Studies on

the bacterial diversity in polar habitats were performed in the framework of the

European research project MICROMAT (see Annex III), which addresses the

microbial diversity in the mat communities of Antarctic lakes, and the study of

oligotrophic bacteria in polar seas in cooperation with T. L. Tan from the Alfred

Wegener Institut für Polar- und Meeresforschung (AWI, Bremerhaven).

During the MICROMAT-project, the diversity of heterotrophic bacteria in

microbial mats from diverse freshwater and saline Antarctic lakes was investigated

and almost 800 bacterial strains were isolated from mats collected from 10 different

lakes from the McMurdo Dry Valleys (lakes Hoare and Fryxell), the Vestfold Hills

(lakes Ace, Pendant, Druzhby, Organic, Grace, and Watts) and the Larsemann

Hills (Lake Reid). Fatty acid analysis was used to obtain a first grouping of the

large amount of isolates into different clusters and 41 clusters could be delineated,

whereas 31 strains formed single branches. Representative strains were chosen

for further study by 16S rDNA sequence analysis and results revealed that they

belong to the α-, β- and γ- Proteobacteria, the high and low percent G+C Gram-

positives and to the Bacteroidetes and many sequences showed a sequence

similarity below 97% with their nearest phylogenetic neighbours, indicating that

they represent as yet unnamed new taxa.

Techniques with a higher resolution had to be applied to investigate the

genomic diversity of each fatty acid cluster in more detail and in a first part of this

study, several FAA clusters belonging to the Bacteroidetes and the α-Proteobacteria

were further investigated by repetitive extragenic palindromic (rep)-PCR genomic

fingerprinting. A wealth of different fingerprinting patterns was obtained and results
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demonstrate that the genomic diversity of heterotrophic bacteria in microbial mats

from Antarctic lakes is extremely high. Strains showing the same rep-PCR pattern

are often isolated from different lakes and even from different Antarctic regions

for the FAA clusters belonging to the Bacteroidetes, whereas for the FAA cluster

related to the α-Proteobacteria, the different rep-PCR profile types correlated

well with the geographical origin of the strains. Rep-PCR fingerprinting of the

isolates allowed a further subclustering at the genotypic level and was used to

select representatives for additional 16S rDNA sequence analysis and DNA-DNA

hybridizations.

Several of the additional 16S rDNA sequences showed similarity values of

less than 97% to the closest described species in the EMBL database, indicating

their novelty, but during the last years it has been demonstrated that strains with

more than 97% sequence similarity may show low DNA-DNA reassociation values

and thus constitute different species. This has been confirmed by our results

within the genus Flavobacterium, where isolates sharing more than 97% (up to

98.7%) 16S rDNA sequence similarity with their closest relatives, proved to be

genotypically distinct from these related species. As such, much more of these

Antarctic bacteria possibly belong to as yet undescribed new species as can be

predicted on the basis of their 16S rDNA sequence.

For the different investigated rep-clusters with identical profiles, DNA-

relatedness values were found above 70% and 16S rDNA sequence similarities

between strains of these rep-clusters were always very high (99-100%). It is clear,

through studies that compare rep-PCR genomic fingerprint analysis with DNA-

DNA relatedness methods that both techniques yield results that are in close

agreement (Nick et al., 1999; Rademaker et al., 2000). However, strains which

show a different rep-profile sometimes proved to belong to the same species,

showing hybridization values of more than 70%. These results indicate that,

although the resolution of rep-PCR fingerprinting is sometimes too high, this

technique is useful to reduce the number of strains needed for the laborious DNA-

DNA hybridization studies. Through this polyphasic taxonomic approach, different

genospecies could be delineated and phenotypic analysis resulted in a final

description of several novel species:

� Flavobacterium degerlachei (14 strains), Flavobacterium micromati

(3), Flavobacterium frigoris (23), Flavobacterium psychrolimnae (4),

Flavobacterium fryxellicola (3) and Flavobacterium gelidilacus (22).
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Summary

Strains belonging to these six novel Flavobacterium species derive from lakes

in the three different Antarctic regions.

� Gillisia limnaea. The three strains of this new genus were isolated from

Lake Fryxell in the McMurdo Dry Valleys. Phylogenetic analysis based on

16S rRNA gene sequences indicated that these strains belong to the family

Flavobacteriaceae.

� Algoriphagus antarcticus (6 strains). Strains belonging to this species

were isolated from microbial mats in lakes Reid, Fryxell and Ace. Phylogenetic

analysis based on 16S rDNA sequences indicated that these strains belong

to the family ‘Flexibacteriaceae’.

� Loktanella salsilacus (10 strains), Loktanella fryxellensis (12) and

Loktanella vestfoldensis (4). Strains of this novel genus were isolated from

lakes Ace, Pendant, Organic and Fryxell. Phylogenetic analysis based on

16S rDNA sequences placed these strains within the Rhodobacter group of

the α-subclass of the Proteobacteria.

The second part of this work handles about the diversity of oligotrophic bacteria

in polar seas and a collection of 173 bacterial strains, which were isolated after

enrichment under oligotrophic, psychrophilic conditions from Arctic (98 strains)

and Antarctic (75 strains) seawater, was available. These strains have been

previously analysed by their substrate utilization patterns using the Biolog system

(Tan, 1997; Tan & Rüger, 1999) and by fatty acid and 16S rDNA sequence analyses

(Mergaert et al., 2001b). They belong to six metabolic groups and eight FAA-

clusters could be delineated, whereas eight strains formed separate branches.

Results of the 16S rDNA sequence analysis indicate that they belong to the α-

and γ- Proteobacteria, the high percent G+C Gram-positives and to the

Bacteroidetes. Additionally, several clusters represent as yet unnamed, new taxa,

since they show less than 97% 16S rDNA sequence similarity to their nearest

named neighbours.

In the meantime, additional strains isolated using the same methods, were

included in fatty acid analysis during this study and the genomic diversity of 21

strains was further investigated by rep-PCR genomic fingerprinting. Using a

polyphasic taxonomic approach, two novel species within the γ- Proteobacteria
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could be described:

� Alteromonas stellipolaris. Seven Antarctic strains could be assigned to

a novel species within the genus Alteromonas and buds can be produced on

mother and daughter cells and on prosthecae. Prostheca formation is peritrich

and prosthecae can be branched.

� Glaciecola polaris. Two Arctic strains constitute a new species within the

genus Glaciecola and buds can be produced on mother cells and on

prosthecae. Branch formation of prosthecae occurs.

Overall, the bacterial diversity in polar seas and microbial mats from Antarctic

lakes is very high and these unique habitats harbour a wealth of endogenous,

new taxa, with several potential industrial applications. In the context of the

MICROMAT-project, the production of novel cold-adapted enzymes and

antimicrobial compounds by bacterial strains was investigated and unexpected

high antimicrobial activity rates were found for the Antarctic isolates.
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In de Noord- (Arctica) en Zuidpool (Antarctica) heersen extreme omgevings-

condities en bijgevolg behoren deze regio’s tot de meest onbewoonbare plaatsen

op aarde. De poolgebieden bezitten echter wel een grote variëteit aan verschillende

terrestrische en aquatische habitats, waar micro-organismen de meest abundante

en vaak enige levensvorm uitmaken. Verschillende polaire habitats werden nog

niet in detail bestudeerd en vooral de bacteriële component van de microbiële

voedselketen is slechts in beperkte mate onderzocht. Studies over de bacteriële

diversiteit in de poolgebieden werden uitgevoerd in het kader van het Europees

Onderzoeksproject MICROMAT (zie Annex III), dat zich toespitste op de microbiële

diversiteit in de matgemeenschappen van Antarctische meren, en de studie over

oligotrofe bacteriën in poolzeeën in samenwerking met T. L. Tan van het Alfred

Wegener Institut für Polar- und Meeresforschung (AWI, Bremerhaven).

Tijdens het MICROMAT-project werd de diversiteit van heterotrofe bacteriën

in microbiële matten van verschillende Antarctische zoetwater- en zoute meren

onderzocht en bijna 800 bacteriële stammen werden geïsoleerd uit matten,

verzameld vanuit 10 verschillende meren van de McMurdo Dry Valleys (de meren

Hoare en Fryxell), de Vestfold Hills (de meren Ace, Pendant, Druzhby, Organic,

Grace en Watts) en de Larsemann Hills (het meer Reid). Vetzuuranalyse werd

gebruikt om een eerste clustering te bekomen van het grote aantal isolaten en 41

clusters konden afgebakend worden, terwijl 31 stammen apart vielen.

Representatieve stammen werden gekozen om verder te bestuderen aan de hand

van 16S rDNA sequentie-analyse en de resultaten tonen aan dat ze tot de α-, β-

en γ- Proteobacteria, de hoog- en laag-percent G+C Gram-positieven en tot de

Bacteroidetes behoren. Verschillende sequenties vertonen een lagere similariteit

dan 97% met hun nauwste fylogenetische verwanten en dit toont aan dat ze tot

nieuwe, nog niet beschreven taxa behoren.

Technieken met een hogere resolutie werden gebruikt om de genomische

diversiteit van elk vetzuurcluster in detail te bestuderen en in een eerste deel van

deze studie werden verschillende vetzuurclusters die behoren tot de Bacteroidetes
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en de α-Proteobacteria verder onderzocht aan de hand van de repetitieve

extragenische palindromische (rep)-PCR genomische fingerprintingtechniek. Een

groot aantal verschillende fingerprintingpatronen werd bekomen en de resultaten

tonen aan dat de genomische diversiteit van heterotrofe bacteriën in microbiële

matten van Antarctische meren uitzonderlijk groot is. Stammen die eenzelfde rep-

patroon vertonen werden vaak geïsoleerd uit verschillende meren en zelfs uit

verschillende Antarctische regio’s voor de vetzuurclusters die behoren tot de

Bacteroidetes, terwijl voor het vetzuurcluster behorende tot de α-Proteobacteria,

de verschillende rep-profielen goed overeenkomen met de geografische oorsprong

van de stammen. Rep-PCR-fingerprinting van de isolaten liet een verdere

subclustering op genotypisch niveau toe en werd gebruikt om representatieven

te selecteren voor additionele 16S rDNA sequentie-analyse en DNA-DNA

hybridisaties.

Verschillende van de additionele 16S rDNA sequenties vertonen een

similariteit lager dan 97% met de meest verwante species in de EMBL-databank,

wat er op wijst dat ze tot nieuwe taxa behoren, maar gedurende de laatste jaren

werd aangetoond dat stammen met meer dan 97% sequentiesimilariteit eveneens

lage DNA-DNA reassociatiewaarden kunnen vertonen en bijgevolg tot

verschillende species behoren. Dit werd bevestigd door onze resultaten binnen

het genus Flavobacterium, waar isolaten met meer dan 97% (tot 98.7%) 16S

rDNA sequentiesimilariteit met hun nauwste verwanten, tot genotypisch

verschillende species bleken te behoren. Bijgevolg kunnen veel meer van deze

Antarctische bacteriën mogelijk nog niet beschreven, nieuwe species vormen,

dan kan voorspeld worden op basis van hun 16S rDNA sequentie.

Voor de verschillende onderzochte rep-clusters met identieke profielen,

werden DNA-DNA verwantschapswaarden boven 70% bekomen en 16S rDNA

sequentiesimilariteiten tussen stammen van deze rep-clusters waren altijd zeer

hoog (99-100%). Het is duidelijk vanuit studies die rep-PCR genomische

fingerprintanalyse vergelijken met DNA-DNA verwantschapsmethoden, dat beide

technieken resultaten opleveren die goed overeenstemmen (Nick et al., 1999;

Rademaker et al., 2000). Maar stammen die een verschillend rep-profiel vertonen,

bleken soms tot hetzelfde species te behoren met hybridisatiewaarden van meer

dan 70%. Deze resultaten tonen aan dat, hoewel de resolutie van rep-PCR

fingerprinting soms te hoog is, deze techniek bruikbaar is om het aantal stammen,

nodig voor de arbeidsintensieve DNA-DNA hybridisaties, te reduceren. Door deze

polyfasische taxonomische aanpak konden verschillende genospecies afgebakend
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worden en fenotypische analyses leidden tot een finale beschrijving van

verschillende nieuwe species:

� Flavobacterium degerlachei (14 stammen), Flavobacterium micromati

(3), Flavobacterium frigoris (23), Flavobacterium psychrolimnae (4),

Flavobacterium fryxellicola (3) and Flavobacterium gelidilacus (22).

Stammen behorende tot deze zes nieuwe Flavobacterium species komen uit

meren in de drie verschillende Antarctische regio’s.

� Gillisia limnaea. De drie stammen van dit nieuwe genus werden geïsoleerd

uit het meer Fryxell in de McMurdo Dry Valleys. Phylogenetische analyse

gebaseerd op 16S rDNA sequenties toont aan dat deze stammen tot de familie

van de Flavobacteriaceae behoren.

� Algoriphagus antarcticus (6 stammen). Stammen van dit species werden

geïsoleerd uit microbiële matten van de meren Reid, Fryxell en Ace.

Phylogenetische analyse gebaseerd op 16S rDNA sequenties toont aan dat

deze stammen tot de famile van de ‘Flexibacteriaceae’ behoren.

� Loktanella salsilacus (10 stammen), Loktanella fryxellensis (12) and

Loktanella vestfoldensis (4). Stammen van dit nieuwe genus werden

geïsoleerd uit de meren Ace, Pendant, Organic en Fryxell. Phylogenetische

analyse gebaseerd op 16S rDNA sequenties plaatst deze stammen binnen

de Rhodobacter groep van de α-subklasse van de Proteobacteria.

Het tweede deel van dit werk behandelt de diversiteit van oligotrofe bacteriën

in polaire zeeën en een verzameling van 173 bacteriële stammen, die geïsoleerd

werden na aanrijking onder oligotrofe, psychrofiele condities uit Arctisch (98

stammen) en Antarctisch (75 stammen) zeewater, was beschikbaar. Deze stammen

werden eerder geanalyseerd aan de hand van hun Biolog-patronen waarbij het

gebruik van verschillende substraten werd uitgetest (Tan, 1997; Tan & Rüger,

1999) en aan de hand van vetzuur- en 16S rDNA sequentie-analyses (Mergaert

et al., 2001b). Ze behoren tot zes metabolische groepen en acht vetzuurclusters

konden afgebakend worden, terwijl acht stammen apart vielen. De resultaten van

de 16S rDNA sequentie-analyse tonen aan dat ze tot de α- en γ- Proteobacteria,

de hoog-percent G+C Gram-positieven en tot de Bacteroidetes behoren.
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Verschillende clusters vertegenwoordigen nog niet beschreven, nieuwe taxa,

aangezien ze een 16S rDNA sequentiesimilariteit van minder dan 97% met hun

nauwste verwanten vertonen.

Intussen werden additionele stammen geïsoleerd aan de hand van dezelfde

methoden en deze werden ingesloten in vetzuuranalyse tijdens deze studie en

de genomische diversiteit van 21 stammen werd verder onderzocht aan de hand

van rep-PCR genomische fingerprinting. Aan de hand van deze polyfasische

taxonomische aanpak konden twee nieuwe species behorende tot de γ-

Proteobacteria beschreven worden:

� Alteromonas stellipolaris. Zeven Antarctische stammen konden

toegekend worden aan een nieuw species van het genus Alteromonas en

knoppen kunnen gevormd worden op moeder- en dochtercellen en op

prostheca. De vorming van prostheca is peritrich en prostheca kunnen vertakt

zijn.

� Glaciecola polaris. Twee Arctische stammen behoren tot een nieuw

species binnen het genus Glaciecola en knoppen kunnen gevormd worden

op moedercellen en op prostheca. Vertakkingen op prostheca kunnen

voorkomen.

De bacteriële diversiteit in poolzeeën en microbiële matten van Antarctische

meren is zeer groot en deze unieke habitats bezitten een enorme rijkdom aan

endogene, nieuwe taxa, met verschillende potentiële industriële toepassingen. In

de context van het MICROMAT-project, werd de produktie van nieuwe, aan koude

aangepaste enzymes en antimicrobiële componenten door bacteriële stammen

onderzocht en een onverwacht hoge antimicrobiële activiteit werd aangetoond

voor deze Antarctische isolaten.
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being pursued during this EC Biotech project : 

1. The biodiversity of mat communities from diverse freshwater and saline 
lakes will be studied. For the cultivated biodiversity, classical and novel 

isolation methods will be used. For example the Benthic Gradient Chamber will 

be used to mimic some of the gradients present in the mats with the purpose to 

enrich for some organisms and try to maintain the mats. Phenotypic and 

genotypic characteristics of the strains will be determined. Modern molecular 

strategies, based on SSU rDNA will be used for genotypic characterisation of all 

types of microorganisms, in order to establish a standard taxonomic approach. 

The diversity of pigments and light-protective compounds will be assessed. In 

parallel to the isolation of strains, the ‘yet-to-be’ cultivated biodiversity of all 

groups will be estimated for representative samples using molecular approaches

based on rDNA sequences and involving clone libraries and DGGE-like 

techniques.  

2. Biotechnological use of the biodiversity. Isolated strains of bacteria, fungi 

and protists will be screened for novel cold-tolerant enzymes and bio-active 

compounds. The nucleic acids extracted from the samples will also be submitted 

to screening for genes coding for proteases, cellulases and peptide synthetases. 

Duration 01/11/1998- 24/02/2001 
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BOF-project (Bijzonder Onderzoeksfonds, Universiteit Gent)

Title Prokaryotische diversiteit in poolzeeën en Antarctische meren 

Promotor Prof. Dr. Ir. J. Swings, Vakgroep Biochemie, Fysiologie & Microbiologie, Universiteit 

Gent

Contact person Dr. J. Mergaert, Vakgroep Biochemie, Fysiologie & Microbiologie, Universiteit Gent 

Description De onderzoeksgroep is betrokken bij het taxonomisch onderzoek van polaire 

prokaryoten via twee kanalen, enerzijds door haar deelname aan het Europees 

BIOTECH project “Biodiversity of microbial mats in Antarctica“, (“MICROMAT”; 01-11-

98 tot 30-10-00; http://www.nerc-bas.ac.uk/public/mlsd/micromat/), en anderzijds door 

haar samenwerking met T. L. Tan van het Alfred Wegener Institut für Polar- und 

Meeresforschung (“AWI”, Bremerhaven). Met het MICROMAT project voert de 

onderzoeksgroep een, zij het eerder verkennend, onderzoek uit naar de biodiversiteit 

van heterotrofe bacteriën uit microbiële matten die groeien in Antarctische meren, en 

zij beschikt over een unieke verzameling van zo’n 500 bacteriënkulturen uit 

microbiële matten (uit 10 verschillende Antarctische meren uit drie regio’s) die tijdens 

verschillende expedities door de British Antarctic Survey en de Australian Antarctic 

Division werden verzameld. Deze matstalen werden gecryopreserveerd in het 

laboratorium en zijn beschikbaar voor verder onderzoek. In de Arctische en 

Antarctische zeeën zijn bacteriën actief onder oligotrofe, psychrotrofe 

omstandigheden, als plankton (Tan, 1997; Tan & Rüger, 1999), of in zee-ijs (Bowman 

et al., 1997a), die slechts na langdurige aanrijking en adaptatie kunnen geïsoleerd 

worden. Het AWI bezit een unieke verzameling van zo’n 500 facultatief oligotrofe 

prokaryotische isolaten die aangerijkt en geadapteerd werden uit waterstalen 

genomen tijdens verschillende expedities van het onderzoeksschip POLARSTERN in 

Arctische en Antarctische zeeën, en de onderzoeksgroep heeft een 150-tal stammen 

onderzocht in het kader van een stagescriptie. Uit onze voorlopige resultaten 

(Verhelst, 1999) en deze van Tan ( 1997) en Tan & Rüger (1999) blijkt dat ze 

behoren tot potentieel nieuwe taxa. 

De doelstelling van het beoogde project is de biodiversiteit te bestuderen van polaire 

prokaryoten door isolatie en polyfasische taxonomische analyse (Vandamme et al., 

1996). Verschillende indices van biodiversiteit zullen hierbij onderzocht worden: 

Arctische versus Antarctische zeeën, isolaten uit zeeën versus isolaten uit 

Antarctische microbiële matten, vergelijking van matten uit verschillende Antarctische 

regio’s, physicochemische diversiteit van de meren, nieuwe isolaten versus reeds 

bekende prokaryoten uit Antarctica. 

Duration 01/01/2001- 31/12/2003 
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Biotechnological exploitation of heterotrophic
bacteria and filamentous fungi isolated from

benthic mats of Antarctic lakes

Flavia Marinelli, Mara Brunati, Federica Sponga, Ismaela Ciciliato, Daniele

Losi, Stefanie Van Trappen, Joris Mergaert, Jean Swings, Elke Göttlich, Sybren

de Hoog, Jose Luis Rojas and Olga Genilloud

Written for Microbial Genetic Resources and Biodiscovery,

eds. J. Swings en I. Kurtboke

Antarctic lakes represent a unique undisturbed environment for exploring microbial

diversity. The MICROMAT project, an academic and industrial joint research effort

funded by the EC to study microbial mats growing in Antarctic lakes, has shown

the enormous richness of taxa inhabiting these ecosystems and their

biotechnological potential. 723 heterotrophic bacteria and 158 fungi were isolated

from 13 lakes in the McMurdo Dry Valleys, the Vestfold Hills and the Larsemann

Hills and screened for the production of antimicrobial compounds of interest against

human pathogens of clinical relevance. High and unexpected antimicrobial activity

rates were obtained from these Antarctic isolates (29 % from fungi and 17% from

bacteria). The frequency of antibacterial activity is particularly high against the

Gram-positive S. aureus and the Gram-negative E. coli both among bacterial and

fungal isolates. Most antifungal activities against the fungi C. albicans, A. fumigatus

and C. neoformans were obtained from fungi.
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The MICROMAT project

Natural products have been a critically important source of clinically relevant

therapeutic molecules. However, the discovery rate of novel structural classes of

antimicrobial molecules has declined in the last decade (MacNeil et al. 2001).

Recent progress in molecular microbial ecology shows that the extent of microbial

diversity in nature is far greater than previously thought, as the number of known

species is less than 1 % (Rondon et al. 1999). A renewed interest in examining

microorganisms for novel pharmaceuticals has stimulated the development of

integrated approaches combining specific isolation methods and the access to

geographically diverse sample sources and to different ecological niches (Peláez

and Genilloud, 2002). Metabolic potential is also being exploited by cloning

microbial genes in environmental libraries without undergoing the step of culturing

microbes (MacNeil et al. 2001).

In this context, the academic and industrial joint research of the EC project

MICROMAT (http://www.nerc-bas.ac.uk/public/mlsd/micromat) has focused on the

study of the culturable and uncultivable – or, better, the “not-yet-culturable” –

diversity in microbial mats occurring in Antarctic lakes. The Antarctic continent

and its surrounding marine sites offer a unique opportunity to investigate an

unexplored microbial biodiversity (Bernan et al. 1997; Brambilla et al. 2001).

Antarctica is in fact characterized by its geographical and climatic isolation. The

extreme climate has led to evolution of novel biochemical adaptations to severe

low temperatures and the possibility of indigenous species. Moreover most of the

continent has experienced little or no anthropogenic influence. Antarctic lakes

include both freshwater and hyper-saline systems and some of them are covered

by perennial ice (Wharton et al. 1993; Doran et al. 1994). Their benthic areas

receive sufficient solar radiation to be covered by microbial mats. These benthic

mats have accumulated for thousands of years and are virtually undisturbed due

to the particular climatic conditions and the absence of higher metazoans. Results

from the MICROMAT project have pointed out the extremely high microbial diversity

in mats where numerous novel phylotypes have and are being described (Van

Trappen et al. 2002; Van Trappen et al. 2003; Tindall et al. 2000; Brambilla et al.

2001; and unpublished results).
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Sampling

Mats were sampled from 13 lakes of different ages and physico-chemical

characteristics located in three distinct regions of the Antarctic continent (Fig.1).

The Larsemann Hills are a series of granite and gneiss peninsulas into Prydz Bay

(Eastern Antarctica) with fjords and lakes directly (currents, inlets) or indirectly

(sea spray) subjected to marine influences; most of them thaw for up to 2 months

in summer and during this time are subjected to considerable wind driven mixing.

The Vestfold Hills constitute a low-lying area situated South of the Larsemann

Hills, where hundreds of water bodies are found in the valleys, with salinities

ranging from fresh to hypersaline (ten times seawater) (Bowman et al. 2000). In

contrast to the Larsemann and Vestfold Hills, the lakes in the McMurdo Dry Valleys

of South Victoria Land are very old (hundreds of thousand of years). They do not

loose their ice-cover and thus lack any turbulence. They vary from dilute meltwaters

to hypersaline lakes (Wharton et al. 1993; Doran et al. 1994; Laybourn-Parry et

Figure 1. Map of the Antarctic continent showing the three sampling fields.
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al. 1997).

Samples of the mats were taken either at a water depth of 3-4 m or from the

littoral zone of the lakes (Van Trappen et al., 2002). The diversity of bacteria,

cyanobacteria, algae, protozoans and fungi in the microbial mat samples of several

Antarctic lakes was studied by conventional (direct microscopy, cultivation) and

molecular methods (clone libraries and DGGE based on the SSU rDNA from the

samples).

More than 1500 strains were isolated and part of them was screened for the

production of new cold-adapted enzymes and antimicrobial compounds. In this

report we describe our combined efforts to screen 158 filamentous fungi and 723

heterotrophic bacteria isolated from mats collected in five lakes in the Larsemann

Hills, six in the Vestfold Hills and two in the McMurdo Dry Valleys. Our main

objective was to assess the potential of this microbial diversity with the aim of

discovering new anti-infective producers among these Antarctic microorganisms.

Diversity of Antarctic isolates

Table 1 and Table 2 show the geographical distribution and the lake of origin

of the bacteria and fungi isolated from thirteen lakes located in the three distinct

Antarctic regions sampled, i.e. Larsemann Hills, Vestfold Hills and McMurdo Dry

Valley. Taxonomical diversity among 746 Antarctic bacterial isolates, including

the strains (723) tested in this work, was previously studied by fatty acid clustering

analysis and by 16S rDNA sequencing of cluster representative strains: a

dendrogram with 41 different fatty acid clusters and 31 strains forming single

branches was described by Van Trappen et al. (2002). Table 1 reports the

taxonomical distribution for 675 of 723 bacterial strains tested in this paper. The

675 isolates were distributed in all the 41 different fatty acid clusters previously

identified and they also included 28 strains forming single branches. Fatty acid

profiles on the rest of the screened strains (48 out of 723, not listed in Table 1)

were not interpretable due to their low resolution or their strain cultivation conditions

were unsuitable for general comparison (data not shown). The clustered bacteria

were phylogenetically affiliated on the basis of their 16S rDNA sequences with

several lineages in the alpha, beta and gamma subclasses of the Proteobacteria,

the Bacteroidetes, and the high and low percentage G+C Gram-positives. As shown

in Table 1, most clusters (28) contained strains (614) isolated from different lakes,

and often from different regions, suggesting that taxa showing these fatty acid
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compositions might be ubiquitous in Antarctic lakes.

The diversity of fungal Antarctic strains was determined on the basis of the

taxonomical description provided by Göttlich et al. (2003). Table 2 shows the

taxonomic distribution of fungi isolated from the three geographic areas. Thelebolus

sp. was the predominant species in all the three regions sampled. Thelebolus

was almost the only genus recovered from the old and isolated meromictic lakes

of McMurdo Dry Valleys. Members of the most widely distributed genera such as

Penicillium, Aspergillus, Phoma, Cladosporium, Curvularia were isolated in the

Larsemann and Vestfold Hills areas. In terms of distribution of the isolated fungi

among different genera, lakes in the Vestfold Hills turned out to be the most

productive, as some representatives of genera Botrytis, Beauveria, Acremonium,

Arthrinium, Phialophora, Geomyces, Alternaria were isolated only from these

sources.

Cultivation of Antarctic isolates

The cultivation of Antarctic heterotrophic bacteria and filamentous fungi was

optimized in terms of medium composition and incubation temperature by a

screening of different nutrients in pre-culture and fermentative media and by varying

growth and production temperatures (data not shown). Major changes in the

fermentation conditions were the introduction of less concentrated media and the

addition of marine salts, which are common adaptations of classical medium

composition to the cultivation of marine microbes (Sponga et al. 1999; Bernan et

al. 1997). About half of the bacteria grew better in marine derived media whereas

for the other half rich classical media were suitable. In any cultivation condition

used, all the bacteria and fungi produced a high biomass. When growth was

monitored at different temperatures (4°C, 10°C, 22°C, 28°C), optimal temperatures

were in the range of 22 to 28°C, suggesting that all these isolates are

psychrotolerant rather than psychrophilic. However, Thelebolus strains produced

more biomass around 20°C but sporulated at 10°C, indicating true psychrophily.
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Antimicrobial activity

A total of 6,348 and 1,422 samples were prepared from the fermentation of

the 723 bacteria and 158 fungi, respectively. Up to four different sample preparation

methods - three based on the extraction by/with solvents with different polarity

and another one consisting in the adsorption/elution to polystyrenic resin - were

used to widen/favour the recovery of secondary metabolites with different molecular

weights and lipo/hydrophilic properties/polarities. These samples were tested for

growth inhibition against a panel of human pathogenic microorganisms

(Staphylococcus aureus, Enterococcus faecium, Escherichia coli, Candida albicans,

Aspergillus fumigatus and Cryptococcus neoformans) either in solid or liquid assay

formats.

Table 3 reports the frequency of microbiological activity against each test

pathogen among the heterotrophic bacteria. From 124 bacteria out of 723 that

were active, 110 produced only antibacterial activities and 14 showed some

inhibition of the tested fungal strains. The frequency of antibacterial activity was

normal against the Gram-positive S. aureus (13.2%) and high against the Gram-

negative E. coli (7.4%). The active strains were distributed among 21 clusters out

of the 41 above described and in several lineages in the alpha, beta and gamma

subclasses of the Proteobacteria, the Bacteroidetes, and the high and low

percentage G+C Gram-positives. Almost 64 % of the active bacteria (79 isolates)

were members of the 6 major fatty acid clusters (5, 22, 23, 26, 30, 41) that contained

isolates widely distributed in the different sampling areas (see Table 1). In contrast,

39 active cultures were associated to 15 minor clusters; 4 strains formed single

branches and 2 belonged to the not clustered group.

Further studies were performed with a subset of these strains (hits) that

exhibited some relatively potent antibacterial activities against bacterial human

pathogens (Table 4). None of the selected strains showed antifungal activity in

the production conditions tested (data not shown). Two isolates (R-7513 and R-

7941) obtained in the McMurdo Dry Valleys, specifically in the lakes Fryxell and

Hoare, were studied more in detail. The isolates corresponded to coccoid high

%GC Gram positives, which exhibited antibacterial activity against B. subtilis, S.

aureus and E. faecium. Both strains, although isolated in different lakes, turned

out to have similar fatty acid composition and 99.6 % 16SrDNA sequence similarity

to Arthrobacter agilis. They apparently produced similar compounds. Preliminary

mass spectrometry of purified extracts suggests these compounds to be cyclic
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thiazolyl peptide antibiotics with similar antibacterial spectrum of activity against

Gram positive bacteria (Z. Guan, personal communication). The other isolate (R-

7687) from Lake Hoare in the McMurdo Dry Valleys belonged to the beta-

Proteobacteria and differs from the previous ones for the activity on E. coli. Seven

other isolates, six from Lake Reid and one from Pendant, were also particularly

active against Gram-positive and Gram-negative pathogens. Three of them are

similar to Pseudomonas orientalis, whereas the others belonged to taxa isolated

from cold, aquatic environments such as Shewanella baltica and Psychrobacter

glacincola.

Table 5 shows the distribution of the antimicrobial activities among filamentous

fungi belonging to different species, genera and orders. The frequency of

antimicrobial activities was more than 29 % in total. As in the case of bacteria, the

frequency of antibacterial activity was high against the Gram-positive S. aureus

(14 %) and the Gram-negative E. coli (10 %). In contrast to bacteria, high antifungal

activities against C. albicans, A. fumigatus and C. neoformans were obtained

from these fungal isolates. It is worth noting that although Thelebolus was the

taxon most frequently isolated (71 strains tested originated from nine lakes in the

three different areas), it was one of the less productive (only 11 active isolates, 15

%) in contrast to Penicillium and Cladosporium, two of the most active groups that

were isolated from the Vestfold Hills and Larsemann Hills (see Table 2). Penicillium

spp. were among the most active species with a rate of 93 % active strains, while

lower percentages were obtained with Cladosporium spp. (35 %), two genera

where comparable numbers of strains were tested.

Since many fungi are good producers of toxins, a cytotoxicity test based on

the inhibition of labeled thymidine uptake in HeLa was introduced to select

molecules not toxic to mammalian cells among those active extracts coming from

fungi. Two thirds of the fungal extracts showed a high cytotoxicity against eukaryotic

cells (data not shown). Table 6 reports the cytotoxicity test results and the

antimicrobial spectrum of activity (expressed as end point inhibition) for eight

selected fungi (hits). Aspergillus clavatus (IWW447) showed potent antibacterial

and antifungal properties associated with a marked cytotoxic effect. This spectrum

is typical of toxins produced by aspergilli and other fungi. The five selected

Penicillium strains showed different antimicrobial profiles associated with lower

values in the cytotoxicity test, demonstrating that although isolated in the same

region, they may produce diverse metabolic compounds. More interesting for the

discovery of new specifically acting anti-infectives are those metabolites showing
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lower but more specific and not cytotoxic activities, such as the antifungal

characteristics of Beauveria (IWW1017) or the specific E. coli inhibition effect of

Cladosporium extract (IWW1019).

Discussion and general considerations

Although Antarctic lakes have been for a long time considered as inhospitable

and isolated environments inhabited by species-poor communities, studies funded

by the EC project MICROMAT revealed the presence of a large microbial diversity,

especially for prokaryotes. Results from this interdisciplinary and polyphasic

approach, of which part has been published up to now (Van Trappen et al. 2002;

Van Trappen et al. 2003; Tindall et al. 2000; Brambilla et al. 2001; Göttlich et al.

2003) showed that bacterial diversity in the sampled mats from Antarctic lakes is

extremely high and novel phylotypes were discovered. The observed lower

eukaryotic diversity was indeed dominated by a few but highly specialized and

often endemic taxa. The overall evidence supported the strategy for industrial

screening of these fresh isolates as unexplored source of biotechnologically

valuable bioactive molecules.

The main purpose of the studies reported in this paper was to evaluate and

compare the ability of Antarctic bacteria and fungi to produce anti-microbial

molecules. The frequency of the antimicrobial activities produced by these isolates

was considered to be an indicator of their capability to produce anti-infective

procedures already in place at Biosearch Italia S.p.A. (now Vicuron Pharma-

ceuticals) and Merck Research Centers and the resulting frequencies of

antimicrobial activities were thus comparable with those routinely achieved by “in

house” screening of thousands actinomycetes and fungi isolated from different

sources.

Antarctic bacteria have been extensively isolated by using enrichment

methods under oligotrophic and psychrotrophic conditions, from freshwater lakes,

saline and hypersaline lakes and ponds, soil, sandstone and sea ice (Friedmann

1993; Tan et al. 1996; Tan et al. 1999; Bowman et al. 1997; Bowman et al. 2000;

Gosink and Staley 1995; Mergaert et al. 2001b; Murray 1998; Tindall et al. 2000;

Brambilla et al. 2001; Staley and Gosink 1999; Wery et al. 2003). Several new

species have been isolated from Antarctic benthic microbial communities, e.g.

Flavobacterium gelidilacus (Van Trappen et al. 2003), Flavobacterium degerlachei,
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Flavobacterium frigoris, Flavobacterium micromati (Van Trappen et al. 2004a),

Gillisia limnaea (Van Trappen et al. 2004b), Flavobacterium tegetincola

(McCammon and Bowman 2000), Arthrobacter flavus (Reddy et al 2000),

Rhodoferax antarcticus (Madigan et al. 2000), and the anaerobes Psychromonas

antarcticus (Mountfort et al. 1998) and Clostridium vincentii (Mountfort et al. 1997).

Indeed, only few studies were devoted to the high-throughput cultivation and

screening of Antarctic microbial isolates (Ashbolt 1990; Bull et al. 2000). In this

work, the 723 Antarctic bacteria belonging to 41 fatty acid clusters and 28 single

branches and phylogenetically affiliated with 24 lineages in the alpha, beta and

gamma Proteobacteria, the Bacteroidetes, and the high and low percentage G+C

Gram-positives, were massively cultivated and screened for their antimicrobial

activities. The nearest validly named phylogenetic neighbours of these strains

often belonged to taxa isolated from cold, aquatic environments, such as

Shewanella baltica, Psychrobacter glacincola, Sulfitobacter pontiacus,

Flavobacterium frigidarium, Flavobacterium gillisiae, Salegentibacter salegens,

Gelidibacter algens. Sequences from many strains showed pairwise sequence

similarities of less than 97 % to their nearest validly named neighbours (Van

Trappen et al. 2002), indicating that they represent taxa that have not been

sequenced yet or as yet unnamed new taxa, related to Alteromonas, Bacillus,

Clavibacter, Cyclobacterium, Flavobacterium, Marinobacter, Mesorhizobium,

Microbacterium, Pseudomonas, Salegentibacter, Sphingomonas and Sulfitobacter.

These results on the taxonomic diversity and novelty of these isolates supported

that they constitute a unique biotechnologically exploitable collection.

From the screening results we observed a high percentage of antibacterial

activities (ca. 15 %) that contrasts with the few producers of antifungal metabolites

(almost 2 %). These frequencies were comparable to the ones observed in the

screening of soil actinomycetes, which are considered the most prolific and versatile

microbial source of antibiotics (Waksman and Lechevalier 1962; Axelrood et al.

1996; Lazzarini et al. 2000; Sponga et al. 1999), supporting the idea that mats

from these different lakes contain a rich prokaryotic diversity where the antibiotic

production can confer survival advantage. This is indeed not surprising if we

consider that these complex microbial communities dominated by prokaryotes

have accumulated during thousands of years and bacteria were confronted with

extreme conditions, such as low temperatures, freezing-thawing cycles, UV-

irradiation, desiccation and varying light conditions, salinities and nutrient

concentrations. As a consequence they have been under a high selective pressure
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and may belong to indigenous new taxa with potentially novel biochemical

adaptations.

Distribution of fungi in Antarctica was previously studied mainly in

environments such as mosses, lichen communities or in relation to the distribution

of “hosts” such as birds, penguins and invertebrates (Del Frate and Caretta 1990;

Tosi et al. 2002; Vishniac 1993). Most of the filamentous fungi and yeasts described

by these authors are cosmopolitan and cold tolerant, but some such as Thelebolus

appear to be indigenous species (Del Frate and Caretta 1990). Our investigations

(Göttlich et al. 2003) revealed that benthic mats are dominated by a relatively

small number of fungal species, given the high diversity in eubacteria in the same

lakes and compared to the number of species known in the fungal kingdom. None

of the filamentous fungi proved to be truly psychrophilic, except Thelebolus strains.

They often produced markedly pigmented mycelia, probably to protect themselves

from strong UV irradiation (Hughes et al. 2003). Also the production of abundant

and resistant spores typical of some of these genera such as Cladosporium and

Geomyces may represent a survival tool to desiccation, to low temperatures or to

the presence of high saline concentrations such as it occurs in the lakes of the

Vestfold Hills. Finally some species such as Thelebolus and Geomyces previously

isolated by other authors from Antarctic soils or other material such as mosses

(Del Frate and Caretta 1990; Tosi et al. 2002) showed a high tolerance to low

temperatures.

The frequency of antibacterial and antifungal activities detected among fungal

isolates (29 % active isolates) was higher than the one usually detected in the

screening of other ecological groups of fungal isolates (Suay et al. 2000, Sponga

et al. 1999). Valuable activities were noted against C. albicans, C. neoformans or

A. fumigatus and it is interesting to note that many yeast-like organisms were

isolated from Antarctic samples: they often were true psychrophiles and among

them were the most frequently isolated genera such as Candida and particularly

Cryptococcus (E. Göttlich and G.S.de Hoog, personal communication; Tosi et al.

2002). Possessing metabolic potential to produce active molecules against yeasts

can confer a competitive advantage to local filamentous fungi, which turned out to

be a further appealing aspect for the biotechnological exploitation of such isolates.

Further work is now in progress on the chemical and biological profiling of

metabolites produced by the selected “hits” among these Antarctic fungi and

bacteria, which show an interesting antimicrobial spectrum of activities. The
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assessment of their novelty will help to understand to which extent chemical

diversity correlates with the taxonomical diversity so far discovered in these

Antarctic benthic microbial communities.
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Origin of bacterial isolates from Arctic and
Antarctic seas
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Figure 1. Bacteriological stations in Fram

Strait and the Western Greenland Sea

(from Tan & Rüger, 1991).

Table 1. Origin of bacterial strains from the Western Greenland Sea (from

Tan, 1997).
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Figure 2. Cruise track of RV POLARSTERN during Leg ANT-VIII/6 and positions

of bacteriological stations (from Tan et al., 1999).

Table 2. Origin of oligotrophic Antarctic strains from enrichment cultures in

dialysis chambers (from Tan & Rüger, 1999).
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Dendrograms of Antarctic lake and polar sea
isolates
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24 (4), (5), (1)25 (8), F NC

23 (1) E F, (5), (2)

Figure 1. Abridged dendrogram obtained by numerical analysis of the fatty acid compositions of

all Antarctic lake and polar sea isolates (975) using the Canberra metric similarity coefficient

(Scanb) and UPGMA clustering. Clusters were delineated at a cut-off value of 80% and numbered

as described in Van Trappen et al. (2002) and Mergaert et al. (2001b). Number of strains per

cluster are indicated between brackets.
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Figure 2. Neighbour-joining dendrogram

based on all 16S rDNA sequences of the

Antarctic lake and polar sea isolates

belonging to the Proteobacteria using

Bacteroides fragilis as an outgroup. Bar,

20% sequence divergence. Between

brackets: the clusters as delineated in Van

Trappen et al. (2002) and Mergaert et al.

(2001b). In bold face: the novel taxa

described in this study.
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Annex VI

Figure 3. Neighbour-joining dendrogram

based on all 16S rDNA sequences of the

Antarctic lake and polar sea isolates

belonging to the Bacteroidetes and Gram-

positives using Shewanella baltica as an

outgroup. Bar, 30% sequence divergence.

Between brackets: the clusters as

delineated in Van Trappen et al. (2002) and

Mergaert et al. (2001b). In bold face: the

novel taxa described in this study.
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