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‘If Antarctica were music it would be Mozart. Art, and it would be
Michelangelo. Literature, and it would be Shakespeare. And yet it is
something even greater; the only place on earth that is still as it should be.
May we never tame it.’

Andrew Denton
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PREFACE

1. The polar regions

The earth’s position within the solar system, its shape, orientation and rotation
determine the climate of our planet. The global thermal budget shows a strong
negative gradient from the equator towards the poles. As a result from their location,
polar regions are exposed to similarly low and strongly variable light conditions
and exhibit a series of extreme features which characterise these zones as some
of the most inhospitable places on earth. Due to these conditions, Northern and
Southern polar ecosystems are unique and apparently very similar. The Arctic
and Antarctic zones show very low average temperatures and apart from a few
high-altitude areas at lower latitudes, they are the coldest places on earth. Overall
light levels are particularly low and show a strong seasonality, with twenty-four
hour daylight in summer and continuous darkness during winter. Due to natural
and anthropogenic thinning of the ozone layer above the poles, UV light levels
are abnormally high at these latitudes. Polar regions are also very dry and the
limited precipitation accumulates almost entirely as ice, which permanently covers
most land areas and a large proportion of the sea surface in winter. In addition,
this extensive ice cover modifies the albedo of these surfaces and enhances the
cold climate. In both regions extremely strong winds are regularly recorded. Despite
these extreme conditions, the poles harbour a wide variety of different terrestrial
and aquatic biotopes, ranging from the surrounding oceans, sea-ice and marine
sediments to continental lakes, the ice sheet, soils and rocks.

However, major differences between these two polar zones exist (Grémillet &
Le Maho, 2003). The distribution of land and sea is completely different in the
Arctic and Antarctic, with Antarctica being a continent surrounded by water, whereas
the Arctic is actually an ocean surrounded by land (high latitude regions of the
Northern hemisphere continents) (see Fig. 1.1 and 1.2). Antarctica is more isolated
than the Arctic and this is not only the result of the large distance to the next
continent (South America; the Drake Passage between the Antarctic Peninsula
and Tierra del Fuego is 1800 km wide), but also because of the strong circumpolar
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currents of the Southern Ocean, which make the Antarctic continent even more
isolated. Due to this Antarctic Polar Front, the climatic features of the Antarctic
waters are more extreme and constant than those of the Arctic. In the Arctic isolation
is less stringent and the range of temperature variations is wider. The Antarctic as
a whole is also older than the Arctic. The Antarctic continent drifted away some
140 million years ago, and has been subjected to complete isolation and a cold
climate for at least 15 My. This is not the case for the Arctic which is a younger
system and the Northern polar ecosystems as we know them today evolved only
during the last 15 000 years.

Another example of these differences between the polar regions can be found
in their lake environments (Laybourn-Parry, 2003). Both have freshwater and saline
lakes but in Antarctica the spectrum spans from brackish to hypersaline, whereas
in the Arctic, saline lakes are less common and do not reach the salinity levels
seen in Antarctic lakes. Arctic lakes also have more complex plankton communities
than the Antarctic lakes. Generally, primary production is higher in the Arctic and
this is largely due to higher temperatures in these systems and a longer growing
season. In Antarctica the productivity continues during the winter months whereas
evidence suggests that in the Arctic lakes, organisms shut down their activity
during winter.

2. History of polar research

The polar regions are extreme environments and are of key importance for
our understanding of how the world functions. The processes taking place now in
the Arctic and Antarctic affect the world’s climate and its oceans, linking these
regions to what we experience thousands of kilometres away. In understanding
the global change, the poles also play a crucial role. Locked up in the thick ice
sheets is a record for past climate for the last 500 000 years. Trapped bubbles in
the ice hold an archive of atmospheric gasses and evidence for levels of global
pollution by industry, agriculture and atomic bombs is frozen into the ice. For all
these reasons, the poles are an extremely interesting and important subject for
scientific research. For the early explorers the Artic and Antarctic were the ultimate
survival contest. For scientists it remains a place of intellectual challenge whilst
for the modern tourist it is simply a wilderness of great beauty.

The history of polar research starts with the great explorers, heading to the
North and South poles to map out the world’s unknown continents, or the mysterious
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‘Terra Incognita’ like the Antarctic continent was named. William Barents led several
expeditions to the Arctic in search for a connection between the White Sea and
the Bering Sea and in 1596 he claimed Spitsbergen. In the 18" and 19" centuries,
the Russians conducted several expeditions to map and describe the coasts of
Siberia and North-America. James Cook was the firstin 1773 to cross the Antarctic
Polar Circle and John Davis was the first man in 1821 to set foot on the Antarctic
Peninsula. In 1831 James Ross discovered the Northern magnetic pole and in
1841 he found the Antarctic Ross Sea. Captain Koldewey and his crew reached a
northerly latitude of 81° in 1868 and Alfred Wegener led numerous expeditions to
Greenland. In the period between 1877 and 1884, captain Dallman played a key
role in improving access to Siberia and a sea route to the estuaries of the rivers
Ob and Yenisey in Siberia was established. The first scientific expedition to the
South Pole was conducted by a Belgian marine officer, Adrien de Gerlache de
Gommery in 1897 and on the 16™ of August they left with the three-master the
Belgica. In March 1898 they got locked in by the ice and had to pass winter on
Antarctic pack-ice, but despite this disaster, meteorological observations could
be made for the first time during a whole year. Several others followed the example
of De Gerlache and in 1901 the Discovery, conducted by Robert Scott, left England
to stay during winter on McMurdo Sound. Ernest Shakleton (1907-1909) got close
to the geographical South Pole (180 km) and other members of this expedition
reached the magnetic South Pole. But the honour was for Roald Amundsen who
reached in 1911 the geographical South Pole for the first time. In 1914, Shakleton
wanted to cross the Antarctic continent but his ship the Endurance sank in the
Weddel Sea. Wilkins was the first to fly over the Antarctic continent (1928) and in
1946, the US Navy organised a large scientific expedition to explore the Antarctic
coastal areas. Overall, the importance of scientific research in Antarctica (and in
the poles in general) was understood during the International Geophysical Year
(1957) and led to the Antarctic Treaty in 1959.

In the beginning the scientific expeditions were focused on geographical,
geomagnetic and meteorological questions, but the huge unexplored polar regions
also awakened the curiosity of geologists and biologists. Especially the Southern
ocean is biologically very rich but also the Arctic and Antarctic continents harbour
life, dominated by microorganisms, mosses, lichens and relatively few groups of
invertebrates. As such, these polar regions, where life approaches its environmental
limits are not only of great interest to zoologists, geologists and other scientists
but also for the microbiologists, a true paradise.
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3. Objectives of this work

This work will focus on the bacterial diversity in microbial mats from Antarctic
lakes and from polar seas, and several challenges regarding this research area
exist:

1. Polar areas contain extreme habitats where microorganisms are the

most abundant and often the only form of life. Research on microbial diversity

in these regions is still in its infancy and there is little information about the
bacteria that inhabit these extreme environments.

2. Several polar habitats, have not been studied into detail and only

specific areas have already been investigated, leaving a large part unexplored.

Additionally, most of this information is limited to certain seasons and due to

logistic constraints, most of these habitats have not been sampled during

winter.

3. The extreme environmental conditions in the polar habitats have led to

the origin of novel, endogenous species and only recently the information on

these new taxa is increasing, with the description of novel species.

4. These novel species also have new biochemical adaptations, like anti-

freeze proteins, cold-adapted enzymes, desiccation and salt tolerance, etc.

with potentially a large amount of unexplored biotechnological applications.

This work on the taxonomical research of polar prokaryotes was started in
the frame of the MICROMAT-project ‘Biodiversity of microbial mats in Antarctica’
(Project N° BIO4-CT98-0040), funded by the European Commission under the
Biotech Programme (see Annex Ill), and in the frame of the cooperation with T. L.
Tan from the Alfred Wegener Institut fur Polar- und Meeresforschung (AWI,
Bremerhaven). The major aim of this thesis was to handle especially the first
three of these problems by characterising the bacterial diversity in Antarctic lakes
and polar seas. Firstly, this study focused on heterotrophic bacteria in the Antarctic
lakes and oligotrophic bacteria in the polar seas, and addresses the first problem
of a lack of information on bacterial functioning in polar environments.

Secondly, special attention was given to rather unexplored areas of these
polar habitats, with regard to the microbial Antarctic mats and several expeditions
in the Arctic and Antarctic seas. Samples from microbial mats in Antarctic lakes
were only taken during austral summer (from November to March 1999 & 2000),
whereas the samples from the Arctic Ocean were gathered during an expedition
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in June 1987 (Tan & Riger, 1991) and samples from the Antarctic Ocean are from
March/ April 1990 (Tan et al., 1999). The information about the microbial diversity
in these polar regions is of huge importance for the better understanding of the
composition and functioning of microbial communities in extreme environments.

Through a polyphasic taxonomic approach this work should lead to the
description of several novel taxa, handling the third challenge. It will allow
generating unique collections of samples, isolates and genomic materials and
databases with genotypic and phenotypic properties of polar bacterial strains, by
using up to date techniques. These can be used in the future to identify new
isolates from similar habitats and to develop genomic primers for in situ detection.

The fourth challenge was also addressed during the MICROMAT-project,
since almost 800 bacterial isolates were made available for several industrial
partners (e.g. Genencor Holland, Merck Sharp and Dohme Madrid and Vicuron
Pharmaceuticals, formerly BioSearch Italia) who screened them for potentially
novel compounds such as cold-adapted enzymes (like proteases, cellulases and
lipases) and compounds with antimicrobial activity. Additionally, by describing
several of these new taxa from Antarctic lakes and polar seas, reference strains
will be deposited in different culture collections and as such these well
characterised strains will become publicly available for the scientific community,
which will make the search for novel biochemical adaptations easier.
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Overview of the literature

21






CHAPTER 1

Bacterial diversity in Antarctic lakes and polar
seas

1.1 Antarctic lakes and polar seas

Antarctica is characterised by its geographical and climatic isolation and most
of the continent has experienced little or no anthropogenic influence. Antarctica is
a very unigue and extreme environment since only 2% of its surface is ice-free,
the lowest temperatures on earth occur here and the continent also has the lowest
precipitation and one of the lowest relative humidity levels. On the contrary, the
continent contains 70-90% of the world’s freshwater but most of the time the water
is frozen and the Antarctic lakes are either covered by perennial ice of variable
thickness, completely frozen or so saline they rarely freeze (Simmons et al., 1993).
Most lakes with thick ice covers thaw along their margins to form moats during
summer and are exposed to the atmosphere and running water for only a few
weeks of the year. Although most of the Antarctic continent is covered by ice,
desert like ice-free areas exist and these are often called ‘oases’. In these areas
the Antarctic lakes are located and there are several hypotheses to explain the
origin of these oases. Solopov (1969) stated that ice-free areas are formed when
the ice sheet thins sufficiently, because of global climatic change (the warming
trends of the Holocene) so areas with some degree of elevation become ice-free.
The positive radiation balance (associated with dark soils and rocks) maintains
these ice-free areas, basins in these areas would collect melt water and lakes are
formed. According to Priddle & Heywood (1980) the origin of Antarctic lakes can
be found in the accumulation of blown sand on the ice sheet. The sand will act as
a solar collector and the surrounding ice will melt. The formed depression will
collect more sand, enlarges and a proglacial lake is formed. These features are
often found on ice structures and are called ‘cryoconite holes’ (Wharton et al.,
1981). In section 1.2, more details are given about the lakes in three different
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Chapter 1

Antarctic regions where samples were taken during the MICROMAT-project.

Polar oceans are cold and oligotrophic habitats, where most of the
microorganisms are found in the water column and in sediments and polar cooling
and the formation of sea-ice renders the water mass of the polar seas unique
characteristics. The annual cycle of sea-ice formation and melting, the exclusion
of salts during ice formation and the absence of wind mixing, result in a very
stable and highly stratified water column (Aagaard et al., 1981). The sea-ice itself
harbours a unique community dominated by microorganisms, often referred to as
the SIMCO (sea-ice microbial community) (Karl, 1993).

The Arctic Ocean is perennially ice covered, surrounded by continents (see
Fig. 1.1) and receives 10% of the freshwater flowing into the world’s ocean. The
Arctic Ocean communicates with the North Atlantic and the North Pacific only via
relatively narrow straits (Bering and Fram Straits, Norwegian Sea) and sea-ice
tends to accumulate here even in summer.

The Southern Ocean is quite different from the Arctic Ocean. It surrounds the
continent Antarctica (see Fig. 1.2) and when Antarctica and Australia separated,
the Antarctic Circumpolar Current originated, isolating the waters south of the
Polar Front from the southern parts of the Atlantic, Pacific and Indian Oceans.
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Overview of the literature

These strong circumpolar currents dispatch a large fraction of the Antarctic sea-
ice as soon as it breaks up in springtime. The Southern Ocean receives almost no
freshwater inflow and no terrestrially derived nutrients (Kumar et al., 1995). A
large diversity of microbial habitats exists in this cold Antarctic Ocean ranging
from hypersaline and cold sea-ice environments to the open ocean habitats of the
Antarctic Circumpolar Current and the geothermally heated waters of the Scotia
Arc.
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1.2 The Antarctic ice-free areas

1.2.1 McMurdo Dry Valleys

The McMurdo Dry Valleys of Southern Victoria Land represent the largest
ice-free area in Antarctica (about 4800 km?), located on the western coast of Ross
Sea (77°0'5"S-162°52'5"E) and are ice-free for approximately the last 4 million
years. They belong to the most extreme and cold deserts of the world with
temperatures ranging from —55°C to 5°C and a precipitation of less than 10 cm
per year. The Dry Valleys were formed by the advances and retreats of glaciers
through the coastal areas of the Transantarctic Mountains, which act as a barrier
to the flow of ice from the polar plateau. The McMurdo Dry Valleys presently
contain more than 20 permanent lakes and ponds, which vary in character and
are considered to be very old, probably hundreds of thousands of years. One of
the Dry Valleys, the Taylor Valley, has a few major lakes, Lake Fryxell, Lake Bonney
and Lake Hoare (see Fig. 1.3) and these are fed by 15 glaciers and are the
remnants of a large glacial lake, Lake Washburn, which existed 10 000-20 000
years ago (Doran et al., 1994). Some glaciers are in direct contact with the lakes,
for example, the Taylor Glacier for Lake Bonney and the Canada Glacier for Lake
Hoare. The Taylor Valley is a mosaic of ice-covered lakes, streams, arid soil,
permafrost and surrounding glaciers. Wind and water are the two forces
responsible for the transport of materials between different sites (Lyons et al.,
2000).

The lakes of the Taylor valley are different in many aspects (Roberts &
Laybourn-Parry, 1999; Takacs & Priscu, 1998; Roberts et al., 2000).

Lake Fryxell has a maximum depth of 20 m, a surface area of 7 km? and is a
permanently stratified meromictic lake! with a brackish monimolimnion. Water
temperatures during the summer range between 0.01 and 2.7 °C, with temperature
increasing with depth. The chemocline is situated at 9.5 m with an anoxic layer
below.

In contrast, Lake Hoare is effectively a freshwater, amictic system?. It has a
maximum depth of 34 m and a surface area of 3 km?. Summer temperatures in the
water column range between 0.01 and 1.0 °C. Some physico-chemical properties

1 In meromictic lakes the water is seasonally and partially mixed. These lakes have a mixed
upper oxic layer (mixolimnion), a lower stagnant anoxic layer (monimolimnion), which never
mixes with the upper layer and a pycnocline (density gradient) which forms a physical barrier to
the mixing of the water (Bowman et al., 2000b).

2 An amictic system is a lake where no mixing occurs.
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Figure 1.3. Location map of lakes Fryxell, Hoare and Bonney in the Taylor Valley, Southern

Victoria Land, Antarctica (from Lyons et al., 2000).

of lakes Fryxell and Hoare (sampled during the MICROMAT-project) are given in
Table 1.1.

Lake Bonney has a surface area of approximately 4 km? and a maximum
depth of 40 m. The monimolimnia of both lobes of Lake Bonney are hypersaline.

Lakes in the Dry Valleys are perennially ice-covered. The ice is typically 3 to
6 m thick and contains a layer of sand and organic matter of aeolian® origin below
the surface (Priscu et al., 1998). This rock dust and debris renders the ice opaque
and as a consequence, the light climate in the water column is poor. Strong
conductivity, nutrient and oxygen gradients and the presence of an ice cover,
create distinct layers in the water column in which the plankton lives.

3 The term ‘aeolian’ means wind-born and is applicable for deposits.
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1.2.2 Vestfold Hills

The Vestfold Hills is an ice-free oasis of about 400 km?, which lies on the
eastern side of Prydz Bay on the Ingrid Christiansen Coast, East Antarctica (68°40’
S, 78°35’ E). The lakes of the Vestfold Hills are relatively young, about 8000-10
000 years old and were formed during isostatic uplift (Adamson & Pickard, 1986).
The climate of this area is cold, dry and windy, due to the dry winds from the
continental plateau and moist oceanic winds from the north-east. The resulting
landscape is seeded with hundreds of lakes ranging in size from small ponds to
large lakes up to 140 m deep. The lakes closer to the ice sheet are typically
freshwater (Laybourn-Parry & Marchant, 1992). In contrast, the lakes closer to
the coast are often saline to hypersaline and result from the entrapment of seawater
in depressions as the land rose out of the sea or from fjords cut off from the sea.
The salt of some of these marine lakes has subsequently been flushed out by
glacial meltwater and the lakes ultimately became freshwater (Bird et al., 1991).

The lakes of the Vestfold Hills range from large and deep freshwater ultra-
oligotrophic systems (Crooked Lake) to smaller oligotrophic freshwater lakes,
brackish lakes, saline meromictic lakes and hypersaline monomictic* lakes. These
can be divided into different geographical groups (Gibson, 1999), see Fig. 1.4.

Long Peninsula has the greatest concentration of lakes in the Vestfold Hills
and these lakes are generally small and shallow. The largest lakes are Ace,
Pendant and Abraxas and are surrounded by marine terraces. Pendant Lake is a
lake with freshwater on top and salty underneath and a great deal of biological
activity. Organic Lake is a shallow meromictic lake with unusually high levels of
dimethylsulfide in its bottom waters (Franzmann et al., 1987). This hypersaline
lake is richly served by organic inputs from penguins. Highway Lake is a long,
narrow freshwater lake between Long Fjord and Taynaya Bay. Alake at the northern
part of Long Peninsula, near the ice plateau is Grace Lake.

Broad Peninsula contains two groups of meromictic lakes and the first group
of lakes (Ekho, Shield, Oval and Farrell) lies in depressions that were once part of
a fjord-like system, which was isolated from the ocean. All these lakes are
surrounded by marine terraces and are hypersaline, suggesting the evaporation
of water after the connection with the sea was disrupted and probably a limited
input of freshwater.

4 Amonomictic (or holomictic) lake is completely mixed in contrast to a meromictic system where
only the upper water layer is mixed.
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Figure 1.4. Locations of the meromictic lakes of the Vestfold Hills, Antarctica (from Gibson,
1999). The lakes and basins are: 1. unnamed lake; 2. Organic Lake; 3. Pendant Lake; 4. Glider
Lake; 5. Ace Lake; 6. unnamed lake; 7. Williams lake; 8. Abraxas Lake; 9. Johnstone Lake; 10.
Ekho Lake; 11. Lake Farrell; 12. Shield Lake; 13. Oval Lake; 14. Ephyra Lake; 15. Scale Lake;
16. Lake Anderson; 17. Oblong Lake; 18. Lake McCallum; 19. Clear Lake; 20. Laternula Lake;
21. South Angle Lake; 22. Bayly Bay; 23. Lake Fletcher; 24. Franzmann Lake; 25. Deprez Basin;
26. ‘Small Meromictic Basin’, Ellis Fjord; 27. Burton Lake; 28. Burch Lake; 29. Tassie Lake; 30.
Club Lake; 31. Lake Jabs; 32. Deep Lake; 33. Lake Stinear; 34. Lake Dingle; 35. Lake Druzhby;
36. Watts Lake; 37. Lebed’ Lake; 38. Crooked Lake; 39. Grace Lake; 40. Highway Lake. All
lakes and basin names are official except ‘Small Meromictic Basin’ and the unnamed lakes. The
stippling indicates continental ice. Lakes 39 and 40, indicated by a star (from Roberts & McMinn,
1999). In bold face: lakes investigated during the MICROMAT project.
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The second group of meromictic lakes on Broad Peninsula (Scale and Ephyra)
is characterised by relatively fresh surface water and salinity sharply increases
towards the base of the water column. Probably the salt in these lakes was blown
into them from hypersaline lakes located nearby.

The fourth group of lakes (Anderson and Oblong) was isolated from Ellis
Fjord during isostatic rebound and these lakes are hypersaline.

The last group of lakes is located at the western end of Mule Peninsula and
these lakes are quite diverse in salinity, depth and surface. There are six SIMBs
(Seasonally Isolated Marine Basins) located in the Vestfold Hills and these are
connected to the ocean during summer and isolated for the rest of the year when
they effectively become lakes. Environmental change leads to stratified lakes
losing their meromictic status and vice versa. The lakes in the Vestfold Hills are
fed by relatively small snow banks, which generally melt completely during summer.
The loading of the lake is thus a function of precipitation and the frequency of
storm events which transport the snow into the basins.

Some physico-chemical properties of the lakes sampled during the
MICROMAT-project (Ace, Druzhby, Grace, Highway, Pendant, Organic and Watts)
of the Vestfold Hills are given in Table 1.1.

1.2.3 Larsemann Hills

The Larsemann Hills are a series of ice-free peninsulas and islands along
the coast of East-Antarctica, about 100 km northwest of the Vestfold Hills (between
69°20’ S, 76°00' E and 69°30’ S, 76°30’ E). The total ice-free area covers about
200 km?and the highest elevations are around 180 m above sea level. There are
over 150 freshwater lakes in the hills, ranging from small ponds less than 1 m
deep to glacial lakes up to 10 ha and 38 m deep. The lakes are young with the
oldest basins being about 9000 years old. The characteristics of the lakes vary
and reflect their deglaciation history, proximity to the continental ice margin and
exposure to the ocean. The main source of water is snowmelt and for the more
exposed lakes, seaspray. The waters are well mixed by katabatic® winds. The
lakes normally thaw fully or partially for up to 8 weeks during summer, but some
are permanently frozen. The ice cover can reach 2 m in thickness and make up

5 Katabatic winds are winds that flow from the high elevations of mountains, plateaus and hills
down their slopes to the valleys or plains below. These winds are observed at every latitude of
the globe, but nowhere are they as strong as they are in Antarctica.
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more than 50% of the lake volume in shallow lakes at the end of the winter (Gillieson
et al., 1990).

One of the lakes of the Larsemann Hills is the shallow, meromictic Lake Reid,
with a sharply stratified water column under a 1.6 m thick ice cover. It is an oval
lake about 0.4 km north of Law Base and it drains southwards into Lake Scandrett.
The water is heavily mineralised. Physico-chemical properties of Lake Reid
(sampled during the MICROMAT-project) are given in Table 1.1.

1.3 Polar microbial habitats

1.3.1 Heterotrophic bacteria in Antarctic lakes

1.3.1.1 The plankton in Antarctic lakes

Life on the Antarctic continent is well adapted to aquatic habitats, since the
aguatic communities are better protected against the extreme environmental
conditions than the terrestrial communities. This is why most of the Antarctic non-
marine biomass is found in the lakes. Antarctic lakes are pristine biotopes and
include freshwater and saline systems that are subject to long periods of ice and
snow cover, low temperatures and low levels of annual photosynthetically available
radiation (PAR). The presence of an ice cover reduces light penetration into the
water column and limits the interaction between the atmosphere and the lake,
creating unusual gas concentrations found in these lakes. Usually Antarctic lakes
are nutrient poor because the input of minerals is low during the short austral
summer, when glacial melt-streams and snowmelt occur. In combination, these
harsh environmental conditions and the isolation of the Antarctic continent, render
such lakes among the most unproductive in the world and impose a considerable
physiological stress on the organisms that inhabit them.

The survival of the organisms in these cold, dark aquatic environments is
enhanced by a variety of strategies. A large proportion of Protozoa in Antarctic
lakes is mixotrophic® (Roberts & Laybourn-Parry, 1999) and photoautotrophs are
capable of extremely efficient photosynthesis at low levels of PAR. During winter,
the microbial activity continues, using for example endogenous energy reserves
and species enter the austral summer with relatively large, actively growing
populations (Bell & Laybourn-Parry, 1999). Many life forms and interactions

& Mixotrophy is a combination of autotrophy and heterotrophy.
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normally found in temperate lakes and streams, do not occur in the Antarctic
lakes (Ellis-Evans, 1996). Their planktonic community is species poor and
dominated by microbial loop organisms, including bacteria, protozoa and
phytoplankton and little or no metazoans are present (Laybourn-Parry & Marchant,
1992; Laybourn-Parry et al., 1997). Many of the planktonic populations occur in
well-defined depth ranges within the water column (Spaulding et al., 1994),
indicating that stratification of food resources and environmental conditions may
control the position of the plankton in the water. Motility or buoyancy are important
properties of organisms living in these stable waters, enabling them to maintain
their position at the most appropriate level in the water column for physiological
functioning.

1.3.1.2 The benthic community in Antarctic lakes

The benthic areas of Antarctic lakes receive sufficient solar radiation and are
covered by microbial mats composed primarily of cyanobacteria, diatoms and
eubacteria (Vincent, 1988). These microbial mats not only differ in the relative
abundance of the species, which compose the mat, but they also belong to four
different morphological categories (Simmons et al., 1993; Doran et al., 1994).

Prostrate mats are the first category and their upper surfaces are smooth

and flocculous in texture and either highly pigmented (aerobic mats) or black with
a distinct H,S odour (anaerobic mats). Prostrate mats are formed by the gliding of
the filaments of the cyanobacteria over the lake bottom and form a cohesive tissue-
like structure. Local environmental parameters determine whether a mat remains
prostrate or develops into a different type.

Lift-off mats are the result of a combination of physical and biological processes
(Wharton et al., 1983). Parts of these mats tear lose from the lake bottom because
of elevated gas levels within the shallow parts of the lake, and in some cases they
tear completely lose and float to the ice cover where the material freezes into the
ice and makes its way out through ablation. Most of this mat material is still alive
and as such this is an important mechanism for the distribution of microorganisms
between lakes and other environmental areas.

Some of the lift-off mats remain in place and form vertically, stable sheets
and columnar structures (the third category of microbial mats). Calcite crystals
are observed and may have a stabilising effect.

Pinnacle mats have solid structures consisting of super-imposed mat layers
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without hollow central areas as observed in lift-off and columnar mats. These
pinnacles are formed when the gliding filaments get entrapped in each other and
move upward over one another towards the light (positive phototaxis).

Additionally, the mats are trapping and binding carbonates and various other
minerals and these organosedimentary structures can be classified as modern
stromatolites’. Sediment that is deposited through the perennial ice cover or carried
in glacial meltwater, will settle to the lake bottom and buries parts of the microbial
mats. Recolonization of these areas will probably be from cells of adjacent, unburied
parts of the mat. The absence of metazoans that would disrupt the mats, the
continuous influx of sediment, the availability of carbonate and the lack of strong
internal currents, promote the formation and preservation of these stromatolitic
structures in Antarctic lakes.

1.3.1.3 The food web in Antarctic lakes

In the Antarctic lakes, bacterial growth and production seems to mirror those
of the phytoplankton (Vincent, 1981) and is limited to zones of maximum
photosynthesis, suggesting nutrient cycling between these two groups. The majority
of the biomass and biological activity of plankton is found at the bottom of the
water column at the oxic-anoxic interface and this planktonic layer is often referred
to as the ‘Deep Chlorophyl Maximum’ or DCM. Total bacterial counts also increase
near the sediment-water interface and this is probably due to the presence of
dissolved organic matter from the microbial mat on the sediment surface (Mikell
et al., 1984).

In Ace Lake, stable stratification and the resulting physico-chemical conditions
have led to the development of two distinct communities: an aerobic mixolimnion
community of prokaryotic and eukaryotic microorganisms, with a small number of
metazoans, and an anaerobic community dominated by prokaryotes in the anoxic
waters of the monimolimnion (Bell & Laybourn-Parry, 1999). This pattern is typical
for Antarctic meromictic lakes, like for example lakes in the Vestfold Hills and
McMurdo Dry Valleys (Gibson, 1999; Laybourn-Parry et al., 1997; Roberts et al.,
2000). Winter is a period of reduced but sustained microbial activity in Antarctic
lakes and bacterial populations remain active and are not grazed to extinction
during the winter (Tacaks & Priscu, 1998). But the limited sampling season, due

7 Stromatolites are layered structures, sometimes of considerable size, normally formed in warm,
shallow waters by mats of cyanobacteria and fossils of similar structure have been found in
Precambrian rocks.
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to logistical constraints, has left the autumn and winter largely unstudied and
more has to be focused on winter microbial dynamics in the future to come to a
more complete understanding of these lakes.

1.3.2 Oligotrophic bacteria in polar seas

1.3.2.1 Different polar sea habitats

Bacteria and other microorganisms are ubiquitous in the oligotrophic, marine
environment, regardless of latitude, water depth, or distance from the coast and
Arctic and Antarctic waters are no exception. There are several habitats in the
polar oceans and a lot of microorganisms in these seas live in microenvironments,
frequently associated with suspended particles, plants or animal surfaces, or
discontinuities of the seawater and sea-ice column (Karl, 1982). In these diffusion-
controlled microenvironments, which have different properties than the surrounding
open waters, there is an enrichment of specialised groups of microorganisms.
Bacteria attached to these surfaces are generally larger and more metabolically
active than those that live free in the water column. In the sea-ice microbial
community (SIMCO) bacteria concentrate in diatom assemblages, which occur
either as surface populations, internal band assemblages or at the sea-ice/
seawater interface (Palmisano & Garrison, 1993).

Sea-ice is one of the most extreme environments for life on earth with
temperatures ranging from 0 to -12°C and salinities from 0,1 to five times normal
seawater concentration in the brine channels and pockets. Several sea-ice bacteria
produce vacuoles and these structures allow them to position themselves at certain
depths in the water column.

1.3.2.2 The food web in polar seas

Polar oceans suffer from extreme seasonality, since the daily light flux can
exceed that in the tropics during austral summer, as a result of the length of the
solar day, while this flux is significantly reduced during winter. This seasonal
increase of radiant energy is not only providing PAR for the growth of phototrophic
microorganisms, but is also responsible for the heating of the upper ocean, which
stabilises the surface waters, especially in coastal areas, protected from deep,
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wind-driven mixing and for the annual cycle of sea-ice formation. The ablation of
sea-ice further stabilises the water column through the addition of low-density
meltwater. As a result, during spring and summer, a phytoplankton bloom is formed,
which provides carbon and energy sources to sustain the entire polar food web.

Karl et al. (1993) formulated a hypothetical Antarctic trophic model, which
rejects the formerly, generally accepted concept of a highly efficient and simple
Antarctic marine food chain where the energy is transferred from large
phytoplankton cells to krill to higher trophic levels. This model however, still needs
a thorough and quantitative field evaluation and at least four different phases can
be hypothesised (Fig. 1.5), see Box.

Phase A (early spring) corresponds to the initiation of the phytoplankton bloom. Dissolved
inorganic nutrients are removed and converted to algal biomass, the microbial loop is absent
and benthic processes are dormant. Phase B (early summer) corresponds to the maximum
grazing by macrozooplankton and as a response, the algal biomass shifts to smaller cells.
The production of dissolved organic matter (DOM) by excretion, grazing, death and autolysis
is high, bacterial and microzooplankton populations expand and benthic metabolism is high.
Phase C (late summer) corresponds to the postbloom period. The phytoplankton standing
stocks and production are low, bacterial and protozoan productions are high and benthic
metabolism continues. Phase D corresponds to the austral winter period. Photoautotrophy is
low and supplemented by chemolitho-autotrophy, bacterial cells exhibit a ‘starvation-survival’
response (see 1.3.2.3) in absence of DOM, microzooplankton populations are low and particle
flux and benthic processes are at their annual minima. In other regions of the southern
ocean, where phytoplankton standing stocks are low throughout the year and where this
spring bloom does not develop, the microbial loop processes (phase C) may be more important.
The heterotrophic bacteria in this Antarctic marine microbial loop rely upon the availability of
low- and high-molecular-weight DOM for their carbon and energy demands. Bacterial biomass
is removed by the combined effects of grazing by protozoa and higher trophic levels (HTL),

death, autolysis and viral infections.
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Figure 1.5. Hypothetical Antarctic trophic model (from Karl et al., 1993). Phase A: early spring;
phase B: late spring- early summer; phase C: late summer and phase D: winter. Micro-AUTO:
autotrophic cells, primarly diatoms; PAR: photosynthetically available radiance; N: nutrients;
nano-AUTO: autotrophic cells, primarly flagellates; DOM: dissolved organic matter; HETERO:
heterotrophic bacteria; PROTO: protozoans; HTL: higher trophic levels; CHEMO: chemolitho-
autotrophic bacterial processes and RID: reduced inorganic detritus.

1.3.2.3 The starvation-survival response

The starvation-survival response of bacteria consists of two independent
processes: the need to maintain cellular integrity and to cope with low nutrient
concentrations without losing the ability to respond quickly when nutrients become
available again, and the need to maintain themselves against all forms of cell loss
(death, predation, parasitism, etc.). The starved, non-growing cells are
metabolically active and during the first days of this response, cells change their
morphology from rod-shaped to coccoid and the cell diameter and optical density
decreases. The net result of these changes is an increase in the surface-to-volume
ratio, which increases the cells’ ability to take up substrates from nutrient-limited
environments (Morita, 1982) and may allow a better avoidance of predators, as
protozoa prefer consuming larger bacteria (Gonzalez et al., 1990). Because of
the lack of energy in this low-nutrient, marine environments, the normal state of
most of the bacteria, living free in these habitats, is the starvation mode and
ultramicrocells are formed (Morita, 1985).
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It is assumed that bacteria in most polar marine environments do not grow
very rapidly and during austral winter may not grow at all. However, for members
of this bacterial community, starvation is not a permanent state and unbalanced
growth may be normal, with periods of growth at various rates, alternated with
periods of non-growth, starvation, recovery and regrowth (Kjelleberg et al., 1993),
depending on the availability of nutrients.

1.3.2.4 Psychrophily and oligotrophy

The active microbial components of most of the polar environments are either
psychrophilic or psychrotrophic. Psychrophilic bacteria have an optimal growth
temperature of 15-20°C or lower, a maximal growth temperature at about 20-25°C
and a minimal temperature at 0°C or lower. Psychrotrophic (also termed
psychrotolerant) bacteria have the ability to grow at low temperatures but have
their optimal and maximal growth temperatures above 15-20°C (Morita, 1975).
The seasonal process of sea-ice formation with the catchment of microorganisms

in the winter, exposure to severe winter conditions and release again in
summertime, is thought to be responsible for the seeding of the ocean with
psychrophiles.

Heterotrophic bacteria constitute the major biomass component of marine
ecosystems and most of them are oligotrophic, because of the low nutrient
concentrations and availability in these environments. Oligotrophic bacteria (also
called oligocarbophilic or low-nutrient bacteria) are those organisms able to grow
in low-nutrient media with 1-15 mg C It or 10-50 mg C I'* (Morita, 1992). Oligotrophs
can be divided in two categories: facultative oligotrophs are capable of being
adapted to grow at higher concentrations than the definition permits, while the
obligate oligotrophs cannot be adapted to grow at higher organic carbon
concentrations. Marine psychrophilic and oligotrophic bacteria are difficult to isolate
and cultivate but it became clear that their oligotrophic way of life is probably a
transient characteristic (Schut et al., 1997).
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1.4 Bacterial diversity in polar habitats
1.4.1 Diversity of heterotrophic bacteria in Antarctic lakes

Antarctic limnology has focused largely on processes and not on taxonomic
investigations. Only recently this has changed with the application of molecular
techniques and during the last years, bacterial diversity and taxonomy studies
are being published. Most of the studies on Antarctic lakes also focus on other
planktonic species than bacteria (primarily on phototrophs) and are often restricted
to bacterial counts and production measurements in the water column (Laybourn-
Parry et al., 1995; Laybourn-Parry et al., 1997; Takacs & Priscu, 1998; etc.). The
first detailed study of aerobic bacteria and yeasts in Antarctic freshwater lakes
was that reported for three Signy Island lakes by Ellis-Evans (1981a, b, 1982)
and Ellis-Evans & Sanders (1988). Volkman et al. (1988) reported that the major
species of bacterioplankton in Ace Lake were green sulfur bacteria and purple,
methanogenic and sulfate reducing bacteria were also identified. McMeekin (1988)
used culture and isolation techniques to study psychrotrophic and psychrophilic
bacteria from five habitats in the Vestfold Hills area. The majority of these isolates
were Pseudomonas spp., pigmented Flavobacterium spp. and non-pigmented
Moraxella spp. Some studies focused on specialised groups of bacteria in Antarctic
lakes, for example the ammonia-oxidizing bacteria, methanotrophs and
cyanobacteria (Galchenko, 1994; Fritsen & Priscu, 1998; Voytek et al., 1999).
Several of the novel microbes cultivated from lakes of the Vestfold Hills, containing
lakes of marine salinity, were found to be closely related to known marine bacteria
(Franzmann & Dobson, 1993; Franzmann, 1996).

The microbial composition within the sediments of three hypersaline Antarctic
lakes (Vestfold Hills) has been studied by Bowman et al. (2000a) using 16S rRNA
clone library analysis and compared to sediments of low to moderate saline
Antarctic lakes, the diversity of the hypersaline lake sediments was significantly
lower. The community of Deep Lake was almost entirely made up of halophilic
Archaea (Halobacteriales), while the sediment communities of Organic and Ekho
Lake were more complex, with phylotypes clustering within the Proteobacteria
(Sulfitobacter, Silicibacter, Roseovarius, Halomonas), Cytophagales
(Psychroflexus, Gelidibacter) and algal chloroplasts. Several phylotypes of these
lakes were related to taxa more adapted to marine-like salinity and perhaps these
bacteria derive from the lower salinity surface waters and were exported into the
sediment. In another study of Bowman et al. (2000b), the diversity and community
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structure within anoxic sediment from marine saline meromictic lakes and a coastal
meromictic marine basin in the Vestfold Hills was investigated. It was expected
that the cold, anoxic meromictic sediments would have a relatively limited diversity
but results indicate that diversity in these sediments is surprisingly high. 16S
rDNA clone library analysis revealed that the abundant phylotypes were related
to the low G+C Gram-positives, cyanobacteria, diatom chloroplasts, 6-
Proteobacteria and the orders Chlamydiales and Spirochaetales. Most of the
archaeal clones belonged to a group of Euryarchaeota and libraries of Burton
Lake and Taynaya Bay contained a high diversity of Cytophagales phylotypes.
However, it should be noticed that benthic sediments not only contain species
living naturally in the sediment and anoxic water layers of the lake, but also biomass
that has sunk from the upper mixing waters. Karr et al. (2003) reported a remarkable
diversity of phototrophic purple bacteria in Lake Fryxell by analysis of a
photosynthesis-specific gene, pufM. The distribution of these purple bacteria was
highly stratified and the isolates also contained gas vesicles, structures that may
be necessary for the organisms to position themselves in the water column at
certain depths. Sjoling & Cowan (2003) investigated the 16S rDNA bacterial
diversity in maritime meltwater lake sediments from Bratina Island and found that
the bacterial population was highly diverse. Sequenced clones fell into seven
major lineages of the Bacteria (o-, y- and d-Proteobacteria, Bacteroidetes,
Spirochaetaceae and Actinobacteria), and archaeal clones belonged to the group
of Crenarchaeota.

The conclusion of these diversity studies in Antarctic lakes, and especially in
their sediments, is that the bacterial diversity in these extreme and cold
environments is surprisingly high. However the more saline these lakes, the less
diverse their bacterial communities are and phylogenetically they can be assigned
to a few major lineages (Proteobacteria, Bacteroidetes and Gram-positives).

The extreme environmental conditions in the polar habitats have led to a
high selection pressure on the organisms that live there and as a consequence,
to the evolution of novel, endogenous species. The recent increase in taxonomic
studies on Antarctic lakes has lead to an enormous expansion of the description
of new species and in Table 1.2 this burst of new polar taxa, belonging to the
Eubacteria, during the last decade has been summarised. It is clear that most of
the novel taxa derive from sea-ice habitats or coastal areas, while 38 come from
Antarctic lakes and 22 of these have been isolated from the benthic microbial
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mats or sediments in the lakes. The list of bacteria isolated from these extreme
environments will undoubtedly continue to grow.

1.4.2 Bacterial diversity in polar seas

1.4.2.1 Diversity in the sea-ice community

Polar seas are perennially cold and in some locations permanently ice covered
and there is a large diversity of microbial habitats and assemblages, ranging from
the sea-ice community to the open-ocean waters and the deep, anoxic sediments.
lizuka et al. (1966) first reported that Antarctic sea-ice contained a variety of bacteria
and Sullivan & Palmisano (1984) found that a variety of morphological types of
bacteria was associated with sea-ice, including rods, cocci, straight and branching
filaments and fusiform and prosthecate bacteria. Of these bacteria 70% were
free-living, while the other 30% were attached to living algal cells or to detritus.
Staley et al. (1989) isolated pigmented and gas vacuolate bacteria from both sea-
ice and underlaying water samples from McMurdo Sound and the bacterial isolates
from the sea-ice were filamentous and pigmented, while those isolated from the
water column were unicellular and non-pigmented. The highest concentrations of
bacteria in sea-ice were found in conjunction with the highest algal concentrations.
Phylogenetical analysis of these bacteria revealed that they belong to the
Proteobacteria and the Bacteroidetes (Gosink & Staley, 1995). The sea-ice
microbial community (SIMCO) contains algae (mostly diatoms), protozoa, and
bacteria and recent investigations of Arctic and Antarctic sea-ice samples (Bowman
et al., 1997a; Brown & Bowman, 2001) indicate that these bacteria belong to a
few major phylogenetic groups: the o- and y-Proteobacteria, the Bacteroidetes,
the high and low mol % G+C Gram-positives and the orders Chlamydiales and
Verrucomicrobiales. Archaea associated with the SIMCO have also been reported
and in this SIMCO several novel bacterial genera and species have been
discovered, including Polaromonas, Polaribacter, Psychroflexus, Gelidibacter,
Octadecabacter, etc., see Table 1.2. Junge et al. (2002) performed a culture-
based survey of cold-adapted oligotrophs in Arctic sea-ice in order to assess the
phylogenetic diversity of heterotrophic bacteria that are numerically abundant in
sea-ice. The results indicate close relationships exclusively to known marine
psychrophiles within two bacterial divisions: the Proteobacteria (the genera
Alteromonas, Colwellia, Glaciecola, Octadecabacter, Pseudoalteromonas and
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Shewanella) and the Bacteroidetes (Cytophaga, Flavobacterium, Gelidibacter and
Polaribacter). A comprehensive assessment of bacterial diversity and community
composition in Arctic and Antarctic pack ice was conducted through cultivation
and cultivation-independent molecular techniques (Brinkmeyer et al., 2003).
Results confirmed that at both poles the o- and y-Proteobacteria and the
Cytophaga-Flavobacterium group were the dominant taxonomic bacterial groups.

Overall, these results indicate a limited bacterial diversity for the numerically
important microorganisms in sea-ice compared to the water column and there are
several reasons to explain this lower genetic diversity. Firstly, the sea-ice
environments are geologically recent developments on Earth so relatively little
time has been available for the evolution of highly diverse sea-ice bacteria.
Secondly, the sea-ice environment is an extreme physical habitat and as a
consequence, the bacterial communities are dominated by a few populations
uniquely adapted to survive and grow under these extreme conditions. Finally,
sea-ice is also a porous habitat with many attachment sites that may select for
specific types of bacteria (Junge et al., 2002).

North and South Pole sea-ice communities also provide a special test case
for bacterial dispersal between the poles in a biogeographical study and finding
the same species at both poles would indicate that these bacteria are cosmopolitan
in distribution. However, several constraints exist on the dispersal between the
poles since the long distance between the polar regions makes the transport of
the microorganisms very difficult and the psychrophilic bacteria of the SIMCO
would probably not survive the warmer temperatures (>20°C) at the equator. The
polar oceans also evolved independently and exhibit differences in environmental
conditions. Until now, a bipolar species has not been found in sea-ice (Staley &
Gosink, 1999), supporting the polar endemism theory, however this is only
applicable at the species level and some psychrophilic, sea-ice genera are present
at both poles (for example Polaribacter and Octadecabacter). Only recently, a
bipolar distribution of a bacterial species (Shewanella frigidimarina) has been
suggested by Junge et al. (2002). Arguments against this polar endemism theory
are related to the efficient dispersal abilities of certain organisms (bacteria that
produce spores or cysts) and several aerobiological studies have demonstrated
the transport of a wide range of propagules from South America through Drake
Passage under ideal weather conditions (Clarke, 2003). Another possibility for
transequatorial passage are the cold, deep underwater currents and deep bottom
water produced in the Antarctic Weddel Sea for example, which may act as a cold
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corridor driving northwards into the Atlantic Ocean. However, these currents take
hundreds of years to carry water from one pole to another and it is extremely
doubtful that these bacteria, which have been removed from their normal habitat,
could survive such a long transit. Alternatively, the passage across the equator in
ice crystals in the upper atmosphere could be another mechanism, but there is no
evidence to indicate that this occurs.

1.4.2.2 Diversity in the Southern ocean

There is little information on the phylogenetic composition of bacterial
assemblages in polar oceans (except for the sea-ice communities) and an important
guestion is whether the composition of bacterial communities in cold polar oceans
has diverged substantially from those in temperate and tropical waters. For
example, certain cyanobacteria are ubiquitous and important members of plankton
communities in temperate and tropical oceans, yet they are not found in polar
seas. Similarly, gas vacuolate bacteria are important in sea-ice communities, but
they have not been reported in temperate or tropical seas. Also, the question
whether the bacterioplankton communities in polar oceans are the same or
different, with important biogeographical information, still needs to be addressed.
In 1998, Murray et al. investigated the seasonal and spatial variability of bacterial
and archaeal assemblages in the coastal waters near Anvers Island, Antarctica.
Results revealed that the bacterial assemblage composition may reflect changes
in water column stability, depth or season. Lopez-Garcia et al. (2001) investigated
the diversity of free-living prokaryotes from a deep-sea site at the Antarctic Polar
Front using molecular techniques. This deep-sea planktonic community is
phylogenetically related to o- (SAR11), y- and &- (SAR324) Proteobacteria,
Cytophagales, Planctomyces, Gram-positives and the group of environmental
sequences SAR406. Among them y-proteobacterial sequences were the most
abundant and diverse and within the Archaea, euryarchaeotal sequences were
retrieved. The sequences of uncultured SAR-groups are evolutionarily distant
from all known isolates and several of these groups appear to be widely distributed
in the world ocean. SAR11 for example, initially found in the Sargasso Sea, has
been identified in different seas and at different depths, including Antarctic surface
waters. Hollibaugh et al. (2002) analysed the phylogenetic compositions of
ammonia-oxidizing bacteria of the 3-Proteobacteria from Southern Ocean samples.
They found a Nitrosospira-like 16S rRNA gene sequence in all samples and this
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sequence was also found in Arctic Ocean samples (Bano & Hollibaugh, 2000),
indicating a transpolar (if not global) distribution. However slight differences
between Arctic and Antarctic sequences may be evidence of polar endemism.
Bowman et al. (2003a; b) reported about the prokaryotic activity and community
structure in continental shelf sediments, located off eastern Antarctica. Biomass
and activity were maximal within the 0- to 3-cm depth range and declined rapidly
with sediment depths below 5 cm. The culturable bacterial population was
predominantly psychrophilic and many of the identified isolates belonged to genera
characteristic of deep-sea habitats, although most appear to be novel species.
Sequencing of DGGE bands, 16S rDNA clone library analysis and rRNA probe
hybridization analysis revealed that the major community members belonged to
o-Proteobacteria, putative sulphide oxidizers of the y-Proteobacteria, flavobacteria,
Planctomycetales and Archaea.

1.4.2.3 Diversity in the Arctic Ocean

As data are emerging for the Southern Ocean, the number of comparable
studies of the Arctic Ocean is also increasing. Ferrari & Hollibaugh (1999) used
DGGE banding patterns to compare the composition of bacterial assemblages in
the Arctic Ocean, however no sequence information was provided. Yager et al.
(2001) showed that the composition and physiological properties of bacterial
assemblages in the Chukchi Sea changed in response to an algal bloom and a
few 16S rDNA sequences were provided. Ravenschlag et al. (2001) investigated
the microbial community in marine Arctic sediments (Svalbard) through quantitative
molecular analysis and found that high fractions of Bacteria were present and
phylogenetically these belong to the -, y- and d-Proteobacteria, the Bacteroidetes,
the Planctomycetales and Gram-positive bacteria. Besides d-proteobacterial
sulphate-reducing bacteria, members of the Bacteroidetes were the most abundant
group detected in this sediment and these results are comparable with those of a
previous study of Ravenschlag et al. (1999) where cold, Arctic sediments were
investigated near Spitsbergen. They found a predominance of bacteria of the
sulphur cycle, of which several belonged to the y-Proteobacteria. In a study of
Bano & Hollibaugh (2002) where Arctic Ocean samples collected over three
seasons were investigated by sequencing clones, evidence was found that the
Arctic bacterioplankton assemblage was composed of a mixture of uniquely polar
and cosmopolitan phylotypes. All clones fell into the o, y-, 6- and e-Proteobacteria,
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the Bacteroidetes, the Verrucomicrobiales and the green non-sulfur bacteria. The
majority of clones belonged to the a- and y-Proteobacteria while none of the clones
grouped with the B-Proteobacteria. Some of the phylotypes were similar to isolate
sequences but the majority were most closely related to uncultured, environmental
sequences. Prominent among these were members of the SAR11 group. DGGE
fingerprints showed that most of the bands were common to all samples in all
three seasons, but additional bands, representing sequences related to Cytophaga
and Polaribacter appeared in samples collected during summer and fall.

In conclusion, the continued diversity studies of bacterial communities in
polar seas suggest that the diversity of bacteria is high, with phylogenetic lineages
in the Proteobacteria, the Bacteroidetes, Gram-positives, Verrucomicrobiales and
Planctomycetales. However, more work on these extremely cold habitats has to
be done to allow comparison with studies about bacterial diversity of habitats in
moderate temperature regions.

1.5 Importance of polar microorganisms
1.5.1 Industrial applications

Prokaryotes dominate many polar ecosystems and play major roles in food
chains and biogeochemical cycles. The availability of novel Arctic and Antarctic
species, isolated from these extreme habitats, opens perspectives for possible
biotechnological exploration and these unique environments represent a
biodiversity resource of huge dimensions, of which relatively little is known. Culture
collections are important for the long-term availability of these strains and their
genes, and for the preservation of the strains and organisms for biotechnological
research. However, only few publicly accessible collections exist which hold
microorganisms isolated from Arctic and Antarctic habitats, for example ACAM
(Australian Collection of Antarctic Microorganisms), BCCM/LMG Bacteria
Collection (Laboratorium voor Microbiologie, Universiteit Gent, Belgium), DSMZ
(Deutsche Sammlung von Mikroorganismen und Zellkulturen), etc.
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1.5.1.1 PUFA-production

It is well known that lipid composition of the membrane changes in response
to temperature and psychrophilic and psychrotrophic bacteria contain more (poly)
unsaturated, branched and/or cyclic fatty acids (Rotert et al., 1993). Research
with polyunsaturated fatty acids (PUFA) producing, Antarctic strains revealed
undescribed new taxa within the genera Shewanella and Colwellia (Bowman et
al.,, 1997c; Bowman et al., 1998b). Several Shewanella species contained
proportions of eicosapentaenoic acid (EPA; 20:5w3) and members of the genus
Colwellia produced docosahexaenic acid (DHA; 22:6®»3). Nichols et al. (1997)
reported about an Antarctic bacterium that produced both EPA and arachidonic
acid (AA; 20:4m6) in response to the growth temperature, whereas Jgstensen &
Landfald (1997) found a high prevalence of PUFA producing bacteria in Arctic
invertebrates. It is considered that the benefit of PUFA to cold-adapted organisms
derives from their stabilisation of the lipid phase at low temperatures, in addition
to their fluidising effect in the membrane (Russell & Nichols, 1999). Nichols et al.
(1996) found a novel C,, , polyene in sea-ice microbial communities and Helmke
et al. (2000) reported about a nearly symmetric polyene in cell extracts from some
psychrophilic and barophilic bacterial strains, isolated from sea-ice and deep-
sea samples. The polyene is considered to play a role in primary metabolism with
a possible function in temperature and pressure adaptation.

Provision of dietary PUFA, especially the fatty acids EPA and DHA, is essential
for normal growth and development of the larvae of many aquaculture species. In
addition to microalgae, PUFA producing bacteria can be used in aquaculture diets,
either as extracts or by direct addition to feed and this is an expanding area of
interest (Nichols et al., 1999). PUFA producing bacteria have been used to enrich
rotifers, a food organism for larval fish and PUFA's are also added to human diets
since they proved to be beneficial for human health. Normally, most of these
PUFA's derive from fish oils but since fish stocks are diminishing world wide,
PUFA producing bacteria may be an alternative solution. Several important stages
in the optimization of PUFA production and storage still need to be investigated.

1.5.1.2 Cold-adapted enzymes

Cold-adapted enzymes are produced by organisms living in permanently cold
habitats located in polar zones, at high altitudes or in the deep-sea, sea-ice,
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seawater, sediments, snow and permafrost. Low temperatures have a strong
negative effect on biochemical reactions, but organisms living in these cold
conditions can survive through adaptations in their membranes, proteins and
enzymes. These enzymes can be used to study the adaptations of life to low
temperatures and have potential biotechnological applications (McMeekin et al.,
1993; Nichols et al., 1999). A range of industries and products can benefit from
these enzymes, like for example cleaning agents and detergents, leather
processing, textile industry, food processing (fermentation, cheese manufacture,
meat industry and bakery), and molecular biology (heterologous gene expression)
with potential biomedical products.

Psychrophilic enzymes have maximal catalytic activity at temperatures below
30-50°C and usually display some degree of thermolability. Recently, much
research has focused on the protein structural characteristics of this cold adaptation
(Feller & Gerday, 1997). As temperature decreases, enzymes demonstrate a
decline of their catalytic rate due to the reduction of structural flexibility and
eventually they undergo cold denaturation. The tertiary and quaternary structures
of psychrophilic enzymes are more open and flexible with better access of
substrates to the active site at lower temperatures and show a high catalytic
efficiency (Gerday et al., 2000). Psychrophilic enzymes are not only useful for
their high specific activity, thereby reducing the amount of enzyme needed, but
also for their easy inactivation, which can prevent the prolonged action of some
enzymes.

Antarctic bacteria, especially those derived from ice, are good sources of
psychrophilic enzymes and the presence of protease, B-galactosidase,
phosphatase and amylase enzymes with strong cold adaptations has been found
in several of these strains. McCammon et al. (1998) isolated a lactose utilizing
bacterium from a freshwater Antarctic lake. The use of this cold-adapted j-
galactosidase can help in the processing of dairy foods to solve the problem of
lactose intolerance. Indeed, the optimal temperature for hydrolysis of lactose by
conventionally used -galactosidases ranges between 30 and 40°C, which is also
the ideal temperature for mesophiles, contaminating and spoiling the dairy
products.
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1.5.1.3 Bioremediation

Antarctica is generally considered one of the last remaining pristine
environments, however over the past decade, a number of fuel spills have occurred
and this has resulted in research about the hydrocarbon degradation by Antarctic
microorganisms (Delille et al., 1997; Cavanagh et al., 1998). Bacteria capable of
degrading n-alkanes and aromatics were isolated and novel intermediate products
suggest that these bacteria harbour novel degradation pathways. Organic Lake
is nutrient-rich and contains naturally occurring hydrocarbons. From this lake,
strains have been isolated with the ability to degrade various types of hydrocarbons,
like hexadecane and phenanthrene (McMeekin et al., 1993). The degradation of
xenobiotic compounds, more specific poly-chlorinated biphenyls in Arctic soil has
been demonstrated by Master & Mohn (1998). The high specificity and catalytic
activity of these cold-adapted enzymes, capable of hydrocarbon degradation,
makes them ideal candidates for the bioremediation of recalcitrant chemicals and
offers a feasible alternative to physicochemical methods.

1.5.1.4 Biocatalysis under low water conditions

The commercial synthesis of several valuable compounds (fatty acid esters,
peptides, oligosaccharide derivates) are often obtained from substrates with poor
solubility in agueous media and this process might be improved by using enzymes
operating under low water conditions. In these systems, the level and distribution
of residual water is important because the catalytic efficiency of enzymes is often
a strong function of the hydration state and when the associated water falls below
a certain level, the enzymes become more rigid. Overall, under very low hydration
conditions, enzyme efficiency is generally poor and reaction kinetics are too slow.
Psychrophilic enzymes might therefore have a potential advantage for application
under low water conditions, because of their inherent greater flexibility. This will
be particularly useful in conditions wherein the activity of mesophilic and
thermophilic enzymes is severely impaired by an excess of rigidity (Gerday et al.,
2000).
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1.5.1.5 Anti-freeze proteins

The presence of anti-freeze proteins in many cold-adapted organisms prevents
the formation of ice and these proteins offer significant potential for biotechnological
exploitation. The exogenous addition of anti-freeze proteins in the manufacture of
frozen food stuffs to enhance freeze-thaw properties has been considered and
the in vivo expression of anti-freeze protein genes in transgenic plants or animals
offers opportunities for expanding crop-production or food storage properties
(Cowan, 1997). The functionally related ice-nucleation proteins from psychrotrophic
and phytopathogenic bacteria (Swings et al., 1990) have already commercially
been used in the process of snow-making, but also have potential applications in
the production of ice-cream and similar food stuffs and via transgenic expression,
in the prevention of frost damage in economic crops.

1.5.1.6 Pigments

Several microorganisms living in polar habitats produce pigments (for example
cyanobacteria which produce carotenoids, scytonemin, fucoxanthin, etc.) and these
pigments protect the microbial communities against the damaging effect of UV-
radiation on living cells. This is especially true for the poles, where solar radiation
is continuous in summer and the UV-dose is very high, due to the ozone hole.
However, the production of pigments may also be an adaptation to other forms of
environmental challenges experienced at low temperatures, such as salt stress
and research on carotenoids (and perhaps pigments in general) in bacteria from
the briny pockets of sea-ice probably will reveal new links between psychrophily
and halophily (or halotolerance) (Fong et al., 2001). The production of these novel
pigments opens perspectives for several industries like the food and textile industry.

1.5.2 Exobiology

Exobiology considers the question of the origin and distribution of life in the
universe and the most likely candidates for harbouring microbial life in our solar
system, now and in the past, are Mars and Europa. Mars is a cold and dry planet
with a thin atmosphere and there are indications of present polar ice caps and
past water. The recent Mars exploration mission in search of answers about the
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history of water and the presence of life on Mars shows that this subject is still
very up to date. Antarctic ecosystems are relevant for Mars’ exobiology in two
ways: they provide models for possible Martian habitats and the study of
microorganisms in Antarctic environments can be used for the development of
methods to locate and identify microbial forms on Mars (Wynn-Williams & Edwards,
2000). Not only the Antarctic ice-covered lakes provide possible Martian analogs,
but also the cryptoendolithic communities in Antarctic rocks and the volcanoes on
the Antarctic continent may act as relevant models.

Europa, one of the moons of Jupiter, is also of interest to exobiology, because
of the possibility of a liquid water ocean under an outer shell of ice. The subglacial
Antarctic lake Vostok possesses a perennially thick ice cover of 3 km and provides
a good model for the potential europan biosphere (McKay, 1993).

The theory of ‘panspermia’ holds that reproductive bodies of living organisms
can exist throughout the universe and develop wherever the environment is
favourable with transport of life from one planet to the other. Since space is
extremely cold and suffers from severe radiation and other extreme conditions,
research in analogous extreme terrestrial habitats may help to test this theory
(Rothschild & Mancinelli, 2001).

1.6 Conceptual framework

The first section of this thesis will focus on the diversity of heterotrophic
bacteria of the mat communities in diverse freshwater and saline Antarctic lakes.
With the MICROMAT-project almost 800 bacterial strains were isolated in the lab
of Microbiology (Ghent) from mats collected from 10 different lakes from the
McMurdo Dry Valleys (lakes Hoare and Fryxell), the Vestfold Hills (lakes Ace,
Pendant, Druzhby, Organic, Grace, and Watts) and the Larsemann Hills (Lake
Reid) (Van Trappen et al., 2002). These strains could be assigned to 41 clusters
by numerical analysis of their fatty acid profiles and 31 strains formed single
branches. 16S rDNA sequence analysis of representative strains revealed that
they belong to the a-, B- and y- Proteobacteria, the high and low percent G+C
Gram-positives and to the Bacteroidetes and many clusters represent as yet
unnamed new taxa (see chapter 2). More detailed analysis is needed to determine
the species diversity within each of the FAA clusters and several novel taxa can
be described using a polyphasic taxonomic approach (Vandamme et al., 1996),
which combines different genotypic and phenotypic methods.
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My PhD-work started with the investigation of the genomic diversity of these
bacterial strains from Antarctic microbial mats, belonging to the fatty acid clusters
1 to 15 (phylogenetically related to the Bacteroidetes) and fatty acid cluster 41
(related to the a-subclass of the Proteobacteria), by using the repetitive extragenic
palindromic DNA (rep)-PCR fingerprinting technique (Rademaker & de Bruijn,
1997). Rep-PCR fingerprinting of the isolates allowed a further subclustering at
the genotypic level and it is clear, through studies that compare rep-PCR genomic
fingerprint analysis with DNA-DNA relatedness methods, that both techniques
yield results that are in close agreement (Nick et al., 1999; Rademaker et al.,
2000). Therefore, rep-PCR fingerprinting was used as a genomic screening method
to differentiate at the species- to subspecies-level and to select representatives
for additional 16S rDNA sequence analysis, to obtain a phylogenetic allocation of
the different rep-groups, and DNA-DNA hybridizations. The rep-PCR results
illustrate that the diversity of the heterotrophic bacterial strains in Antarctic microbial
mats is much higher than estimated by fatty acid analysis and preliminary 16S
rDNA sequencing. In total, eight new species could be delineated belonging to
the Bacteroidetes (with six new Flavobacterium species, one new Algoriphagus
species and a new genus, Gillisia of the family Flavobacteriaceae). These results
are presented in chapter 3. From FAA-cluster 41, related to the o-Proteobacteria,
three new species of a new genus Loktanella were described and results are
presented in chapter 4.

The second section of this work will handle about the diversity of oligotrophic
bacteria in polar seas and a collection of 173 bacterial strains, which were isolated
after enrichment under oligotrophic, psychrophilic conditions from Arctic (98 strains)
and Antarctic (75 strains) seawater (Tan & Ruger, 1991; Tan et al., 1999), was
available. These strains have been previously analysed by their substrate utilization
patterns using the Biolog system (Tan, 1997; Tan & Ruger, 1999) and by fatty acid
analysis and 16S rDNA sequence analysis of representatives (Mergaert et al.,
2001b). They belong to six metabolic groups and eight FAA-clusters, containing
two to 59 strains, could be delineated, while eight strains formed separate branches.
Results of the 16S rDNA sequence analysis indicate that they belong to the o-
and y- Proteobacteria, the high percent G+C Gram-positives and to the
Bacteroidetes. Additionally, several clusters represent as yet unnamed, new taxa,
since they show less than 97% 16S rDNA sequence similarity to their nearest
named neighbours.
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In the meantime, 56 additional strains, isolated using the same methods,
were also analysed using the Biolog system. For my PhD-work these additional
strains were included in fatty acid analysis and they belong to FAA-clusters B, C,
D, E and F (as delineated in Mergaert et al., 2001b) and three new clusters (I, J
and K) were found. The genomic diversity of 19 strains from clusters E and F and
two related, unclustered strains, was further investigated by rep-PCR genomic
fingerprinting and, using a polyphasic taxonomic approach, seven Antarctic strains
could be assigned to a novel species within the genus Alteromonas, while another
four strains could be assigned to the genus Glaciecola, with the description of a
novel Glaciecola species. These results are presented in chapter 5.
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CHAPTER 2

Diversity of 746 heterotrophic bacteria isolated
from microbial mats from ten Antarctic lakes

Stefanie Van Trappen, Joris Mergaert, Sylvie Van Eygen, Peter Dawyndt,
Margo C. Cnockaert and Jean Swings

Systematic and Applied Microbiology 25: 603-610 (2002)

Microbial mats, growing in Antarctic lakes constitute unique and very diverse
habitats. In these mats microorganisms are confronted with extreme life conditions.
We isolated 746 bacterial strains from mats collected from ten lakes in the Dry
Valleys (lakes Hoare and Fryxell), the Vestfold Hills (lakes Ace, Druzhby, Grace,
Highway, Pendant, Organic and Watts) and the Larsemann Hills (lake Reid), using
heterotrophic growth conditions. These strains were investigated by fatty acid
analysis, and by numerical analysis, 41 clusters, containing 2 to 77 strains, could
be delineated, whereas 31 strains formed single branches. Several fatty acid
groups consisted of strains from different lakes from the same region, or from
different regions. The 16S rRNA genes from 40 strains, representing 35 different
fatty acid groups were sequenced. The strains belonged to the alpha, beta and
gamma subclasses of the Proteobacteria, the high and low percent G+C Gram-
positives, and to the Bacteroidetes. For strains representing 16 fatty acid clusters,
validly named nearest phylogenetic neighbours showed pairwise sequence
similarities of less than 97%. This indicates that the clusters they represent, belong
to taxa that have not been sequenced yet or as yet unnamed new taxa, related to
Alteromonas, Bacillus, Clavibacter, Cyclobacterium, Flavobacterium, Marinobacter,
Mesorhizobium, Microbacterium, Pseudomonas, Salegentibacter, Sphingomonas
and Sulfitobacter.
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Introduction

Antarctica is characterised by its geographical and climatic isolation, and
most of the continent has experienced little or no anthropogenic influence. Antarctic
lakes harbour pristine biotopes and include freshwater and saline systems that
are subject to long periods of ice and snow cover, low temperatures and low
levels of photosynthetically active radiation. As such these oligotrophic lakes are
among the most unproductive in the world. Their planktonic community is
dominated by microbial loop organisms, including bacteria, protozoa and
phytoplankton, and little or no metazoans are present (Ellis-Evans, 1996; Laybourn-
Parry et al., 1997; Laybourn-Parry & Marchant, 1992). The benthic areas that
receive sufficient solar radiation are covered by microbial mats composed primarily
of cyanobacteria, diatoms and bacteria. These complex microbial communities
have accumulated during thousands of years and the microorganisms are
confronted with extreme life conditions, such as low temperatures, freezing-thawing
cycli, UV-irradiation, desiccation and varying light conditions, salinities and nutrient
concentrations. As a consequence they have been under a high selection pressure
and are potentially belonging to endogenous, as yet undescribed new taxa (Ellis-
Evans et al., 1998) with potential novel biochemical adaptations like anti-freeze
proteins, cold-adapted enzymes, desiccation and salt tolerance. Indeed, several
new bacterial species have been isolated from these Antarctic benthic microbial
communities, e.g. Flavobacterium tegetincola (McCammon & Bowman, 2000),
Arthrobacter flavus (Reddy et al., 2000), Rhodoferax antarcticus (Madigan et al.,
2000), and the anaerobes Psychromonas antarcticus (Mountfort et al., 1998) and
Clostridium vincentii (Mountfort et al., 1997).

During expeditions on the Antarctic continent (MICROMAT project, http://
www.nerc-bas.ac.uk/public/mlsd/micromat) mat samples were collected from lakes
in three Antarctic regions (Vestfold Hills, McMurdo Dry Valleys and Larsemann
Hills). One of these samples, taken from Lake Fryxell, McMurdo Dry Valleys, has
been investigated by Tindall et al. (2000) and Brambilla et al. (2001), using culturing
and culture independent methods. Their results show that a high phylogenetic
diversity of bacteria is present in the mat, including partial 16S rDNA sequences
related to anaerobes, Proteobacteria, Gram-positives, Verrucomicrobiales, and
the Bacteroidetes.

Although it is established that only part of the community can be isolated
(Spring et al., 2000), the obvious advantage of the culturing technique is that
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strains of new taxa can be preserved for detailed taxonomic analysis, physiological
characterization, as well as for screening for potential applications, such as the
production of cold-adapted enzymes, pigments, antibiotics and other bioactive
compounds. Brambilla et al. (2001) also demonstrated the incongruence between
the results obtained by culturing and culture independent methods. Indeed, both
approaches yielded complementary results with almost no overlap. Similar
conclusions were drawn from a study on the diversity of bacteria involved in the
biodeterioration of mural paintings (Gurtner et al., 2000).

We extended the study of the bacterial diversity in Antarctic microbial mats
by investigating 17 samples from ten different lakes in three regions of the Antarctic,
using direct cultivation under heterotrophic conditions, chemotaxonomic
characterization by fatty acid analysis (FAA) and numerical grouping of 746
isolates, and phylogenetic analysis by 16S rDNA sequencing of 40 representative
strains.

Materials and Methods

Source of samples

Samples were taken from two lakes in the Dry Valleys (Lake Fryxell and Lake
Hoare), seven lakes in the Vestfold Hills (Ace Lake, Grace Lake, Organic Lake,
Pendant Lake, Watts Lake, Lake Druzhby, and Highway Lake) and from Lake
Reid in the Larsemann Hills, and dispatched to Belgium in ice-cooled sterile tubes.
Sample designations, date of sampling and date of processing are given in Table
2.1. Several lakes were sampled twice. The samples FR1 and FR2 were duplicate
samples, collected from the littoral zone in the moated area of the lake. The sample
PE2 was taken from the littoral zone at a water depth of 30 cm. All other samples
were taken at a water depth of 3-4m. Sample RE1 of lake Reid, that had been
preserved frozen since sampling, was processed in January 2000.

Dry weight of the mat samples ranged from 7 to 81 %. The higher dry weights
were obtained with samples having a soily aspect, the lower ones from more
flocculous mat samples. The salinity from the lakes ranges from fresh (Druzhby,
Grace, Watts and Hoare) over hyposaline-saline (Ace, Highway, Pendant, Fryxell
and Reid) to hypersaline (Organic).
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Enumeration and isolation of heterotrophic bacteria

Per sample, 1 g (wet weight) was aseptically weighed and homogenized in 9
ml sterile physiological water (0.86 % NaCl) during 1 minute in a Stomacher
apparatus and subsamples were taken for the preparation of ten-fold dilution series.
A first subsample was diluted in sterile physiological water and plated on R2A
(Oxoid) and Reinforced Clostridial Agar (RCA, Oxoid), a second subsample was
diluted in sterile, filtered seawater and plated on Marine Agar 2216 (Difco). All
media were inoculated in duplo using a Whitley Automatic Spiral Plater (Don
Whitley Scientific Ltd, Shipley, England), and were incubated either in an anaerobic
chamber at room temperature (about 20°C, RCA plates), or aerobically at 4°C or
20°C (all other plates). Colony forming units (CFU) were counted, and selected
colonies grown on the most diluted plates over a period of four weeks were isolated
and purified on the same media. Pure cultures were cryopreserved using the
MicroBank system (PRO-LAB Diagnostics, Ontario, Canada).

Fatty acid analysis

The strains were investigated by fatty acid analysis (FAA), according to the
methods described by Mergaert et al. (1993), with the following modifications.
Cells were cultivated at 20°C on R2A or Marine Agar. Preliminary results showed
that differences between extracts prepared from cells of the same strains grown
on these two media were negligible. After preparation, gas-liquid chromatographic
separation of fatty acid methyl esters was achieved using the MIDI system
(MICROBIAL ID Inc., Newark, Delaware, USA) and fatty acid methyl esters were
identified by comparison to the peak library version 4.00. The fatty acid profiles
were grouped according to their Canberra metric similarities (S_, ,) with the UPGMA
clustering method, using the Bionumerics software package (Applied Maths, Sint
Martens-Latem, Belgium).

16S rDNA sequencing

DNA preparations and almost complete 16S rDNA sequences (1388-1550
bp) were obtained using the methods described by Mergaert et al. (2001b). The
sequencing primers were those described by Coenye et al. (1999). Sequence
assembly was performed using the program AutoAssembler 1.4.0 (Perkin-Elmer
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Applied Biosystems). The closest related sequences in the EMBL database were
found using the FASTA programme (http://www2.ebi.ac.uk/fasta3/). Phylogenetic
analysis was performed using the Bionumerics sofware package (Applied Maths,
Sint Martens-Latem, Belgium), taking into account the homologous nucleotide
positions after discarding all unknown bases and gaps. Using the same software
package, a neighbour joining dendrogram (Saitou & Nei, 1987) was constructed
based on global alignment of the sequences.

Nucleotide sequence accession numbers

The 16S rDNA sequences determined in this study have been deposited in
the EMBL data base and the accession numbers are given in Table 2.5.

Results and Discussion

Enumeration and isolation of heterotrophic aerobic bacteria from Antarctic
microbial mats

Seventeen microbial mat samples from ten Antarctic lakes from three different
regions (McMurdo Dry Valleys, Vestfold Hills and Larsemann Hills) were
investigated using culturing technigues. Colonies grown at 20°C or 4°C were
enumerated after 4-5 days or 12-14 days, respectively, when the count curves
reached the asymptote. Log numbers of CFU/g (dry weight) ranged between 5
and 10. The data obtained with incubations at 20°C are shown in Table 2.1. For
most mats, counts on Marine Agar, a medium rich in salt, were similar to those on
R2A, a medium poor in salt. The exceptions are the mat sample from the
hypersaline Organic Lake and the sample AC2 from the saline Ace Lake, which
showed much higher counts on Marine Agar, and from the freshwater lakes Grace
and Druzhby and the sample RE2 from the hyposaline lake Reid, which showed
higher counts on R2A. Plates incubated at 4 °C contained similar or slightly lower
numbers of colonies than the plates incubated at 20 °C (data not shown). In general,
prolonged incubation resulted in additional colonies showing up. None of the
samples yielded growth of colonies after 14 days anaerobic incubation on RCA
(detection limit 4.3 Log CFU/qg). In total, 746 colonies, grown on the most diluted
plates were isolated. The number of isolates per sample is given in Table 2.1.
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Chemotaxonomic and phylogenetic diversity of the isolates

Gas-liquid chromatographic analysis of the whole-cell fatty acid compositions
was used to characterize all isolates. Indeed, fatty acid analysis has been widely
applied for the characterization of bacteria from polar environments (Bowman et
al., 1997c; Bozal et al., 1997; Franzman & Tindal, 1990; Gosink & Staley, 1995;
Mergaert et al., 2001b; Pukall et al., 1999), and provides a suitable method for
rapidly grouping large numbers of strains into chemotaxonomically similar entities,
to form a basis for the selection of representative strains for phylogenetic analysis
(Heyrman et al., 1999; Mergaert et al., 2001a, b). A dendrogram was constructed
based on the fatty acid compositions of the strains. At S = >75%, 41 FAA clusters,
containing 2 to 77 strains, could be delineated, and 31 strains formed single
branches (Fig. 2.1). Twenty-eight clusters (clusters 1 to 21, 32 to 34, 36, 37, and
40) consisted of strains forming pigmented colonies (mainly yellow or orange,
some pink, red, or bordeau red), the remaining clusters consisted mainly of
unpigmented strains.

The lakes from which the strains were isolated are indicated in Fig. 2.1. Most
clusters contained strains from different lakes, and often from different regions.
Several clusters contained strains isolated from almost all samples, suggesting
that taxa showing these fatty acid compositions might be ubiquitous in Antarctic
lakes. In clusters 38, 40 and 41 strains isolated from the hypersaline lake Organic
grouped with strains from freshwater lakes Hoare and Watts, indicating that these
strains show a broad salinity tolerance. Highly similar FAA cluster composition
was observed in the duplicate samples FR1 and FR2, from each of which a large
and comparable number of isolates was investigated. Indeed, 13 out of 16 clusters,
with at least two strains from Lake Fryxell, were in common for both samples. For
the two samples of Lake Reid there was a significant difference in composition (4
out of 18 clusters, with at least two strains from that lake, in common), and this
can be explained by their different times of sampling, the presumably different
sampling location in the lake and the fact that the frozen sample RE1 was processed
almost two years after sampling. For other lakes, too low numbers of strains (Ace,
Pendant, Highway, Watts) were isolated for at least one sample to allow comparison
between samples.

A wide variety of different fatty acid profiles were obtained and a total of 90
different fatty acids were detected among the strains. The results are summarized
in Tables 2.2, 2.3 and 2.4. The extracts of the strains from the clusters 1 to 15
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Figure 2.1. Abridged dendrogram obtained by numerical analysis of the fatty acid compositions
of 746 strains, isolated from microbial mats from Antarctic lakes, using the Canberra metric
similarity coefficient (S_, ) and UPGMA clustering. Single strain branches are not shown. The
branch of the Gram-positive bacteria is designated “Gram+". The abbreviations FR, HO, DR,
OR, GR, AC, WA, PE, HI and RE stand for lakes Fryxell, Hoare (in the McMurdo Dry Valleys),
Druzhby, Organic, Grace, Ace, Watts, Pendant, Highway (in the Vestfold Hills) and Reid (in the

Larsemann Hills).
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(affiliated with the Bacteroidetes, see below) mainly contained branched fatty acids.
Straight chain saturated and unsaturated fatty acids were also present. Within
the unidentified fatty acids, summed feature 3 (consisting of either 15:0 iso 20H
or 16:1m7c, or both) predominated in the extracts from clusters 14 and 15.

The extracts of the strains from clusters 16 to 20 (affiliated with the Gram-
positives, see below) contained mainly saturated branched fatty acids and no
hydroxylated fatty acids were detected. The alcohol derivate of 16:1w7c was found
in the extracts from the strains from cluster 20 in relatively high amounts.

The extracts of the strains from clusters 21 to 41 (affiliated with the
Proteobacteria, see below) contained high amounts of straight chain fatty acids
and summed feature 3. The straight chain fatty acids were mainly unsaturated in
the extracts of the strains from clusters 21 and 32 to 41, while the saturated
straight chain fatty acids dominated in the extracts from clusters 22 to 31. The
extracts from the strains from cluster 41 primarily contained one fatty acid, 18:1w7c
(83.7%). In the extracts from the clusters 21, 22 and 31 a relatively high amount
of saturated branched fatty acids were found.

To determine their phylogenetic affiliation, 16S rDNA sequence analysis was
performed on 40 strains representing 35 clusters obtained by fatty acid analysis.
These sequences were compared to each other and to related sequences from
the EMBL database. The results are shown in Table 2.5. The strains belonged to
the a-, B- and y-Proteobacteria, the Bacteroidetes and the high and low percent
G+C Gram-positives.

The nearest validly named phylogenetic neighbours of the strains often belong
to taxa isolated from cold, aquatic environments, such as Shewanella baltica,
Psychrobacter glacincola, Sulfitobacter pontiacus, Flavobacterium frigidarium,
Flavobacterium gillisiae, Salegentibacter salegens and Gelidibacter algens.
Sequences from sixteen strains showed pairwise sequence similarities of less
than 97% to their nearest validly named neighbours, indicating that they represent
as yet unnamed new taxa or belong to species for which no sequences are yet
available (Table 2.5) (Stackebrandt & Goebel, 1994). The latter authors, as well
as many others, also demonstrated that strains showing sequence similarities of
more than 97% may show low DNA-DNA reassociation values and thus constitute
different species.

For FAA clusters 5 (related to Flavobacterium), 29 and 30 (3-Proteobacteria)
and 41 (o-Proteobacteria) we sequenced two or three representatives, selected
on the basis of their remote positions within the FAA clusters in the dendrogram,
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Table 2.3. Fatty acid composition of isolates belonging to the Gram-positives, expressed

as mean percentages of total. *

Fatty acid class Fatty acid cluster (number of isolates)
16 (9) 17(5) 18(64) 19 (10) 20 (12)

saturated, straight 1.4 1.1 4.4 1.6 2.2
unsaturated, straight TR - TR - 4.6
saturated, branched 92.0 92.1 76.2 89.3 64.1
unsaturated, branched 2.2 51 9.9 9.0 12.2
alcohol derivate of 16:1w7c 2.4 - - - 16.8
not classified ° TR 15 8.9 - -

% See footnotes in Table 2.2. Symbols: -, not detected; TR, trace amounts (< 1% of total).
® Not classified: Summed feature 1, 3 and unknown fatty acids 13.565, 14.959 and 15.669.
Summed feature 1 comprises any combination of 15:1 iso H, 15:1 iso | and 13:0 30H.

Summed feature 3 comprises 15:0 iso 20H, 16:1w7c, or both.

and the sequence similarity between the strains within these clusters was 96.5 to
97.9%, 95.5%, 90.3%, and 90.8%, respectively. This indicates that these, and
most probably also other FAA clusters, contain multiple taxa with similar fatty acid
profiles. On the other hand, in some cases more than 97% similarity was found
between representatives from different FAA clusters, i.e. clusters 1, 5, 6 and 7
(related to Flavobacterium), clusters 2 and 10 (related to Flavobacterium), clusters
28, 29 and 30 (B-Proteobacteria), clusters 26 and 31 (related to Pseudomonas),
and clusters 33 and 34 (related to Porphyrobacter), demonstrating that
phylogenetically closely related taxa are sometimes quite different in their fatty
acid compositions. These observations were also made by Mergaert et al. (2001b),
who characterized polar marine bacteria using the same methods. Although fatty
acid analysis has been proven a convenient method for rapid screening of large
numbers of bacteria from different phylogenetic affiliation, our results indicate
that higher resolution techniques are to be applied to investigate the genomic
diversity within each fatty acid cluster in more detail. Indeed, when a higher
similarity level (80%) for the delineation of clusters in the FAA dendrogram, shown
in Fig. 2.1, is used, and which is comparable to the level used by Mergaert et al.
(2001b), 13 additional clusters and 20 additional singles were found that potentially
belong to additional phylogenetic lineages.

Brambilla et al. (2001) and Tindall et al. (2000) focussed on a sample taken
from Lake Fryxell, which was derived from the same sampling master batch as
our samples FR1 and FR2. Their results show that a high phylogenetic diversity
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of bacteria is present in the mats and that the results from the culturing and culture
independent methods they used, showed almost no overlap. We compared the
complete sequences of our strains to the 7 almost complete and 126 partial
sequences (320 nucleotides from the 5’ terminus) of 12 cultured and 121 uncultered
bacteria, reported by these authors, by a FASTA search. Only five of our sequences,
four of which were from isolates from Lake Fryxell, showed a significant similarity
to the sequences determined for the clones and isolates by Tindall et al. (2000)
and Brambilla et al. (2001). The partial sequence of clone 391 ev (AJ287642) is
identical to the corresponding part of the sequence of our strain R-7724 (cluster
29), and the partial sequence of clone 204 ev (AJ287671) showed a sequence
similarity of 99.7% to the corresponding part of the full sequence of our strain R-
7933 (cluster 5). Strain R-8160 (cluster 38), showed a sequence similarity of 99.3%
to the full sequence of isolate A1/C-aer/Oll (AJ297439). Strains R-7550 (cluster
5) and R-9003 (cluster 1; isolated from Grace Lake) showed a sequence similarity
of respectively 97.5% and 97.1% to the full sequence of isolate A1/C-aer/OIV
(AJ297440) of Brambilla et al. (2001).

Although a high amount of bias on the assessment of the diversity of the
heterotrophic isolates was introduced due to the limited number of samplings and
culturing procedures, and the limited number of strains isolated from several
samples, our results combined with those reported by Tindall et al. (2000) and
Brambilla et al. (2001), demonstrate that the numbers and diversity of heterotrophic
bacteria in microbial mats from Antarctic lakes is extremely high and that the
strains isolated constitute a unique collection for further taxonomic analysis,
physiological characterization and screening. More detailed genomic analysis
will be needed to determine the species diversity within each of the FAA clusters
delineated in this paper.
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CHAPTER 3

New taxa from Antarctic lakes within the
Bacteroidetes

3.1 Polyphasic taxonomy of FAA clusters 1to 15

Fatty acid clusters 1 to 15 (as delineated in Van Trappen et al. (2002), see
chapter 2), which belong to the Bacteroidetes, were further investigated using a
polyphasic taxonomic approach. The phylum of the Bacteroidetes, can be
subdivided into 3 different classes, the ‘Bacteroidetes’, the ‘Flavobacteria’ and
the ‘Sphingobacteria’ (as illustrated in Fig. 3A) with the families Bacteroidaceae,
Sphingobacteriaceae, ‘Flexibacteriaceae’ and Flavobacteriaceae (Bernardet et al.,
2002).

The genomic diversity of the strains of fatty acid clusters 1 to 15 (as delineated
in Van Trappen et al. (2002), see chapter 2), which belong to the Bacteroidetes,
was investigated by rep-PCR fingerprinting, using the GTG_-primer (Rademaker
& de Bruijn, 1997). In total, 161 fingerprinting patterns were obtained (for strain
R-9191 of FAA cluster 5, no DNA could be extracted after several attempts) and
27 clusters could be delineated, whereas 38 strains formed single branches, at a
cut-off value of 70% (Pearson correlation coefficient) (see Fig. 3.1). These results
illustrate that the diversity of heterotrophic bacteria in Antarctic microbial mats is
extremely high, and strains showing the same pattern are often isolated from
different lakes (rep-clusters II, VI, XXII, XXVII) and even from different Antarctic
regions (rep-clusters |, IX, X, XIlI, XVII, XVIII, XXI, XXIV). Reference strains of
nine related Flavobacterium species were also included in this rep-clustering, but
it is clear that none of their fingerprinting patterns, showing only a few bands, is
closely related to the patterns of the Antarctic strains (see Fig. 3.1).

Overall this rep-clustering is consistent with the delineation of fatty acid
clusters with strains from the same rep-cluster belonging to the same FAA cluster
(see Fig. 3.1). However, a few exceptions can be found. For example, strains of
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Figure 3A. Neighbour-joining dendrogram showing the estimated phylogenetic relationships of
representatives of the Bacteroidetes phylum on the basis of 16S rRNA gene sequences.
Oceanospirillum linum was choosen as outgroup and the different classes of the Bacteroidetes
phylum (Flavobacteria, Bacteroidetes and Sphingobacteria) are indicated. Bootstrap values
(percentages of 100 replicates) are shown. GenBank accession numbers for each reference
strain are shown in parentheses. Bar, 1 nucleotide substitution per 10 nucleotides.

fatty acid clusters 5 and 6 group within the same rep-cluster (1) and show almost
identical profiles. This can be explained by the fact that their fatty acid compositions
are very similar and differences are largely due to different amounts of fatty acids
C,. iso C,, anteiso C ., and summed feature 3. Indeed, principal component
analysis (PCA) confirms that there is no clear separation between FAA clusters 5
and 6. Rep-cluster X (FAA clusters 3 and 5) and rep-cluster XVI (FAA clusters 1
and 5) for example also contain strains from different FAA clusters but clear
differences can be found in their rep-profiles after visual comparison. Cluster
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analysis is mostly used to present data in an organized way but when the number
of fingerprints is high, the situation gets complex and it is more difficult to assign
reliable groups (Rademaker & de Bruijn, 1997). Especially rep-profiles with very
few clear bands, concentrated in a specific area of the rep-profile can lead to
anomalies in the clustering (Versalovic et al., 1994).

The sub-clustering on the basis of rep-PCR patterns, allowed us to select
representatives for additional 16S rDNA sequence analysis and DNA-DNA
hybridization. In Table 3.1, 16S rDNA sequence similarities of representative strains
of the different rep-clusters, with their nearest phylogenetic neighbours are given.
For several of these strains, validly named nearest phylogenetic neighbours
showed sequence similarities of less than 97%, indicating that the clusters they
represent belong to unnamed new taxa (Stackebrandt & Goebel, 1994). We focused
on rep-clusters with minimum three strains and with clear and a sufficient number
of bands in their rep-patterns.

For 14 reference strains of eight different rep-clusters belonging to the large
FAA cluster 5, DNA-DNA hybridizations were performed, to get a first glimpse of
their relatedness at the species level (see Table 3.2). The hybridization values
between strains of the same rep-cluster (rep-clusters I, Il and XXII) are high (>
70%) and according to Wayne et al. (1987), these strains belong to the same
species. Indeed, Versalovic et al. (1994) have shown that strains with the same
rep-PCR profile are always closely related, and this has been confirmed by several
authors (e.g. Rademaker & de Bruijn, 1997; Rademaker et al., 2000). However,
hybridization values between strains of different clusters are sometimes high (>
70%), indicating that the rep-clusters they represent belong to the same species
(rep-clusters XXII and XXVII; clusters XXI and XXIV). Indeed, when looking at
these patterns into more detail, similarities between the different rep-profiles can
be found (see Fig. 3.1). For several of these rep-clusters, additional hybridizations
were performed, to confirm their genomic relatedness:

e Rep-cluster | contains 16 strains which belong to FAA clusters 5 and 6.
Hybridizations were performed between strains R-9106 (FAA cluster 5), R-
9122 (FAA cluster 6) and R-9123 (FAA cluster 6; showing, together with strain
R-9132 of FAA cluster 5, a different pattern than the other strains of rep-
cluster I, with only one clear band instead of four). A low hybridization level is
obtained between R-9123 and the other strains (19.6%), so strains R-9123
and R-9132 were omitted from further experiments. A high hybridization value
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Table 3.1. Phylogenetic relationship of strains representative for FAA clusters 1 to 15 belonging

to the Bacteroidetes.

Strain Rep- FAA 16S rDNA Validly named nearest

No. cluster® cluster® similarity (%) ° phylogenetic neighbour

R-9003 XVI 1 98.0 Flavobacterium frigidarium

R-11271 XV 2 98.7 Flavobacterium limicola

R-9033 NC 2 95.3 Flavobacterium tegetincola

R-8282 Xl 4 92.8 Salegentibacter salegens

R-9192 Vil 5 97.4 F. saccharophilum, F. pectinovorum
R-9106 | 5 98.5 Flavobacterium gillisiae

R-7582 Il 5 98.5 Flavobacterium limicola

R-8023 I 5 98.7 Flavobacterium limicola

R-7585 XX 5 96.0 Flavobacterium limicola

R-7581 \% 5 95.3 Flavobacterium tegetincola

R-9014 XXIV 5 98.4 Flavobacterium gillisiae

R-8022 XXI 5 98.4 Flavobacterium gillisiae

R-7518 XXI 5 98.1 Flavobacterium gillisiae

R-9010 XXII 5 99.0 Flavobacterium xanthum

R-7548 NC 5 97.9 Flavobacterium tegetincola

R-7933 NC 5 97.7 Flavobacterium limicola

R-7550 NC 5 98.9 Flavobacterium limicola

R-9122 | 6 98.4 Flavobacterium gillisiae

R-7579 XIX 7 97.3 Flavobacterium limicola

R-7515 \i 9 95.0 Flavobacterium limicola

R-9046 \% 10 98.6 Algoriphagus chordae

R-10847 Xl 10 98.5 Flavobacterium limicola

R-8899 XVII 10 95.1 Flavobacterium flevense

R-8885 XVII 10 95.1 Flavobacterium flevense

R-8893 NC 10 94.5 Flavobacterium aquatile

R-11385 XXVI 11 98.5 Flavobacterium omnivorum

R-8963 NC 11 98.2 Flavobacterium tegetincola

R-9331 NC 11 98.2 Flavobacterium tegetincola

R-7666 XV 12 95.7 Flavobacterium limicola

R-9217 VIII 13 99.7 Gelidibacter algens

R-7572 NC 14 97.3 Hymenobacter actinosclerus
R-9286 IX 15 98.7 Algoriphagus chordae, A. ratkowskyi
R-10710 Xl 15 98.7 Algoriphagus chordae, A. ratkowskyi
R-11427 Xl 15 98.7 Algoriphagus chordae, A. ratkowskyi
R-9476 XVIII 15 96.4 Flavobacterium limicola

 Rep-clusters are as delineated in Fig. 3.1.
® FAA clusters are as delineated in Van Trappen et al. (2002), see chapter 2. NC, not clustered.
®The 16S rDNA sequence similarities are based on pairwise alignments.
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between strains R-9106 and R-9122 of rep-cluster | (97.6%) shows that the
strains they represent are genotypically closely related and most probably
belong to the same species, which is also novel since hybridization values
with nearest phylogenetic neighbours are low. Phenotypic results confirm
this species delineation and the name Flavobacterium degerlachei sp. nov.
is proposed (see section 3.3).

e Forrep-cluster VII, hybridizations were performed between the two strains
(R-9192 and R-9193) and strain R-8016, with a very similar rep-profile, and
type strains of nearest phylogenetic neighbours. The results show clearly
that these three strains belong to a single and novel species, for which the
name Flavobacterium micromati sp. nov. is proposed (see section 3.3).

e For rep-clusters XXI and XXIV, additional hybridization results between
strains of these clusters and nearest phylogenetic neighbours, show that
they represent a new species within the genus Flavobacterium for which the
name F. frigoris sp. nov. is proposed (see section 3.3 and 3.4).

e The four strains of rep-cluster Il belong to another new Flavobacterium
species, with the name F. psychrolimnae sp. nov., according to additional
hybridization results with nearest phylogenetic neighbours (see section 3.4).

e The three strains R-8284, R-8019 and R-7548 show similar rep-profiles
and high hybridization values, and represent a novel species for which the
name Flavobacterium fryxellicola sp. nov. is proposed (see section 3.4).

e Strain R-9010 shows a high sequence similarity (99.0%) with the type
strain of Flavobacterium xanthum and hybridization results (91.0%) confirm
that the strains of rep-cluster XXII and related clusters XXIIl and XXVII most
probably belong to this validly described Flavobacterium species (see section
3.4).

e Forthe 22 strains of rep-cluster XVII, belonging to FAA cluster 10, the low
sequence similarity (95.1%) with Flavobacterium flevense indicates that they
belong to a novel species (Stackebrandt & Goebel, 1994), for which the name
Flavobacterium gelidilacus sp. nov. is proposed (see section 3.2).
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e The three strains of FAA cluster 4 (of which two belong to rep-cluster XIliI)
showed only 92.8% sequence similarity to Salegentibacter salegens, their
nearest phylogenetic neighbour, and hybridization results together with
phenotypic features confirm that they belong to a single species within a
novel genus, for which the name Gillisia limnaea gen. nov., sp. nov. is proposed
(see section 3.5).

e The eight strains of FAA cluster 15 belong to three different rep-clusters
(IX, Xl and XVIII) and 16S rDNA sequences show that rep-clusters IX and
XIl are phylogenetically related to Cyclobacterium marinum (with only 92%
similarity) while rep-cluster XVIIl is related to Flavobacterium limicola (96.4%
similarity). Only the strains related to Cyclobacterium were investigated further
and hybridizations between six of them (from strain R-10750, no DNA could
be extracted after several attempts) show that they belong to a single species
of the recently described genus Algoriphagus. They are classified as
Algoriphagus antarcticus sp. nov. (see section 3.6).
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3.2 Flavobacterium gelidilacus sp. nov., isolated
from microbial mats in Antarctic lakes

Stefanie Van Trappen, Joris Mergaert and Jean Swings

Redrafted from: International Journal of Systematic and Evolutionary
Microbiology 53: 1241-1245 (2003)

Twenty-two isolates from microbial mats in eastern Antarctic lakes showed similar
fatty acid compositions and were investigated further using a polyphasic taxonomic
approach. Repetitive extragenic palindromic DNA - PCR fingerprinting of the 22
strains revealed three groups, and DNA-DNA hybridizations between
representatives showed more than 87 % DNA-DNA reassociation with each other.
16S rRNA gene sequence analysis placed two representative strains, LMG 214777
and LMG 21619 within the genus Flavobacterium, with 95.1 % sequence similarity
to Flavobacterium flevense, 95.0 % to Flavobacterium tegetincola, less than 95 %
to other Flavobacterium species and less than 90 % to representatives of other
genera. The name Flavobacterium gelidilacus sp. nov. is proposed, with LMG
214777 (= DSM 15343") as the type strain, and a description of the species is
given on the basis of morphological, biochemical and physiological characteristics
and fatty acid composition. The G+C content of the genomic DNA is 30.0-30.4
mol%.
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Introduction

Members of the genus Flavobacterium have been isolated from diverse
habitats such as freshwater (Flavobacterium aquatile, Flavobacterium flevense,
Flavobacterium hibernum, Flavobacterium saccharophilum), soil (Flavobacterium
johnsoniae, Flavobacterium pectinovorum, Flavobacterium xanthum) and sea-
ice (Flavobacterium gillisiae); some are known as important fish pathogens
(Flavobacterium branchiophilum, Flavobacterium columnare, Flavobacterium
psychrophilum). They are abundant in freshwater and marine ecosystems, and
these heterotrophic bacteria may have a specialized role in the uptake and
degradation of the high-molecular-mass fraction of dissolved organic matter in
these environments (Kirchman, 2002).

Several novel species, added to the genus since 1996, were derived from
Antarctic habitats, and several new genera containing polar organisms have
recently been described within the family Flavobacteriaceae (Gelidibacter,
Psychroserpens, Polaribacter, Psychroflexus, Salegentibacter). So far, only one
species, Flavobacterium tegetincola, has been isolated from a cyanobacterial mat,
collected from the Antarctic saline Ace Lake located in the Vestfold Hills
(McCammon & Bowman, 2000).

During the MICROMAT project (November 1998 to February 2001), 746
bacterial strains were isolated under heterotrophic conditions from microbial mat
samples, collected from 10 Antarctic lakes in the Vestfold Hills (lakes Ace, Druzhby,
Grace, Highway, Pendant, Organic and Watts), the Larsemann Hills (lake Reid)
and the McMurdo Dry Valleys (lakes Hoare and Fryxell) (Van Trappen et al., 2002).
Numerical analysis of their fatty acid composition revealed 41 clusters, and 16S
rRNA gene sequence analysis, performed on representative strains, showed that
they belong to the a-, B- and y-subclasses of the Proteobacteria, the high- and
low-G+C-content Gram-positives and to the Bacteroidetes (Van Trappen et al.,
2002). The results of the fatty acid analysis and 16S rRNA gene sequence analysis
showed that the diversity of heterotrophic bacteria in microbial mats from Antarctic
lakes is very high. Moreover, many fatty acid clusters contain multiple taxa, as
defined by repetitive extragenic palindromic DNA-PCR (rep-PCR) fingerprinting,
a technique used to investigate the genomic diversity of each fatty acid cluster in
more detail (Van Trappen et al., 2001).

In the present work, we studied further the taxonomic relationships of 22
strains from fatty acid cluster 10 (as delineated by Van Trappen et al., 2002),
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related to the genus Flavobacterium, by genomic and phenotypic characterization.
Van Trappen et al. (2002) found less than 96 % 16S rRNA gene sequence similarity
to the closest relatives within the genus Flavobacterium, indicating that these
strains constitute a new species (Stackebrandt & Goebel, 1994).

Materials and Methods

The isolates investigated, together with their sources, are listed in Table
3.3. The strains were routinely cultivated on R2A medium (Difco) at 20 °C for 48 h
or, for strain LMG 8328" on TSA medium (BBL) at 20 °C for 48 h, except where
mentioned otherwise.

DNA was prepared according to the method of Pitcher et al. (1989), and rep-
PCR fingerprinting was performed on all strains of fatty acid analysis cluster 10 of
Van Trappen et al. (2002), using the primer GTG, (Versalovic et al., 1991), as
described by Rademaker & de Bruijn (1997) and Rademaker et al. (2000).
Numerical analysis was carried out using the BIONUMERICS software package
(Applied Maths), as described by the same authors.

DNA-DNA hybridizations were carried out with photobiotin-labelled probes
in microplate wells, as described by Ezaki et al. (1989), using a HTS7000 Bio
Assay Reader (Perkin Elmer) for the fluorescence measurements. The
hybridization temperature was 30 °C and reciprocal experiments were performed
for every pair of strains.

The G+C content of the DNA's from reference strains was determined using
a HPLC method. DNA was enzymically degraded into nucleosides as described
by Mesbah et al. (1989). The nucleoside mixture obtained was then separated by
HPLC using a Waters Symmetry Shield C8 column thermostatted at 37 °C. The
solvent was 0.02 M NH,H,PO,, pH 4.0, with 1.5 % acetonitrile. Non-methylated A-
phage DNA (Sigma) was used as the calibration reference.

Almost complete 16S rRNA gene sequences of two reference strains were
obtained as described previously (Mergaert et al., 2001b). The most closely related
sequences were found using the FASTA program. Phylogenetic analysis was
performed using the BIONUMERICS software package, taking into account
homologous nucleotide positions after discarding all unknown bases and gaps. A
neighbour-joining dendrogram (Saitou & Nei, 1987) with the nearest phylogenetic
relatives was constructed on the basis of global alignment of the sequences,
using the same software package.
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The fatty acid compositions are based on the data generated by Van Trappen
et al. (2002), or were determined as described by the same authors.

The following morphological, physiological and biochemical tests were
performed. Colony morphology was determined on R2A medium after 6 days. In
addition, growth and adherence of colonies on marine and nutrient agars, TSA
and Anacker and Ordal’s agar (Anacker & Ordal, 1955) were tested after 14 days
growth. Cells were tested for their reaction to the Gram stain and for catalase and
oxidase activity. Tests in the commercial systems APl ZYM, APl 20NE and API
20E (bioMeérieux) were performed according to the instructions of the manufacturer.
API ZYM tests were read after 4 h incubation at 20 °C; other API tests were read
after 48 h at 20 °C. Congo red absorption (Bernardet et al., 2002), production of
flexirubine-type pigments (Reichenbach, 1989), the presence of gliding motility,
degradation of casein and chitin (Reichenbach & Dworkin, 1981), alginate (West
& Colwell, 1984), DNA (using DNA agar from Difco, supplemented with 0.01 %
toluidine blue from Merck), pectin (Paton, 1959), starch and L-tyrosine (Barrow &
Feltham, 1993), the production of a brown diffusible pigment on L-tyrosine agar
and the precipitation of egg-yolk agar (Barrow & Feltham, 1993) were also
investigated; reactions were read after 5 days. Hydrolysis of carboxy-
methylcellulose was tested in Anacker & Ordal’s broth gelified with 3 %
carboxymethylcellulose sodium salt (high viscosity; Sigma). This medium was
stab-inoculated, and liquefaction of the medium within 7 days was scored as a
positive reaction. Growth at different temperatures was assessed after 5 days
incubation. Salt tolerance was tested on R2A medium supplemented with 1-10 %
NaCl after 14 days incubation.

Results and discussion

Twenty-two strains of fatty acid analysis cluster 10, listed in Table 3.3, showed
similar rep-PCR profiles (see also Fig. 3.2) and they could be divided into three
clusters according to their profile type, hereafter referred to as rep-PCR profile
type | (with 9 strains), rep-PCR profile type Il (with 12 strains), and rep-PCR
profile type Il (containing the single strain LMG 21620). Versalovic et al. (1994)
have shown that strains with the same rep-PCR profile are always closely related,
and this has been confirmed by several authors (e.g. Rademaker & de Bruijn,
1997).

Five strains (LMG 214777, LMG 21618, LMG 21619, LMG 21620 and LMG

88



Flavobacterium gelidilacus sp. nov.

Table 3.3. Strains investigated in this study.

Strain Isolation source

Rep-PCR profile type |

LMG 21477" (= DSM 15343" = R-8899"), R-8897, R-8908, Ace Lake, Vestfold Hills
R-8969, R-8972, R-9283

R-9024 Lake Watts, Vestfold Hills
R-11278 Pendant Lake, Vestfold Hills
LMG 21618 (= R-12566) Lake Reid, Larsemann Hills

Rep-PCR profile type Il
LMG 21619 (= R-8885), R-8888, R-8898, R-9104, R-9110, R-9158  Ace Lake, Vestfold Hills

LMG 21621 (= R-9330), R-9004, R-9019 Lake Watts, Vestfold Hills
R-11078, R-11277, R-8983 Pendant Lake, Vestfold Hills
Rep-PCR profile type llI

LMG 21620 (= R-9056) Pendant Lake, Vestfold Hills

Numbers with an ‘R-‘prefix refer to strains from the research collection of the LMG, as used by Van
Trappen et al. (2002).

21621) representing the three rep-PCR profile types and chosen on the basis of
their isolation source were used for DNA-DNA hybridizations to investigate their
genomic relatedness. The DNA-DNA binding values among the five strains were
high, ranging from 87 % to 97 %, and differences between reciprocal experiments
were less than 13 %. These DNA-DNA binding values confirm that the 22 strains
belong to a single species (Wayne et al., 1987).

The G+C content of the DNA's from strains LMG 214777, LMG 21618, LMG
21619, LMG 21620 and LMG 21621 was determined and the G+C contents of the
novel strains were 30.0-30.4 mol%, which is slightly below the range (32-37 mol
% G+C) mentioned by Bernardet et al. (1996) for the genus Flavobacterium.

Almost complete 16S rRNA gene sequences (1467-1468 base pairs) of strains
LMG 21477 (rep-profile type 1) and LMG 21619 (rep-profile type Il) were obtained.
A neighbour-joining dendrogram with the nearest phylogenetic relatives is shown
in Fig. 3.3. Dendrograms obtained using maximum-parsimony and maximum-
likelihood analyses showed essentially the same topography. The 16S rRNA gene
sequences of strains LMG 21477" and LMG 21619 differed by only one base, and
showed 95.1 % similarity to that of F. flevense, 95.0 % to that of F. tegetincola,
less than 95 % to sequences of other Flavobacterium species and less than 90 %
to sequences of other genera, indicating that they belong to a novel Flavobacterium
species.
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Figure 3.2. Digitized representation of normalized rep-PCR profiles (GTG_-primer) of 22 strains
belonging to fatty acid cluster 10. Dendrogram derived from the UPGMA-clustering of the profiles
with the Pearson correlation coefficient.

The 22 novel strains yielded very similar fatty acid profiles. The mean
composition was 4% 14:0 iso, 10% 15:0, 1% 15:0 3-OH, 8% 15:0 anteiso, 12%
15:0is0, 6% 15:0 iso 3-OH, 1% 15:1 anteiso, 10% 15:1 iso, 6% 15:1w6c, 8% 16:0
iso, 10% 16:0 iso 3-OH, 4% 16:1 iso, 6% 17:0 iso 3-OH, 3% 17:1w6c¢, 2% 17:1 iso
®9c, 1% 18:1w5c and 2% 15:0 iso 2-OH and/or 16:1w6c. Other fatty acids each
accounted for less than 1%. The fatty acid profiles of the novel strains resemble
those determined for other Flavobacterium species (Bernardet et al., 1996), but
differ in terms of the relative amounts of 15:0 anteiso, 15:0 iso, 16:0 iso and 16:0
iso 3-OH.

The strains showed morphological characteristics typical of Flavobacterium
(Bernardet et al., 2002) and were almost identical in their physiological and
biochemical characteristics (see Description). The novel species can be clearly
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5%

Flavobacterium psychrophilum ATCC 49418" (AF090991)
100 ——— Flavobacterium aquatile ATCC 11947" (M62797)

100 100 | Flavobacterium gelidilacus LMG 21477" (AJ440996)
| Flavobacterium gelidilacus LMG 21619 (AJ507151)

Flavobacterium tegetincola ACAM 602" (U85887)
Flavobacterium flevense ATCC 27944" (M58767)
Flavobacterium johnsoniae ATCC 176017 (M59051)

Flavobacterium frigidarium ATCC 700810 (AF162266)
Flavobacterium xanthum ACAM 81" (AF030380)
Flavobacterium gillisiae ACAM 601" (U85889)
Flavobacterium hydatis ATCC 295517 (M58764)

Flavobacterium columnare ATCC 24643" (M58781)
Flavobacterium pectinovorum ATCC 19366" (D12669)
Flavobacterium saccharophilum NCIMB 2072" (D12671)
Flavobacterium branchiophilum ATCC 27944" (D14017)
Flavobacterium hibernum ACAM 376" (L39067)

Flavobacterium succinicans NCIMB 2277" (D12673)
Polaribacter franzmannii ATCC 700399" (U14586)

Figure 3.3. Neighbour-joining dendrogram based on 16S rDNA sequences showing the estimated
phylogenetic relationships of Flavobacterium gelidilacus sp. nov., other Flavobacterium species
and Polaribacter franzmannii (outgroup). Bootstrap values are shown as percentages of 1000

replicates, if higher than 95 %. Bar, 5 % sequence divergence.

differentiated from other Flavobacterium species by several phenotypic
characteristics (Table 3.4).

The results of the polyphasic analysis support the recognition of a novel
species within the genus Flavobacterium, for which the name Flavobacterium
gelidilacus sp. nov. is proposed.

Description of Flavobacterium gelidilacus sp. nov.

Flavobacterium gelidilacus (ge.li.di.la’cus. L. adj. gelidus ice-cold; L. n. lacus
lake; N. L. gen. n. gelidilacus of the ice-cold lake, referring to the isolation source,
microbial mats in Antarctic lakes).

Gram-negative rods, <1 x 2-4 um, that exhibit gliding motility on nutrient-
poor medium (R2A), except for strains LMG 21477" and LMG 21619, for which no

gliding motility is detected. The strains grow at 5-25°C, with optimal growth at 20
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°C; no growth at 30 °C. Yellow to orange, convex, translucent colonies, 1-4 mm in
diameter and with entire margins, are formed on R2A plates after 6 days at 20 °C.
Colonies on Anacker & Ordal’s agar are flat, round with entire margins and 0.5-1
mm in diameter after 14 days incubation. Growth also occurs on TSA, nutrient
agar and marine agar, and colonies do not adhere to the agar. Degrades casein
and starch. Gelatinase activity is observed, except in the case of strain LMG
21619. Catalase- and oxidase-positive. No growth is observed on glucose,
arabinose, mannose, mannitol, N-acetylglucosamine, maltose, gluconate, caprate,
adipate, malate, citrate and phenylacetate. Acid is not produced from glucose,
mannitol, inositol, sorbitol, rhamnose, sucrose, melobiose, amygdalin, arabinose.
Agar, alginate, pectin, chitin, aesculin, carboxymethylcellulose, DNA, tyrosine and
urea are not degraded. Congo red is not absorbed and no flexirubin-type pigments
are present. There is no production of a brown diffusible pigment on L-tyrosine
agar and no precipitate is formed on egg-yolk agar. The Voges-Proskauer reaction
and tests for indole production, citrate utilization, nitrate reduction and hydrogen
sulfide production are negative. None of the strains shows activity for arginine
dihydrolase, lysine decarboxylase, ornithine decarboxylase, tryptophan
deaminase, lipase (C14), a-chymotrypsine, o-galactosidase, B-galactosidase, -
glucuronidase, a-mannosidase, and a-fucosidase. Weak enzymic activity is
observed for cystine arylamidase, medium activity is found for acid phosphatase,
esterase lipase (C8), phosphohydrolase and oa-glucosidase, and strong activity is
found for alkaline phophatase, leucine arylamidase and valine arylamidase. No
B-glucosidase or N-acetyl-B-glucosaminidase activity is detected, except for strain
LMG 21621. Different reactions are obtained for esterase (C4) and trypsin. The
cells contain the fatty acids 15:0 iso, 16:0 iso 3-OH, 15:1 iso, 15:0, 15:0 anteiso
and 16:0 iso as the main constituents. Growth occurs in the absence of NaCl and
in the presence of 1-5 %NacCl, but not 10% NacCl, indicating that the strains are
not halophilic but merely halotolerant. The G+C content is 30.0-30.4 mol%.

The type strain is LMG 214777 (= DSM 15343"). Twenty-two strains were

isolated from microbial mats from freshwater and saline lakes in eastern Antarctica
(Table 3.3).
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3.3 Flavobacterium degerlachei sp. nov.,
Flavobacterium frigoris sp. nov. and
Flavobacterium micromati sp. nov., novel
psychrophilic bacteria isolated from microbial
mats in Antarctic lakes

Stefanie Van Trappen, llse Vandecandelaere, Joris Mergaert and Jean Swings

Redrafted from: International Journal of Systematic and Evolutionary
Microbiology 54, 85-92 (2004)

Taxonomic studies were performed on thirty-six strains that were isolated from
microbial mats in Antarctic lakes of the Vestfold Hills, the Larsemann Hills and the
McMurdo Dry Valleys. Phylogenetic analyses based on 16S rRNA gene sequences
indicated that these strains are related to members of the genus Flavobacterium;
sequence similarity values with their nearest phylogenetic neighbours ranged
from 96.8% to 98.5%. Results of DNA-DNA hybridization and comparison of
repetitive extragenic palindromic DNA-PCR fingerprinting patterns revealed that
these strains are members of three distinct species. Genotypic results, together
with phenotypic characteristics, allowed the differentiation of these species from
related Flavobacterium species with validly published names. The isolates are
Gram-negative, chemoheterotrophic, rod-shaped cells that are psychrophilic and
moderately halotolerant; their DNA G + C contents range from 33.1 to 34.5 mol%.
Their whole-cell fatty acid profiles are similar and include C, ., anteiso-C. ., iSO-

15:07 15:0’
C..., C,.,06c, iso-C iso-C, . .3-OH and summed feature 3 (which comprises

15:07 15:1 16:0’ 16:0
iso-C ., 2-OH, C,  o7c, or both) as major fatty acid components. On the basis of
these results, three novel species are proposed, namely Flavobacterium
degerlachei sp. nov. (consisting of 14 strains, with LMG 21915™ = DSM 15718 as
the type strain), Flavobacterium micromati sp. nov. (consisting of 3 strains, with
LMG 21919" = CIP 108161" as the type strain) and Flavobacterium frigoris sp.

nov. (consisting of 19 strains, with LMG 219227 = DSM 15719" as the type strain).

95



Chapter 3

Introduction

The genus Flavobacterium belongs to the Bacteroidetes and was proposed
by Frankland in 1889. Since then, the description of this genus has been revised
several times (Bernardet et al., 1996). Flavobacterium species have been isolated
from diverse habitats such as fresh- and salt water, soil, sediment, sea-ice,
diseased fish and microbial mats. Members of the Bacteroidetes are highly
abundant in freshwater and marine ecosystems and became dominant in response
to the input of organic substrates (Hofle, 1992; Rossello-Mora et al., 1999). These
findings suggest that these bacteria may have a specialized role in the uptake
and degradation of organic matter in cold, aquatic environments (Kirchman, 2002).
Indeed, many species of the genus Flavobacterium are capable of the hydrolysis
of organic polymers such as complex polysaccharides (Bernardet et al., 1996).

Several novel species that have been added to the genus Flavobacterium
since 1996 originated from Antarctic habitats, e.g. Flavobacterium hibernum
(McCammon et al., 1998), Flavobacterium gillisiae (McCammon & Bowman, 2000)
and Flavobacterium frigidarium (Humphry et al., 2001), but only two species have
so far been isolated from cyanobacterial mats: Flavobacterium tegetincola
(McCammon & Bowman, 2000) and Flavobacterium gelidilacus (Van Trappen et
al., 2003), which were collected from Antarctic lakes. Recently, three novel
psychrophilic Flavobacterium species have been described: Flavobacterium
limicola from freshwater sediments (Tamaki et al., 2003) and Flavobacterium
xinjiangense and Flavobacterium omnivorum from the China No.1 glacier (Zhu et
al., 2003).

During the MICROMAT project (November 1998 - February 2001), 746
bacterial strains were isolated under heterotrophic conditions from microbial mat
samples that were collected from 10 Antarctic lakes in the Vestfold Hills (lakes
Ace, Druzhby, Grace, Highway, Pendant, Organic and Watts), the Larsemann
Hills (lake Reid) and the McMurdo Dry Valleys (lakes Hoare and Fryxell) (Van
Trappen et al., 2002). Salinity of these lakes ranges from fresh (Druzhby, Grace,
Watts and Hoare) over hyposaline/saline (Ace, Highway, Pendant, Fryxell and
Reid) to hypersaline (Organic). Numerical analysis of the fatty acid composition
of the isolates revealed 41 clusters and 16S rRNA gene sequence analysis,
performed on representative strains, showed that they belong to the o-, B- and -
subclasses of the Proteobacteria, the high and low percent G+C Gram-positives
and to the Bacteroidetes (Van Trappen et al., 2002). Results of fatty acid and 16S
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rRNA gene sequence analyses showed that the diversity of heterotrophic bacteria
in microbial mats from Antarctic lakes is very high. Moreover, many fatty acid
clusters were shown to contain multiple taxa when tested by repetitive extragenic
palindromic DNA (rep)-PCR fingerprinting, a technique used to investigate the
genomic diversity of each fatty acid cluster more in detail (Van Trappen et al.,
2001). Twenty-two isolates from fatty acid cluster 10 have already been described
as a novel species, F. gelidilacus (Van Trappen et al., 2003).

In the present work, we have studied the taxonomic relationships of 36 strains
from fatty acid clusters 5 and 6 (as delineated by Van Trappen et al., 2002) that
are related to the genus Flavobacterium by polyphasic taxonomic characterization.

Materials and Methods

The isolates investigated are listed in Table 3.5. Strains were cultivated
routinely on R2A medium (Difco) at 20 °C for 48 h or longer (LMG 21919") or [for
strains LMG 40317 (Flavobacterium pectinovorum) and LMG 83847 (Flavobacterium
saccharophilum)] on TSAmedium (BBL) at 20 °C for 48 h, except when mentioned
otherwise.

DNA was prepared according to the method of Pitcher et al. (1989) and rep-
PCR fingerprinting (based on primers that targeted the repetitive extragenic
palindromic sequence) was performed on all strains of fatty acid clusters 5 (75
strains) and 6 (five strains) of Van Trappen et al. (2002) using the primer GTG,
(Versalovic et al., 1991), as described by Rademaker & de Bruijn (1997) and
Rademaker et al. (2000). Numerical analysis was carried out by using the
Bionumerics software package (Applied Maths; available at http://www.applied-
maths.com), as described by the same authors.

Small-scale DNA extracts were prepared by using the method of Pitcher et
al. (1989) and the almost-complete 16S rRNA gene sequences of reference strains
were amplified by PCR with conserved primers (Coenye et al., 1999). PCR products
were purified by using a QIAquick PCR Purification kit (Qiagen) according to the
instructions of the manufacturer. Sequence analysis was performed by using an
ABI Prism 3100 automatic DNA sequencer (Applied Biosystems), applying a
BigDye Terminator Cycle Sequencing Ready Reaction kit (version 2.0; PerkinElmer
Applied Biosystems), following the protocols of the manufacturer. Sequence
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assembly was performed by using the program AutoAssembler 1.4.0 (PerkinElmer
Applied Biosystems). The most closely related sequences were found by using
the FASTA program; sequences from reference strains were aligned and editing
of the alignment and reformatting were performed with the BIOEDIT program (Hall,
1999) and ForCon (Raes & Van de Peer, 1999). Evolutionary distances were
calculated using the Jukes-Cantor evolutionary model and a phylogenetic tree
was constructed by using the neighbour-joining method (Saitou & Nei, 1987) with
the TREECON program (Van de Peer & De Wachter, 1994).

DNA was prepared according to the method of Pitcher et al. (1989) and
DNA-DNA hybridizations were carried out with photobiotin-labelled probes in
microplate wells as described by Ezaki et al. (1989), using an HTS7000 BioAssay
reader (PerkinElmer) for fluorescence measurements. The hybridization
temperature was 32 °C and reciprocal experiments were performed for every pair
of strains.

DNA G+C contents of the Antarctic strains were determined by using an
HPLC-based method as described by Van Trappen et al. (2003).

The following morphological, physiological and biochemical tests were
performed. Colony morphology was determined on R2A medium after 6 days. In
addition, growth and adherence of colonies on marine, nutrient and trypticase
soy agars and on Anacker and Ordal’'s agar (Anacker & Ordal, 1955) after 14
days were tested. Cells were tested for their Gram-stain reaction and for catalase
and oxidase activities. Tests in the commercial APl ZYM, API 20NE and API 20E
systems (bioMérieux) were generally performed according to the instructions of
the manufacturer. The API ZYM tests were read after 4 h incubation at 20 °C and
other API tests were read after 48 h at 20 °C. Congo red absorption (Bernardet et
al., 2002), production of flexirubine-type pigments (Reichenbach, 1989), presence
of gliding motility, degradation of casein and chitin (Reichenbach & Dworkin, 1981),
alginate (West & Colwell, 1984), DNA [using DNA agar (Difco), supplemented
with 0.01 % toluidine blue (Merck)], pectin (Paton, 1959), starch and L-tyrosine
(Barrow & Feltham, 1993), production of brown diffusible pigment on L-tyrosine
agar and precipitation of egg-yolk agar (Barrow & Feltham, 1993) were also
investigated; reactions were read after 5 days. Hydrolysis of CM-cellulose was
tested in Anacker & Ordal’'s broth (Anacker & Ordal, 1955) gelidified with 3 %
high-viscosity CM-cellulose sodium salt (Sigma). This medium was stab-inoculated
and liquefaction of the medium within 7 days was scored as a positive reaction.
Growth at different temperatures was assessed after 5 days incubation. Salt
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tolerance was tested on R2A medium supplemented with 1-10 % NaCl after 14
days incubation.

Results and discussion

Thirty-six strains of fatty acid clusters 5 and 6, listed in Table 3.5, showed
similar rep-PCR profiles (see also Fig. 3.4), and they could be divided into four
different clusters according to their profile type, hereafter referred to as rep-PCR
profile type | (which comprises 14 strains), Il (with three strains), 11l (with eight
strains) and IV (with 11 strains). Versalovic et al. (1994) have shown that strains
with the same rep-PCR profile are always closely related and this has been
confirmed by several authors (e.g. Rademaker & De Bruijn, 1997).

Almost-complete 16S rRNA gene sequences (1457-1480 nt) of strains LMG
219157, LMG 21474, LMG 219197, LMG 21922" and LMG 21471 were obtained. A
neighbour-joining dendrogram with the nearest phylogenetic relatives within the
genus Flavobacterium is shown (Fig. 3.5). Dendrograms obtained by maximum-
parsimony and maximume-likelihood analyses showed essentially the same
topography (data not shown).

The novel Antarctic strains form three distinct branches within the genus
Flavobacterium, which are supported by high bootstrap values, and they belong
to a clade of the phylogenetic tree that consists only of recently described
Flavobacterium species from cold environments, such as F. gillisiae, F. xinjiangense,
F. xanthum, F. omnivorum, F. frigidarium, F. gelidilacus and F. limicola. However,
other Antarctic Flavobacterium species, F. hibernum and F. tegetincola, do not
belong to this clade and form separate branches.

The 16S rRNA gene sequences of the two representative strains of rep-PCR
profile type I (LMG 21915™ and LMG 21474) were almost identical (99.9%
sequence similarity) and showed 98.5 % similarity to F. gillisiae, 97.7 % to F.
xinjiangense, 97.5 % to F. limicola, 96.9 % to F. omnivorum and 96.8 % to F.
xanthum. The sequence of strain LMG 219197, which belongs to rep-PCR profile
type Il, showed 97.4 % similarity to F. saccharophilum, 97.4 % to F. pectinovorum,
97.2 % to F. limicola and 96.9 % to F. omnivorum. The 16S rRNA gene sequences
of the two representative strains of rep-PCR profile types Il and IV (LMG 219227
and LMG 21471, respectively) show 99.1 % sequence similarity to each other
and 98.4 % to F. gillisiae, 97.4 % to F. xinjiangense, 97.3 % to F. xanthum, 97.2%
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Table 3.5. Strains investigated, isolation site, fatty acid cluster and rep-PCR profile type.

Species and strain Fatty acid Rep-PCR Isolation site
cluster cluster

F. degerlachei sp. nov.:
LMG 21915 "= R-9106 5 | Lake Ace, Vestfold Hills
LMG 21916 = R-8982 5 I Pendant Lake, Vestfold Hills
LMG 21917 = R-8988 5 | Pendant Lake, Vestfold Hills
LMG 21474 = R-9122 6 | Pendant Lake, Vestfold Hills
LMG 21918 = R-9125 6 I Pendant Lake, Vestfold Hills
R-8991, R-8992, R-8993, R-9119, R-11356 5 | Pendant Lake, Vestfold Hills
R-12608 5 | Lake Reid, Larsemann Hills
R-11563 5 [ Highway Lake, Vestfold Hills
R-9118, R-9124 6 [ Pendant Lake, Vestfold Hills

F. micromati sp. nov.:
LMG 21919 " = R-9192 5 Il Grace Lake, Vestfold Hills
LMG 21920 = R-9193 Il Grace Lake, Vestfold Hills
LMG 21921 = R-8016 5 Il Lake Fryxell, Dry Valleys

F. frigoris sp. nov.:
LMG 21922" = R-9014 5 1 Watts Lake, Vestfold Hills
LMG 21924 = R-12606 5 1 Lake Reid, Larsemann Hills
LMG 21471 = R-8022 5 \% Lake Fryxell, Dry Valleys
LMG 21923 = R-9000 5 \Y, Grace Lake, Vestfold Hills
LMG 21925 = R-12627 5 \ Lake Reid, Larsemann Hills
R-9002, R-9144, R-9149 5 11} Grace Lake, Vestfold Hills
R-9138 5 [ Watts Lake, Vestfold Hills
R-12591, R-12625 5 ] Lake Reid, Larsemann Hills
R-8017, R-8020, R-8359 5 v Lake Fryxell, Dry Valleys
R-8996 5 \ Grace Lake, Vestfold Hills
R-9134, R-9137 5 v Watts Lake, Vestfold Hills
R-9227 5 \ Lake Druzhby, Vestfold Hills
R-9228 5 \ Grace Lake, Vestfold Hills

Abbreviations: LMG, BCCM/LMG Bacteria Collection, Laboratorium voor Microbiologie, Universiteit Gent,

Belgium; R-, strain numbers from the research collection of the Laboratorium voor Microbiologie,

Universiteit Gent, Belgium, and as used by Van Trappen et al. (2002); fatty acid clusters are as delineated

by Van Trappen et al. (2002).

to F. omnivorum and 97.1 % to F. limicola. Strains LMG 21922" and LMG 219157
showed 98.7% sequence similarity to each other and only 96.4% to strain LMG

21919".

Genomic relatedness between the novel Antarctic strains (representing
the four different rep-PCR profile types) and their most closely related phylogenetic
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Figure 3.4. Digitized representation of normalized rep-PCR profiles (GTG,-primer) of 36 strains
belonging to fatty acid clusters 5 and 6. Dendrogram derived from the UPGMA-clustering of the
profiles with the Pearson correlation coefficient and rep-clusters were delineated at a cut-off
value of 50%. Rep-cluster I, F. degerlachei sp. nov.; rep-cluster I, F. micromati sp. nov.; rep-
cluster Il and IV, F. frigoris sp. nov.
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10%

Flavobacterium degerlachei LMG 21474 (AJ441005)

87 Flavobacterium degerlachei LMG 21915" (AJ557886)
Flavobacterium gillisiae LMG 21422" (U85889)
Flavobacterium frigoris LMG 21471 (AJ440988)
Flavobacterium frigoris LMG 21922" (AJ557887)
Flavobacterium gelidilacus LMG 21477" (AJ440996)
Flavobacterium xinjiangense ZF-6" (AF433173)

Flavobacterium frigidarium ATCC 700810" (AF162266)

52 | | —— Flavobacterium omnivorum ZF-8' (AF433174)

Flavobacterium xanthum LMG 8372" (AF030380)
Flavobacterium limicola DSM 15094 (AB075230)

Flavobacterium micromati LMG 21919" (AJ557888)

{— Flavobacterium branchiophilum ATCC 35035 (D14017)
—— Flavobacterium hibernum ACAM 376" (L39067)

—— Flavobacterium hydatis ATCC 295517 (M58764)

2 | Flavobacterium columnare ATCC 24643" (M58781)

Flavobacterium saccharophilum LMG 8384" (D12671)
Flavobacterium pectinovorum LMG 4031" (D12669)

Flavobacterium succinicans NCIMB 2277" (D12673)

Flavobacterium flevense ATCC 27944 (M58767)
Flavobacterium tegetincola ACAM 602" (U85887)

Flavobacterium johnsoniae ATCC 1706" (M59051)

Flavobacterium aquatile ATCC 11947 (M62797)

Flavobacterium psychrophilum ATCC 49418" (AF090991)

Polaribacter franzmannii ATCC 700399" (U14586)

Figure 3.5. Neighbour-joining dendrogram showing the estimated phylogenetic relationships of
Flavobacterium degerlachei sp. nov., Flavobacterium micromati sp. nov., Flavobacterium frigoris
sp. nov. and other Flavobacterium species on the basis of 16S rRNA gene sequences. Polaribacter
franzmannii was choosen as outgroup. Bootstrap values (percentages of 500 replicates) of > 50
% are shown. GenBank accession numbers for each reference strain are shown in parentheses.

Bar, 10% sequence divergence.

neighbours (Flavobacterium gillisiae for rep-PCR profile types I, Il and IV and F.
pectinovorum and F. saccharophilum for rep-PCR profile type II) was determined
by DNA-DNA hybridization. The hybridization level between strains LMG 219157,
LMG 21916, LMG 21917 and LMG 21474 of rep-PCR profile type | was ranging
between 93.6-97.7 %, indicating that the 14 strains of rep-PCR profile type | belong
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to one single species (Wayne et al., 1987). Hybridization values of LMG 219157
with its nearest phylogenetic neighbours, F. gillisiae (LMG 214227), F. xanthum
(LMG 8372 and LMG 21922T, were respectively 28.9, 18.4 and 28.4%, indicating
that the strains of rep-PCR profile type | represent a novel Flavobacterium species,
for which the name Flavobacterium degerlachei sp. nov. is proposed.

High hybridization values (81.1%-84.7%) were obtained between strains
LMG 21919", LMG 21920 and LMG 21921 of rep-PCR profile type II. The low
hybridization level (13.2-16.1%) between LMG 219197 and its nearest phylogenetic
neighbours F. pectinovorum (LMG 40317 and F. saccharophilum (LMG 8384")
reveals that the three strains of rep-PCR profile type Il constitute a new species,
for which the name Flavobacterium micromati sp. nov. is proposed.

Hybridization results between strains LMG 219227, LMG 21923, LMG 21924
and LMG 21925 of rep-PCR profile types Ill and IV (82.5 - 91.2 %) showed that
the strains of these two different rep-PCR profile types represent a single species
that is clearly different from related Flavobacterium species. LMG 21922 showed
only 52% hybridization with F. gillisiae (LMG 21422") and 4.1% with F. xanthum
(LMG 8372"); the name Flavobacterium frigoris sp. nov. is proposed for this species.

Differences between reciprocal experiments were < 14 %. These results
show clearly that the novel Antarctic isolates are genotypically distinct from related
Flavobacterium species, although the isolates share > 97% (up to 98.7%) 16S
rRNA gene sequence similarity with their closest phylogenetic neighbours, and
that they constitute three novel species within the genus Flavobacterium.

The DNA G+C contents of strains LMG 21915", LMG 21916, LMG 21917,
LMG 21474 and LMG 21918 of F. degerlachei sp. nov. are 34.2, 34.2, 34.1, 33.8
and 34.2 mol%, respectively. The DNA G+C contents of strains LMG 219197,
LMG 21920 and LMG 21921 of F. micromati sp. nov. are 34.4, 33.1 and 33.1
mol%, respectively and those of strains LMG 21922", LMG 21923, LMG 21924
and LMG 21925 of F. frigoris sp. nov. are 34.5, 34.2, 34.4 and 33.8 mol%,
respectively. These values are consistent with the DNA G+C contents of members
of the genus Flavobacterium, which range from 30 to 37 mol % G+C (Bernardet et
al., 1996; Van Trappen et al., 2003).

Cellular fatty acid patterns of the Antarctic strains are based on the data
generated by Van Trappen et al. (2002). The strains showed similar fatty acid
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Table 3.6. Fatty acid compositions of the novel Antarctic species: Flavobacterium degerlachei sp.

nov., Flavobacterium micromati sp. nov. and Flavobacterium frigoris sp. nov.

Fatty acid F. degerlachei (n =14) F. micromati (n = 3) F. frigoris (n =19)
i50-C14.0 27+05 22+05 3.3+1.0
Ciso 72+23 7.7+0.9 69+1.2
Ci15.03-OH 1.5+05 TR 1.2+05
anteiso-Cisy 7.7+1.4 59+1.1 10.2+2.7
i50-Cis.0 58+22 6.7+1.8 74+14
i50-C45,03-OH 51+1.1 3.7+10 3.9+0.9
anteiso-Cis 1.3+16 TR TR
i50-Cis.1 51+1.2 36+1.2 2.7+0.7
Ci5106¢C 10.5+2.0 6.4+0.4 11.3+2.2
Cieo 1.3+0.7 45+04 1.8+0.5
C16:03-OH 1.9+0.8 29+0.2 1.8+05
iS0-Cig:0 3.9+09 9.1+29 6.9+1.6
i50-C16,03-OH 9.7+1.8 105+14 7.8+2.0
i50-C16:1 3.9+0.9 42+1.2 44+1.2
1s0-C47,03-OH 47+1.2 45+14 34+13
Ci7.106C 6.8+2.0 49+0.3 3.7+1.2
C17.108C 1.0+04 1.0+01 1.1+0.3
is0-C17.109¢C 13+04 1.3+0.6 20+0.5
Summed feature 3 13.2+25 15.7+0.9 145+ 3.0

Mean percentages + Sp, of total fatty acids are given. Other fatty acids accounted for < 1%

each. Summed feature 3 comprises is0-C;5.02-OH, Ci6.107c, or both. TR, Trace, < 1% of total.

profiles (Table 3.6); major constituents included C ., iso- C _ ,iso-C , 3-OH and
summed feature 3 (which comprises iso-C . 2-OH, C, . w7c, or both). Strains of F.
degerlachei sp. nov. and F. frigoris sp. nov. also possessed relatively large amounts
of anteiso-C . jand C_ . ,w6c, whilst strains of F. micromati sp. nov. showed relatively
large amounts of iso-C, .. Hydroxylated fatty acids and iso- and anteiso-branched
fatty acids were also present as minor components. Their fatty acid profiles
resemble those determined for other Flavobacterium species (Bernardet et al.,
1996), but differ in the relative amounts of anteiso-C_, ., iso-C,, , and iso-C__ 3-

OH.

15:0?

The strains showed typical morphological characteristics of the genus
Flavobacterium (Bernardet et al., 2002) and their physiological and biochemical
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characteristics are given in the species descriptions. F. degerlachei sp. nov., F.
micromati sp. nov. and F. frigoris sp. nov. can be differentiated clearly from each
other and from related Flavobacterium species by several phenotypic
characteristics (Table 3.7).

The results of the polyphasic analysis support the recognition of three novel
Antarctic species within the genus Flavobacterium, for which the names
Flavobacterium degerlachei sp. nov., Flavobacterium micromati sp. nov. and
Flavobacterium frigoris sp. nov. are proposed.

Description of Flavobacterium degerlachei sp. nov.

Flavobacterium degerlachei (de.ger.lach’e.i. N. L. gen. n. degerlachei of Adrien
de Gerlache, in honour of the Belgian pioneer who conducted the first scientific
expedition to Antarctica in 1897-1899).

Cells are Gram-negative, short rods (<1 x 3-4 um), that often form pairs or
short chains. Gliding motility is not observed. Growth occurs at 5-30°C with an
optimal growth temperature of 20 °C, whereas no growth occurs at 37 °C. Yellow,
convex, translucent colonies with entire margins and a diameter of 1-3 mm are
formed on R2A plates after 6 days incubation. Colonies on Anacker & Ordal’s
agar are flat, round with entire margins and 0.5-1 mm in diameter after 14 days
incubation. Growth also occurs on trypticase soy agar, nutrient agar and marine
agar; colonies do not adhere to the agar. Aesculin and starch are degraded.
Catalase and oxidase tests are positive. Growth is observed (APl 20NE) on
glucose, mannose and maltose, whereas no growth is detected on arabinose,
mannitol, N-acetyl-glucosamine, gluconate, caprate, adipate, malate, citrate or
phenylacetate. Acids are not produced from carbohydrates (API 20E). Agar,
alginate, pectin, chitin, casein, CM-cellulose, DNA, gelatin, tyrosine and urea are
not degraded. Congo red is not absorbed and no flexirubin-type pigments are
present. No production of brown diffusible pigment occurs on L-tyrosine agar and
no precipitate is formed on egg-yolk agar. Tests for indole production, citrate
utilization, nitrate reduction, Voges-Proskauer reaction and hydrogen sulfide
production are negative. None of the strains shows activity for the enzymes arginine
dihydrolase, lysine decarboxylase, ornithine decarboxylase, tryptophan deaminase
(APl 20E), lipase (C14), a-chymotrypsine, trypsin, a-galactosidase, B-
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Table 3.7. Phenotypic characteristics that differentiate Flavobacterium
degerlachei sp. nov., Flavobacterium micromati sp. nov. and Flavobacterium

frigoris sp. nov. from related Flavobacterium species.

Characteristic 1 2 3 4 5 6
Growth on:

Trypticase soy agar + (+) + + + +

Nutrient agar + + - + + +
Growth at 25°C on agar + ) +) (+) + +
Flexirubin-type pigment - - - - + +
Voges-Proskauer reaction - + - - ND ND
Glucose utilization + - + + + +
Acid from carbohydrates - - - + + +

Degradation of:

Gelatin - - - - + +
Casein - - + + + +
Starch + - + + + +
CM-cellulose - - - - + +
Agar - - - - - +
Alginate - - - - + ND
Pectin - - - - + +
Chitin - - - + + -
DNA ; - _ ] + )
Tyrosine - - + - + +
B-Galactosidase activity - - - - + +
H.,S production - - - - ND +
Nitrate reduction - - v - + +
Mean G+C content (mol%) 34 33 34 32 35 33

Flavobacterium species: 1, F. degerlachei; 2, F. micromati; 3, F. frigoris; 4, F.
gillisiae; 5, F. pectinovorum; 6, F. saccharophilum. Data from Bernardet et al.
(1996), McCammon & Bowman (2000) and this study. Symbols: +, positive
test; (+), positive test, weak or delayed response; -, negative test; v, test
results vary between strains of species; ND, no available data. All species
shown here are negative for Congo red absorption and precipitate formation

on egg-yolk agar and are positive for degradation of aesculin.
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galactosidase, B-glucuronidase, o-mannosidase, and a-fucosidase (APl ZYM).
Weak enzymic activity is observed for cystine arylamidase, medium activity is
observed for esterase (C4), esterase lipase (C8), a-glucosidase, B-glucosidase
and N-acetyl-B-glucosaminidase, and strong activity is observed for alkaline
phosphatase, leucine arylamidase, valine arylamidase, acid phosphatase,
naphthol-AS-Bl-phosphohydrolase (APl ZYM). Cells contain the fatty acids C
anteiso-C iso-C

15:0’
150" 1500 Cps5,06C, i50-C , 3-OH, C . w6c and summed feature 3
(which comprisesiso-C, . 2-OH, C, . o7c, or both) as the main constituents. Growth
occurs in 0-5% NaCl but not in 10% NacCl, indicating that the strains are not

halophilic, but are moderately halotolerant. DNA G+C content is 33.8-34.2 mol%.

The type strain is LMG 21915" (= DSM 15718T). Isolated from microbial mats
from Lakes Ace and Pendant in the Vestfold Hills and lake Reid in the Larsemann
Hills, Antarctica.

Description of Flavobacterium micromati sp. nov.

Flavobacterium micromati (mi.cro.mat’i. N.L. gen. n. micromati referring to
the MICROMAT project).

Cells are Gram-negative, short rods (<1 x 3-4 um); gliding motility is not
observed. Growth occurs at 5°C to 20°C, very weak growth is observed at 25°C
and no growth occurs at 30 °C. Orange-red, convex, translucent colonies with
entire margins and a diameter of 1-3 mm are formed on R2A plates after 6 days
of incubation. Colonies on Anacker & Ordal’'s agar are flat, round with entire margins
and 0.5-1 mm in diameter after 14 days incubation. Growth also occurs on trypticase
soy agar (weak), nutrient agar and marine agar (weak). Colonies do not adhere to
the agar. Aesculin is degraded. Catalase and oxidase tests are positive. Growth
on carbohydrates (APl 20NE) is not observed and acids from carbohydrates are
not produced (API 20E). Voges-Proskauer reaction is positive for all strains. Agar,
alginate, pectin, chitin, casein, CM-cellulose, DNA, gelatin, tyrosine, starch and
urea are not degraded. Congo red is not absorbed and no flexirubin-type pigments
are present. No production of brown diffusible pigment occurs on L-tyrosine agar
and no precipitate is formed on egg-yolk agar. Tests for indole production, citrate
utilization, nitrate reduction and hydrogen sulfide production are negative. None
of the strains shows activity for the enzymes arginine dihydrolase, lysine
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decarboxylase, ornithine decarboxylase, tryptophan deaminase (API 20E), lipase
(C14), cystine arylamidase, oa-chymotrypsine, trypsin, a-galactosidase, -
galactosidase, B-glucuronidase, B-glucosidase, N-acetyl-B-glucosaminidase, o-
mannosidase, and o-fucosidase (APl ZYM). Medium enzymic activity is observed
for esterase (C4) and esterase lipase (C8) and strong activity is observed for
alkaline phosphatase, leucine arylamidase, valine arylamidase, acid phosphatase,
naphthol-AS-Bl-phosphohydrolase and a-glucosidase (APl ZYM). Cells contain
the fatty acids C; , anteiso-C ., iso-C . ,, C . w6c, iso-C  , iso-C . 3-OH and
summed feature 3 (which comprises iso-C . 2-OH, C . ®7c, or both) as the main
constituents. Growth occurs in 0-2 % NaCl, but notin 5 % NaCl. DNA G+C content

is 33.1-34.4 mol%.

The type strain is LMG 219197 (= CIP 1081617). Isolated from microbial mats
from Lake Grace in the Vestfold Hills and Lake Fryxell in the McMurdo Dry Valleys,
Antarctica.

Description of Flavobacterium frigoris sp. nov.

Flavobacterium frigoris (fri'go.ris. L. gen. n. frigoris of the cold).

Cells are Gram-negative, short rods (<1 x 4-6 um); gliding motility is not observed.
Growth occurs at 5-20°C, weak growth is observed at 25°C and no growth occurs
at 37 °C. Yellow, convex, translucent colonies with entire margins and a diameter
of 2-5 mm are formed on R2A plates after 6 days incubation. Colonies on Anacker
& Ordal’'s agar are flat, round with entire margins and 0.5-1 mm in diameter after
14 days incubation. Growth also occurs on trypticase soy agar and marine agar,
but not on nutrient agar. Colonies do not adhere to the agar. Aesculin, casein,
tyrosine and starch are degraded. Catalase and oxidase tests are positive. Growth
on carbohydrates (APl 20NE) is observed for glucose, mannose and maltose;
acids are not produced from carbohydrates (API 20E). Agar, alginate, pectin, chitin,
CM-cellulose, DNA, gelatin and urea are not degraded. Congo red is not absorbed
and no flexirubin-type pigments are present. No production of brown diffusible
pigment occurs on L-tyrosine agar and no precipitate is formed on egg-yolk agar.
Tests for indole production, citrate utilization, Voges Proskauer reaction and
hydrogen sulfide production are negative. Strain LMG 21924 is able to reduce
nitrate to nitrite. None of the strains shows activity for the enzymes arginine
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dihydrolase, lysine decarboxylase, ornithine decarboxylase, tryptophan deaminase
(API 20E), a-chymotrypsin, trypsin, o-galactosidase, B-galactosidase, -
glucuronidase, a-mannosidase and o-fucosidase (APl ZYM). Weak enzymic
activity is observed for cystine arylamidase, medium activity is observed for
esterase (C4), esterase lipase (C8) and N-acetyl-3-glucosaminidase, and strong
activity is observed for alkaline phosphatase, leucine arylamidase, valine
arylamidase, acid phosphatase, naphthol-AS-Bl-phosphohydrolase and o-
glucosidase (API ZYM). Only strain LMG 21924 showed medium activity for -
glucosidase and strain LMG 21922 for lipase (C14). Cells contain the fatty acids
C,., anteiso-C_ ,iso-C _ ,C . w6c,iso-C, ,iso-C 3-OH and summed feature
3 (which comprises iso-C . 2-OH, C . o7c, or both) as the main constituents.
Growth occurs in 0-5 % NacCl, but not in 10% NaCl, indicating that the strains are
not halophilic, but moderately halotolerant. DNA G+C content is 33.8-34.5 mol%.

The type strain is LMG 219227 (= DSM 15719"). Isolated from microbial mats

from Lakes Watts, Grace and Druzhby in the Vestfold Hills, Lake Fryxell in the
McMurdo Dry Valleys and Lake Reid in the Larsemann Hills, Antarctica.
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3.4 Flavobacterium fryxellicola sp. nov. and
Flavobacterium psychrolimnae sp. nov., novel
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Taxonomic studies were performed on seven strains isolated from microbial mats
in Antarctic lakes of the McMurdo Dry Valleys. Phylogenetic analysis based on
16S rRNA gene sequences indicated that these strains are related to the genus
Flavobacterium; sequence similarity values with their nearest phylogenetic
neighbours ranged from 97.0 to 98.7%. The results of DNA-DNA hybridization
and comparison of repetitive extragenic palindromic DNA-PCR fingerprinting
patterns revealed that these strains are members of two distinct species. Genotypic
results, together with phenotypic characteristics, allowed the differentiation of these
species from related Flavobacterium species with validly published names. The
isolates are Gram-negative, chemoheterotrophic, rod-shaped cells that are
psychrophilic. Their whole-cell fatty acid profiles are similar and include C__,
anteiso-C, ., iso-C ., C . w6c, iso-C ., iso-C , 3-OH, iso-C ., and summed
feature 3 (which comprises iso-C . 2-OH, C, w7c, or both) as major fatty acid
components. On the basis of these results, two new species are proposed, namely
Flavobacterium fryxellicola sp. nov. (consisting of 3 strains with LMG 22022" =
CIP 108325T as type strain) and Flavobacterium psychrolimnae sp. nov. (consisting
of 4 strains with LMG 22018 = CIP 108326" as type strain). DNA G + C contents
of Flavobacterium fryxellicola and Flavobacterium psychrolimnae are 35.5 and
34.1 mol%, respectively.
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Introduction

Members of the Bacteroidetes show a high abundance in freshwater and
marine ecosystems and these bacteria may have a specialized role in the uptake
and degradation of organic matter in cold, aquatic environments (Kirchman, 2002).
Several new species, added to the genus Flavobacterium since 1996, originated
from Antarctic habitats (Van Trappen et al., 2003; 2004a; and references cited
therein).

During the MICROMAT project (November 1998 - February 2001), 746
bacterial strains were isolated under heterotrophic conditions from microbial mat
samples that were collected from ten Antarctic lakes (Van Trappen et al., 2002).
Numerical analysis of the fatty acid composition of the isolates and 16S rRNA
gene sequence analysis, performed on representative strains, showed that the
diversity of heterotrophic bacteria in microbial mats from Antarctic lakes is very
high. Moreover, many fatty acid clusters were shown to contain multiple taxa when
tested by repetitive extragenic palindromic DNA-PCR (rep-PCR) fingerprinting, a
technique used to investigate the genomic diversity of each fatty acid cluster
more in detail (Van Trappen et al., 2003; 2004a). Several of these strains belonging
to fatty acid clusters 5, 6 and 10 were already described as new Flavobacterium
species: Flavobacterium gelidilacus sp. nov., Flavobacterium degerlachei sp. nov.,
Flavobacterium frigoris sp. nov. and Flavobacterium micromati sp. nov. (Van
Trappen et al., 2003; 2004a).

In the present work, we studied further the taxonomic relationships of twenty-
two additional strains from fatty acid cluster 5 (as delineated by Van Trappen et
al., 2002). A group of eleven of these strains was identified as Flavobacterium
xanthum, while another rep-cluster of four strains was identified as the recently
described Flavobacterium frigoris (Van Trappen et al., 2004a), based on 16S rDNA
sequence analysis (Fig. 3.7) and DNA-DNA hybridizations (S. Van Trappen,
unpublished results). These strains were not further investigated, and are listed
in Table 3.8. Seven strains, also listed in Table 3.8, proved to belong to new taxa,
and were studied by polyphasic taxonomic analysis.
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Materials and Methods

Strains were cultivated routinely on R2A medium (Difco) at 20 °C for 48 h or
[for strains LMG 40317 (Flavobacterium pectinovorum) and LMG 8384T (F.
saccharophilum)] on TSA medium (BBL) at 20 °C for 48 h, and [for strains LMG
21985" (F. xinjiangense) and LMG 21986" (F. omnivorum)] on R2A medium at
11°C for 5 days, except when mentioned otherwise.

DNA was prepared according to the method of Pitcher et al. (1989) and rep-
PCR fingerprinting (based on primers targeting the repetitive extragenic palindromic
sequence) was performed on all strains of FAA clusters 5 (75 strains) of Van
Trappen et al. (2002), using the primer GTG, (Versalovic et al., 1991), as described
previously (Van Trappen et al., 2003). Numerical analysis was carried using the
Bionumerics software package (Applied Maths), as described by the same authors.

Almost-complete 16S rRNA gene sequences of reference strains were

determined as described earlier (Van Trappen et al., 2004a). The most closely
related sequences were found using the FASTA program; sequences were aligned
and editing of the alignment and reformatting was performed with the BIOEDIT
program (Hall, 1999) and ForCon (Raes & Van de Peer, 1999). Evolutionary
distances were calculated by using the Jukes-Cantor evolutionary model and a
phylogenetic tree was constructed by using the neighbour-joining method (Saitou
& Nei, 1987) with the TREECON program (Van de Peer & De Wachter, 1994).

DNA-DNA hybridizations were carried out with photobiotin-labelled probes
in microplate wells as described by Ezaki et al. (1989), using a HTS7000 BioAssay
reader (PerkinElmer) for the fluorescence measurements. The hybridization
temperature was 30 °C and reciprocal experiments were performed for every pair
of strains.

DNA G+C contents of the Antarctic strains were determined using an HPLC
method as described by Van Trappen et al. (2003).

Morphological, physiological and biochemical tests were performed, as
described previously (Van Trappen et al., 2003).
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Results and discussion

Seven strains of fatty acid cluster 5, listed in Table 3.8, showed similar rep-
PCR profiles (see also Fig. 3.6), and could be divided into two different clusters
according to their profile type, hereafter referred to as rep-PCR profile type |
(comprising 3 strains) and type Il (with 4 strains).

Almost-complete 16S rRNA gene sequences (1466-1479 nt) of strains LMG
220227, LMG 22018", LMG 22020, R-9010 and R-7518 were determined and a
phylogenetic tree is shown (Fig. 3.7). The seven novel Antarctic strains form two
distinct branches within the genus Flavobacterium, which are supported by high
bootstrap values, and they belong to a clade of the phylogenetic tree that consists
almost exclusively of recently described Flavobacterium species from cold
environments, such as F. gillisiae, F. degerlachei, F. frigoris, F. xinjiangense, F.
xanthum, F. omnivorum, F. frigidarium, F. gelidilacus, F. limicola, F. tegetincola and
F. micromati. Other psychrophilic Flavobacterium species, like F. hibernum and F.
psychrophilum, do not belong to this clade and form separate branches.

The 16S rRNA gene sequence of the representative strain of rep-PCR profile
type | (LMG 220227 showed 97.9 % similarity to F. tegetincola, 97.2 % to F.
flevense, 96.0% to F. johnsoniae and less than 96.0 % to other Flavobacterium
species. The sequences of the representative strains of rep-PCR profile type |l
(LMG 22018™ and LMG 22020), are identical and showed 98.7 %sequence
similarity to F. limicola, 98.4 % to F. omnivorum, 97.9% to F. xinjiangense, 97.7 %
to F. degerlachei, 97.6% to F. frigoris, 97.5% to F. gillisiae, 97.3 % to F. xanthum
and less than 97.0% to other Flavobacterium species.

Genomic relatedness between the novel Antarctic strains (representing the
two different rep-PCR profile types) and their most closely related phylogenetic
neighbours was determined by DNA-DNA hybridization. The hybridization level
between strains LMG 220227, LMG 22023 and LMG 22024 of rep-PCR profile
type | was 79.0-93.3 %, indicating that these three strains belong to one single
species (Wayne et al., 1987).

Hybridization values of LMG 22022 with its nearest phylogenetic neighbours,
F. tegetincola (LMG 21423") and F. flevense (LMG 8328"), were less than 19%,
indicating that the strains from rep-PCR profile type | represent a new
Flavobacterium species, for which the name Flavobacterium fryxellicola sp. nov.
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Table 3.8. Strains investigated, isolation site, and rep-PCR profile type.

Species and strain Isolation site

F. xanthum:

R-8994, R-8999, R-9141, R-9147, R-9148 Grace lake, Vestfold Hills
R-9009, R-9010, R-9013, R-9329, R-11545 Watts lake, Vestfold Hills
R-9127 Lake Druzhby, Vestfold Hills
F. frigoris:

R-9005 Watts lake, Vestfold Hills
R-9142, R-9145 Grace lake, Vestfold Hills
R-7518 Lake Fryxell, Dry Valleys
F. fryxellicola sp. nov. (rep-PCR cluster I):

LMG 22022" = R-7548 Lake Fryxell, Dry Valleys
LMG 22023 = R-8019 Lake Fryxell, Dry Valleys
LMG 22024 = R-8284 Lake Fryxell, Dry Valleys
F. psychrolimnae sp. nov. (rep-PCR cluster II):

LMG 22018" = R-7582 Lake Fryxell, Dry Valleys
LMG 22019 = R-7681 Lake Hoare, Dry Valleys
LMG 22020 = R-8023 Lake Fryxell, Dry Valleys
LMG 22021 = R-8283 Lake Fryxell, Dry Valleys

Abbreviations: LMG, BCCM/LMG Bacteria Collection, Laboratorium voor
Microbiologie, Universiteit Gent, Belgium; R-, strain numbers from the research
collection of the Laboratorium voor Microbiologie, Universiteit Gent, Belgium, and as
used by Van Trappen et al. (2002).

is proposed. Hybridization results between strains LMG 22018™ and LMG 22020
of rep-PCR profile type Il (96.5%) showed that the strains of rep-PCR profile type
Il belong to a single species. Itis now well established that similar rep-PCR profiles
are correlated to high genomic DNA-DNA hybridization values (Versalovic et al.,
1994; Rademaker & De Bruijn, 1997; Rademaker et al., 2000; Van Trappen et al.,
2003; 2004a). The low hybridization level (21.9-48.8%) between LMG 22018T
and the nearest phylogenetic neighbours F. limicola (LMG 219307), F. omnivorum
(LMG 219867), F. xinjiangense (LMG 21985"), F. degerlachei (LMG 21915"), F.
frigoris (LMG 219227), F. gillisiae (LMG 214227 and F. xanthum (LMG 83727),
reveals that the four strains of rep-PCR profile type Il constitute a new species,
for which the name Flavobacterium psychrolimnae sp. nov. is proposed. Differences
between reciprocal experiments were less than 11 %. These results clearly show
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Pearson correlation
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Figure 3.6. Digitized representation of normalized rep-PCR profiles (GTG,-primer) of seven
strains belonging to fatty acid cluster 5. Dendrogram derived from the UPGMA clustering of the
profiles with the Pearson correlation coefficient and rep-clusters were delineated at a cut-off

value of 50%. Rep-cluster |, F. fryxellicola sp. nov.; rep-cluster Il, F. psychrolimnae sp. nov..

that the novel Antarctic isolates are genotypically distinct from related
Flavobacterium species, although the new isolates share more then 97% (up to
98.7%) 16S rRNA gene sequence similarity with their closest phylogenetic
neighbours.

The DNA G+C contents of strains LMG 220227, LMG 22023 and LMG 22024
of F. fryxellicola sp. nov. are 35.2, 35.9 and 35.5 mol%, respectively. The DNA G +
C contents of strains LMG 220187, LMG 22019, LMG 22020 and LMG 22021 of F.
psychrolimnae sp. nov. are 34.5, 33.9, 34.1 and 33.8 mol%, respectively. These
values are consistent with the G+C contents of members the genus Flavobacterium,
which range from 30 to 37 mol % (Bernardet et al., 1996; Van Trappen et al.,
2003).

Cellular fatty acid patterns of the Antarctic strains are based on the data
generated by Van Trappen et al. (2002) and are very similar (Table 3.9). The
major constituents include C  , iso-C ., C . w6c, iso-C 3-OH and summed
feature 3 (which comprises iso-C . 2-OH, C . w7c, or both). Hydroxylated fatty
acids and iso- and anteiso-branched fatty acids were present as minor components.
The strains of F. psychrolimnae sp. nov. also possessed relatively large amounts
of iso-C, .. Their fatty acid profiles resemble those determined for other

Flavobacterium species (Bernardet et al., 1996).
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100 | Flavobacterium psychrolimnae LMG 22020 (AJ585427)
Flavobacterium psychrolimnae LMG 22018" (AJ585428)
Flavobacterium limicola LMG 21930" (AB075230)
Flavobacterium xinjiangense LMG 21985" (AF433173)
Flavobacterium xanthum R-9010 (AJ601392)
Flavobacterium xanthum LMG 8372" (AF030380)
Flavobacterium omnivorum LMG 21986' (AF433174)
L Flavobacterium firigidarium LMG 120107 (AF162266)
— Flavobacterium micromati LMG 21919 (AJ557888)
Flavobacterium johnsoniae ATCC 279447 (M59051)
100 Flavobacterium flevense ATCC 27944 (M58767)
Flavobacterium fiyxellicola LMG 22022" (AJ585429)
Flavobacterium tegetincola ACAM 602" (U85887)
Flavobacterium gelidilacus LMG 21477" (AJ440996)
Flavobacterium gillisiae LMG 21422" (U85889)
Flavobacterium degerlachei LMG 21915" (AJ557886)
Flavobacterium frigoris R-7518 (AJ601393)
Flavobacterium firigoris LMG 21922" (AJ557887)
Flavobacterium aquatile ATCC 11947" (M62797)

69

Figure 3.7. Neighbour-joining dendrogram showing the estimated phylogenetic relationships of
Flavobacterium fryxellicola sp. nov., Flavobacterium psychrolimnae sp. nov. and nearest
phylogenetic neighbours on the basis of 16S rRNA gene sequences. Bootstrap values (percentages
of 500 replicates) of > 50 % are shown. GenBank accession numbers for each reference strain

are shown in parentheses. Bar, 1 nucleotide substitution per 10 nucleotides.

The strains showed typical morphological characteristics of the genus
Flavobacterium (Bernardet et al., 2002). Their physiological and biochemical
characteristics are given in the species descriptions. F. fryxellicola sp. nov. and F.
psychrolimnae sp. nov. can be differentiated clearly from each other and from
related Flavobacterium species by several phenotypic characteristics (Table 3.10);
Flavobacterium species not mentioned in the table are also different from these
novel species.

Description of Flavobacterium fryxellicola sp. nov.

Flavobacterium fryxellicola (fry.xel.li'co.la. N.L. n. Fryxellum or Fryxellus Lake
Fryxell; L. suffix -cola an inhabitant; N.L. n. fryxellicola inhabitant of Lake Fryxell).

Cells are Gram-negative, short rods (1-1.5 x 3-4 um), that often form short
chains. Gliding motility was not observed. Growth at 5-25°C with an optimal growth
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Table 3.9. Fatty acid composition of the novel Antarctic species

Flavobacterium fryxellicola sp. nov. and F. psychrolimnae sp. nov.

Fatty acid F. fryxellicola (n = 3) F. psychrolimnae (n = 4)
i50-C14:0 34+0.3 3.8+£0.2
Ciso 6.9+1.7 54+0.3
Ci503-OH 1.0+0.1 1.4+01
anteiso-Cis 35+£0.2 51+0.3
i50-Cis:0 8.1+0.1 6.9+£0.5
iS0-C15.03-OH 46+1.0 41+04
iS0-Ci5:1 3403 3.9+0.2
Cis:1 @6C 79+13 7.8+0.5
Cieo 3.3£0.3 16+0.2
C16:03-OH 19+04 TR
iS0-Cy6:0 9.8+15 9.7+0.6
iS0-Cy16:0 3-OH 10.7+1.9 104+£1.5
iS0-Ci6:1 45+0.5 8.2+£0.6
i50-C17:03-OH 49+0.5 40+0.7
C17.106C 53+0.8 48104
Ci7208¢ 1.0+0.2 TR
Cig105C TR 1.2+0.2
is0-C17.109¢C 1.6 £0.03 35+0.1
Summed feature 3 13.9+2.2 13.1+0.7

Mean percentages + Sp of total fatty acids are given. Other fatty acids
accounted for < 1% each. Summed feature 3 comprises is0-Cy5.02-OH,
Cie107cC, or both. TR, Trace, < 1% of total.

temperature of 20 °C, whereas no growth occurs at 30 °C. Yellow-orange, convex,
translucent colonies with entire margins and a diameter of 1-3 mm are formed on
R2A plates after 6 days incubation. Colonies on Anacker & Ordal’'s agar (Anacker
& Ordal, 1955) are flat, round with entire margins and 0.5-1 mm in diameter after
14 days incubation. Growth also occurs on trypticase soy agar (weak) and nutrient
agar; there is no growth on marine agar. Colonies do not adhere to the agar.
Growth occurs in 0-2% NaCl but not in 5-10% NaCl. Aesculin is degraded. Catalase
and oxidase tests are positive. Growth is observed (APl 20NE) on glucose and
maltose, whereas no growth is detected on arabinose, mannitol, mannose, N-
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acetyl-glucosamine, gluconate, caprate, adipate, malate, citrate and phenylacetate.
Acids are not produced from carbohydrates (APl 20E). Agar, alginate, pectin,
chitin, casein, CM-cellulose, DNA, gelatin, starch, tyrosine and urea are not
degraded. Congo red is not absorbed and no flexirubin-type pigments are present.
No production of brown diffusible pigment occurs on L-tyrosine agar and no
precipitate is formed on egg-yolk agar. Tests for indole production, citrate utilization,
nitrate reduction and hydrogen sulfide production are negative. Voges-Proskauer
reaction is positive for all strains. None of the strains shows activity for the enzymes
arginine dihydrolase, lysine decarboxylase, ornithine decarboxylase, tryptophan
deaminase (API 20E), lipase (C14), a-chymotrypsin, trypsin, B-galactosidase, -
glucuronidase, B-glucosidase, N-acetyl-B-glucosaminidase, a-mannosidase and
o-fucosidase (APl ZYM). Weak enzymic activity is observed for esterase lipase
(C8), cystine arylamidase and o-galactosidase, medium activity is observed for
esterase (C4) and o-glucosidase, and strong activity is observed for alkaline
phosphatase, leucine arylamidase, valine arylamidase, acid phosphatase and
naphthol-AS-Bl-phosphohydrolase (APl ZYM). Cells contain the fatty acids C . ,
iso-C,_., C._.w6c,iso-C. . ,iso-C. . _3-OH and summed feature 3 (which comprises

15:0 T15:1 16:0’ 16:0

iso-C, . ,2-OH, C, . w7c, or both) as the main constituents. DNA G+C content is

35.2-35.9 mol%.

The type strain is LMG 220227 (= CIP 108325"). Isolated from microbial mats
from Lake Fryxell (fresh/brackish) in the McMurdo Dry Valleys, Antarctica.

Description of Flavobacterium psychrolimnae sp. nov.

Flavobacterium psychrolimnae (psy.chro’lim.nae. Gr. adj. psychros cold; Gr.
f. n. limna lake; M.L. gen. n. psychrolimnae of the cold lake).

Cells are Gram-negative, short rods (0.5 x 2 um); gliding motility is not
observed. Growth occurs at 5-25°C, whereas weak growth is observed at 30°C
and no growth occurs at 37 °C. The optimal growth temperature is 20°C. Yellow,
convex, translucent colonies with entire margins and a diameter of 1-3 mm are
formed on R2A plates after 6 days incubation. Colonies on Anacker & Ordal’s
agar (Anacker & Ordal, 1955) are flat, round with entire margins and 0.5-1 mm in
diameter after 14 days incubation. Growth also occurs on trypticase soy agar and
nutrient agar, whereas no growth is detected on marine agar. Colonies do not
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Table 3.10. Phenotypic characteristics that differentiate Flavobacterium fryxellicola sp. nov. and F. psychrolimnae
sp. nov. from other Flavobacterium species.

Characteristic 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Growth on:
Trypticase soy agar + + + + + - + + + + + + + +  (+)
Nutrient agar + + + - + () 4+ + + + + + + + +
Growth at 25°C on agar * + + () o+ - + o+ o+ ) - + ¥
Flexirubin pigment type - - - - - - - - + - - -
Congo red absorption - - - - + ND ND - - \% - + -
Glucose utilization + + + + + + + + + + + + + -
Acid from carbohydrates - - - - - - - + + + + + - -
Degradation of:
Gelatin - - - - + + - - - + - + + \Y;
Casein - + - + + + + - - + + + + +
Starch - + + + + - + - ND + + + - +
CM-cellulose - - - - - - + - - + - - - -
Agar - - - - + - - - + - - - - -
Alginate - - - - - - + - - + - - -
Pectin - - - - - - + - + + - - - -
Chitin - - - - - + + - - + + . _ _
Aesculin + + + + + + + - + + + + + - +
DNA - - - - - - - - - + N N N _
Tyrosine - - - + + - - - - + - - - -
Precipitate on egg-yolk - - - - - - - - - - - - - -
agar
-galactosidase activity - + - - - - + - + + - - - -
H,S production - - - - - + - - - - - + - -
Nitrate reduction - - - v - - + - ND + - + _ _
Mol% G+C (mean) 35 34 34 34 35 34 35 32 35 34 32 36 35 30 33

Flavobacterium species: 1, F. fryxellicola; 2, F. psychrolimnae; 3, F. degerlachei; 4, F. frigoris; 5, F. limicola; 6, F.

xinjiangense; 7, F. omnivorum; 8, F. tegetincola; 9, F. flevense; 10, F. johnsoniae; 11, F. gillisiae; 12, F. xanthum,
13, F. frigidarium; 14, F. gelidilacus; 15, F. micromati. * Data from Bernardet et al. (1996), McCammon & Bowman
(2000), Humphry et al. (2001), Zhu et al. (2003), Tamaki et al. (2003), Van Trappen et al. (2004a) and this study.

Symbols: +, positive test; (+), positive test, weak or delayed response; -, negative test; V, test results are variable;
ND, no available data.

adhere to the agar. Growth occurs in 0-2 % NacCl, but not in 5-10 % NaCl. Aesculin,
casein and starch are degraded. Catalase and oxidase tests are positive. Growth
is observed (API 20NE) on glucose, mannose and maltose, whereas no growth is
detected on arabinose, mannitol, N-acetyl-glucosamine, gluconate, caprate,
adipate, malate, citrate and phenylacetate. Acids are not produced from
carbohydrates (API 20E). Agar, alginate, pectin, chitin, CM-cellulose, DNA, gelatin,
tyrosine and urea are not degraded. Congo red is not absorbed and no flexirubin-
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type pigments are present. No production of brown diffusible pigment occurs on
L-tyrosine agar and no precipitate is formed on egg-yolk agar. Tests for indole
production, citrate utilization, nitrate reduction, Voges-Proskauer reaction and
hydrogen sulfide production are negative. None of the strains shows activity for
the enzymes arginine dihydrolase, lysine decarboxylase, ornithine decarboxylase,
tryptophan deaminase (API 20E), lipase (C14), a-galactosidase, B-galactosidase,
B-glucuronidase, a-mannosidase and a-fucosidase (APl ZYM). Weak enzymic
activity is observed for esterase (C4), esterase lipase (C8), cystine arylamidase,
o-chymotrypsin, trypsin and B-glucosidase, medium activity is observed for N-
acetyl-B-glucosaminidase, acid phosphatase, a-glucosidase and naphthol-AS-
Bl-phosphohydrolase, and strong activity is observed for alkaline phosphatase,
leucine arylamidase and valine arylamidase (APl ZYM). Cells contain the fatty
acidsC, ., iso-C ., C . w6c,iso-C , ,iso-C 3-OH,iso-C, ., and summed feature
3 (which comprises iso-C,, 2-OH, C . w7c, or both) as the main constituents.
DNA G+C content is 33.8-34.5 mol%.

The type strain is LMG 22018" (= CIP 108326"). Isolated from microbial mats
from the freshwater lakes Fryxell (fresh/ brackish) and Hoare in the McMurdo Dry
Valleys, Antarctica.
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3.5 Gillisia limnaea gen. nov., sp. nov., a new
member of the family Flavobacteriaceae isolated
from a microbial mat in Lake Fryxell, Antarctica

Stefanie Van Trappen, llse Vandecandelaere, Joris Mergaert and Jean Swings

Redrafted from: International Journal of Systematic and Evolutionary
Microbiology 54: 445-448 (2004)

A taxonomic study was performed on three strains isolated from microbial mats in
Lake Fryxell, McMurdo Dry Valleys, Antarctica. Phylogenetic analysis based on
16S rRNA gene sequences indicated that these strains belong to the family
Flavobacteriaceae, in which they form a distinct lineage. The isolates are Gram-
negative, chemoheterotrophic, aerobic, rod-shaped cells. They are psychrophilic
and yellow-pigmented, with DNA G + C contents in the range of 37.8-38.9 mol%.
Whole-cell fatty acid profiles revealed mainly branched fatty acids and C_, 2-OH.
On the basis of genotypic, phenotypic, chemotaxonomic and phylogenetic results,
it is proposed that the isolates represent a novel species in a new genus, Gillisia
limnaea gen. nov., sp. nov. The type strain is LMG 21470" (= DSM 15749").
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Introduction

Members of the Cytophaga-Flavobacterium cluster constitute one of the
dominant bacterial groups in marine and freshwater environments (Bowman et
al., 1997a; Pinhassi et al., 1997; Gléckner et al., 1999). In addition, it is now
thought that flavobacteria play an important role in the uptake and degradation of
complex dissolved and particulate organic matter (Kirchman, 2002). Therefore,
this group has an important and central role in remineralization processes in aquatic
systems. Recently, several new genera of the family Flavobacteriaceae have been
described, i.e. Cellulophaga, Zobellia, Muricauda, Arenibacter, Tenacibaculum,
Vitellibacter, Mesonia and Ulvibacter (Johansen et al., 1999; Barbeyron et al.,
2001; Bruns et al., 2001; lvanova et al., 2001; Suzuki et al.; 2001; Nedashkovskaya
etal., 2003c, 2003a, 2004). Members of several of these genera, i.e. Gelidibacter,
Psychroserpens, Psychroflexus, Polaribacter, and Salegentibacter (Bowman et
al., 1997b, 1998d; Gosink et al., 1998; McCammon & Bowman, 2000), were
originally isolated from Antarctic maritime lakes and the surrounding Southern
Ocean, whereas isolates of the genus Aequorivita were found in terrestrial and
marine Antarctic habitats (Bowman & Nichols, 2002).

During the MICROMAT project (November 1998 - February 2001), 746
bacterial strains were isolated under heterotrophic conditions from microbial mat
samples collected from 10 Antarctic lakes in the Vestfold Hills (lakes Ace, Druzhby,
Grace, Highway, Pendant, Organic and Watts), the Larsemann Hills (lake Reid)
and the McMurdo Dry Valleys (lakes Hoare and Fryxell) (Van Trappen et al., 2002).
Numerical analysis of their fatty acid composition revealed 41 clusters and 16S
rRNA gene sequence analysis, performed on representative strains, showed that
they belong to the a-, B- and y-subclasses of the Proteobacteria, the high- and
low-G+C-containing Gram-positives and the phylum Bacteroidetes (Van Trappen
et al., 2002).

In the present work, the taxonomic relationship between the three strains
from fatty acid cluster 4 (as delineated by Van Trappen et al., 2002) was studied
by a polyphasic taxonomic approach. A novel genus of the family Flavobacteriaceae
is described, Gillisia gen. nov., with Gillisia limnaea sp. nov. as the type species.
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Materials and Methods

The strains investigated were LMG 214707 (= DSM 15749™ = R-8282"), LMG
21966 (= R-7730) and LMG 21965 (= R-7610), isolated as described by Van
Trappen et al. (2002) from microbial mat samples (FR1 and FR2) taken from Lake
Fryxell, McMurdo Dry Valleys, Antarctica. The strains were routinely cultivated on
marine agar 2216 (Difco) at 20 °C for 48 h, except when mentioned otherwise.

DNA extracts were prepared using the method of Pitcher et al. (1989). DNA-
DNA hybridizations were carried out with photobiotin-labelled probes in microplate
wells as described by Willems et al. (2001), using an HTS7000 BioAssay reader
(Perkin Elmer) for fluorescence measurements. The hybridization temperature
was 30 °C and reciprocal experiments were performed for every pair of strains.

The almost complete 16S rRNA gene sequence of one representative strain
of fatty acid cluster 4 was obtained as described earlier (Van Trappen et al., 2002).
The closest related sequences were found using the program FASTA. Sequences
from reference strains were aligned and editing of the alignment and reformatting
was performed with BIOEDIT (Hall, 1999) and FORCON (Raes & Van de Peer,
1999). Evolutionary distances were calculated using the Jukes & Cantor
evolutionary model and a phylogenetic tree was constructed by using the
neighbour-joining method (Saitou & Nei, 1987) with TREECON (Van de Peer &
De Wachter, 1994).

The G+C content of DNA from the Antarctic strains was determined using an
HPLC method, as described by Van Trappen et al. (2003).

Morphological, physiological and biochemical tests were performed, as
described previously (Van Trappen et al., 2003).

Results and discussion

Genomic relatedness between the novel strains was determined by DNA-
DNA hybridizations. The mean hybridization level between strains LMG 214707,
LMG 21966 and LMG 21965 was 81-91 %, indicating that the strains belong to a
single species (Wayne et al., 1987). Differences between reciprocal experiments
were less than 14 %.

The almost complete 16S rRNA gene sequence (1483 nt) of strain LMG 214707
was obtained and a phylogenetic tree is shown in Fig. 3.8. Dendrograms obtained
by maximum-parsimony and maximume-likelihood analyses showed essentially the
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00 E Psychroflexus torquis ACAM 623" (U85881)
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Aquorivita antarctica SW49' (AY027802)
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Polaribacter filamentus ATCC 700397" (U73726)
Tenacibaculum maritimum ATCC 43398 (D14023)
Capnocytophaga ochracea ATCC 27872" (U41350)
Weeksella zoohelcum ATCC 43767" (M93153)

Figure 3.8. Neighbour-joining dendrogram showing the estimated phylogenetic relationship of
Gillisia limnaea gen. nov., sp. nov. and related members of the family Flavobacteriaceae on the
basis of 16S rRNA gene sequences. Weeksella zoohelcum was choosen as the outgroup. Bootstrap
values over 50% are shown (percentages of 500 replicates). Bar, 1 nt substitution per 10 nt.
EMBL accession numbers for reference strains are shown in parentheses.

same topography (data not shown). Results of the phylogenetic analysis revealed
that the novel strains form a distinct lineage within the family Flavobacteriaceae
(Bernardet et al., 2002) and belong to a cluster of species: Salegentibacter
salegens, Mesonia algae, Psychroflexus torquis, Psychroflexus gondwanensis,
Gelidibacter algens, Gelidibacter mesophilus, Psychroserpens burtonensis and
the misclassified strains [Flexibacter] tractuosus IFO 15980 and [Cytophaga]
latercula ATCC 23177" (see Fig. 3.8). The 16S rDNA sequence similarity values
between strain LMG 214707 and its closest relatives [F] tractuosus, S. salegens
and Psychroflexus gondwanensis, were 93.0, 92.8 and 92.0%, respectively. The
16S rDNA sequence of the recently described M. algae (Nedashkovskaya et al.,
2003a) showed only 91.5% similarity with that of strain LMG 21470'. The low
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level of sequence similarity between the novel strains and other bacteria belonging
to the Flavobacteriaceae (87.4-93.0%) clearly demonstrates that they represent
a new genus.

The G+C contents of strains LMG 21470"7, LMG 21966 and LMG 21965
were 37.8, 38.7 and 38.9 mol%, respectively. These values are consistent with
G+C contents observed in the family Flavobacteriaceae (27-44 mol %) (Bernardet
et al., 2002).

Cellular fatty acid patterns of the novel strains have been published previously
(Van Trappen et al., 2002; cluster 4). The strains showed similar fatty acid profiles
and the major constituents were branched fatty acids (<65 % of total), which is
typical for members of the Flavobacteriaceae (Bernardet et al., 2002). Significant
differences in the fatty acid compositions of the novel strains and related taxa
were found, e.g. extracts of Gillisia limnaea strains contained considerable amounts
of C,,2-OH (13.1% of total), iso-C , ®9c (7.1%), anteiso-C . ®9c (7.4 %) and
summed feature 3 (8.2 %; comprises iso-C . 2-OH and/or C . w7c or both),
whereas these fatty acids were not detected in S. salegens, Psychroflexus
gondwanensis and [C.] latercula (Bowman et al., 1998d).

The strains show the typical morphological characteristics of members of the
Flavobacteriaceae (Bernardet et al., 2002) and their physiological and biochemical
characteristics are given in the species description. Results of the polyphasic
analysis support the formation of a new genus within the family Flavobacteriaceae,
Gillisia gen. nov., with Gillisia limnaea sp. nov. as the type species. The new genus
can be clearly differentiated from related members of the Flavobacteriaceae by
several phenotypic characteristics (Table 3.11).

Description of Gillisia gen. nov.

Gillisia (Gil.lis’i.a. N.L. fem. n. Gillisia after Monique Gillis, a Belgian
bacteriologist who has made major contributions to bacterial taxonomy).

Gram-negative, rod-shaped cells which are strictly aerobic, moderately
halotolerant, psychrophilic and chemoheterotrophic. Produces yellow pigments.
No flexirubins are formed. Gliding motility is not detected. Does not form
endospores. Positive for cytochrome oxidase, catalase and 3-galactosidase. The
main cellular fatty acids are iso-C ., anteiso-C ., iso-C ., iso-C  , C  2-OH,
iso-C_, 3-OH, iso-C_, ®9c, anteiso-C . w9c and summed feature 3 (comprising
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Table 3.11. Phenotypic characteristics that differentiate Gillisia gen. nov. from related members of the
Flavobacteriaceae.

Characteristic 1 2 3 4 5 6 7 8
Gliding motility - - - \% - - + +
Oxidase + + + + + - +
Catalase + + + + - + + +
Pigments o O-R o-Y
Growth in > 10% NaCl - + + \% - ND ND
Acid from carbohydrates - - - + + - + +
Hydrolysis of:
Agar - - - - + - - +
Casein - - + - + + \% \%
Gelatin + + + + - \% \% +
Starch - + - + + - + +
DNA - + - + + - + +
Nitrate reduction - + - - + - - \%
H,S production - + + - + ND ND -
G+C content (mol%) 37-39 37-38 32-34 32-36 34 27-29 36-38 33-38

Genera/ species: 1, Gillisia gen. nov.; 2, Salegentibacter; 3, Mesonia; 4, Psychroflexus; 5, [Cytophaga]
latercula; 6, Psychroserpens; 7, Gelidibacter; 8, Cellulophaga. Abbreviations: -, negative; +, positive; V,
variable; ND, not determined; O, orange; Y, yellow; O-R, orange-red. Data for Gillisia are from this study;
data for the other genera/ species shown are from Bowman et al. (1997a, 1998), Reichenbach (1989),
Johansen et al. (1999), McCammon & Bowman (2000) and Nedashkovskaya et al. (2003a).

iso-C,; ,2-OH and/or C_, 7c, or both). 16S rRNA gene sequence analysis reveals
that the genus Gillisia belongs to the family Flavobacteriaceae of the phylum
Bacteroidetes. The type species is Gillisia limnaea.

Description of Gillisialimnaea sp. nov.

Gillisia limnaea (lim.nae’a. Gr. adj. limnaeos pertaining to, living in lakes; N.L.
fem. adj. limnaea living in the water, referring to the isolation source, microbial
mats in Lake Fryxell).

The main characteristics are the same as given for the genus. In addition,
cells are 3 x 0.7 pm. Grows at 5-25°C; optimal growth at 20 °C. Weak growth is
observed at 30°C and no growth occurs at 37 °C. Yellow, convex, translucent
colonies with diameters of 1-3 mm and entire margins are formed on marine agar
plates after 6 days incubation. Colonies on Anacker & Ordal’s agar are flat, round
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with entire margins and 0.7-0.9 mm in diameter after 14 days incubation. Growth
also occurs on nutrient agar and R2A and colonies do not adhere to the agar. No
growth on trypticase soy agar. Degrades aesculin and gelatin. Growth is not
observed (APl 20NE) on glucose, mannose, maltose, L-arabinose, mannitol, N-
acetyl-glucosamine, gluconate, caprate, adipate, malate, citrate and phenylacetate.
Acids are not produced from carbohydrates (API 20E). Agar, alginate, pectin,
chitin, casein, carboxymethylcellulose, DNA, starch, Tween 80, tyrosine and urea
are not degraded. Congo red is not absorbed. No brown diffusible pigment is
produced on L-tyrosine agar and no precipitate is formed on egg-yolk agar. Tests
for indole production, citrate utilization, nitrate reduction, the Voges-Proskauer
reaction and hydrogen sulfide production are negative. None of the strains has
the following enzyme activities: arginine dihydrolase, lysine decarboxylase,
ornithine decarboxylase, tryptophan deaminase (APl 20E), lipase (C14), a-
galactosidase, B-galactosidase, B-glucosidase, N-acetyl-B-glucosaminidase, o-
mannosidase, and a-fucosidase (APl ZYM). Weak enzymic activity is observed
for cystine arylamidase, -glucuronidase and o-glucosidase, medium activity for
esterase (C4), esterase lipase (C8) and trypsin and strong activity for alkaline
and acid phophatases, leucine arylamidase, valine arylamidase and naphthol-
AS-BI-phosphohydrolase. Variable results are observed for a-chymotrypsin activity.
Growth occurs in up to 5% NacCl, but not in 10% NacCl, indicating that strains are
moderately halotolerant but not halophilic. DNA G+C content is 37.8-38.9 mol%.

The type strain is LMG 21470" (= DSM 157497). Isolated from microbial mats
from Lake Fryxell in the McMurdo Dry Valleys, Antarctica.
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3.6 Algoriphagus antarcticus sp. nov., a novel
psychrophile from microbial mats in Antarctic
lakes

Stefanie Van Trappen, llse Vandecandelaere, Joris Mergaert and Jean Swings

Redrafted from: International Journal of Systematic and Evolutionary
Microbiology, in press (DOI10.1099/ijs.0.02973-0)

A taxonomic study was performed on six strains isolated from microbial mats of
lakes Reid, Fryxell and Ace in Antarctica. Phylogenetic analysis based on 16S
rRNA gene sequences indicated that these strains belong to the family
‘Flexibacteriaceae’ and are closely related to the recently described genera
Algoriphagus and Hongiella. The isolates are Gram-negative, chemoheterotrophic,
aerobic, psychrophilic and orange-red-pigmented bacteria; their DNA G + C
contents range from 39.9 to 41.0 mol%. Their whole-cell fatty acid profiles include
mainly branched fatty acids and summed feature 3 (which comprises iso-C,, 2-
OH, C . ,o7c, or both). On the basis of genotypic, phenotypic, chemotaxonomic
and phylogenetic results, the novel bacteria are classified as Algoriphagus
antarcticus sp. nov. The type strain is LMG 21980 (= DSM 15986").
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Introduction

Members of the Cytophaga-Flavobacterium cluster constitute one of the
dominant bacterial groups in the marine environment (Bowman et al., 1997a;
Pinhassi et al., 1997; Glockner et al., 1999) and it is now thought that they play an
important role in remineralization processes in aquatic systems (Kirchman, 2002).
Recently, new genera of the ‘Flexibacteriaceae’ have been described like
Reichenbachia, Algoriphagus, Hongiella and Belliella (Nedashkovskaya et al.,
2003b; Bowman et al., 2003c; Yi & Chun, 2004; Brettar et al., 2004) isolated from
seawater, sea-ice, algal mats of saline lakes and tidal flat sediment. Only one
strain (strain A230 of Algoriphagus ratkowskyi) was isolated from a cyanobacterial
mat sample from Ace Lake, Antarctica.

During the MICROMAT project (November 1998 - February 2001), 746
bacterial strains were isolated under heterotrophic conditions from microbial mat
samples that were collected from 10 Antarctic lakes in the Vestfold Hills (lakes
Ace, Druzhby, Grace, Highway, Pendant, Organic and Watts), the Larsemann
Hills (lake Reid) and the McMurdo Dry Valleys (lakes Hoare and Fryxell) (Van
Trappen et al., 2002). Numerical analysis of their fatty acid composition revealed
41 clusters, and 16S rRNA gene sequence analysis, performed on representative
strains, showed that they belong to the o-, B- and y-subclasses of the
Proteobacteria, the high and low percent G+C Gram-positives and to the
Bacteroidetes phylum (Van Trappen et al., 2002).

In the present work we studied the taxonomic relationships of six strains
from fatty acid cluster 15 (as delineated by Van Trappen et al., 2002), by a
polyphasic taxonomic approach. A novel species of the genus Algoriphagus is
described as Algoriphagus antarcticus sp. nov.

Materials and Methods

The investigated strains are LMG 21980 (= DSM 15986™ = R-107107), LMG
21981 (= R-10749), LMG 21982 (= R-10752), LMG 21983 (= R-11427), from Lake
Reid, Larsemann Hills, Antarctica; LMG 21984 (= R-8290), from Lake Fryxell,
McMurdo Dry Valleys, Antarctica and LMG 21482 (= R-9286), from Ace Lake,
Vestfold Hills, Antarctica. The strains were isolated as described by Van Trappen
et al. (2002). They were cultivated routinely on marine agar 2216 (Difco) at 20 °C
for 4 days, except when mentioned otherwise. Strains LMG 214357 (Algoriphagus
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ratkowskyi), LMG 21969" (Algoriphagus winogradskyi), LMG 21970" (Algoriphagus
chordae) and LMG 219717 (Algoriphagus aquimarinus) were cultivated routinely
on marine agar 2216 (Difco) at 20°C, whilst strain LMG 220677 (Algoriphagus
halophilus) was cultivated on marine agar 2216 (Difco) at 28°C.

DNA extracts were prepared by using the method of Pitcher et al. (1989).
Almost complete 16S rRNA gene sequences of representative strains were
amplified by PCR with conserved primers (Coenye et al., 1999). PCR products
were purified by using a QIAquick PCR Purification kit (Qiagen) according to the
instructions of the manufacturer. Sequence analysis was performed by using an
ABI Prism 3100 DNA sequencer (Applied Biosystems), applying a BigDye
Terminator Cycle Sequencing Ready Reaction kit (version 2.0; PerkinElmer Applied
Biosystems), following the protocols of the manufacturer. Sequence assembly
was performed by using the program AutoAssembler (version1.4.0; PerkinElmer
Applied Biosystems). The most closely related sequences were found by using
the FASTA program; sequences were aligned and editing of the alignment and
reformatting was performed with the BioEdit program (Hall, 1999) and ForCon
(Raes & Van de Peer, 1999). Evolutionary distances were calculated using the
Jukes-Cantor evolutionary model and a phylogenetic tree was constructed using
the neighbour-joining method (Saitou & Nei, 1987) with the TREECON program
(Van de Peer & De Wachter, 1994).

DNA-DNA hybridizations were carried out with photobiotin-labelled probes
in microplate wells as described by Willems et al. (2001), using an HTS7000
BioAssay reader (PerkinElmer) for the fluorescence measurements. The
hybridization temperature was 34 °C and reciprocal experiments were performed
for every pair of strains.

DNA G+C contents of the novel strains were determined using an HPLC
method, as described by Van Trappen et al. (2003).

Morphological, physiological and biochemical tests were performed, as
described earlier (Van Trappen et al., 2003).
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Results and discussion

Almost complete 16S rRNA gene sequences (1462-1491 nt) of strains LMG
21482, LMG 21980™ and LMG 21983 were obtained and a phylogenetic tree is
shown in Fig. 3.9. Dendrograms obtained by maximum parsimony and maximum
likelihood analyses showed essentially the same topography (data not shown).
The results of the phylogenetic analysis reveal that the novel strains belong to
the recently described genus Algoriphagus within the family ‘Flexibacteriaceae’
(Bowman et al., 2003c; Nedashkovskaya et al., in press), which is most closely
related to the genera Hongiella, Belliella and Cyclobacterium (see Fig. 3.9). The
Antarctic strains form a robust branch, supported by a high bootstrap value (all
methods, 100% of the bootstrap replications).

The 16S rRNA gene sequences of strains LMG 21980™ and LMG 21983 are
identical to each other, whilst the sequence of LMG 21482 differs by only one
base from these sequences (99.9% similarity). The 16S rRNA gene sequences of
the novel strains show 98.7% sequence similarity to Algoriphagus chordae, 98.7%
to A. ratkowskyi, 98.6% to A. winogradskyi, 98.5% to A. aquimarinus, 97.4% to A.
halophilus, 94.7% to H. ornithinivorans, 93.8% to H. mannitolivorans, 92.9% to
Belliella baltica, 92.9% to Cyclobacterium marinum and less than 90% to sequences
of other related genera.

Genomic relatedness between the novel strains and their most closely related
phylogenetic neighbours (Algoriphagus ratkowskyi, A. chordae, A. aquimarinus,
A. winogradskyi and A. halophilus) was determined by DNA-DNA hybridization.
The hybridization level between strains LMG 219807, LMG 21981, LMG 21982,
LMG 21983 and LMG 21984 was 89.0-98.7 %, whereas strain LMG 21482 showed
a hybridization value of only 74.2 + 3.9% to strain LMG 21980 and 72.7 + 0.5%
to strain LMG 21983. Hybridization values of LMG 21980™ and LMG 21983 with
their nearest phylogenetic neighbours Algoriphagus ratkowskyi (LMG 214357), A.
chordae (LMG 219707), A. aquimarinus (LMG 219717) and A. winogradskyi (LMG
219697), were 20.5-38.6%. The hybridization value between strains LMG 21983
and LMG 22067T (A. halophilus) was only 7.2%. Differences between reciprocal
experiments were less than 8 %. These results show clearly that the Antarctic
strains represent a new species within the genus Algoriphagus.

The DNA G+C contents of strains LMG 21482, LMG 219807, LMG 21981,
LMG 21982, LMG 21983 and LMG 21984 are 40.8, 40.6, 40.6, 40.6, 39.9 and
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Figure 3.9. Neighbour-joining dendrogram showing the estimated phylogenetic relationships of
Algoriphagus antarcticus sp. nov. and related members of the family ‘Flexibacteriaceae’ on the
basis of 16S rRNA gene sequences. Bacteroides fragilis was choosen as outgroup. Bootstrap
values (percentages of 500 replicates) of > 50 % are shown. GenBank accession numbers for
each reference strain are shown in parentheses. Bar, 1 nucleotide substitution per 10 nucleotides.

41.0 mol%, respectively. These values are consistent with the DNA G+C contents
of members of the genus Algoriphagus, which range from 35 to 42 mol % (Bowman
et al., 2003c; Nedashkovskaya et al., in press).

Cellular fatty acid patterns of the novel strains are based on the data generated
by Van Trappen et al. (2002). The strains show similar fatty acid profiles and the
mean fatty acid composition includes 3.4% anteiso-C,, , 23.1% iso-C ., 4.1%
iso-C,, ,3-OH, 9.3% iso-C ;. ,, 1.8% C , 3-OH, 1.9% iso-C,, ,, 2.5% iso-C_ , ;3-OH,
2.9%iso-C ., 4.9% C , ,w5¢, 12.5% iso-C_, 3-OH, 3.4% iso-C . ®9c, 24.3% iso-
C,.,2-OH and/or C , o6¢c. Other fatty acids each account for less than 1%. The
fatty acid profiles of the novel strains resemble those determined for the other
Algoriphagus species but differ in terms of relative amounts of iso-C ., iso-C_, .,
iso-C,, 3-OH andiso-C, . 2-OH/C . w6c (Bowman et al., 2003c; Nedashkovskaya
et al., in press).

The strains showed typical morphological characteristics of the genus
Algoriphagus (Bowman et al., 2003c; Nedashkovskaya et al., in press) and their
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physiological and biochemical characteristics are given in the species description.
The results of the polyphasic analysis support the recognition of a new species
within the genus Algoriphagus, for which the name Algoriphagus antarcticus sp.
nov. is proposed. The new species can be clearly differentiated from related
Algoriphagus and Hongiella species by several phenotypic characteristics (Table
3.12).

Description of Algoriphagus antarcticus sp. nov.

Algoriphagus antarcticus (ant.arc’ti.cus. L. masc. adj. antarcticus of the
Antarctic environment, from where the strains were isolated).

Cells are Gram-negative, short rods (2-3 pm x 0.5 pm); motility was not
detected. Growth occurs at 5-20°C, with weak growth at 25°C and an optimal
growth temperature of 20 °C. No growth occurs at 30 °C. Orange-red pigmented,
convex, opaque colonies with entire margins and a diameter of 0.5-3 mm are
formed on marine agar plates after 6 days incubation. Colonies on Anacker &
Ordal’s agar are flat, round with entire margins and 0.5-0.7 mm in diameter after
14 days incubation. Growth also occurs on nutrient agar and R2A; colonies do
not adhere to the agar. No growth occurs on trypticase soy agar. Catalase and
oxidase tests are positive. Aesculin is degraded. Growth is not observed (API
20NE) on glucose, mannose, maltose, L-arabinose, mannitol, N-acetyl-
glucosamine, gluconate, caprate, adipate, malate, citrate and phenylacetate. Acids
are not produced from carbohydrates (APl 20E). Agar, alginate, pectin, chitin,
casein, CM-cellulose, DNA, starch, gelatin, tyrosine and urea are not degraded.
Congo red is not absorbed. No production of brown diffusible pigment occurs on
L-tyrosine agar and no precipitate is formed on egg-yolk agar. Tests for indole
production, citrate utilization, nitrate reduction, Voges-Proskauer reaction and
hydrogen sulfide production are negative. None of the strains shows activity for
the enzymes arginine dihydrolase, lysine decarboxylase, ornithine decarboxylase,
tryptophan deaminase (API 20E), lipase (C14), cystine arylamidase (except strain
LMG 21983), a-galactosidase, B-glucuronidase, a-mannosidase, and o-fucosidase
(APl ZYM).
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Weak enzymic activity is observed for esterase (C4), esterase lipase (C8),
o-glucosidase, and B-glucosidase, medium activity is observed for valine
arylamidase, and B-galactosidase, and strong activity is observed for alkaline
and acid phophatases, leucine arylamidase, trypsin, o-chymotrypsin, and naphthol-
AS-Bl-phosphohydrolase. Variable results were obtained for N-acetyl-3-
glucosaminidase. Growth occurs in up to 5% NaCl but not in 10% NacCl, indicating
that the strains are not halophilic but moderately halotolerant. DNA G+C content
is 39.9-41.0 mol%.

The type strain is LMG 21980" (= DSM 159867). Isolated from microbial
mats from lakes Reid, Fryxell and Ace, Antarctica.
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CHAPTER 4

New taxa from Antarctic lakes within the o-
Proteobacteria

4.1 Polyphasic taxonomy of FAA cluster 41

Fatty acid cluster 41 (as delineated in Van Trappen et al. (2002), see chapter
2), belonging to the a-Proteobacteria, was further investigated using a polyphasic
taxonomic approach. The phylogenetic position of the o-Proteobacteria with
different families (e. g. Acetobacteriaceae, Rhodospirillaceae, Sphingo-
monadaceae, the Rhodobacter group, Caulobacteriaceae, Rhizobiaceae and
Hyphomicrobiaceae) is illustrated in Fig. 4A and 4B.

The genomic diversity of the 59 strains of fatty acid cluster 41 (as delineated
in Van Trappen et al. (2002), see chapter 2), belonging to the o-Proteobacteria,
was investigated by rep-PCR fingerprinting, using REP1R-I and REP2-I primers
and the GTG,-primer (Rademaker & de Bruijn, 1997). In total, 57 combined
fingerprinting patterns were obtained (from strains R-9063 and R-9178, no DNA
could be extracted because of poor growth) and 10 clusters could be delineated,
whereas 12 strains formed single branches, at a cut off value of 70% (Pearson
correlation coefficient) (see Fig. 4.1). Looking at the REP- and GTG,-clustering
separately, it is clear that, although the GTG,-primer leads to profiles with much
more bands, the GTG,-clustering is often too detailed. For example at a cut-off
value of 70% (Pearson correlation), 11 different GTG_-groups can be delineated
and only seven REP-groups (data not shown). For rep-clusters | and IX there is a
good correlation between the clustering based on the two different primers (see
Fig. 4.1). However, for rep-clusters 1V, V, VI and VI, the clustering based on the
REP-primers is more suitable, since less and more dense clusters are obtained,
with overall higher Pearson correlations compared to the GTG.-derived clusters.
Hybridization results between representatives of the rep-clusters IV, V and VII
confirmed that they are very closely related (see later).
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Figure 4A. Simplified neigbour-joining phylogenetic tree of the Proteobacteria based on the 16S
rDNA sequences of the type strains of the proteobacterial genera. Distances were calculated
using the substitution rate calibration method in TREECON 3.1 (Van de Peer and De Wachter,
1994). The bar indicates 10% estimated sequence divergence. Bacillus subtilis was used as
outgroup (not shown). The width of the triangles is proportional to the number of genera within
each cluster (from Kersters et al., 2002).
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Figure 4B. Neighbour-joining dendrogram showing the estimated phylogenetic relationships of
representatives of the o-Proteobacteria on the basis of 16S rRNA gene sequences. Burkholderia
cepacia was choosen as outgroup. Bootstrap values (percentages of 100 replicates) are shown.
GenBank accession numbers for each reference strain are shown in parentheses. Bar, 1 nucleotide

substitution per 10 nucleotides.
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Figure 4.1. Digitized representation of normalized and combined rep-PCR profiles (REP1R-I
and REP2-1 primers and the GTG,-primer) of 57 strains belonging to FAA cluster 41. Dendrogram
derived from the UPGMA-clustering of the profiles with the Pearson correlation coefficient and
rep-clusters were delineated at a cut-off value of 70%.
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Pearson correlation

mimTmn LMG 19755"  Staleya guttiformis
E | I I' : ' LMG 19757" Roseobacter gallaeciensis
l‘ n l :| LMG 19756"  Sulfitobacter mediterraneus
Figure 4.2. Digitized representation of normalized rep-PCR profiles (REP1R-1 and REP2-1 primers)
of type strains of related species of the ‘Roseobacter- Sulfitobacter- Silicibacter’ group within the

a-Proteobacteria. Dendrogram derived from UPGMA-clustering of the profiles with the Pearson
correlation coefficient.

These results illustrate that the diversity of heterotrophic bacteria in Antarctic
microbial mats is much higher than estimated by fatty acid and 16S rDNA sequence
analyses. In contrast to the Bacteroidetes, the different profile types correlate
well with the geographical origin of the strains. Strains showing the same rep-
PCR profile are often isolated from the same or geographically close lakes (for
rep-clusters | and Il lakes Ace and Pendant; for rep-clusters IV, V, VI and VII lakes
Ace and Organic) and strains from rep-cluster IX are almost exclusively originating
from Lake Fryxell (except strain R-10890, isolated from Lake Reid). Reference
strains of related species were also included in this rep-clustering (only REP-
primers), but it is clear that none of their fingerprinting patterns is similar to the
patterns of the Antarctic strains (see Fig. 4.2).

16S rDNA sequences of two representative strains from FAA cluster 41 were
obtained from a previous study (see chapter 2). Strain R-9219 (unclustered)
showed a sequence similarity of 96.9% to Mesorhizobium loti and strain R-8904
(rep-cluster V) showed a sequence similarity of 93.5% to Sulfitobacter pontiacus.
Additional sequences were determined for representative strains of rep-clusters
[, IV, VIl and IX and results show that they are phylogenetically related to the
Rhodobacter group within the o-Proteobacteria, showing low similarities (94,2-
95,8%) to Jannaschia helgolandensis, Octadecabacter antarcticus and
Ketogulonicigenium vulgare, their nearest phylogenetic neighbours.

We focused on 26 strains belonging to five different rep-groups: four strains
from rep-cluster I, 12 strains from rep-cluster IX and a selection of 10 strains from
rep-clusters IV, V and VII, with the most similar rep-profiles. Hybridization values
between representative strains of the three different rep-clusters I, V and IX were
low (10.5-17.6%), indicating that they belong to three different species (Wayne et
al., 1987). Hybridization results between representative strains from rep-clusters
IV, V and VIl indicated that these rep-clusters are closely related (showing
hybridization values of 78.2-85.5%) and they constitute a single species of a
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novel genus for which the name Loktanella salsilacus sp. nov. is proposed. 16S
rDNA sequence analysis and phenotypic results, showed that the strains from
rep-cluster | also belong to a single species of this novel genus, for which the
name L. vestfoldensis sp. nov. is proposed, whereas the strains from rep-cluster
IX constitute a new species within this genus, for which the name Loktanella
fryxellensis sp. nov. is proposed (see section 4.2).
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4.2 Loktanella fryxellensis gen. nov., sp. nov.,
Loktanella vestfoldensis sp. nov. and Loktanella
salsilacus sp. nov., new members of the
Rhodobacter group, isolated from microbial mats
In Antarctic lakes

Stefanie Van Trappen, Joris Mergaert and Jean Swings

Redrafted from: International Journal of Systematic and Evolutionary
Microbiology, in press (DOI10.1099/ijs.0.03006-0)

A taxonomic study was performed on twenty-six strains isolated from microbial
mats in Antarctic lakes of the Vestfold Hills and the McMurdo Dry Valleys.
Phylogenetic analysis based on 16S rRNA gene sequences placed these strains
within the Rhodobacter group of the a-subclass of the Proteobacteria; sequence
similarity values with their nearest phylogenetic neighbours (Jannaschia,
Octadecabacter and Ketogulonicigenium) ranged from 94.0 to 95.8%. Results of
DNA-DNA hybridization and comparison of repetitive extragenic palindromic DNA-
PCR fingerprinting patterns revealed that these strains are members of three
distinct species. The isolates are Gram-negative, chemoheterotrophic, non-motile
rods; their DNA G + C contents range from 59.4 to 66.4 mol%. Their whole-cell
fatty acid profiles are similar and the primary fatty acid in all the strains is C ., w7c
(74.1-87.7% of total content). Genotypic results, together with phenotypic
characteristics, allowed the differentiation of these species from related species
of the a-subclass of the Proteobacteria with validly published names. The strains
are assigned to a new genus with three new species: Loktanella salsilacus sp.
nov., which is the type species (consisting of 10 strains with LMG 21507" = CIP
108322" as type strain), Loktanella fryxellensis sp. nov. (consisting of 12 strains
with LMG 220077 = CIP 108323" as type strain), and Loktanella vestfoldensis sp.
nov. (consisting of 4 strains with LMG 22003 = CIP 108321T as type strain).

149



Chapter 4

Introduction

During the last few years, there has been an increase in the isolation and
description of novel marine and freshwater bacteria and several of these new
isolates are members of the a-subclass of the Proteobacteria, in which they are
phylogenetically related to the genus Rhodobacter. The abundance of some
members of the Rhodobacter group (like Sulfitobacter) in these aquatic
environments has been correlated with the presence of algal blooms and it has
been suggested that they play an important role in sulfur cycling (Gonzalez et al.,
1999; 2000).

Several of these novel members originate from Antarctic habitats:
Antarctobacter heliothermus (Labrenz et al., 1998), Roseovarius tolerans (Labrenz
et al., 1999), Staleya guttiformis and Sulfitobacter brevis (Labrenz et al., 2000)
from Ekho Lake, and Octadecabacter arcticus and O. antarcticus (Gosink et al.,
1997) from polar sea-ice and seawater. Recently, two new genera have been
added to this Rhodobacter group: Ketogulonicigenium (Urbance et al., 2001),
isolated from soil, which oxidizes L-sorbose to 2-keto-L-gulonic acid, and
Jannaschia helgolandensis (Wagner-Débler et al., 2003), isolated from the North
Sea.

During the MICROMAT project (November 1998 - February 2001), 746
heterotrophic bacterial strains were isolated from microbial mat samples that were
collected from 10 Antarctic lakes (Van Trappen et al., 2002). Numerical analysis
of the fatty acid composition of the isolates revealed 41 clusters and 16S rRNA
gene sequence analysis, performed on representative strains, showed that they
belong to the a-, B- and y-subclasses of the Proteobacteria, the Gram-positives,
and the Bacteroidetes (Van Trappen et al., 2002). Results of fatty acid and 16S
rRNA gene sequence analyses showed that the diversity of heterotrophic bacteria
in microbial mats from Antarctic lakes is very high. Moreover, many fatty acid
clusters were shown to contain multiple taxa when tested by repetitive extragenic
palindromic DNA-PCR fingerprinting, a technique used to investigate the genomic
diversity of each fatty acid cluster more in detail, especially those belonging to
the Bacteroidetes group (Van Trappen et al., 2003; 2004a, b).

In the present work, we studied the relationship of 26 strains from fatty acid
cluster 41 (as delineated by Van Trappen et al., 2002; belonging to the a-subclass
of the Proteobacteria), by polyphasic taxonomic characterization.
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Materials and Methods

The investigated isolates, their origin and genomic profile grouping are listed
in Table 4.1. Strains were cultivated routinely on marine agar 2216 (Difco) at 25
°C for 48 h, except when mentioned otherwise.

DNA was prepared according to the method of Pitcher et al. (1989) and rep-
PCR fingerprinting (based on primers targeting the repetitive extragenic palindromic
sequence) was performed on all the strains of fatty acid cluster 41 (59 strains) of
Van Trappen et al. (2002), using the primers GTG, and REP1R-I and REP2-|
(Versalovic et al., 1991), as described by Rademaker & de Bruijn (1997) and
Rademaker et al. (2000). Numerical analysis was carried out using the Bionumerics
software package (Applied Maths).

Almost complete 16S rRNA gene sequences of representative strains were
determined as described earlier (Van Trappen et al., 2004a). The most closely
related sequences were found using the FASTA program; sequences were aligned
and editing of the alignment and reformatting was performed with the BIOEDIT
program (Hall, 1999) and ForCon (Raes & Van de Peer, 1999). Evolutionary
distances were calculated using the Jukes-Cantor evolutionary model and a
phylogenetic tree was constructed using the neighbour-joining method (Saitou &
Nei, 1987) with the TREECON program (Van de Peer & De Wachter, 1994).

DNA was prepared according to the method of Marmur (1961) and DNA-
DNA hybridizations were carried out with photobiotin-labelled probes in microplate
wells as described by Ezaki et al. (1989), using an HTS7000 BioAssay reader
(PerkinElmer) for the fluorescence measurements. The hybridization temperature
was 45°C and reciprocal experiments were performed for every pair of strains.

DNA G+C contents of the Antarctic strains were determined using an HPLC
method, as described by Van Trappen et al. (2003).

The following morphological, physiological and biochemical tests were
performed. Growth at different temperatures (5-45°C) was tested on marine agar,
whereas salt tolerance was tested on R2A agar (composition per liter: 0.5 g yeast
extract, 0.5 g proteose peptone No.3, 0.5 g casamino acids, 0.5 g dextrose, 0.5 ¢
soluble starch, 0.3 g sodium pyruvate, 0.3 g dipotassium phosphate, 0.05 g
magnesium sulfate and 15.0 g agar), supplemented with 1 to 20% NaCl at 25°C.
Colony morphology was determined on marine agar after 7 days incubation. In
addition, growth and adherence of colonies on R2A, nutrient and trypticase soy
agars were tested. Cells were tested for their reaction to the Gram stain and for
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catalase and oxidase activity. Tests in the commercial systems APl ZYM, API
20NE and API 20E (bioMérieux) were generally performed according to the
instructions of the manufacturer. The APl ZYM tests were read after 4 h incubation
at 25 °C, other API tests after 48 h incubation at 25 °C. Degradation of casein
(Reichenbach & Dworkin, 1981), DNA [using DNA agar (Difco), supplemented
with 0.01 % toluidine blue from Merck], starch, Tween 80 and L-tyrosine (Barrow
& Feltham, 1993) were tested; reactions were read after 5 days.

Results and discussion

Twenty-six strains of fatty acid cluster 41 (Table 4.1), showed similar rep-
PCR profiles and they could be divided into three different clusters according to
their combined profile type (Fig. 4.3), and these clusters were delineated by
numerical analysis at a Pearson correlation coefficient level of 50%. They are
hereafter referred to as rep-PCR profile type | (comprising 12 strains), type Il
(with 4 strains) and type Il (with 10 strains). It is now well established that similar
rep-PCR profiles are correlated to high total genomic DNA-DNA hybridization
values (Versalovic et al., 1994; Rademaker & De Bruijn, 1997; Rademaker et al.,
2000; Van Trappen et al., 2003; 2004a).

Almost complete 16S rRNA gene sequences (1404-1449 nt) of strains LMG
220037, LMG 22006, LMG 220077, LMG 21507", LMG 22000 and LMG 22002
were obtained and a phylogenetic tree is shown in Fig. 4.4. Dendrograms obtained
by maximum parsimony and maximum likelihood analyses showed essentially
the same topography (data not shown).

The novel Antarctic strains form a distinct evolutionary clade, supported by
high bootstrap values, within the o-subclass of the Proteobacteria and are
associated with the Rhodobacter group. The 16S rRNA gene sequence of strain
LMG 22007" (representative for the strains of rep-PCR profile type |) revealed
98.6% similarity to strain LMG 215077 (identical to LMG 22000 and LMG 22002;
representing rep-PCR profile type Ill) and 95.4% to strain LMG 220037
(representing rep-PCR profile type Il and which sequence is identical to that of
strain LMG 22006). The strains with nearest related sequences to that of strain
LMG 22007T (rep-PCR profile 1) are Jannaschia helgolandensis Hel10" (95.8%),
Octadecabacter antarcticus 307" (94.5%) and the currently unclassified marine
alpha proteobacterium strain QSSC9-5 (97.3%). The 16S rRNA gene sequence
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Table 4.1. Strains investigated, source of isolation and rep-PCR profile type.

Species

Strain No.

Isolation site

Loktanella fryxellensis sp. nov.
(rep-PCR cluster I)

Loktanella vestfoldensis sp. nov.
(rep-PCR cluster II)

Loktanella salsilacus sp. nov.
(rep -PCR cluster Ill)

LMG 22007 ' (= R-7670)
LMG 22008 (= R-7672)
LMG 22009 (= R-7726)
LMG 22010 (= R-7728)
R-7601, R-7605, R-7671, R-

7729, R-7732, R-7735, R-8013,

R-8014
LMG 22003 T (= R-9477)
LMG 22006 (= R-9184)
LMG 22004 (= R-9054)
LMG 22005 (= R-9057)
LMG 21507 T (= R-8904)
LMG 21999 (= R-8968)
R-8884, R-8901, R-9036
LMG 22000 (= R-9030)
LMG 22001 (= R-9066)
LMG 22002 (= R-9068)
R-9064, R-9186

Lake Fryxell, Dry Valleys
Lake Fryxell, Dry Valleys
Lake Fryxell, Dry Valleys
Lake Fryxell, Dry Valleys

Lake Fryxell, Dry Valleys
Ace Lake, Vestfold Hills
Ace Lake, Vestfold Hills
Pendant Lake, Vestfold Hills
Pendant Lake, Vestfold Hills
Ace Lake, Vestfold Hills
Ace Lake, Vestfold Hills
Ace Lake, Vestfold Hills
Organic Lake, Vestfold Hills
Organic Lake, Vestfold Hills
Organic Lake, Vestfold Hills
Organic Lake, Vestfold Hills

Abbreviations: LMG, BCCM/LMG Bacteria Collection, Laboratorium voor Microbiologie, Gent, Belgium;
R-, strain numbers from the research collection of the Laboratorium voor Microbiologie, Universiteit

Gent, Belgium, and as used by Van Trappen et al. (2002).

of strain LMG 22003 (rep-PCR profile type 1l) showed 95.4% sequence similarity
to Jannaschia helgolandensis Hel10", 94.2% to Ketogulonicigenium vulgare DSM
40257, 94.3% to Ruegeria algicola DSM 10251" and 96.2% to the currently
unclassified strain AS-26. The 16S rRNA gene sequence of strain LMG 215077
(rep-PCR profile type 1ll) showed 95.7% similarity to Jannaschia helgolandensis
Hell107, 94.2% to Octadecabacter antarcticus 307", 94.2% to Ketogulonicigenium
vulgare DSM 4025™ and 98.4% to strain QSSC9. The low level of sequence
similarities of the novel strains with other to date described bacteria belonging to
the Rhodobacter group of the a-subclass of the Proteobacteria (91.0-95.8%),
clearly demonstrates that they represent a new genus.

Genomic relatedness between the novel Antarctic strains, representing the
three different rep-PCR profile types was determined by DNA-DNA hybridization.
The hybridization level between strains LMG 22007" (rep-PCR profile type 1),
LMG 22003" (rep-PCR profile type Il) and LMG 21507T (rep-PCR profile type III)
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and GTG,-primers) of 26 strains from fatty acid cluster 41. Dendrogram derived from the UPGMA
clustering of the profiles with the Pearson correlation coefficient and rep-clusters were delineated
at a cut-off value of 50%. Rep-cluster I, Loktanella fryxellensis sp. nov.; rep-cluster II, L.
vestfoldensis sp. nov.; rep-cluster Il and 1V, L. salsilacus sp. nov.

was 10.5-17.6 %, indicating that they belong to three different species (Wayne et
al., 1987). Differences between reciprocal experiments were less than 10 %. The
rep-PCR profiles within each of the clusters | and Il were almost identical (see
Fig. 4.3), indicating that within each of these clusters, strains belong to a single
species (Versalovic et al., 1994). Indeed the 16S rRNA gene sequences of two
strains of rep-PCR group Il are identical. The hybridization values of the three
representative strains (LMG 215077, LMG 22000 and LMG 22002) of rep-PCR
profile type Ill, showing slight differences in their rep-PCR profiles, were 78.2%
and 85.5% respectively, proving that they constitute a single new species, as
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0.1

Ruegeria atlantica 1480" (AF124521)
Silicibacter pomeroyi DSS-3" (AF098491)
Roseovarius tolerans DSM 11457" (Y11551)
Ruegeria algicola DSM 10251" (X78315)
Ruegeria gelatinovorans DSM 5887" (D88523)
Octadecabacter antarcticus 307" (U14583)
Octadecabacter arcticus 238" (U73725)
Roseobacter litoralis ATCC 49566' (X78312)
Roseobacter denitrificans ATCC 33942" (M96746)
Sulfitobacter brevis EL-162" (Y16425)
Sulfitobacter pontiacus CHLG-10" (Y13155)
s Staleya guttiformis EL-38" (Y16427)
Sulfitobacter mediterraneus CH-B427" (Y17387)
— Antarctobacter heliothermus EL-219" (Y11552)
LXL: Sagittula stellata E-37" (U58356)
— Marine alpha proteobacterium AS-26 (AJ391187)
96 _L0.0_| Loktanella vestfoldensis LMG 22006 (AJ582227)
Loktanella vestfoldensis LMG 22003" (AJ582226)
58 | . Loktanella firyxellensis LMG 22007' (AJ582225)
Alpha proteobacterium QSSC9-5 (AF170750)
Loktanella salsilacus LMG 22000 (AJ582228)
Loktanella salsilacus LMG 22002 (AJ582229)
50 Loktanella salsilacus LMG 21507" (AJ440997)
Jannaschia helgolandensis Hel 10" (AJ438157)
100 I— Ketogulonicigenium robustum X6L" (AF136850)
L0 Ketogulonicigenium vulgare DSM 4025" (AF136849)
Rhodobacter veldkampii ATCC 35703" (D16421)
Paracoccus kocurii JCM 7684" (D32241)
_Lm_:mcoccus denitificans LMG 4218" (X69159)

Porphyrobacter neustonensis DSM 9434" (AB033327)

73]
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Figure 4.4. Neighbour-joining dendrogram showing the estimated phylogenetic relationships of
Loktanella salsilacus sp. nov., Loktanella fryxellensis sp. nov., Loktanella vestfoldensis sp. nov.
and other related genera of the a-subclass of the Proteobacteria on the basis of 16S rRNA gene
sequences. Porphyrobacter neustonensis was choosen as outgroup. Bootstrap values (percentages
of 500 replicates) of > 50 % are shown. GenBank accession numbers for each reference strain
are shown in parentheses. Bar, 1 nucleotide substitution per 10 nucleotides.

would be expected from their identical 16S rRNA gene sequences.

DNA G+C values of strains LMG 220077, LMG 22008, LMG 22009 and LMG
22010 from rep-PCR cluster | are 65.7, 66.2, 66.4 and 66.3 mol%, respectively.
The values of the strains LMG 220037, LMG 22004, LMG 22005 and LMG 22006
from rep-PCR cluster Il are 62.1, 62.6, 62.3 and 63.1 mol%, respectively and
those of strains LMG 215077, LMG 21999, LMG 22000, LMG 22001 and LMG
22002 of rep-PCR cluster lll are 60.4, 60.3, 59.7, 60.1 and 59.4 mol%, respectively.
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Table 4.2. Fatty acid composition of the three novel species within the genus Loktanella.

Fatty acid L. salsilacus (n =10) L. fryxellensis (n =12) L. vestfoldensis (n =4)
C10:03-OH 24+0.7 3.7+1.1 6.1+15
C1213-OH - - 56+1.4
Cieo 29109 27+11 29+0.7
Ciso 14+0.8 1.6+£0.9 1.8+0.3
Cigim7C 87.7+19 849+3.7 741+3.1
Cig107¢-11 methyl TR - 1.9+0.8
Summed feature 2 TR 1.7+0.7 -
Summed feature 3 2.8+0.9 - -
Summed feature 7 12+1.0 47+20 47+0.7
Unknown 11.799 - - 23+1.2

Mean percentages + Sp of total fatty acids are given. -, Not detected; TR, trace (<1% of total). Other
fatty acids accounted for < 1% each. Summed feature 2 comprises any combination of C,,. aldehyde,
unknown 10.928, iso I-C16.; and C14,03-OH. Summed feature 3 comprises is0-Cjs.02-OH, Cig107¢C, OF
both. Summed feature 7 comprises any combination of unknown 18.846, C19.106¢ and cyclo-Cig.
®»10c. Unknown fatty acids are designated by their equivalent chain lengths, relative to the chain

lengths of known straight chain saturated fatty acids.

These values are consistent with the DNA G+C contents of members of the
Rhodobacter group, which range from 52.1 to 65 mol % (Labrenz et al., 2000;
Urbance et al., 2001; Wagner-Ddbler et al., 2003; Gonzalez et al., 2003).

Cellular fatty acid patterns of the Antarctic strains are based on the data
generated by Van Trappen et al. (2002). The strains show similar fatty acid profiles
(Table 4.2) and the most abundant fatty acid is C_, , w7c, accounting for 74.1-87.7
% of the total fatty acids. This feature is characteristic for several major phylogenetic
groups of the a-subclass of the Proteobacteria. Other fatty acids, in lower
proportions, are C,  3-OH, C  , C . and summed feature 7 (comprising the
unknown fatty acid 18.846, C , ®w6c and cyclo-C , w10c). The Antarctic strains
can be differentiated from their phylogenetic neighbours Jannaschia helgolandensis
18107C (45-52%) and cyclo-C ,  (20-25%), and from
Ketogulonicigenium by the relative amount of C . (32-39%) and C, , w7c (41-
55%). The strains belonging to the different rep-PCR clusters can be differentiated
from each other by the presence or absence of e.g. summed feature 2 (comprising
any combination of C_, aldehyde, unknown 10.928, iso I-C, ., and C , 3-OH), 11
methyl-C . @7c and the unknown fatty acid 11.799.

by the relative amount of C
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The strains are aerobic and chemoheterotrophic, and there is no growth under
anaerobic conditions. Strains of rep-PCR cluster Il and rep-PCR cluster | are
able to grow between 5°C and 30°C, and 5°C and 25°C respectively, whereas
strains of rep-PCR cluster Il tolerate temperatures up to 37°C. None of the strains
grows at 40°C. Growth appears on R2A agar with up to 10% NacCl for the strains
of rep-PCR cluster Il and rep-PCR cluster I, whereas strains of rep-PCR cluster
I only grow with up to 5% NaCl.

The strains show the typical morphological characteristics of the Rhodobacter
group (Labrenz et al., 2000; Urbance et al., 2001; Wagner-Ddbler et al., 2003;
Gonzalez et al., 2003) and their physiological and biochemical characteristics
are given in the species descriptions. The strains of rep-PCR clusters I, Il and 11l
can be differentiated from each other and related genera by several phenotypic
characteristics (Table 4.3 and 4.4).

On the basis of these results a new genus with the name Loktanella gen. nov.

is proposed with three species, Loktanella salsilacus sp. nov. (rep-PCR cluster I,
Table 4.3: Phenotypic characteristics that differentiate the three species of the genus

Loktanella.
Characteristic L. salsilacus L. fryxellensis L. vestfoldensis
Pigmentation Beige Pink-beige Pink
Growth on :
Trypticase soy agar - - (+)
Nutrient agar - - +)
Salinity range (% NacCl) 0-10 0-5 0-10
Temperature range (°C) 5-30 5-25 5-37

Hydrolysis of:
Urea - - +

Production of:

Trypsin - - +
a-Galactosidase + - -
Mean G+C content (mol%) 59.4-60.4 65.7-66.4 62.1-63.1

Symbols: +, positive test; (+), positive test, weak or delayed response; -, negative test.
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type species), Loktanella fryxellensis sp. nov. (rep-PCR cluster I), and Loktanella
vestfoldensis sp. nov. (rep-PCR cluster II).

Description of Loktanella gen. nov.

Loktanella (Lok.tan.el.la. N.L. fem. n. Loktanella named after Tjhing-Lok Tan
from the Alfred Wegener Institute in Bremerhaven, who contributed to our
understanding of marine and polar bacteriology and ecology).

Gram-negative, rod-shaped cells which are strictly aerobic, moderately
halotolerant and chemoheterotrophic. They do not form spores and the optimal
growth temperature is 25°C. Motility was not observed. The catalase test was
positive and activities for cytochrome oxidase and -galactosidase were detected.
The dominant fatty acid is C . @7c and other characteristic fatty acids are C, 3-
OH, C .. C,,, and summed feature 7 (which comprises the unknown fatty acid
18.846, C, , ,w6c and cyclo-C , w10c). DNA G+C contents range from 59.4-66.4%.
As determined by 16S rRNA gene sequence analysis, the genus Loktanella belongs
to the Rhodobacter group of the a-subclass of the Proteobacteria. The type species
is Loktanella salsilacus sp. nov.

Description of Loktanella salsilacus sp. nov.

Loktanella salsilacus (sal.si.la’cus. L. adj. salsus salt, salty; L. gen. n. lacus
of a lake; N. L. gen. n. salsilacus of a salt lake, referring to the isolation source,
Ace Lake and Organic Lake, Vestfold Hills, Antarctica).

Cells are Gram-negative, short rods (<1um x 3-4 um), that often form pairs or
short chains. Growth occurs at 5-30°C, whereas a weak growth is observed at
37°C and no growth occurs at 45°C. Beige, convex, translucent colonies with
entire margins and a diameter of 1-2 mm are formed on marine agar plates. Growth
also occurs on R2A, while no growth is observed on trypticase soy agar and
nutrient agar. Colonies do not adhere to the agar. Aesculin, Tween 80 and citrate
are degraded. Growth on carbohydrates (APl 20NE) is not observed and acids
from carbohydrates are not produced (APl 20E). Agar, casein, DNA, gelatin, starch,
tyrosine and urea are not degraded. Tests for indole production, nitrate reduction,
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Voges Proskauer reaction and hydrogen sulfide production are negative. None of
the strains shows activity for the enzymes arginine dihydrolase, lysine
decarboxylase, ornithine decarboxylase, tryptophan deaminase (API 20E), lipase
(C14), valine arylamidase, cystine arylamidase, a-chymotrypsin, trypsin, -
galactosidase, B-glucuronidase, N-acetyl--glucosaminidase, o.-mannosidase and
o-fucosidase (APl ZYM). Weak enzymic activity was observed for alkaline
phosphatase, acid phosphatase, naphthol-AS-Bl-phosphohydrolase, o-
glucosidase and B-glucosidase, medium activity is observed for esterase (C4),
esterase lipase (C8) and leucine arylamidase, and strong activity is observed for
o-galactosidase (APl ZYM). Growth occurs in 0-5 % NaCl, with a weak growth in
10% NaCl, indicating that the strains are not halophilic but moderately halotolerant.
DNA G+C content is 59.4-60.4 mol%.

The type strain is LMG 215077 (= CIP 1083227). Isolated from microbial mats
from lakes Ace and Organic in the Vestfold Hills, Antarctica.

Description of Loktanella fryxellensis sp. nov.

Loktanella fryxellensis (fry.xell.en’sis. N. L. fem. adj. fryxellensis, referring to
the isolation source, Lake Fryxell, Antarctica).

Cells are Gram-negative, short rods (<1um x 2-3 um), that often form pairs or
short chains. Growth occurs at 5-25°C, with an optimal growth temperature of 25
°C, whereas a weak growth occurs at 30 °C. Pale pink, convex, translucent colonies
with entire margins and a diameter of 1 mm are formed on marine agar plates
after 6 days incubation. Strain LMG 22007T forms beige colonies on marine agar.
Growth also occurs on R2A while the strains do not grow on nutrient agar and
trypticase soy agar; colonies do not adhere to the agar. Aesculin, Tween 80 and
citrate (weak reaction) are degraded. No growth is observed (APl 20NE) on
carbohydrates and acids are not produced from carbohydrates (API 20E). Agar,
casein, DNA, gelatin, tyrosine and urea are not degraded. Tests for indole
production, nitrate reduction, Voges-Proskauer reaction and hydrogen sulfide
production are negative. None of the strains shows activity for the enzymes arginine
dihydrolase, lysine decarboxylase, ornithine decarboxylase, tryptophan deaminase
(APl 20E), lipase (C14), cystine arylamidase, a-chymotrypsine, trypsin, o-
galactosidase, B-glucuronidase, N-acetyl-B-glucosaminidase, a-mannosidase, and
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o-fucosidase (AP ZYM). Weak enzymic activity is observed for valine arylamidase,
acid phosphatase, naphthol-AS-BI-phosphohydrolase and a-glucosidase, medium
activity is observed for alkaline phosphatase, esterase (C4), esterase lipase (C8),
B-galactosidase and leucine arylamidase, and strong activity is observed for 3-
glucosidase (APl ZYM). Growth occurs in 0-5% NaCl but not in 10% NacCl,
indicating that the strains are not halophilic but moderately halotolerant. DNA
G+C content is 65.7-66.4 mol%.

The type strain is LMG 220077 (= CIP 108323"). Isolated from microbial mats
from Lake Fryxell, in the McMurdo Dry Valleys, Antarctica.

Description of Loktanella vestfoldensis sp. nov.

Loktanella vestfoldensis (vest.fold.en’sis. N. L. fem. adj. vestfoldensis, referring
to the isolation source, lakes Ace & Pendant, Vestfold Hills, Antarctica).

Cells are Gram-negative, short rods (<1pum x 3-4 um), that often form pairs or
short chains. Growth occurs at 5-37°C, whereas no growth is observed at 45 °C.
Pale pink, convex, translucent colonies with entire margins and a diameter of <1
mm are formed on marine agar plates. Growth also occurs on trypticase soy agar
(weak), nutrient agar (weak) and R2A. Colonies do not adhere to the agar. Aesculin,
Tween 80, citrate and urea are degraded. No growth is observed (APl 20NE) on
carbohydrates and acids are not produced from carbohydrates (APl 20E). Agar,
casein, DNA, gelatin, tyrosine and starch are not degraded. Tests for indole
production, nitrate reduction, hydrogen sulfide production and Voges-Proskauer
reaction are negative. None of the strains shows activity for the enzymes arginine
dihydrolase, lysine decarboxylase, ornithine decarboxylase, tryptophan deaminase
(API 20E), lipase (C14), valine arylamidase, cystine arylamidase, o-chymotrypsine,
o-galactosidase, B-glucuronidase, N-acetyl-B-glucosaminidase, a-mannosidase,
and a-fucosidase (APl ZYM). Weak enzymic activity is observed for alkaline
phosphatase, leucine arylamidase, naphthol-AS-Bl-phosphohydrolase, -
galactosidase, o-glucosidase and B-glucosidase, medium activity is observed for
esterase (C4), esterase lipase (C8) and acid phosphatase, and strong activity is
observed for trypsin (AP1 ZYM). Growth occurs in 0-5 % NaCl and a weak growth
in 10% NaCl. DNA G+C content is 62.1-63.1 mol%.
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The type strain is LMG 22003" (= CIP 1083217). Isolated from microbial mats
from lakes Ace and Pendant in the Vestfold Hills, Antarctica.
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CHAPTER 5

New taxa from polar seas within the -
Proteobacteria

5.1 Polyphasic taxonomy of FAA clusters E, F and related
strains

In a previous study the diversity of oligotrophic bacteria in polar seas was
investigated (Mergaert et al., 2001b). After enrichment under oligotrophic and
psychrophilic conditions, 173 bacterial strains were isolated from Arctic (98 strains)
and Antarctic (75 strains) seawater (Tan & Riger, 1991; Tan et al., 1999). These
strains had been previously analysed by their substrate utilization patterns using
the Biolog system (Tan, 1997; Tan & Ruger, 1999) and they belong to six metabolic
groups. The strains were included in fatty acid analysis and 16S rDNA sequence
analysis of representatives (Mergaert et al., 2001b) and eight FAA-clusters,
containing two to 59 strains, could be delineated, whereas eight strains formed
separate branches (see Fig. 5.1). The clusters A, C, D, E and H contained isolates
both from Arctica as well as Antarctica. Clusters B and F contained only Arctic
strains, cluster G, only Antarctic strains. Results of the 16S rDNA sequence analysis
indicate that they belong to the o- and y- Proteobacteria (FAA clusters A and B
belong to the o- Proteobacteria and clusters C, D, E and F to the y- Proteobacteria)
the high percent G+C Gram-positives (cluster H) and to the Bacteroidetes (cluster
G). The sequences from four clusters and seven unclustered strains were closely
related (with sequence similarities above 97%) to reference sequences of
Sulfitobacter, Halomonas, Alteromonas, Pseudoaltermonas, Shewanella and
Rhodococcus. The other four clusters and one unclustered strain showed sequence
similarities below 97% with nearest named neighbours, including Rhizobium,
Glaciecola, Pseudomonas and Alteromonas, indicating that they represent as yet
unnamed, new taxa.

In the meantime, 56 additional strains, isolated using the same methods,
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Euclidian distance A
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Figure 5.1. Abridged dendrogram obtained by numerical analysis of the fatty acid compositions
of 173 strains from Arctic (ARK) and Antarctic (ANT) seawater using the Euclidian distance
coefficient and UPGMA clustering. Clusters were delineated at a Euclidian distance of A < 14
(from Mergaert et al., 2001b).
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Figure 5.2. Abridged dendrogram obtained by numerical analysis of the fatty acid compositions
of 229 strains from Arctic (ARK) and Antarctic (ANT) seawater using the Canberra metric similarity
coefficient (S_,,.) and UPGMA clustering. Clusters were delineated at a cut-off value of 80%.
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were also analysed using the Biolog system. In this study, these additional strains
were included in fatty acid analysis and they belong to FAA-clusters B, C, D, E
and F (as delineated in Mergaert et al., 2001b) and three new clusters (I, J and K)
were found (see Fig. 5.2 and Annex Il). All clusters contain strains from both
Arctica as well as Antarctica, except clusters G, I, J and K, which solely consist of
Antarctic strains.

The fatty acid clusters E and F and two similar (in fatty acid analysis),
unclustered strains, phylogenetically allocated to the y-Proteobacteria, were further
investigated using a polyphasic taxonomic approach. The phylogenetic position
of the y-Proteobacteria with different families (e.g. Enterobacteriaceae,
Aeromonadaceae, Alteromonadaceae, the ‘Xanthomonas group’, the
‘Oceanospirillum group’, Pseudomonaceae, Legionellaceae and
Halomonadeaceae) is illustrated in Fig. 4A and 5A.

The genomic diversity of 19 strains from clusters E and F and two unclustered
strains, was further investigated by rep-PCR genomic fingerprinting using the
GTG,-primer (Rademaker & de Bruijn, 1997). In total, 21 fingerprinting patterns
were obtained (for strain ARK 101 no rep-profile could be obtained since this
culture was not viable anymore and strain ANT 31 proved to be phylogenetically
related to the Gram-positives) (Mergaert et al., 2001b). Five clusters could be
delineated, whereas four strains formed single branches, at a cut-off value of
70% (Pearson correlation coefficient) (see Fig. 5.3). These results illustrate that
the genomic diversity of these two FAA clusters (E and F) is higher than estimated
by fatty acid and 16S rDNA sequence analyses. Most of these rep-clusters contain
strains isolated from only one pole, either Arctic for rep-clusters | and V, or Antarctic
for rep-clusters Il and Ill, whereas rep-cluster IV contains strains from both poles.

16S rDNA sequence analysis of strains from rep-clusters | and IV (FAA cluster
E and F) showed that they are related to the genus Pseudoalteromonas, with
similarities of 97.7-99.7% (Mergaert et al., 2001b) and buds and prosthecate
formations were observed in strains ARK 140, ARK 142 and ARK 102 from rep-
cluster | and strains ANT 224, ARK 108 and ANT 223 from rep-cluster IV (personal
communication, T.-L. Tan). Rep-cluster Il (FAA cluster E) is phylogenetically related
to Alteromonas, with strain ANT 69a showing 98.3% sequence similarity to A.
macleodii. The unclustered strain ARK 158 is related to Shewanella frigidimarina
(99.9%). Strains from rep-clusters Il and V (FAA cluster F), are related to
Glaciecola, with sequence similarities of 98.0-99.7% to G. mesophila. Hybridizations
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Figure 5A. Neighbour-joining dendrogram showing the estimated phylogenetic relationships of
representatives of the y-Proteobacteria on the basis of 16S rRNA gene sequences. Bacteroides
fragilis was choosen as outgroup. Bootstrap values (percentages of 100 replicates) are shown.
GenBank accession numbers for each reference strain are shown in parentheses. Bar, 1 nucleotide

substitution per 10 nucleotides.
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Figure 5.3. Digitized representation of normalized rep-PCR profiles (GTG_-primer) of 21 strains
belonging to FAA cluster E, F and similar, unclustered strains (NC: not clustered). Dendrogram
derived from the UPGMA-clustering of the profiles with the Pearson correlation coefficient and
rep-clusters were delineated at a cut-off value of 70%.

and additional 16S rDNA sequence analysis were performed for the strains of
rep-clusters I, 11l and V.

Hybridization results together with phenotypic characteristics showed that
the seven strains of rep-cluster Il belong to a novel Alteromonas species that
produces buds and prosthecae and for which the name Alteromonas stellipolaris
is proposed (see section 5.2).

The two strains from rep-cluster V also belong to novel budding and
prosthecate bacteria, phylogenetically related to Glaciecola and the name G. polaris
is proposed. The two strains from rep-cluster Il were proven to belong to the
validly described species Glaciecola mesophila (see section 5.3).
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5.2 Alteromonas stellipolaris sp. nov.: novel
budding and prosthecate bacteria from Antarctic
seas

Stefanie Van Trappen, Tjhing-Lok Tan, Jifang Yang, Joris Mergaertand Jean
Swings

Redrafted from: International Journal of Systematic and Evolutionary
Microbiology, in press (DOI10.1099/ijs.0.02862-0)

Seven novel strains of cold-adapted, strictly aerobic and facultative oligotrophic
bacteria, isolated from Antarctic seawater, were investigated using a polyphasic
taxonomic approach. The isolates are Gram-negative, chemoheterotrophic, motile,
rod-shaped cells which are psychrotrophic and moderately halophilic. Buds can
be produced on mother and daughter cells and on prosthecae. Prostheca formation
is peritrich and prosthecae can be branched. Phylogenetic analysis based on
16S rRNA gene sequences indicated that these strains belong to the y-subclass
of the Proteobacteria and are related to the genus Alteromonas, with 98.3%
sequence similarity to Alteromonas macleodii and 98.0% to Alteromonas marina,
their nearest phylogenetic neighbours. Their whole-cell fatty acid profiles are very
similar and include C, , C,. w7c, C . ®8c and C , w8c as major fatty acid
components. These results support the affiliation of the new isolates to the genus
Alteromonas. DNA-DNA hybridization results and differences in phenotypic
characteristics show that the strains represent a new species within the genus
Alteromonas. Their DNA G+C content ranges from 43 to 45 mol%. The name
Alteromonas stellipolaris sp. nov. (with the isolate ANT 69a™ = LMG 21861" =
DSM 15691" as type strain), is proposed. An emended description of the genus
Alteromonas is given.
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Introduction

The genus Alteromonas belongs to the y-subclass of the Proteobacteria and
was created by Baumann et al. (1972) for marine Gram-negative heterotrophic
bacteria, motile by a single polar flagellum. On the basis of 16S rDNA sequence
analysis, the genus was revised in 1995 to contain a single species, Alteromonas
macleodii and the remaining species were reclassified as Pseudoalteromonas
(Gauthier et al., 1995). In 1993, the yellow-gray pigmented ‘Alteromonas rava’
which is able to produce novel antibiotics, was described (Kodama et al., 1993),
but the species has not been validated yet. A mesophilic, heterotrophic bacterium,
isolated from seawater collected near a deep-sea hydrothermal vent, was identified
as Alteromonas macleodii but the authors classified it as a new subspecies, ‘A.
macleodii subsp. fijiensis’ on the basis of a relatively low DNA-DNA hybridization
level (lower than 90%, but higher than 70%), metabolic differences between the
type strain and the new strain, the ability of the new bacterium to produce a novel
exopolysaccharide and the isolation source (Raguénes et al., 1996). The
subspecies name fijiensis has not yet been validated. In 1997, Raguénes et al.
proposed a new Alteromonas species, ‘Alteromonas infernus’, for a polysaccharide-
producing bacterium, isolated from the surface of the vestimentiferan worm Riftia
pachyptila, which inhabits sites near hydrothermal vents. This new species,
however, has also not been validated. In 1994, Romanenko et al. described a
new species, Alteromonas fuligenea but phylogenetic analysis based on 16S rDNA
sequence data, pointed out that it is more closely related to Pseudoalteromonas
haloplanktis and therefore needs to be reclassified as a member of the genus
Pseudoalteromonas (Yoon et al., 2003). Recently, a new species Alteromonas
marina, isolated from the East Sea in Korea (Yoon et al., 2003), has been validly
described. As such, there are only two validly described species within the genus
Alteromonas, namely A. macleodii (the type species) and A. marina.

The novel species Alteromonas stellipolaris sp. nov. described here, belongs
to novel budding and prosthecate bacteria from the y-subclass of the
Proteobacteria. New strains of marine prosthecate and budding bacteria belonging
to the genus Hyphomonas, a taxon of the a-Proteobacteria, have been described
(Weiner et al., 2000), and this is the first report of budding and prosthecate bacteria
from the y-subclass of the Proteobacteria. It is evident now that budding and
prosthecate bacteria are abundant in marine and polar environments (Weiner et
al., 2000; Labrenz et al., 1998; Labrenz et al., 1999). Moreover, bud and prosthecate
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formations are a common strategy for rod-shaped bacteria to enhance their surface
to volume ratio, thus enabling the organisms for efficient substrate uptakes in
oligotrophic habitats (van Gemerden & Kuenen, 1984).

During expeditions in the Arctic (Tan & Ruger, 1991) and Antarctic seas (Tan
& Ruger, 1999), facultatively oligotrophic and psychrotrophic bacteria were isolated.
These 173 strains have been previously analysed by their substrate utilization
patterns using the Biolog system (Tan, 1997; Tan & Ruger, 1999), and by fatty
acid and 16S rDNA sequence analyses of representatives (Mergaert et al., 2001b).
They belong to six metabolic groups and eight different fatty acid clusters containing
two to 59 strains. In the meantime, 56 additional strains were isolated using the
same methods and were also analysed using the Biolog system and fatty acid
analysis. These additional strains belong to clusters B, C, D, E and F (as delineated
in Mergaert et al., 2001b) and three new clusters (I, J and K) were found (S. Van
Trappen, unpublished results). The genomic diversity of 19 strains from clusters
E and F and two related, unclustered strains, was further investigated and, using
a polyphasic taxonomic approach, seven Antarctic strains could be assigned to a
novel species within the genus Alteromonas, named A. stellipolaris sp. nov.

Materials and Methods

Antarctic strains were isolated from seawater after an enrichment technique
in dialysis chambers as previously described (Tan & Ruger, 1999; Tan, 1997; Tan,
1986). The seven Antarctic strains (with the prefix ‘ANT’) are listed in Table 5.1,
together with their source of isolation. The reference strains LMG 2843T
(Alteromonas macleodii) and LMG 22057T (A. marina) were included in some
experiments. The strains were cultivated routinely on marine agar 2216 (Difco) at
20 °C for 48 h, except when mentioned otherwise.

Strains were arranged in similarity groups based upon the results of repetitive
extragenic palindromic DNA-PCR fingerprinting using the GTG_ primer (Versalovic
et al., 1991; Rademaker & de Bruijn, 1997; Rademaker et al., 2000). Numerical
analysis was carried out using the Bionumerics software package, as described
by the same authors.

The almost complete 16S rRNA gene sequence of one strain was determined
as previously described by Mergaert et al. (2001b). Partial 16S rRNA gene
sequences of the other strains were determined by QIAGEN, 40724 Hilden,
Germany, using the forward primer 8F (AGA GTT TGATCC TGG CTC AG) and
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the reverse primer 1492R (TAC GGY TAC CTT GTT ACG ACT T). The most
closely related sequences were found by using the FASTA program; sequences
were aligned and editing of the alignment and reformatting was performed with
the BIOEDIT program (Hall, 1999) and ForCon (Raes & Van de Peer, 1999).
Evolutionary distances were calculated by using the Jukes-Cantor evolutionary
model and a phylogenetic tree was constructed by using the neighbour-joining
method with the TREECON program (Van de Peer & De Wachter, 1994).

DNA was prepared according to the method of Pitcher et al. (1989) and DNA-
DNA hybridizations were carried out with photobiotin-labelled probes in microplate
wells as described by Ezaki et al. (1989), using an HTS7000 BioAssay reader
(PerkinElmer) for the fluorescence measurements. The hybridization temperature
was 37 °C and reciprocal experiments were performed for every pair of strains.

DNA G+C contents of the Antarctic strains were determined using an HPLC
method. DNA was enzymically degraded into nucleosides as described by Mesbah
et al. (1989). The obtained nucleoside mixture was then separated by HPLC using
a Waters Symmetry Shield C8 column thermostatted at 37 °C. The solvent was
0.02 M NH,H,PO,, pH 4.0, with 1.5 % acetonitrile. Non-methylated A-phage DNA
(Sigma) was used as the calibration reference.

Growth of the strains at different temperatures (5-40°C) was tested on marine
agar 2216 (Difco), whereas salt tolerance was tested on R2A agar (Oxoid),
supplemented with 1 to 20% NaCl at 20°C. The effect of the pH on the growth rate
was determined from 5.0 to 10 (with an interval of 0.5 pH unit), using tubes with
10 ml of 2216E liquid medium, incubated at 20°C after inoculation. The turbidity
was measured by spectrophotometry at 590 nm (Vitalab 10, Vital Scientific, The
Netherlands). The biochemical characteristics were determined using standard
protocols (Smibert & Krieg, 1994; West & Colwell, 1984; Reichenbach & Dworkin,
1981; Bowman et al., 1998c; Van Trappen et al., 2003), and API kits (API 20E, API
20NE, APl ZYM and API32 ID, bioMérieux). Bacterial suspensions were made in
sterile, chilled artificial seawater (Instant Ocean, synthetic sea salt, Aquarium
Systems) and marine agar 2216 (Difco) was used as the basal medium. For
BIOLOG GN2 microplates, the bacteria were grown on PYG agar at 20°C for 5 d;
the cells were harvested and suspended in “Inoculating Fluid” (IF). The salinity of
the IF was adjusted to 26 %o with NaCl. The microplates were incubated at 20°C
and substrate utilizations were measured after 3, 5, 7, 14, 21, and 28 d at 590 nm
with an eight-canal-photometer (Spectra 2, SLT Labinstruments). Methylpyruvate,
L-asparagine, L-aspartic acid and glycyl-L-aspartic acid had been utilized by the
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seven strains, if the microplates were incubated at 12°C (see cluster 3 in Tan &
Ruger, 1999).

Results and discussion

The nineteen strains of FAA clusters E and F and two related, unclustered
strains were arranged in similarity groups based upon the results of rep-PCR
fingerprinting using the GTG, primer. One cluster of seven Antarctic strains (LMG
218617, LMG 21856, LMG 21859, LMG 21860, LMG 21862, LMG 21863, LMG
21864) belonging to FAA cluster E, with almost identical rep-PCR-profiles could
be delineated (Fig. 5.4), of which 16S rRNA gene sequence analysis revealed
that they belong to the genus Alteromonas within the y-subclass of the
Proteobacteria.

The almost complete 16S rRNA gene sequence (1482 nucleotides) of strain
LMG 21861 was determined and has accession number AJ295715. Partial 16S
rRNA gene sequences (735-766 nucleotides long) of strains LMG 21856, LMG
21859, LMG 21860, LMG 21862, LMG 21863 and LMG 21864 were also obtained

Table 5.1. Strains investigated in this study and their isolation source.

Strain Isolation source

Alteromonas stellipolaris sp. nov.

LMG 21 861" = DSM 15691 = ANT 69a" Seawater, 25 m: 66°20.0'S; 08°53.4'E
LMG 21 856 = DSM 15672 = ANT 52 Seawater, 25 m: 66°21.9'S; 33°46.7'E
LMG 21 859 = ANT 60b Seawater, 25 m: 67°03.9'S; 37°27.6'E
LMG 21 860 = ANT 62a Seawater, 25 m: 66°55.1'S; 34°18.2'E
LMG 21 862 = ANT 73 Seawater, 25 m: 65°01.6'S; 09°11.2'E
LMG 21 863 = ANT 81a Seawater, 25 m: 65°49.3'S; 14°08.5'E
LMG 21 864 = ANT 82a Seawater, 25 m: 65°44.7'S; 13°39.6'E
Alteromonas macleodii subsp. macleodii

IAM 12920 = LMG 2843" Seawater

Alteromonas marina

JCM 11804 = LMG 22057" Seawater, East Sea, Korea

Abbreviations: LMG, BCCM/LMG Bacteria Collection, Laboratorium voor Microbiologie, Gent,
Belgium; DSM, Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH,

Braunschweig, Germany.
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Figure 5.4. Digitized representation of normalized rep-PCR profiles (GTG,-primer) of seven
strains from fatty acid cluster E. Dendrogram derived from UPGMA clustering of the profiles with
the Pearson correlation coefficient.

and have accession numbers AJ564723, AJ564724, AJ564725, AJ564726,
AJ564727, AJ564728 respectively. A phylogenetic tree is shown in Fig. 5.5.
Dendrograms obtained by maximum parsimony and maximum likelihood analyses
showed essentially the same topography (data not shown).

The 16S rRNA gene sequence of strain LMG 21861 showed 98.3 % similarity
to Alteromonas macleodii, 98.0% to Alteromonas marina and 97.9 % to
‘Alteromonas infernus’, whereas the partial sequences of the Antarctic strains
(LMG 21856, LMG 21859, LMG 21860, LMG 21862, LMG 21863 and LMG 21864)
were almost identical to each other and to the according sequence of strain LMG
218617 (99.5% - 99.8%). The phylogenetic tree in Fig. 5.5 illustrates that the new
Antarctic isolates form a distinct branch within the genus Alteromonas, supported
by high bootstrap values.

Genomic relatedness between strains LMG 21861", LMG 21863 and most
closely related strains LMG 2843 (Alteromonas macleodii) and LMG 220577
(Alteromonas marina), was determined by DNA-DNA hybridization. The DNA
hybridization level between both strains LMG 21861"™ and LMG 21863, and
Alteromonas macleodii (LMG 2843T) and Alteromonas marina (LMG 220577), was
very low (12.4-15.6%, respectively). The DNA-DNA binding value between LMG
21861" and LMG 21863 was high, namely 93.9%, indicating that the strains they
represent belong to a single species. Indeed, Versalovic et al. (1994) have shown
that strains with the same rep-PCR profile are always closely related and this has
been confirmed by several authors (e.g. Rademaker & De Bruijn, 1997). Differences
between reciprocal experiments were less than 12 %. From these hybridization
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Figure 5.5. Neighbour-joining dendrogram showing the estimated phylogenetic relationship of
Alteromonas stellipolaris sp. nov. and related marine chemoheterotrophs of the y-subclass of the
Proteobacteria. Bootstrap values (percentages of 500 replicates) of > 50 % are shown. The
GenBank accession number for each reference strain is shown in parentheses. Bar, 1 nucleotide
substitution per 10 nucleotides.

results it can be concluded that the seven Antarctic isolates are genotypically
distinct from Alteromonas macleodii and A. marina, their phylogenetically nearest
neighbours and thus constitute a new species within the genus Alteromonas
(Wayne et al., 1987).

DNA G+C contents of strains LMG 21861", LMG 21856, LMG 21859, LMG
21860, LMG 21862, LMG 21863 and LMG 21864 are 43.3%, 44.0%, 44.8%, 44.7%,
44.7%, 43.3% and 44.7%, respectively. These values are consistent with the DNA
G+C content of the genus Alteromonas, which ranges between 44 and 46 mol%
(Baumann et al., 1972; Yoon et al., 2003).

Cellular fatty acid patterns of the Antarctic strains are based on the data
generated by Mergaert et al. (2001b) or were determined as described by the
same authors. The Antarctic strains showed very similar fatty acid patterns and

the major constituents include C ,, (12.6 = 1.3), C, ®8c (9.4 £ 2.3), C ., ,w7C

16:0
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(18.0 £ 2.1) and summed feature 3 (27.3 + 3.0) which comprises iso-C,, ,2-OH,
C,.,®7c, or both. Hydroxylated fatty acids and alcohol derivatives of fatty acids
C,., and C . o7c were also present as minor components or at trace levels. The
fatty acid profiles of the Antarctic strains clearly resemble those determined for
other marine genera of the y-subclass of the Proteobacteria, such as Alteromonas,

Pseudoalteromonas and Glaciecola (lvanova et al., 2000; Mikhailov et al., 2002).

The polar strains are Gram-negative, rod-shaped, small cells (0.4um in width
and 2-7 um in length), possessing a single polar flagellum (Fig. 5.6). Prosthecae
are formed peritrichously, and can be branched. Buds can be produced on mother
and daughter cells, but also at the end of the prosthecae when grown on Peptone-
Yeast extract-Glucose agar (PYG according to Tan & Ruger, 1999) at 12°C for 7
days (Fig. 5.6 and 5.7). Strain LMG 21856 releases a brown, diffusible pigment in
the medium. This property is shared by several reclassified Alteromonas species
(Gauthier & Breittmayer, 1992) and this brown-black pigment on solid media is
often characterized as melanin, a high molecular weight amorphous polymer of
indole quinone. The first biosynthesis step involves the hydroxylation of L-tyrosine
to form L-3, 4-dihydroxyphenylalanine (L-dopa), which is used in the treatment of
Parkinson’s disease. Attempts have therefore been made to adapt melanin-
producing microorganisms for the commercial production of L-dopa.

Figure 5.6. Electron micrographs of negatively stained preparations of strains LMG 21859 (A),
LMG 21863 (B), LMG 21856 (C) and LMG 218617 (D) cells, showing a polar flagellum (f),
prosthecae (p), and buds (b). Colonies used for analysis were grown on PYG agar at 12°C for 7
d. Cells were stained with 1% uranyl acetate in 0.4% sucrose. Bars, 300 nm.
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Figure 5.7. Electron micrographs of thin section preparations of strains LMG 21861" (A + C) and
LMG 21860 (B) cells, showing bud (b) formations not only on the cell surface but also at the end
of the prostheca (p). Colonies used for analysis were grown on PYG agar at 12°C for 7 d. Thin
section preparations were stained with lead citrate and 1% uranyl acetate. Bars, 300 nm.

For most of the phenotypic characteristics, all the strains are identical (see
description), and these properties are typical for species of the genus Alteromonas
and Pseudoalteromonas of the y-subclass of the Proteobacteria (Baumann et al.,
1972).

The Antarctic strains can be differentiated from their nearest phylogenetic
neighbours, Alteromonas macleodii and Alteromonas marina by several phenotypic
characteristics (Table 5.2). On the basis of this polyphasic taxonomic study the
Antarctic strains can be assigned to a new species for which the name Alteromonas
stellipolaris sp. nov. is proposed. Our results also require the emendation of the
genus Alteromonas with regard to the cell morphology.

Emended description of the genus Alteromonas (Gauthier et
al., 1995), emend. Van Trappen et al.

The description is as described by Gauthier et al. (1995) with the following
additional morphological features. When grown on marine or PYG agar at low
temperatures (12-20°C) for three days or more, cells of Alteromonas macleodii
(LMG 28437), Alteromonas marina (LMG 22057") and Alteromonas stellipolaris
(LMG 218617, LMG 21856, LMG 21859, LMG 21860, LMG 21863) produce buds
and prosthecae (see Fig. 5.6 -5.7 -5.8). Cells of Alteromonas macleodii and A.
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Table 5.2. Differential phenotypic characteristics of Alteromonas species.

Characteristic A. stellipolaris A. marina A. macleodii*
Branching of prosthecae + - -
Utilization of:

D-Mannitol + - v (-8)
Acid production from:

D-Mannitol w - +
Enzyme activity (API ZYM)

Valine arylamidase + - +
Growth at 4°C + + -
Growth at 40°C - + v (-8)
Mean G+C content (mol%) 43-45 44-45 45-46

Symbols: +, positive; -, negative; w, weakly positive; v, variable. All the strains are
straight and rod-shaped cells with polar flagella. * Data from Baumann et al. (1972). §
Data are for the type strain (Yoon et al., 2003, and this study). Tests positive for all
strains: motility, oxidase, catalase, hydrolysis of Tween 80, acid production from
sucrose and utilization of D-galactose, D-fructose, sucrose, maltose and acetate. Tests
negative for all strains: Gram stain, spore formation, growth at 45°C, acid production
from L-arabinose and L-rhamnose and utilization of D-sorbitol, succinate, citrate and L-

malate.

marina only form short and straight prosthecae; branching was not observed (Fig.
5.8).

Description of Alteromonas stellipolaris sp. nov.

Alteromonas stellipolaris (stel.li.po.la.ris. L. fem. n. stella star; L. adj. polaris
polar; M.L. gen. n. stellipolaris, referring to the POLARSTERN (AWI, Bremerhaven),
the name of the vessel used to collect the samples from which the organisms
were isolated).

Cells are Gram-negative, short rods (0.4 x 2-7 um), having a single polar
flagellum. Prosthecae are produced peritrichously, and can be branched. Buds
can be formed on mother and daughter cells, also at the end of the prostheca.
They form creamy-white, circular, flat to low convex, shiny, opaque and slimy
colonies that are slightly adherent to agar, with entire margins and a diameter of
2-5 mm on marine agar plates after 3 days incubation at 20 °C. Growth occurs on
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Figure 5.8. Electron micrographs of negatively stained preparations of Alteromonas macleodii
(A) and Alteromonas marina (B) cells, showing prosthecae (p) and buds (b). Colonies used for
analysis were grown on marine agar at 20°C for 12 d, or on PYG agar at 20°C for 3 d. Cells were
stained with 1% uranyl acetate in 0.4% sucrose. Bars, 1000 nm.

marine agar and PYG agar, and a slight growth on nutrient agar; there is no
growth on TSA and R2A agar. Strain LMG 21856 releases a brown, diffusible
pigment in the medium. The range of growth temperature is 5- 37°C, while no
growth occurs at 40°C or higher temperatures. Growth is supported on R2A agar
with up to 10% NaCl. These results indicate that they are moderately halophilic
and psychrotrophic. The strains can grow between pH 6 and 9, while the optimum
pH is 7-8.5. There is no evidence for growth under anaerobic conditions and the
catalase and cytochrome oxidase tests are positive. No polyhydroxybutyrate is
accumulated and spores are not formed. Precipitation on egg-yolk agar is positive
for some strains (LMG 218617, LMG 21856, LMG 21860, LMG 21862, LMG 21863).
Strains are negative for indole and acetoine production, Voges-Proskauer test,
citrate utilization, hydrolysis of urea, nitrate reduction and production of hydrogen
sulfide. Degradation of starch, aesculin, gelatin and DNA is positive for all strains,
and B-galactosidase activity is detected. All the strains are able to utilize Tween
40, Tween 80, D-fructose, D-galactose, gentiobiose, a-D-glucose, maltose, D-
mannitol, D-melibiose, D-trehalose, furanose, acetic acid, propionic acid,
alaninamide, L-alanyl-glycine, L-glutamic acid and glycyl-L-glutamic acid; all the
strains except strain LMG 21862 are able to utilize dextrin, a-D-lactose, lactulose,
D-raffinose, sucrose, D-galacturonic acid and B-hydroxybutyric acid; all the strains
except strain LMG 21864 are able to utilize glycogen; all the strains except LMG
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21863 are able to utilize cellobiose; all the strains except strain LMG 21860 are
able to utilize D-mannose; all the strains except strain LMG 21859 are able to
utilize D-psicose. Variable results are obtained for a-cyclodextrin, B-methyl-D-
glucose, D-gluconic acid, a-keto-butyric acid, succinic acid, L-alanine, L-leucine,
L-proline, L-serine, L-threonine, inosine, uridine and glycerol. No metabolic activity
is observed on adonitol, L-arabinose, D-arabitol, N-acetyl-glucosamine, N-acetyl-
galactosamine, iso-erythritol, L-fucose, meso-inositol, L-rhamnose, D-sorbitol,
xylitol, methylpyruvate, mono-methyl-succinate, cis-aconitic acid, citric acid, formic
acid, D-galactonic acid lactone, D-glucosaminic acid, D-glucuronic acid, o-
hydroxybutyric acid, y-hydroxybutyric acid, p-hydroxyphenylacetic acid, itaconic
acid, a-keto-glutaric acid, a-keto-valeric acid, D,L-lactic acid, malonic acid, quinic
acid, D-saccharic acid, sebacic acid, bromosuccinic acid, succinamic acid,
glucuronamide, D-alanine, L-asparagine, L-aspartic acid, glycyl-L-aspartic acid,
L-histidine, hydroxy-L-proline, L-ornithine, L-phenylalanine, L-pyro-glutamic acid,
D-serine, D,L-carnitine, y-amino-butyric acid, urocanic acid, thymidine,
phenylethylamine, putrescine, 2-aminoethanol, 2,3-butanediol, D,L-o-
glycerolphosphate, glucose-1-phosphate, and glucose-6-phosphate. For all
strains, acids are produced for amygdaline in a clear positive reaction, whereas
an intermediate-positive reaction is detected for mannitol, sucrose and melibiose.
No acids are produced from glucose, inositol, sorbitol, rhamnose and arabinose,
and the degradation tests of alginate and chitin are negative. There is no activity
for arginine dihydrolase, lysine decarboxylase, ornithine decarboxylase, tryptophan
deaminase, cystine arylamidase, a-chymotrypsine, B-glucuronidase, -
glucosidase, N-acetyl-B-glucosaminidase, o-mannosidase, and o-fucosidase. For
all strains, low activity (score 1) or no activity is obtained for lipase (C14), medium
activity (score 2 or 3) is observed for esterase (C4), esterase lipase (C8), valine
arylamidase, trypsine, a-galactosidase, and high activity (score 4 or 5) is observed
for alkaline phosphatase, leucine arylamidase, acid phosphatase, naphthol-AS-
Bl-phosphohydrolase, B-galactosidase and a-glucosidase. Cells contain fatty acids
C..C ..o7c, C_ o8candC,  w8c asthe main constituents. DNA G+C content

16:0? 16:1 17:1 18:1

is 43-45 %. The type strain is LMG 21861" (= DSM 15691").
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5.3 Glaciecola polaris sp. nov., novel budding
and prosthecate bacteria from the Arctic Ocean,
and emended description of the genus
Glaciecola

Stefanie Van Trappen, Tjhing-Lok Tan, Jifang Yang, Joris Mergaert and Jean
Swings

Redrafted from: International Journal of Systematic and Evolutionary
Microbiology, in press (DOI10.1099/ijs.0.63123-0)

Four strains of cold-adapted, strictly aerobic and facultative oligotrophic bacteria
were isolated from polar seas and investigated using a polyphasic taxonomic
approach. Two strains (LMG 21857" and LMG 21854) derive from Arctic seawater
whereas the other two strains (LMG 21855 and LMG 21858) were isolated from
Antarctic seawater. Phylogenetic analysis based on 16S rRNA gene sequences
indicated that these strains belong to the y-subclass of the Proteobacteria and
are related to the genus Glaciecola, with 98.0-99.7% sequence similarity to
Glaciecola mesophila and 94.2-95.3% to Glaciecola pallidula, their nearest
phylogenetic neighbours. Two strains (LMG 21855 and LMG 21858) are identified
as Glaciecola mesophila, whereas DNA-DNA hybridization results and differences
in phenotypic characteristics show that the other two strains (LMG 21857" and
LMG 21854) constitute a new species within the genus Glaciecola, with a DNA
G+C content of 44.0 mol%. The isolates are Gram-negative, chemoheterotrophic,
motile, rod-shaped cells which are psychrotrophic and moderately halophilic. Buds
can be produced on mother cells and on prosthecae. Branch formation of
prosthecae occurs. Whole-cell fatty acid profiles of the isolates are very similar

and include C. . and C._.w7c as the major fatty acid components. On the basis of

16:0 16:1
genotypic and phenotypic properties, a novel species of the genus Glaciecola is
described as Glaciecola polaris sp. nov. with the isolate LMG 218577 (CIP 1083247
= ARK 150" as type strain. An emended description of the genus Glaciecola is

given.
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Introduction

The genus Glaciecola was proposed by Bowman et al. (1998c) for two groups
of psychrophilic bacteria isolated from sea-ice diatom assemblages from the coastal
areas of eastern Antarctica and forms a separate lineage within the y-subclass of
the Proteobacteria, distantly related to Alteromonas macleodii. Recently, another
species of the genus Glaciecola has been described, Glaciecola mesophilaisolated
from marine invertebrate specimens (Romanenko et al., 2003). Many genera of
this class of Proteobacteria (Alteromonas, Pseudoalteromonas, Glaciecola,
Idiomarina and Colwellia) are common inhabitants of the marine part of the
biosphere and have very diverse habitats like coastal and open water areas,
deep-sea and hydrothermal vents, marine sediments and sea-ice (Mikhailov et
al., 2002).

In another study, we reported that seven Antarctic strains belong to a novel
species within the genus Alteromonas, i.e. A. stellipolaris (Van Trappen et al., in
press). Together with the new Glaciecola species described here, they all belong
to novel budding and prosthecate bacteria from the y-subclass of the
Proteobacteria. It is evident now that budding and prosthecate bacteria are
abundant in marine and polar environments (Weiner et al., 2000; Labrenz et al.,
1998; Labrenz et al., 1999). Moreover, bud and prosthecate formations are a
common strategy for rod-shaped bacteria to enhance their surface to volume
ratio, thus enabling the organisms for efficient substrate uptakes in oligotrophic
habitats (van Gemerden & Kuenen, 1984).

During expeditions in the Arctic (Tan & Riger, 1991) and Antarctic seas (Tan
& Ruger, 1999), facultative oligotrophic and psychrotrophic bacteria were isolated.
These strains (173) have been previously analysed by their substrate utilization
patterns using the Biolog system (Tan, 1997; Tan & Ruger, 1999) and by fatty acid
and 16S rDNA sequence analyses of representatives (Mergaert et al., 2001b).
They belong to six metabolic groups and eight different fatty acid clusters containing
two to 59 strains. In the meantime, additional strains (56) were isolated using the
same methods and were also analysed using the Biolog system and fatty acid
analysis. The new strains belong to fatty acid clusters B, C, D, E and F (as
delineated in Mergaert et al., 2001b) and three new fatty acid clusters (I, J and K;
S. Van Trappen, unpublished results) were found. The genomic diversity of the 19
strains from fatty acid clusters E and F and two related, unclustered strains, was
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further investigated (see also Van Trappen et al., in press). Using a polyphasic
taxonomic approach, four strains (two Arctic and two Antarctic) could be assigned
to the genus Glaciecola.

Materials and Methods

Strains were isolated from seawater after enrichment in dialysis chambers as
previously described (Tan, 1986; Tan, 1997). The investigated strains are LMG
21857 = CIP 108324™ = ARK 150" and LMG 21854 = ARK 149 isolated from
Arctic seawater and LMG 21855 = ANT 12a and LMG 21858 = ANT 12b from
Antarctic seawater. The reference strains LMG 21426'Glaciecola punicea, LMG
214277 Glaciecola pallidulaand LMG 220177 Glaciecola mesophila were included
in some experiments. Strains were routinely cultivated on marine agar 2216 (Difco)
at 20°C for 48 h, or for strains LMG 21426™ and LMG 21427" on marine agar at
10°C for 6 days, and for strain LMG 220177 on marine agar at 28°C for 24 h,
except when mentioned otherwise.

Strains were arranged in similarity groups based upon the results of repetitive
extragenic palindromic DNA-PCR fingerprinting using the GTG, primer (Versalovic
et al., 1991; Rademaker & de Bruijn, 1997; Rademaker et al., 2000). Numerical
analysis was carried out using the Bionumerics software package, as described
by the same authors.

Small scale DNA extracts were prepared using the method of Pitcher et al.
(1989) and almost complete 16S rRNA gene sequences of strains were amplified
by PCR using conserved primers (Coenye et al., 1999). PCR products were purified
using a QIAquick PCR Purification kit (Qiagen) according to the instructions of
the manufacturer. Sequence analysis was performed as described earlier (Van
Trappen et al., 2004a). Evolutionary distances were calculated using the algorithm
of Jukes-Cantor and a phylogenetic tree was constructed using the neighbour-
joining method with the TREECON program (Van de Peer & De Wachter, 1994).

DNA was prepared according to the method of Pitcher et al. (1989) and
DNA-DNA hybridizations were carried out with photobiotin-labelled probes in
microplate wells as described by Ezaki et al. (1989), using an HTS7000 BioAssay
reader (PerkinElmer) for the fluorescence measurements. The hybridization
temperature was 35 °C and reciprocal experiments were performed for every pair
of strains.

DNA G+C contents of the Arctic and Antarctic strains were determined using

189



Chapter 5

an HPLC method as described by Van Trappen et al. (2003).

The growth of the strains at different temperatures (5-37 °C) was tested on
marine agar, whereas salt tolerance was tested on R2A agar, supplemented with
1-20 % NaCl at 20 °C. Biochemical characteristics were determined using standard
protocols (Smibert & Krieg, 1994; West & Colwell, 1984; Reichenbach & Dworkin,
1981; Bowman et al., 1998c; Van Trappen et al., 2003) and API kits (API 20E, API
20NE, APl ZYM and API32 ID, bioMérieux). Bacterial suspensions were made in
sterile, chilled seawater and marine agar was used as the basal medium. For
BIOLOG GN2 microplates, the bacteria were grown on PYG agar at 20°C for 5 d;
the cells were harvested and suspended in “Inoculating Fluid” (IF). The salinity of
the IF was adjusted to 26 parts per thousand with NaCl. The microplates were
incubated at 20°C and substrate utilizations were measured after 3-28 d at 590
nm with an eight-canal-photometer (Spectra 2, SLT Labinstruments).

Results and discussion

Strains of fatty acid clusters E and F and two related, unclustered strains
were arranged in similarity groups based upon the results of rep-PCR fingerprinting
using the GTG, primer. One Arctic (LMG 21857", LMG 21854) and one Antarctic
(LMG 21855, LMG 21858) cluster of each two strains, belonging to FAA cluster F,
with almost identical rep-PCR-profiles could be delineated (Fig. 5.9), of which
16S rRNA gene sequence analysis revealed that they belong to the genus
Glaciecola within the y-subclass of the Proteobacteria.

Almost complete 16S rRNA gene sequences (1485 nucleotides) of strains
LMG 218577, LMG 21854, LMG 21855 and LMG 21858 were obtained and a
phylogenetic tree is shown in Fig. 5.10. Dendrograms obtained by maximum
parsimony and maximum likelihood analyses showed essentially the same
topography (data not shown).

The 16S rRNA gene sequences of the two Arctic strains (LMG 218577 and
LMG 21854) are identical (100 % sequence similarity) and showed 98.0 % similarity
to G. mesophila, 94.2 % to G. punicea and 93.5 % to G. pallidula, whereas the
sequences of the Antarctic strains (LMG 21855 and LMG 21858), which are also
identical to each other, showed 99.7% sequence similarity to G. mesophila, 95.3
% to G. punicea and 94.9 % to G. pallidula. The sequence similarity between the
Arctic and Antarctic strains is 98.4 %. The phylogenetic tree in Fig. 5.10 illustrates
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Figure 5.9. Digitized representation of normalized rep-PCR profiles (GTG,-primer) of four strains
from fatty acid cluster F and dendrogram derived from the UPGMA clustering of the profiles with
the Pearson correlation coefficient.

the phylogenetic relationships of the polar isolates within the genus Glaciecola.
Strains LMG 21855 and LMG 21858 are very closely related to G. mesophila
whilst strains LMG 21857" and LMG 21854 form a distinct branch supported by a
high bootstrap value.

The genomic relatedness between the strains LMG 218577, LMG 21855 and
the most closely related strains G. mesophila LMG 22017" and G. punicea LMG
214267, was determined by DNA-DNA hybridizations. The hybridization level
between strain LMG 21857 and G. mesophila LMG 220177 and G. punicea LMG
21426 was 17.2 % and 4.0 % respectively, whereas the DNA-DNA binding value
between LMG 21857" and LMG 21855 was 23.4%. The hybridization level between
strain LMG 21855 and G. mesophila LMG 220177 and G. punicea LMG 214267
was 67.7 % and 6.0 % respectively. Differences between reciprocal experiments
were less than 10 %. DNA-DNA hybridizations between strains of the same rep-
PCR-cluster were not performed since Versalovic et al. (1994) have shown that
strains with the same rep-PCR profile are always closely related and this has
been confirmed by several authors (e.g. Rademaker & De Bruijn, 1997). These
results suggest that the two Arctic isolates are genotypically distinct from G.
mesophila and G. punicea, their phylogenetically nearest neighbours and constitute
a new species within the genus Glaciecola. The two Antarctic isolates are closely
related to G. mesophila, showing a DNA-DNA reassociation value near 70 %,
which is generally accepted as the borderline for species delineation (Wayne et
al., 1987).

DNA G+C contents of strains LMG 218577, LMG 21854, LMG 21855 and
LMG 21858 are 44.2%, 43.6%, 43.9% and 44.2%, respectively. These values are
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Glaciecola mesophila KMM 241" (AJ488501)
Glaciecola polaris LMG 21857" (AJ293820)
Glaciecola pallidula ACAM 615" (U85854)
Glaciecola punicea ACAM 611" (U85853)
Aestuariibacter halophilus DSM 15266' (AY207503)
Aestuariibacter salexigens DSM 15300 (AY207502)
Alteromonas stellipolaris LMG 21861" (AJ295715)
Alteromonas marina SW-47" (AF529060)
Alteromonas macleodii IAM 12920" (X82145)
Pseudoalteromonas haloplanktis DSM 9166' (AF214730)
_LQO_|: Pseudoalteromonas citrea DSM 8771" (X82137)
Colwellia psychrerythraea ACAM 550" (AF001375)
Marinobacterium georgiense DSM 11526" (U58339)
100, Marinobacter hydrocarbonoclasticus ATCC 49840" (X67022)
M_:Microbulbifer hydrolyticus DSM 11525" (U58338)
Shewanella putrefaciens ATCC 8071" (X82133)
Vibrio cholerae ATCC 14035 (X74695)

97 [ Glaciecola mesophila LMG 21855 (AJ548479)

Figure 5.10. Neighbour-joining dendrogram showing the estimated phylogenetic relationships of
the Arctic and Antarctic isolates, and other marine chemoheterotrophs of the y-subclass of the
Proteobacteria. Bootstrap values (percentages of 500 replicates) of > 70 % are shown. The
GenBank accession number for each reference strain is shown in parentheses. Bar, 1 nucleotide
substitution per 10 nucleotides.

consistent with the G+C content of the genus Glaciecola, which ranges between
40-46 mol% (Bowman et al., 1998c).

Cellular fatty acid patterns of the polar strains are based on the data generated
by Mergaert et al. (2001b) or were determined as described by the same authors.
The Arctic strains show very similar fatty acid profiles and the mean composition
is3.1%C,,.,55%C,, 3-OH,41%C,,,2.0%C,,23.3%C,,1.7%C,2-OH,
20% C,,2-OH, 2.6 % C,, ,®8¢c, 4.8 % C ,,w7c, 1.4 % 10 Me-C ., and 41.7 %
summed feature 3 which comprises iso-C . 2-OH, C,  w7c, or both. The Antarctic
strains show very similar fatty acid patterns to strains KMM 241" and KMM 642
(G. mesophila), with C, ., C,. o7c, C . @w8c and C , w7c as the dominant fatty
acids. Hydroxylated fatty acids and iso-branched fatty acids are also present as
minor components or at trace levels in the Arctic strains. The fatty acid profiles of
the polar strains clearly resemble those determined for other marine genera of
the y-subclass of the Proteobacteria like Alteromonas, Pseudoalteromonas and

Glaciecola (Ilvanova et al., 2000).
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The Antarctic strains are Gram-negative, rod-shaped cells (0.4 pm in width
and 2-3 um in length), which are flagellated. Buds and prosthecae can be produced
(see Fig.5.11). The strains are able to grow between 5-30 °C, whereas no growth
occurs at 37 °C; growth is supported on R2A agar with up to 10 % NaCl. Strains
possess a mucoid consistency and show very similar reactions to strains KMM
241" and KMM 642 of G. mesophila and reduce nitrate. They differ from these
strains in the degradation of agar, the utilization of D-fructose, D-trehalose, L-
glutamate and L-proline, and the Antarctic strains can grow at 4 °C and in 10 %
NaCl (see Table 5.3). The Antarctic strains LMG 21855 and LMG 21858 are
identified as G. mesophila since there are only a few phenotypic differences and
these could be due to the different protocols used, and DNA-DNA hybridization
results together with the 16S rRNA gene sequence similarities also support that
the Antarctic isolates are very closely related to G. mesophila.

The Arctic strains are Gram-negative, rod-shaped cells (0.4 pum in width and
2-3 um in length), which are polarly or subpolarly flagellated. Buds can be produced
on mother cells or on prosthecae (see Fig.5.12). Prostheca formation is peritrich;
prostheca can be branched. The strains are able to grow between 5-30 °C, whereas
no growth occurs at 37 °C; growth is supported on R2A agar with up to 10 %
NaCl, indicating that they are moderately halophilic and psychrotropic. This is in
contrast to G. punicea and G. pallidula which are psychrophilic and have an absolute
requirement for seawater (Bowman et al., 1998c), and G. mesophila which is slightly
halophilic and mesophilic (Romanenko et al., 2003). The strains are aerobic,
chemoheterotrophic bacteria and there is no evidence for growth under anaerobic
conditions. Only strain LMG 21854 possesses a mucoid consistency. The Arctic
strains are positive for precipitation on egg-yolk agar and show the typical
properties of the genus Glaciecola (see species description).

On the basis of this polyphasic taxonomic analysis, the Arctic strains can be
clearly differentiated from the other species within the genus Glaciecola (see Table
5.3) and can be assigned to a new species for which the name Glaciecola polaris
Sp. nov. is proposed.
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Figure 5.11. Electron micrographs of negatively stained preparations of strain LMG 218577 (a-c)
cells, showing flagella (F), prosthecae (P) and buds (B). Colonies used for analysis were grown
on PYG-agar at 12°C for 7 d. Cells were stained with 1% uranyl acetate in 0.4% sucrose. Bars,
300 nm.

Figure 5.12. Electron micrographs of negatively stained preparations of strains LMG 21855 (a-
¢) and LMG 21858 (d) cells, showing flagella (F), prosthecae (P), buds (B) and extracellular
products (EP). Methods, see legend to Fig. 5.11.
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a . EP b
Figure 5.13. Electron micrographs of negatively stained preparations of strains Glaciecola
punicea LMG 214267 (a), Glaciecola pallidula LMG 214277 (b) and Glaciecola mesophila LMG
220177 (c) cells showing prosthecae (P), buds (B), and extracellular products (EP). Colonies
used for analysis were grown on PYG agar at 20 °C for 3 d (G. mesophila), or on Marine Agar
at 12 °C for 21 d (G. punicea) and 12 d (G. pallidula), respectively. Cells were stained with 1%

uranyl acetate in 0.4% sucrose. Bars, 1000 nm.

Emended description of the genus Glaciecola (Bowman et al.,
1998), emend. Van Trappen et al.

The description is as described by Bowman et al. (1998c) with the following
additional morphological features. When grown on marine or PYG agar at low
temperatures (12-20°C) for three days or more, some strains can produce buds
and prosthecae (see Fig. 5.11-5.13).

Description of Glaciecola polaris sp. nov.

Glaciecola polaris (po.la.ris. N. L. fem. adj. polaris polar; referring to the origin
of the strains, the Arctic Ocean).

Cells are Gram-negative, short rods (0.4 x 2-3 um) and motile by the presence
of a polar or subpolar flagellum. Buds can be produced on mother cells or on
prosthecae. Prostheca formation is peritrich and prostheca can be branched
(Fig.5.11-5.13). They form non-pigmented, circular, low convex, shiny and opaque
colonies that are not adherent to agar, with entire margins and a diameter of 1-4
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Table 5.3. Phenotypic characteristics that differentiate Glaciecola polaris sp. nov. from its

nearest phylogenetic neighbours.

Characteristic 1 2 3 4
Pigmentation - - pink-red  pale pink
Growth at 25°C + + + -
Growth in 10% NacCl + V- - -
Hydrolysis of:
Egg yolk + - - -
Starch + + - v+
Aesculin + + Vv + -
DNA + + - -
B-Galactosidase + + + -
Nitrate reduction - + - -
Utilization of:
D-Glucose, D-mannitol, cellobiose + + - -
Sucrose, maltose + v+ - -
D-Galactose + v+ - -
D-Fructose, D-trehalose + v+ - -
D-Mannose + v+ - -
Glycerol - - - +
Acetate + - - +
Glycogen, dextrin + + - +
DL-Lactate - - - +
Propionate + - - -
L-Glutamate + v+ - +
L-Malate - - + .
Mean G+C content (mol%) 44 44 44-46 40

Glaciecola species: 1, G. polaris; 2, G. mesophila; 3, G. punicea; 4, G. pallidula. Data

from Bowman et al. (1998c), Romanenko et al. (2003) and this study. Symbols: +,

positive test; -, negative test; v +, variable between strains, type strain positive; v -,

variable between strains, type strain negative. All strains were positive for the following

tests: motility, sodium ion requirement for growth, oxidase, catalase, growth at 7-20°C

and growth in 1-6% NacCl. All strains are negative for growth at 37-40°C, indole reaction,

arginine dihydrolase, chitin hydrolase and utilization of L-arabinose, citrate, L-histidine, L-

ornithine, L-threonine and N-acetylglucosamine.
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mm on marine agar plates after 7 days incubation at 20 °C. Growth occurs on
marine and PYG agar, and a slight growth on nutrient agar; there’s no growth on
TSAand R2A agar. The range of growth temperature is 5-30°C, whereas no growth
occurs at 37°C or higher temperatures; growth is observed on R2A agar with up
to 10% NacCl, indicating that they are moderately halophilic and psychrotrophic.
There is no evidence for growth under anaerobic conditions and the catalase and
cytochrome oxidase tests are positive. The degradation of starch, aesculin and
DNA s positive and precipitation on egg-yolk agar occurs. -Galactosidase activity
is detected for both strains. They are able to utilize a-cyclodextrin, dextrin,
glycogen, Tween 40, Tween 80, D-arabitol, cellobiose, D-fructose, D-galactose,
gentiobiose, a-D-glucose, a-D-lactose, lactulose, maltose, D-mannitol, D-
mannose, D-melibiose, B-methyl-D-glucoside, D-raffinose, sucrose, D-trehalose,
D-saccharose, furanose, methylpyruvate, acetic acid, B-hydroxybutyric acid,
propionic acid, L-alanine, L-alanyl-glycine, L-glutamic acid, glycyl-L-glutamic acid,
L-leucine, L-pyro-glutamic acid and salicin. Both strains are negative for indole
and acetoine production, Voges-Proskauer test, citrate utilization, nitrate reduction
and production of hydrogen sulfide. No growth is observed on arabinose, N-acetyl-
glucosamine, caprate, adipate, malate, citrate, phenylacetate, L-fucose, D-sorbitol,
valerate, histidine, 2-keto-gluconate, 3-hydroxy-butyrate, 4-hydroxy-benzoate,
rhamnose, D-ribose, inositol, itaconate, suberate, malonate, DL-lactate, 5-keto-
gluconate, 3-hydroxy-benzoate, L-serine, alaninamide, L-threonine and glycerol.
No acids are produced from the carbohydrates glucose, mannitol, inositol, sorbitol,
rhamnose, sucrose, melobiose, amygdalin, arabinose and the degradation tests
of alginate, chitin, casein, gelatin and urea are negative. There is no activity of
arginine dihydrolase, lysine decarboxylase, ornithine decarboxylase and
tryptophane deaminase. There is no activity for the enzymes lipase (C14), cystine
arylamidase, a-chymotrypsine, B-glucuronidase, N-acetyl-B-glucosaminidase, o-
mannosidase, and a-fucosidase. For both strains low activity (score 1) is observed
for valine arylamidase, trypsine, o-glucosidase and B-glucosidase, medium activity
(score 2 or 3) is observed for esterase (C4), esterase lipase (C8), acid phosphatase,
naphtol-AS-Bl-phosphohydrolase and a-galactosidase, and high activity (score 4
or 5) is observed for alkaline phophatase and leucine arylamidase. Cells contain
fatty acids C , , and summed feature 3 (iso-C,, ,2-OH, C . w7c, or both) as main
constituents. DNA G+C content is 44.0 %. The type strain is LMG 218577 (= CIP
1083247).
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CHAPTER 6

Conclusions & future perspectives

In this chapter the research challenges regarding bacterial diversity in Antarctic
lakes and polar seas as stated in the Objectives of this work (see Preface), are
discussed again in the light of the obtained results (chapters 2 to 5). Also, the
strategy followed and the techniques used in this study, are evaluated. Finally,
future perspectives for the bacterial diversity studies in different polar habitats
are discussed.

6.1 Polyphasic taxonomy of polar bacteria
6.1.1 Fatty acid analysis

In this work a polyphasic taxonomic approach, combining different genotypic
(rep-PCR genomic fingerprinting, 16S rDNA sequence analysis, DNA-DNA
hybridization, % G + C determination) and phenotypic methods (fatty acid analysis,
study of morphological, biochemical and physiological characteristics) was applied
to study bacterial diversity in Antarctic lakes and polar seas. In previous studies
(Mergaert et al., 2001b; Van Trappen et al., 2002), fatty acid analysis (FAA) was
used to obtain a first grouping of the isolates into different clusters. For the Antarctic
lake isolates, 41 clusters were delineated at 75 % Canberra metric similarity and
31 strains formed single branches. For the polar sea strains, eight clusters were
found and 8 strains formed separate branches at a Euclidian distance of < 14,
which is comparable to 80% Canberra metric similarity. Representatives of these
clusters were analysed by 16S rDNA sequencing. Additional polar sea isolates
(56) were also included in fatty acid analysis and they proved to belong to FAA-
clusters B, C, D, E and F (as delineated in Mergaert et al., 2001b) and three new
clusters (I, J and K) (see Fig. 5.2). An overall clustering of the fatty acid profiles
(see Annex VI) based on Canberra metric similarities of the Antarctic lake and

201



Chapter 6

polar sea isolates, showed that the different FAA-clusters were maintained. Some
clusters were further subdivided (e.g. 5, 10, 16, 18, 22, 23, 25, 40, 41, see chapter
2; A, C, E, F, G, see section 5.1) and the new clusters | and K grouped together
with FAA clusters 1 to 15 (phylogenetically related to the Bacteroidetes), whereas
cluster J formed a branch together with FAA clusters 35 and 36, which belong to
the a-Proteobacteria.

Several of the FAA clusters were found to contain multiple taxa with similar
fatty acid profiles, whereas phylogenetically closely related taxa are sometimes
quite different in their fatty acid compositions and belong to different FAA clusters.
These results indicate that a dendrogram based on fatty acid profiles does not
allow a straightforward taxonomic interpretation. Indeed, when a higher similarity
level for the cluster delineation in the dendrogram is used, additional clusters and
singles show up, which potentially belong to additional phylogenetic lineages.
Our fatty acid profiles also didn’t allow identification with the TSBA4.0 database,
since different growth conditions were used (for example incubation time and
temperature, see chapter 2), than the standard conditions. However, despite the
restraints of this technique, fatty acid analysis is a convenient method for the
rapid screening of a large number of bacteria, belonging to different phylogenetic
groups. But techniques with a higher resolution had to be applied to investigate
the genomic diversity of each fatty acid cluster in more detail.

6.1.2 Rep-PCR fingerprinting

Several fatty acid clusters were further investigated by rep-PCR genomic
fingerprinting (using GTG,- and REP-primers, depending on the group) to assess
their genomic variability. These FAA clusters were mainly chosen on the basis of
a low 16S rDNA sequence similarity (< 97%) of representative strains with their
nearest phylogenetic neighbours, indicating the novelty of these bacteria. Rep-
PCR fingerprinting of the isolates allowed a further sub-clustering at the genotypic
level and overall this sub-clustering was consistent with the delineation of fatty
acid clusters (see chapter 2 and sections 3.1, 4.1 and 5.1). One exception was
found (see 3.3) where strains of fatty acid clusters 5 and 6 belonged to the same
rep-cluster and proved to be members of the same species, namely Flavobacterium
degerlachei. The differences in fatty acid compositions between strains from FAA
clusters 5 and 6 are largely due to different amounts of certain fatty acids (see
section 3.1). For the three strains of FAA cluster 4, different rep-profiles were
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obtained with only few bands (1-3 clear bands) and strain R-8282 clustered together
with strains of FAA cluster 15 (see Fig. 3.1). However, DNA-DNA hybridization
results confirmed the delineation on the basis of fatty acid composition, since the
strains of FAA cluster 4 constitute one species within a novel genus (Gillisia limnaea)
whereas members of FAA cluster 15 belong to another genus (Algoriphagus
antarcticus). These results illustrate that only rep-profiles with a sufficient number
of clear bands spread over the low and high molecular weight areas of the rep-
profile, are reliable. Therefore, the most dominant rep-clusters with at least three
strains and clear profiles with a sufficient number of different bands were
investigated further.

Several DNA-based typing methods exist (e.g. RFLP, AFLP, ARDRA and
RAPD) but the major advantage of rep-PCR, besides its high reproducibility and
taxonomic resolution, is that it is a very rapid method (Versalovic et al., 1994;
Rademaker & de Bruijn, 1997), ideal to investigate a large number of strains.
Rep-PCR fingerprinting allows phylogenetically closely related strains to be further
sub-divided into different groups and no prior genotypic knowledge on the bacterial
strains is required. Several rep-primers can be used (REP, GTG,, ERIC, BOX)
depending on the bacterial group investigated. REP-primers for example, yielded
no clear profiles with a sufficient number of bands for the strains belonging to the
Bacteroidetes, in contrast to the GTG.-primer. Rep-profiles obtained by using
different primers can also be combined, resulting in more information about the
reliability of clusters delineated with a certain primer (see section 4.1).

6.1.3 16S rDNA sequence analysis

Representative strains were analysed by using additional 16S rDNA
sequencing to allow a phylogenetic allocation of the different rep-clusters. The
complete 16S rDNA sequence of 35 representative strains belonging to FAA
clusters 1 to 15 (see Table 3.1) was determined and of these, ten showed a
sequence similarity of less than 97% with their nearest phylogenetic neighbours.
For FAA cluster 41, seven strains were sequenced and similarities below 97%
were found with Mesorhizobium loti and members of the Rhodobacter group as
closest relatives. For strains of FAA clusters E, F and two related unclustered
strains, 16S rDNA sequence similarities of more than 97% were found with
Alteromonas, Pseudoalteromonas and Glaciecola species. An overall dendrogram
(see Annex VI) based on the 16S rDNA sequence analysis of both the Antarctic
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lake isolates and polar sea isolates, shows that no high sequence similarities can
be found between strains isolated from these different habitats, indicating that
they belong to separate species. However, they have a few genera in common.
For the y-Proteobacteria the genera Glaciecola, Shewanella and Pseudomonas
were found in both Antarctic lake and polar sea isolates and for the o-Proteobacteria
representatives of the Rhodobacter group and the genera Rhizobium/
Mesorhizobium were found in both habitats. The genera belonging to the
Bacteroidetes are clearly different, with only a few FAA clusters (G, | and K) related
to Cytophaga in the polar sea isolates, and a lot of FAA clusters (1 to 15) related
to the genera Flavobacterium, Algoriphagus, Gelidibacter, Hymenobacter and
Gillisia for the Antarctic lake isolates.

According to Stackebrandt & Goebel (1994), 97% sequence similarity is
considered as a threshold value below which two strains are expected to belong
to different bacterial species. However, the latter authors, as well as many others,
also demonstrated that strains with more than 97% sequence similarity may show
low DNA-DNA reassociation values and thus constitute different species. This
has been confirmed by our results within the genus Flavobacterium, where isolates
sharing more then 97% (up to 98.7%) 16S rDNA sequence similarity with their
closest relatives, proved to be genotypically distinct from these related
Flavobacterium species on the basis of hybridization results (see chapter 3). The
type strains of Flavobacterium frigoris and Flavobacterium degerlachei for example
share a 98.7% homology of their 16S rRNA sequence and proved to belong to
seperate species. This is another clear example of the fact that 16S rDNA sequence
similarity higher than 97 % is not sufficient to demonstrate that two strains belong
to the same species. As such, much more of these polar bacterial strains possibly
belong to as yet undescribed new species as can be predicted on the basis of this
97% threshold value.

16S rDNA sequence analysis is a technique that has been widely applied in
bacterial taxonomy and is used to study the phylogenetic relationships among
bacteria. The major advantage of this technique is its high reproducibility and use
in comparative studies because of the availability of large publicly accessible
databases (EMBL) of bacterial DNA sequences.
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6.1.4 DNA-DNA hybridizations

Itis clear, through studies that compare rep-PCR genomic fingerprint analysis
with DNA-DNA relatedness methods that both techniques yield results that are in
close agreement (Nick et al., 1999; Rademaker et al., 2000), suggesting that
genomic fingerprinting techniques truly reveal genotypic relationships of organisms.
Indeed, for the different investigated rep-clusters with identical profiles, DNA-
relatedness values were found above 70%, the level recommended for species
delineation (Wayne et al., 1987) and 16S rDNA sequence similarities between
strains of these rep-clusters were always very high (99-100%). However, strains
which showed a different rep-profile sometimes proved to belong to the same
species, showing hybridization values of more than 70% (e.g. Flavobacterium
frigoris, Flavobacterium micromati and Flavobacterium fryxellicola).

These results indicate that, although the resolution of rep-PCR fingerprinting
is sometimes too high with clustering at the subspecies level, this technique is
useful to reduce the number of strains needed for the labourious DNA-DNA
hybridization studies. This rapid and highly discriminatory screening technique,
together with 16S rDNA sequence analysis of representative strains, can be used
to determine the taxonomic diversity and phylogenetic structure of large bacterial
collections. Several novel genospecies could be delineated and phenotypic
analysis resulted in a final description of 13 new species (see chapters 3, 4 and
5).

6.2 Bacterial diversity in Antarctic lakes and polar seas

One of the main objectives of this work was to explore the general taxonomic
diversity of bacterial isolates from microbial mats in Antarctic lakes and polar
seas. Therefore, samples were taken from very different lakes instead of multiple
samples from a single lake and water samples were collected from different stations
in the polar seas and at different water depths, in order to obtain an as much
diverse collection of strains as possible. For FAA clusters 1 to 15 (161 strains)
belonging to the Bacteroidetes, rep-PCR fingerprinting revealed 27 clusters and
38 singles, and for strains of FAA cluster 41 (57 strains) belonging to the o-
Proteobacteria, 10 clusters and 12 singles could be delineated (cut off value of
70% Pearson correlation coefficient). This wealth of different fingerprinting patterns
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demonstrates that the bacterial genomic diversity in microbial mats from Antarctic
lakes is extremely high and is much higher than previously estimated by fatty acid
and 16S rDNA sequence analyses (see chapter 2). Similar results were found for
the polar sea isolates and for the investigated strains (21, belonging to FAA clusters
E, F and two related unclustered strains; see section 5.1) five clusters could be
delineated and four strains formed separate branches.

Only part of the bacterial diversity in Antarctic lakes and polar seas has been
investigated into depth (15 FAA clusters related to the Bacteroidetes, one cluster
belonging to the o-Proteobacteria and 21 polar sea isolates of two FAA clusters
related to the y-Proteobacteria) with the identification of some isolates to previously
known species (Flavobacterium xanthum and Glaciecola mesophila) and the
description of several novel bacterial species [six new Flavobacterium species,
one new Algoriphagus species and a new genus, Gillisia of the family
Flavobacteriaceae (see Chapter 3); three species of a new genus Loktanella of
the o-Proteobacteria (see Chapter 4) and a new Alteromonas and Glaciecola
species (see Chapter 5)] and already the estimated diversity is very high. Further
investigations within the other phylogenetic groups (Gram-positives, o-, B- and -
Proteobacteria) would provide a more complete picture of the bacterial diversity
in these polar habitats. Through the description of these novel species, unique
databases with several of their genotypic and phenotypic properties, using highly
reproducible techniques (rep-PCR fingerprinting, FAA analysis, 16S rDNA
sequencing), are available and will make the characterization and identification
of other polar isolates much easier.

Our results are consistent with the data found by the other partners of the
MICROMAT-project. Brambilla et al. (2001) investigated the diversity of aerobic
and anaerobic bacterial isolates, together with the bacterial and archaeal 16S
rDNA clones of a mat sample of Lake Fryxell, and results indicate that the diversity
is very high. The cyanobacterial diversity in microbial mats from Lake Fryxell was
studied by Taton et al. (2003) and evidence was provided that the molecular
diversity of cyanobacteria is quite high with a few Antarctic endemic species. In
contrast, the fungal flora in these biomats was dominated by a relatively small
number of species belonging to a few genera (Géttlich et al., 2003) and this is
unexpected since fungi are among the organisms with highest tolerance of extreme
conditions. The (cultivated and ‘yet-to-be’ cultivated) diversity of protists and
eukaryotic photosynthetic microorganisms from these Antarctic mats, investigated
by several other partners, was also very high and regional differences can be
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seen. The diversity of eukaryotes seems lower than in less extreme biotopes.
Overall, the surprisingly high diversity of the different microorganisms in the mats
demonstrates an enormous complexity of the microbial communities in Antarctic
lakes and this is more than would be expected from an extreme environment.

6.3 Geographical distribution of bacterial taxa

Although a high amount of bias on the assessment of the diversity of the
heterotrophic isolates from Antarctic lakes was introduced due to the limited number
of samplings and culturing procedures, and the limited number of strains isolated
from several samples (see chapter 2), results allow to make, to some extent,
observations on the geographical distribution of some taxa. Table 6.1 summarizes
the sources of the strains from each of the FAA clusters (see Fig. 2.1) and all
samples contained representatives of the y-Proteobacteria, whereas all samples,
except the one from Organic Lake, yielded members of the Bacteroidetes. Gram-
positives were not found in the samples from lakes Watts and Pendant. No o-
Proteobacteria were isolated from samples from lakes Hoare and Grace while no
B-Proteobacteria were isolated from samples from lakes Watts, Highway and
Organic Lake. Several major FAA clusters (with more than 30 isolates) contained
strains isolated from almost all samples, suggesting that taxa showing these fatty
acid compositions might be ubiquitous in Antarctic lakes, e.g. cluster 5 and 10,
related to Flavobacterium (see Fig. 2.1). Members of other FAA clusters (with
more than 10 isolates) were not detected in the McMurdo Dry Valley lakes, e.g.
cluster 22, related to Shewanella, or were almost exclusively detected in these
lakes, such as cluster 18, related to Arthrobacter, and cluster 28, related to
Janthinobacterium. Other clusters (with more than 4 strains) were only detected
in samples from a single lake, like cluster 6, related to Flavobacterium, isolated
from Pendant Lake.

It is clear that the bacterial diversity in polar habitats and in Antarctic lakes is
extremely high and due to the unique and harsh conditions that prevail here,
microorganisms are potentially belonging to endogenous, as yet undescribed new
taxa. Through a polyphasic approach, several of these novel taxa could be
described (see Table 6.2). Some general assumptions can be made about the
relationship between these novel taxa and the lakes from which they were isolated
since it is impossible to draw firm conclusions on the ecological implications of
these lakes due to the constraints on the sampling and culturing methods used.
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Firstly, most of these novel taxa derive from a small number of lakes, namely
lakes Ace, Pendant, Watts, Reid and Fryxell. Only two species come from Grace
Lake (Flavobacterium micromati and F. frigoris), whereas separate single species
Loktanella salsilacus, F. degerlachei, F. psychrolimnae and F. frigoris, originate
from lakes Organic, Highway, Hoare and Druzhby, respectively. The potential new
species (see Table 6.3) also derive from a small number of lakes and they mainly
come from lakes Ace and Fryxell. The reason for this can be found in the fact that
from lakes Fryxell and Ace, a higher number of bacterial strains were isolated
(see chapter 2; 188 and 122 isolates, respectively) compared to lakes Hoare,
Organic, Grace and Druzhby (31-34 isolates). As a consequence, strains from
the latter lakes are likely to belong to fewer phylogenetic groups and to less of
these novel taxa than isolates from lakes Fryxell and Ace. However, another
explanation for the striking fact that a lot of these novel species (seven out of
thirteen) derive from Lake Fryxell in the Dry Valleys, can also be found in the age
of these lakes. Indeed, Dry Valley lakes are very old (hundreds of thousands of
years compared to only 8000-10 000 years old for the lakes of the Vestfold Hills
and the Larsemann Hills) so they have had more time for the evolution of potentially
novel taxa to occur.

Some of these new species were isolated from a certain Antarctic region
(Flavobacterium fryxellicola, F. psychrolimnae, Gillisia limnaea and Loktanella sp.),
whereas others derive from different Antarctic regions, suggesting that they might
be more or less ubiquitous on the Antarctic continent (F. gelidilacus, F. degerlachei,
F. micromati, F. frigoris and Algoriphagus antarcticus). Again, this ubiquity is
probably due to the larger number of isolates belonging to the latter species.

Some Antarctic lake isolates were identified as Flavobacterium xanthum,
originally isolated from Antarctic soil, whereas two polar sea isolates (Antarctic
sea) were identified as the recently described Glaciecola mesophila from the Sea
of Japan in Russia. Another two polar sea isolates (Arctic sea) belonged to a
novel species within the genus Glaciecola, Glaciecola polaris, showing that this
genus has a bipolar distribution. For the polar sea isolates most of the FAA clusters
contain isolates both from Antarctica as well as Arctica and only clusters G, I, J
and K consist solely of Antarctic strains.
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Table 6.3. Source, FAA clustering and phylogenetical affiliation of potential novel taxa from Antarctic lakes and

polar seas.
Strain FAA Phylogenetic Nearest phylogenetic neighbour Sequence Isolation
No. cluster ® branch similarity source

Antarctic lakes

R-9033 2 Bacteroidetes Flavobacterium tegetincola 95.3 AC
R-7581 5 Bacteroidetes Flavobacterium tegetincola 95.3 FR
R-7585 5 Bacteroidetes Flavobacterium limicola 96.0 FR
R-7515 9 Bacteroidetes Flavobacterium limicola 95.0 FR
R-8893 10 Bacteroidetes Flavobacterium aquatile 94.5 AC
R-7666 12 Bacteroidetes Flavobacterium limicola 95.7 FR
R-9476 15 Bacteroidetes Flavobacterium limicola 96.4 AC
R-9112 16 Gram-positives Microbacterium keratanolyticum 96.0 GR
R-8287 19 Gram-positives Clavibacter michiganensis 96.1 FR
R-8161 20 Gram-positives Bacillus oleronius 93.2 FR
R-8971 23 y-Proteobacteria ~ Pseudomonas migulae 95.8 AC
R-11381 25 y-Proteobacteria  Alteromonas macleodii 93.9 HI
R-9221 36 o-Proteobacteria ~ Sphingomonas natatoria 94.5 AC
R-9035 39 y-Proteobacteria ~ Marinobacter hydrocarbonoclasticus 95.6 AC
R-9219 41 o-Proteobacteria  Mesorizhobium loti 96.9 AC
Polar seas

ARK 177 NC o-Proteobacteria  Roseobacter litoralis 93.8 Arctic sea
ARK 126 B a-Proteobacteria  Rhizobium mediterraneum 95.0 Arctic sea
ANT43 C y-Proteobacteria ~ Pseudomonas migulae 96.5 Antarctic sea
ARK 104 C y-Proteobacteria ~ Pseudomonas migulae 96.5 Antarctic sea
ARK 161 C y-Proteobacteria ~ Pseudomonas migulae 96.5 Antarctic sea

@ The FAA clusters are as delineated in Van Trappen et al. (2002) for strains originating from Antarctic lakes and

in Mergaert et al. (2001) for strains from polar seas.
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6.4 Ecological considerations

It was not our objective to compare the Antarctic lake samples from a
physicochemical point of view and the salinity of the samples was not determined.
However, information on the salinity class of the lakes is known and some
temptative reflexions about the correlation between the lakes and the salt tolerance
of these novel taxa can also be made. Generally, strains from Organic Lake
phylogenetically belong to the Proteobacteria and the Gram-positives (Bacillus),
based on fatty acid and 16S rDNA sequence analyses (see chapter 2). From the
novel taxa, only Loktanella salsilacus consists of strains from the saline/ hypersaline
lakes Organic and Ace. When looking at the physiological characteristics of these
strains, they are moderately halotolerant and are able to grow with up to 10%
NaCl. Moreover, there is a clear link between the salinity of the lakes from which
strains were isolated and their salt tolerance (see Table 6.2). Strains that are only
able to grow with up to 2% salt derive from fresh/ brackish lakes (F. micromati, F.
fryxellicola and F. psychrolimnae from lakes Grace, Hoare and Fryxell), whereas
strains that tolerate up to 5-10% NaCl come from more saline lakes (e.g. F.
gelidilacus and Loktanella vestfoldensis from lakes Ace, Pendant and Reid). The
new species from the polar seas are moderately halophilic (no growth without
NacCl) in contrast to the Antarctic lake isolates, which are moderately halotolerant
(able to grow without NaCl). A possible explanation might be their different way of
isolation by using enrichment methods with seawater for the sea isolates, compared
to the more classical isolation methods used for the Antarctic lake isolates.

From all the novel taxa, the ones that are psychrophilic (with an optimal growth
temperature of 20°C and a maximum of 25-30°C) belong to the Bacteroidetes,
whereas the psychrotrophic taxa rather belong to the Proteobacteria (with an
optimal growth temperature of 20-25°C and a maximum of 30-37°C). Several new
psychrophilic Flavobacterium species have been recently described (e.g. F.
limicola, F. omnivorum and F. xinjiangense) and a lot of strains of the Bacteroidetes
group have been characterized by their adaptability to low temperatures (Bernardet
etal., 1996; Bowman et al., 1997a). Their counterparts of the Proteobacteria seem
to grow in a broader range of temperatures and this is certainly true for the genus
Glaciecola with psychrophilic species (G. punicea, G. pallidula) isolated from sea-
ice assemblages and the recently described, mesophilic G. mesophila, isolated
from the Sea of Japan in Russia. In the MICROMAT-project, artificial mats from
Lake Fryxell were cultivated to get a first glimpse of the ecology of the mats and
evidence was found that the microbial community was cold-adapted (Buffan-Dubau
212



Concluding remarks

et al., 2001; Pringault et al., 2001). However, it remains unknown whether
psychrophiles dominate in Antarctic mat communities or whether they only
constitute a minority.

In Organic Lake, high levels of dimethylsulfide were detected and it may not
be a coincidence that the new species we described (Loktanella salsilacus) with
strains isolated from this lake, belongs to the Rhodobacter group, of which certain
members (for example Sulfitobacter) potentially play an important role in the sulphur
cycle. However for L. salsilacus, evidence for its participation in sulphur cycling
has not been found (there is no production of hydrogen sulphide) and the oxidation
of reduced sulphur still needs to be investigated.

6.5 Biotechnological applications

In the last decade, the discovery of novel structural classes of different
pharmaceuticals has declined and therefore, there is a renewed interest in
examining microorganisms for the production of these novel compounds, especially
the ones that live in unexplored ecological niches. The polar areas and their
surrounding marine sites for example, offer a unique opportunity to investigate
the unexplored microbial diversity since the extreme conditions that thrive here,
have led to the evolution of new endogenous taxa with potentially novel biochemical
adaptations. In these extreme environments the production of several metabolic
compounds against bacteria and fungi, can confer a competitive survival
advantage, just like the production of pigments offers a protection against strong
UV irradiation and the production of resistant spores in fungi may represent a
survival tool to desiccation, low temperatures and high salinities often found in
Antarctic lakes.

In the context of the MICROMAT-project, the biotechnological exploitation of
the microbial richness in microbial mats from Antarctic lakes, particularly of bacteria
and fungi, was investigated for the production of novel cold-adapted enzymes
and antimicrobial compounds of interest against human pathogens of clinical
relevance. Data about the extra-cellular hydrolytic activity of the Antarctic bacterial
and fungal isolates indicated a relatively low frequency of extra-cellular enzyme
activities. Results show that every type of enzyme activity screened for was
represented in the investigated strains. For the bacteria, amylase, cellulase,
esterase, lipase and protease activity was observed in 17%, 20%, 48%, 17% and
34% of the strains, respectively (see Table 6.4). For the fungi, esterases were
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Table 6.4. Extra-cellular enzyme activities of Antarctic bacterial strains.

FAA Tested Positive Number of strains with enzyme activity:

cluster® strains®  strains ®

Amylase Cellulase Esterase Lipase Protease

1 2 2 0 2 0 0 2
5 17 10 5 2 3 4 6
6 2 1 1 0 0 0 0
10 5 2 2 0 1 0 0
11 2 1 ND 1 ND ND ND
14 1 1 0 1 1 1 1
16 8 3 1 1 1
17 5 4 0 2 1 1
18 63 54 20 37 38 9 13
19 5 1 ND 1 ND ND ND
20 12 1 0 1 5
21 2 2 0 1 1 2 1
22 73 66 22 1 39 7 61
23 64 42 3 3 39 12 8
25 6 5 1 4 1 0 1
26 37 30 4 4 26 3 22
27 2 1 1 0 1 0 0
28 12 1 1 4 2 5
30 13 0 1 3 3
36 5 4 ND 3 1 ND 0
38 42 34 3 16 29 19 3
39 1 1 0 0 1 1 0
40 4 1 0 0 1 0 0
41 11 1 1 3 2 3
NC 11 4 2 3 0 4
Total 405 294 69 84 200 69 140

@ FAA clusters are as delineated in Van Trappen et al. (2002).

® Total number of tested strains of the FAA clusters containing positive isolates.

¢ Number of strains that are positive for at least one enzyme. For FAA clusters 2, 3,4, 7, 8,9, 12, 13, 15,
24, 29, 31, 32, 33, 34, 35 and 37 no positive isolates were found. ND: enzyme activity was not detectable

because strains were unable to grow under standard incubation conditions.

observed in 93% of the strains, whereas lipase was found in 37% of the strains.
Production of amylase, cellulase and protease was detected in 59%, 62% and
75% of the strains, respectively. No single genus could be especially linked to
any one particular enzyme activity, due probably to the low number of strains in
the test sample (Ciciliato et al., 2001).
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Marinelli et al. (personal communication, see Annex |V) reported about the
screening of heterotrophic bacteria and fungi from Antarctic lakes for the production
of new antibiotics. They found unexpected high antimicrobial activity rates for the
Antarctic isolates (29% from fungi and 17% from bacteria) and the frequency of
antibacterial activity is particularly high against the Gram-positive Staphylococcus
aureus and the Gram-negative Escherichia coli, both among bacterial and fungal
isolates. Most of the antifungal activities against the fungi Candida albicans,
Aspergillus fumigatus and Cryptococcus neoformans were obtained from fungi.
Further studies were performed with a subset of the bacterial hits exhibiting
potential activities against bacterial human pathogens and two isolates from the
McMurdo Dry Valleys (R-7513 and R-7941) were studied in more detail. The
isolates correspond to coccoid high % G + C Gram-positives with antibacterial
activities against Bacillus subtilis, S. aureus and Enterococcus faecium and are
phylogenetically related to Arthrobacter agilis. They produce similar compounds
which belong to the cyclic thiazolyl peptide antibiotics with activities against Gram-
positive bacteria. Further work is now in progress to study the chemical and
biological profiling of the metabolites produced by the bacterial and fungal hits
and the assessment of their novelty will help to understand to which extent the
chemical diversity correlates with the taxonomic diversity, so far discovered in
these microbial communities of Antarctic lakes.

6.6 Future perspectives

Although polar regions have been regarded as inhospitable and isolated
environments, inhabited by simple and species-poor communities, several studies
have revealed a large microbial diversity and should encourage scientists to look
in more detail at these extreme environments. With the MICROMAT-project, the
cultivated and ‘not-yet-cultivated’ microbial diversity in microbial mats from Antarctic
lakes was studied. However, our study on the bacterial diversity was exploratory
rather than thoroughly and samples of ten lakes in three different Antarctic regions
were investigated. In most cases, comparisons about the diversity in different
samples from the same lake could not be made because too low numbers of
strains were isolated for at least one sample (see chapter 2). To get a more complete
picture about this microbial diversity in Antarctic lakes, and in polar habitats in
general, much more samples would be needed and additional areas should be
investigated. More samples will also allow a better understanding of the variation
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in diversity and composition between the different lakes and may shed light on
how these communities have evolved and how dispersal affects local biodiversity.
The same is true for the polar oceans where microbial processes are beginning to
be understood and more comprehensive field studies need to be conducted to
get a better idea of the functioning of the microbial communities in these habitats,
especially in the deep-sea, mesopelagic and benthic areas, that have been virtually
ignored. The spatial and temporal variability that exists in polar environments
needs to be carefully documented before any conclusions can be drawn about
the precise role of bacteria in the food web. Recently, research about the microbial
taxonomy in polar regions has become better focused by using molecular genetic
approaches and combining culture-independent molecular techniques with the
results from culturing studies, will allow a better understanding of these microbial
communities.

Our results will not only help to understand the composition and functioning
of cold extreme environments, but also have implications for fundamental and
applied microbiology. Firstly, studying polar regions is important to have a clearer
view on the response of these ecosystems to environmental changes, especially
in the form of global warming since the polar areas act as a beacon for this change.
Indeed, many lakes of the McMurdo Dry Valleys in Antarctica have risen significantly
during the last century and evidence has been found that this phenomenon is a
direct result of an increase in summertime air temperatures. The polar regions of
the Earth, especially the Arctic, are undergoing relatively rapid environmental
changes on a global perspective, such that inhabitants of sea-ice communities for
example become threatened with extinction in this century. The particularly diverse
and rich microbial mat communities are one of the most complex ecological systems
known on the Antarctic continent and may serve as useful monitors of past and
present climatic change.

Secondly, another area of interest regarding the study of the poles is the
increasing effect of human activities on these pristine ecosystems. The potential
environmental impact of pollution from research vessels, scientific bases and
tourism on the polar communities must be carefully monitored, since the magnitude
of research activities on the poles will certainly accelerate in the near future.

Thirdly, the novel taxa found in these polar environments potentially have
new biochemical adaptations which can be used to find novel biotechnological
and pharmaceutical applications. Screening research on our bacterial isolates
has already indicated interesting activities in several strains and has lead to a
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renewed interest in the microbial exploitation of polar habitats (see section 6.5).

Finally, a better understanding of the complexity of microbial communities
under extreme conditions, might be relevant for the search for life in similar extreme
environments, like Lake Vostok (3 km underneath the ice sheet) and other planets
(for example Mars and Europa, moon of Jupiter). Polar habitats provide models
for possible extraterrestrial habitats and the study of microorganisms in these
cold, extreme environments can be used for the development of methods to locate
and identify microbial forms of life elsewhere.

In conclusion, bacterial diversity in polar seas and microbial mats from Antarctic

lakes is very high and these unique habitats harbour a wealth of potentially
endogenous, new taxa, which offer great promise for future research.
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SUMMARY

The polar regions suffer from extreme environmental conditions and as such,
these areas are some of the most inhospitable places on earth. However, the
poles harbour a wide variety of different terrestrial and aquatic biotopes, where
microorganisms are the most abundant and often the only form of life. Several
polar habitats have not been explored into detail and especially the bacterial
component of the microbial food web has been poorly investigated. Studies on
the bacterial diversity in polar habitats were performed in the framework of the
European research project MICROMAT (see Annex lll), which addresses the
microbial diversity in the mat communities of Antarctic lakes, and the study of
oligotrophic bacteria in polar seas in cooperation with T. L. Tan from the Alfred
Wegener Institut fur Polar- und Meeresforschung (AWI, Bremerhaven).

During the MICROMAT-project, the diversity of heterotrophic bacteria in
microbial mats from diverse freshwater and saline Antarctic lakes was investigated
and almost 800 bacterial strains were isolated from mats collected from 10 different
lakes from the McMurdo Dry Valleys (lakes Hoare and Fryxell), the Vestfold Hills
(lakes Ace, Pendant, Druzhby, Organic, Grace, and Watts) and the Larsemann
Hills (Lake Reid). Fatty acid analysis was used to obtain a first grouping of the
large amount of isolates into different clusters and 41 clusters could be delineated,
whereas 31 strains formed single branches. Representative strains were chosen
for further study by 16S rDNA sequence analysis and results revealed that they
belong to the a-, B- and y- Proteobacteria, the high and low percent G+C Gram-
positives and to the Bacteroidetes and many sequences showed a sequence
similarity below 97% with their nearest phylogenetic neighbours, indicating that
they represent as yet unnamed new taxa.

Techniques with a higher resolution had to be applied to investigate the
genomic diversity of each fatty acid cluster in more detail and in a first part of this
study, several FAA clusters belonging to the Bacteroidetes and the a-Proteobacteria
were further investigated by repetitive extragenic palindromic (rep)-PCR genomic
fingerprinting. A wealth of different fingerprinting patterns was obtained and results
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demonstrate that the genomic diversity of heterotrophic bacteria in microbial mats
from Antarctic lakes is extremely high. Strains showing the same rep-PCR pattern
are often isolated from different lakes and even from different Antarctic regions
for the FAA clusters belonging to the Bacteroidetes, whereas for the FAA cluster
related to the o-Proteobacteria, the different rep-PCR profile types correlated
well with the geographical origin of the strains. Rep-PCR fingerprinting of the
isolates allowed a further subclustering at the genotypic level and was used to
select representatives for additional 16S rDNA sequence analysis and DNA-DNA
hybridizations.

Several of the additional 16S rDNA sequences showed similarity values of
less than 97% to the closest described species in the EMBL database, indicating
their novelty, but during the last years it has been demonstrated that strains with
more than 97% sequence similarity may show low DNA-DNA reassociation values
and thus constitute different species. This has been confirmed by our results
within the genus Flavobacterium, where isolates sharing more than 97% (up to
98.7%) 16S rDNA sequence similarity with their closest relatives, proved to be
genotypically distinct from these related species. As such, much more of these
Antarctic bacteria possibly belong to as yet undescribed new species as can be
predicted on the basis of their 16S rDNA sequence.

For the different investigated rep-clusters with identical profiles, DNA-
relatedness values were found above 70% and 16S rDNA sequence similarities
between strains of these rep-clusters were always very high (99-100%). It is clear,
through studies that compare rep-PCR genomic fingerprint analysis with DNA-
DNA relatedness methods that both techniques yield results that are in close
agreement (Nick et al., 1999; Rademaker et al., 2000). However, strains which
show a different rep-profile sometimes proved to belong to the same species,
showing hybridization values of more than 70%. These results indicate that,
although the resolution of rep-PCR fingerprinting is sometimes too high, this
technique is useful to reduce the number of strains needed for the laborious DNA-
DNA hybridization studies. Through this polyphasic taxonomic approach, different
genospecies could be delineated and phenotypic analysis resulted in a final
description of several novel species:

e Flavobacterium degerlachei (14 strains), Flavobacterium micromati
(3), Flavobacterium frigoris (23), Flavobacterium psychrolimnae (4),
Flavobacterium fryxellicola (3) and Flavobacterium gelidilacus (22).
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Strains belonging to these six novel Flavobacterium species derive from lakes
in the three different Antarctic regions.

e Gillisia limnaea. The three strains of this new genus were isolated from
Lake Fryxell in the McMurdo Dry Valleys. Phylogenetic analysis based on
16S rRNA gene sequences indicated that these strains belong to the family
Flavobacteriaceae.

e Algoriphagus antarcticus (6 strains). Strains belonging to this species
were isolated from microbial mats in lakes Reid, Fryxell and Ace. Phylogenetic
analysis based on 16S rDNA sequences indicated that these strains belong
to the family ‘Flexibacteriaceae’.

e |Loktanella salsilacus (10 strains), Loktanella fryxellensis (12) and
Loktanella vestfoldensis (4). Strains of this novel genus were isolated from
lakes Ace, Pendant, Organic and Fryxell. Phylogenetic analysis based on
16S rDNA sequences placed these strains within the Rhodobacter group of
the a-subclass of the Proteobacteria.

The second part of this work handles about the diversity of oligotrophic bacteria
in polar seas and a collection of 173 bacterial strains, which were isolated after
enrichment under oligotrophic, psychrophilic conditions from Arctic (98 strains)
and Antarctic (75 strains) seawater, was available. These strains have been
previously analysed by their substrate utilization patterns using the Biolog system
(Tan, 1997; Tan & Ruger, 1999) and by fatty acid and 16S rDNA sequence analyses
(Mergaert et al., 2001b). They belong to six metabolic groups and eight FAA-
clusters could be delineated, whereas eight strains formed separate branches.
Results of the 16S rDNA sequence analysis indicate that they belong to the o-
and y- Proteobacteria, the high percent G+C Gram-positives and to the
Bacteroidetes. Additionally, several clusters represent as yet unnamed, new taxa,
since they show less than 97% 16S rDNA sequence similarity to their nearest
named neighbours.

In the meantime, additional strains isolated using the same methods, were
included in fatty acid analysis during this study and the genomic diversity of 21
strains was further investigated by rep-PCR genomic fingerprinting. Using a
polyphasic taxonomic approach, two novel species within the y- Proteobacteria
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could be described:

e Alteromonas stellipolaris. Seven Antarctic strains could be assigned to
a novel species within the genus Alteromonas and buds can be produced on
mother and daughter cells and on prosthecae. Prostheca formation is peritrich
and prosthecae can be branched.

e Glaciecola polaris. Two Arctic strains constitute a new species within the
genus Glaciecola and buds can be produced on mother cells and on
prosthecae. Branch formation of prosthecae occurs.

Overall, the bacterial diversity in polar seas and microbial mats from Antarctic
lakes is very high and these unique habitats harbour a wealth of endogenous,
new taxa, with several potential industrial applications. In the context of the
MICROMAT-project, the production of novel cold-adapted enzymes and
antimicrobial compounds by bacterial strains was investigated and unexpected
high antimicrobial activity rates were found for the Antarctic isolates.
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SAMENVATTING

In de Noord- (Arctica) en Zuidpool (Antarctica) heersen extreme omgevings-
condities en bijgevolg behoren deze regio’s tot de meest onbewoonbare plaatsen
op aarde. De poolgebieden bezitten echter wel een grote variéteit aan verschillende
terrestrische en aquatische habitats, waar micro-organismen de meest abundante
en vaak enige levensvorm uitmaken. Verschillende polaire habitats werden nog
niet in detail bestudeerd en vooral de bacteriéle component van de microbiéle
voedselketen is slechts in beperkte mate onderzocht. Studies over de bacteriéle
diversiteit in de poolgebieden werden uitgevoerd in het kader van het Europees
Onderzoeksproject MICROMAT (zie Annex Ill), dat zich toespitste op de microbiéle
diversiteit in de matgemeenschappen van Antarctische meren, en de studie over
oligotrofe bacterién in poolzeeén in samenwerking met T. L. Tan van het Alfred
Wegener Institut fur Polar- und Meeresforschung (AWI, Bremerhaven).

Tijdens het MICROMAT-project werd de diversiteit van heterotrofe bacterién
in microbiéle matten van verschillende Antarctische zoetwater- en zoute meren
onderzocht en bijna 800 bacteriéle stammen werden geisoleerd uit matten,
verzameld vanuit 10 verschillende meren van de McMurdo Dry Valleys (de meren
Hoare en Fryxell), de Vestfold Hills (de meren Ace, Pendant, Druzhby, Organic,
Grace en Watts) en de Larsemann Hills (het meer Reid). Vetzuuranalyse werd
gebruikt om een eerste clustering te bekomen van het grote aantal isolaten en 41
clusters konden afgebakend worden, terwijl 31 stammen apart vielen.
Representatieve stammen werden gekozen om verder te bestuderen aan de hand
van 16S rDNA sequentie-analyse en de resultaten tonen aan dat ze tot de o-, -
en y- Proteobacteria, de hoog- en laag-percent G+C Gram-positieven en tot de
Bacteroidetes behoren. Verschillende sequenties vertonen een lagere similariteit
dan 97% met hun nauwste fylogenetische verwanten en dit toont aan dat ze tot
nieuwe, nog niet beschreven taxa behoren.

Technieken met een hogere resolutie werden gebruikt om de genomische
diversiteit van elk vetzuurcluster in detail te bestuderen en in een eerste deel van
deze studie werden verschillende vetzuurclusters die behoren tot de Bacteroidetes
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en de o-Proteobacteria verder onderzocht aan de hand van de repetitieve
extragenische palindromische (rep)-PCR genomische fingerprintingtechniek. Een
groot aantal verschillende fingerprintingpatronen werd bekomen en de resultaten
tonen aan dat de genomische diversiteit van heterotrofe bacterién in microbiéle
matten van Antarctische meren uitzonderlijk groot is. Stammen die eenzelfde rep-
patroon vertonen werden vaak geisoleerd uit verschillende meren en zelfs uit
verschillende Antarctische regio’s voor de vetzuurclusters die behoren tot de
Bacteroidetes, terwijl voor het vetzuurcluster behorende tot de o-Proteobacteria,
de verschillende rep-profielen goed overeenkomen met de geografische oorsprong
van de stammen. Rep-PCR-fingerprinting van de isolaten liet een verdere
subclustering op genotypisch niveau toe en werd gebruikt om representatieven
te selecteren voor additionele 16S rDNA sequentie-analyse en DNA-DNA
hybridisaties.

Verschillende van de additionele 16S rDNA sequenties vertonen een
similariteit lager dan 97% met de meest verwante species in de EMBL-databank,
wat er op wijst dat ze tot nieuwe taxa behoren, maar gedurende de laatste jaren
werd aangetoond dat stammen met meer dan 97% sequentiesimilariteit eveneens
lage DNA-DNA reassociatiewaarden kunnen vertonen en bijgevolg tot
verschillende species behoren. Dit werd bevestigd door onze resultaten binnen
het genus Flavobacterium, waar isolaten met meer dan 97% (tot 98.7%) 16S
rDNA sequentiesimilariteit met hun nauwste verwanten, tot genotypisch
verschillende species bleken te behoren. Bijgevolg kunnen veel meer van deze
Antarctische bacterién mogelijk nog niet beschreven, nieuwe species vormen,
dan kan voorspeld worden op basis van hun 16S rDNA sequentie.

Voor de verschillende onderzochte rep-clusters met identieke profielen,
werden DNA-DNA verwantschapswaarden boven 70% bekomen en 16S rDNA
sequentiesimilariteiten tussen stammen van deze rep-clusters waren altijd zeer
hoog (99-100%). Het is duidelijk vanuit studies die rep-PCR genomische
fingerprintanalyse vergelijken met DNA-DNA verwantschapsmethoden, dat beide
technieken resultaten opleveren die goed overeenstemmen (Nick et al., 1999;
Rademaker et al., 2000). Maar stammen die een verschillend rep-profiel vertonen,
bleken soms tot hetzelfde species te behoren met hybridisatiewaarden van meer
dan 70%. Deze resultaten tonen aan dat, hoewel de resolutie van rep-PCR
fingerprinting soms te hoog is, deze techniek bruikbaar is om het aantal stammen,
nodig voor de arbeidsintensieve DNA-DNA hybridisaties, te reduceren. Door deze
polyfasische taxonomische aanpak konden verschillende genospecies afgebakend
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worden en fenotypische analyses leidden tot een finale beschrijving van
verschillende nieuwe species:

e Flavobacterium degerlachei (14 stammen), Flavobacterium micromati
(3), Flavobacterium frigoris (23), Flavobacterium psychrolimnae (4),
Flavobacterium fryxellicola (3) and Flavobacterium gelidilacus (22).
Stammen behorende tot deze zes nieuwe Flavobacterium species komen uit
meren in de drie verschillende Antarctische regio’s.

e Gillisialimnaea. De drie stammen van dit nieuwe genus werden geisoleerd
uit het meer Fryxell in de McMurdo Dry Valleys. Phylogenetische analyse
gebaseerd op 16S rDNA sequenties toont aan dat deze stammen tot de familie
van de Flavobacteriaceae behoren.

e Algoriphagus antarcticus (6 stammen). Stammen van dit species werden
geisoleerd uit microbiéle matten van de meren Reid, Fryxell en Ace.
Phylogenetische analyse gebaseerd op 16S rDNA sequenties toont aan dat
deze stammen tot de famile van de ‘Flexibacteriaceae’ behoren.

e Loktanella salsilacus (10 stammen), Loktanella fryxellensis (12) and
Loktanella vestfoldensis (4). Stammen van dit nieuwe genus werden
geisoleerd uit de meren Ace, Pendant, Organic en Fryxell. Phylogenetische
analyse gebaseerd op 16S rDNA sequenties plaatst deze stammen binnen
de Rhodobacter groep van de o-subklasse van de Proteobacteria.

Het tweede deel van dit werk behandelt de diversiteit van oligotrofe bacterién
in polaire zeeén en een verzameling van 173 bacteriéle stammen, die geisoleerd
werden na aanrijking onder oligotrofe, psychrofiele condities uit Arctisch (98
stammen) en Antarctisch (75 stammen) zeewater, was beschikbaar. Deze stammen
werden eerder geanalyseerd aan de hand van hun Biolog-patronen waarbij het
gebruik van verschillende substraten werd uitgetest (Tan, 1997; Tan & Riger,
1999) en aan de hand van vetzuur- en 16S rDNA sequentie-analyses (Mergaert
et al., 2001b). Ze behoren tot zes metabolische groepen en acht vetzuurclusters
konden afgebakend worden, terwijl acht stammen apart vielen. De resultaten van
de 16S rDNA sequentie-analyse tonen aan dat ze tot de o- en y- Proteobacteria,
de hoog-percent G+C Gram-positieven en tot de Bacteroidetes behoren.
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Verschillende clusters vertegenwoordigen nog niet beschreven, nieuwe taxa,
aangezien ze een 16S rDNA sequentiesimilariteit van minder dan 97% met hun
nauwste verwanten vertonen.

Intussen werden additionele stammen geisoleerd aan de hand van dezelfde
methoden en deze werden ingesloten in vetzuuranalyse tijdens deze studie en
de genomische diversiteit van 21 stammen werd verder onderzocht aan de hand
van rep-PCR genomische fingerprinting. Aan de hand van deze polyfasische
taxonomische aanpak konden twee nieuwe species behorende tot de y-
Proteobacteria beschreven worden:

e Alteromonas stellipolaris. Zeven Antarctische stammen konden
toegekend worden aan een nieuw species van het genus Alteromonas en
knoppen kunnen gevormd worden op moeder- en dochtercellen en op
prostheca. De vorming van prostheca is peritrich en prostheca kunnen vertakt
zijn.

e Glaciecola polaris. Twee Arctische stammen behoren tot een nieuw
species binnen het genus Glaciecola en knoppen kunnen gevormd worden
op moedercellen en op prostheca. Vertakkingen op prostheca kunnen
voorkomen.

De bacteriéle diversiteit in poolzeeé&n en microbiéle matten van Antarctische
meren is zeer groot en deze unieke habitats bezitten een enorme rijkdom aan
endogene, nieuwe taxa, met verschillende potentiéle industriéle toepassingen. In
de context van het MICROMAT-project, werd de produktie van nieuwe, aan koude
aangepaste enzymes en antimicrobiéle componenten door bacteriéle stammen
onderzocht en een onverwacht hoge antimicrobiéle activiteit werd aangetoond
voor deze Antarctische isolaten.
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MICROMAT (B104-CT98-0040)

Title

Biodiversity of microbial mats in Antarctica

Participants

Dr. A. Wilmotte, University of Liege (coordinator)

Dr. D. Hodgson, NERC British Antarctic Survey (BAS)

Prof. Dr. J. Laybourn-Parry, University of Nottingham

Prof. Dr. J. Swings, University of Ghent

Prof. Dr. W. Vyverman, University of Ghent

Prof. Dr. E. Stackebrandt, DSMZ

Dr. R. De Wit, University of Bordeaux

Dr. E. Géttlich, IWW Rheinish-Westfalisches Institut fir Wasserforschung Gemeinnitzige
Prof. Dr. S. de Hoog, Institute of Royal Netherlands Academy of Arts and Sciences
Dr. F. Marinelli, BioSearch Italia S. P. A., Microbial Isolation & Fermentation

Prof. Dr. B. Jones, Genencor International B. V.

Dr. O. Genilloud, Merck Sharp & Dohme de Espana

Description

In order to assess and improve the characterisation of the cultivated and ‘yet-to-be’
cultivated diversity of the bacteria, protists and fungi in the mats of Antarctica and to test
this biodiversity for its novelty and potential biotechnological use, two objectives are
being pursued during this EC Biotech project :

1. The biodiversity of mat communities from diverse freshwater and saline
lakes will be studied. For the cultivated biodiversity, classical and novel
isolation methods will be used. For example the Benthic Gradient Chamber will
be used to mimic some of the gradients present in the mats with the purpose to
enrich for some organisms and try to maintain the mats. Phenotypic and
genotypic characteristics of the strains will be determined. Modern molecular
strategies, based on SSU rDNA will be used for genotypic characterisation of all
types of microorganisms, in order to establish a standard taxonomic approach.
The diversity of pigments and light-protective compounds will be assessed. In
parallel to the isolation of strains, the ‘yet-to-be’ cultivated biodiversity of all
groups will be estimated for representative samples using molecular approaches
based on rDNA sequences and involving clone libraries and DGGE-like
techniques.

2. Biotechnological use of the biodiversity. Isolated strains of bacteria, fungi
and protists will be screened for novel cold-tolerant enzymes and bio-active
compounds. The nucleic acids extracted from the samples will also be submitted

to screening for genes coding for proteases, cellulases and peptide synthetases.

Duration

01/11/1998- 24/02/2001
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BOF-project (Bijzonder Onderzoeksfonds, Universiteit Gent)

Title

Prokaryotische diversiteit in poolzeeén en Antarctische meren

Promotor

Prof. Dr. Ir. J. Swings, Vakgroep Biochemie, Fysiologie & Microbiologie, Universiteit
Gent

Contact person

Dr. J. Mergaert, Vakgroep Biochemie, Fysiologie & Microbiologie, Universiteit Gent

Description

De onderzoeksgroep is betrokken bij het taxonomisch onderzoek van polaire
prokaryoten via twee kanalen, enerzijds door haar deelname aan het Europees
BIOTECH project “Biodiversity of microbial mats in Antarctica“, (“MICROMAT”; 01-11-
98 tot 30-10-00; http://www.nerc-bas.ac.uk/public/mlsd/micromat/), en anderzijds door
haar samenwerking met T. L. Tan van het Alfred Wegener Institut fur Polar- und
Meeresforschung (“AWI”, Bremerhaven). Met het MICROMAT project voert de
onderzoeksgroep een, zij het eerder verkennend, onderzoek uit naar de biodiversiteit
van heterotrofe bacterién uit microbiéle matten die groeien in Antarctische meren, en
Zij beschikt over een unieke verzameling van zo’n 500 bacteriénkulturen uit
microbiéle matten (uit 10 verschillende Antarctische meren uit drie regio’s) die tijJdens
verschillende expedities door de British Antarctic Survey en de Australian Antarctic
Division werden verzameld. Deze matstalen werden gecryopreserveerd in het
laboratorium en zijn beschikbaar voor verder onderzoek. In de Arctische en
Antarctische zeeén zijn bacterién actief onder oligotrofe, psychrotrofe
omstandigheden, als plankton (Tan, 1997; Tan & Riger, 1999), of in zee-ijs (Bowman
et al., 1997a), die slechts na langdurige aanrijking en adaptatie kunnen geisoleerd
worden. Het AWI bezit een unieke verzameling van zo’n 500 facultatief oligotrofe
prokaryotische isolaten die aangerijkt en geadapteerd werden uit waterstalen
genomen tijdens verschillende expedities van het onderzoeksschip POLARSTERN in
Arctische en Antarctische zeeén, en de onderzoeksgroep heeft een 150-tal stammen
onderzocht in het kader van een stagescriptie. Uit onze voorlopige resultaten
(Verhelst, 1999) en deze van Tan ( 1997) en Tan & Riger (1999) blijkt dat ze
behoren tot potentieel nieuwe taxa.

De doelstelling van het beoogde project is de biodiversiteit te bestuderen van polaire
prokaryoten door isolatie en polyfasische taxonomische analyse (Vandamme et al.,
1996). Verschillende indices van biodiversiteit zullen hierbij onderzocht worden:
Arctische versus Antarctische zeeén, isolaten uit zee&n versus isolaten uit
Antarctische microbiéle matten, vergelijking van matten uit verschillende Antarctische
regio’s, physicochemische diversiteit van de meren, nieuwe isolaten versus reeds

bekende prokaryoten uit Antarctica.

Duration

01/01/2001- 31/12/2003
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Biotechnological exploitation of heterotrophic
bacteria and filamentous fungi isolated from
benthic mats of Antarctic lakes

Flavia Marinelli, Mara Brunati, Federica Sponga, Ismaela Ciciliato, Daniele
Losi, Stefanie Van Trappen, Joris Mergaert, Jean Swings, Elke Géttlich, Sybren
de Hoog, Jose Luis Rojas and Olga Genilloud

Written for Microbial Genetic Resources and Biodiscovery,
eds. J. Swings en I. Kurtboke

Antarctic lakes represent a unique undisturbed environment for exploring microbial
diversity. The MICROMAT project, an academic and industrial joint research effort
funded by the EC to study microbial mats growing in Antarctic lakes, has shown
the enormous richness of taxa inhabiting these ecosystems and their
biotechnological potential. 723 heterotrophic bacteria and 158 fungi were isolated
from 13 lakes in the McMurdo Dry Valleys, the Vestfold Hills and the Larsemann
Hills and screened for the production of antimicrobial compounds of interest against
human pathogens of clinical relevance. High and unexpected antimicrobial activity
rates were obtained from these Antarctic isolates (29 % from fungi and 17% from
bacteria). The frequency of antibacterial activity is particularly high against the
Gram-positive S. aureus and the Gram-negative E. coli both among bacterial and
fungal isolates. Most antifungal activities against the fungi C. albicans, A. fumigatus
and C. neoformans were obtained from fungi.
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The MICROMAT project

Natural products have been a critically important source of clinically relevant
therapeutic molecules. However, the discovery rate of novel structural classes of
antimicrobial molecules has declined in the last decade (MacNeil et al. 2001).
Recent progress in molecular microbial ecology shows that the extent of microbial
diversity in nature is far greater than previously thought, as the number of known
species is less than 1 % (Rondon et al. 1999). A renewed interest in examining
microorganisms for novel pharmaceuticals has stimulated the development of
integrated approaches combining specific isolation methods and the access to
geographically diverse sample sources and to different ecological niches (Pelaez
and Genilloud, 2002). Metabolic potential is also being exploited by cloning
microbial genes in environmental libraries without undergoing the step of culturing
microbes (MacNeil et al. 2001).

In this context, the academic and industrial joint research of the EC project
MICROMAT (http://www.nerc-bas.ac.uk/public/misd/micromat) has focused on the
study of the culturable and uncultivable — or, better, the “not-yet-culturable” —
diversity in microbial mats occurring in Antarctic lakes. The Antarctic continent
and its surrounding marine sites offer a unique opportunity to investigate an
unexplored microbial biodiversity (Bernan et al. 1997; Brambilla et al. 2001).
Antarctica is in fact characterized by its geographical and climatic isolation. The
extreme climate has led to evolution of novel biochemical adaptations to severe
low temperatures and the possibility of indigenous species. Moreover most of the
continent has experienced little or no anthropogenic influence. Antarctic lakes
include both freshwater and hyper-saline systems and some of them are covered
by perennial ice (Wharton et al. 1993; Doran et al. 1994). Their benthic areas
receive sufficient solar radiation to be covered by microbial mats. These benthic
mats have accumulated for thousands of years and are virtually undisturbed due
to the particular climatic conditions and the absence of higher metazoans. Results
from the MICROMAT project have pointed out the extremely high microbial diversity
in mats where numerous novel phylotypes have and are being described (Van
Trappen et al. 2002; Van Trappen et al. 2003; Tindall et al. 2000; Brambilla et al.
2001; and unpublished results).
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Biotechnological exploitation of Antarctic isolates

Sampling

Mats were sampled from 13 lakes of different ages and physico-chemical
characteristics located in three distinct regions of the Antarctic continent (Fig.1).
The Larsemann Hills are a series of granite and gneiss peninsulas into Prydz Bay
(Eastern Antarctica) with fjords and lakes directly (currents, inlets) or indirectly
(sea spray) subjected to marine influences; most of them thaw for up to 2 months
in summer and during this time are subjected to considerable wind driven mixing.
The Vestfold Hills constitute a low-lying area situated South of the Larsemann
Hills, where hundreds of water bodies are found in the valleys, with salinities
ranging from fresh to hypersaline (ten times seawater) (Bowman et al. 2000). In
contrast to the Larsemann and Vestfold Hills, the lakes in the McMurdo Dry Valleys
of South Victoria Land are very old (hundreds of thousand of years). They do not
loose their ice-cover and thus lack any turbulence. They vary from dilute meltwaters
to hypersaline lakes (Wharton et al. 1993; Doran et al. 1994; Laybourn-Parry et

0

arsemann Hills

o
54

QOW

S
Figure 1. Map of the Antarctic continent showing the three sampling fields.
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al. 1997).

Samples of the mats were taken either at a water depth of 3-4 m or from the
littoral zone of the lakes (Van Trappen et al., 2002). The diversity of bacteria,
cyanobacteria, algae, protozoans and fungi in the microbial mat samples of several
Antarctic lakes was studied by conventional (direct microscopy, cultivation) and
molecular methods (clone libraries and DGGE based on the SSU rDNA from the
samples).

More than 1500 strains were isolated and part of them was screened for the
production of new cold-adapted enzymes and antimicrobial compounds. In this
report we describe our combined efforts to screen 158 filamentous fungi and 723
heterotrophic bacteria isolated from mats collected in five lakes in the Larsemann
Hills, six in the Vestfold Hills and two in the McMurdo Dry Valleys. Our main
objective was to assess the potential of this microbial diversity with the aim of
discovering new anti-infective producers among these Antarctic microorganisms.

Diversity of Antarctic isolates

Table 1 and Table 2 show the geographical distribution and the lake of origin
of the bacteria and fungi isolated from thirteen lakes located in the three distinct
Antarctic regions sampled, i.e. Larsemann Hills, Vestfold Hills and McMurdo Dry
Valley. Taxonomical diversity among 746 Antarctic bacterial isolates, including
the strains (723) tested in this work, was previously studied by fatty acid clustering
analysis and by 16S rDNA sequencing of cluster representative strains: a
dendrogram with 41 different fatty acid clusters and 31 strains forming single
branches was described by Van Trappen et al. (2002). Table 1 reports the
taxonomical distribution for 675 of 723 bacterial strains tested in this paper. The
675 isolates were distributed in all the 41 different fatty acid clusters previously
identified and they also included 28 strains forming single branches. Fatty acid
profiles on the rest of the screened strains (48 out of 723, not listed in Table 1)
were not interpretable due to their low resolution or their strain cultivation conditions
were unsuitable for general comparison (data not shown). The clustered bacteria
were phylogenetically affiliated on the basis of their 16S rDNA sequences with
several lineages in the alpha, beta and gamma subclasses of the Proteobacteria,
the Bacteroidetes, and the high and low percentage G+C Gram-positives. As shown
in Table 1, most clusters (28) contained strains (614) isolated from different lakes,
and often from different regions, suggesting that taxa showing these fatty acid
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compositions might be ubiquitous in Antarctic lakes.

The diversity of fungal Antarctic strains was determined on the basis of the
taxonomical description provided by Goéttlich et al. (2003). Table 2 shows the
taxonomic distribution of fungi isolated from the three geographic areas. Thelebolus
sp. was the predominant species in all the three regions sampled. Thelebolus
was almost the only genus recovered from the old and isolated meromictic lakes
of McMurdo Dry Valleys. Members of the most widely distributed genera such as
Penicillium, Aspergillus, Phoma, Cladosporium, Curvularia were isolated in the
Larsemann and Vestfold Hills areas. In terms of distribution of the isolated fungi
among different genera, lakes in the Vestfold Hills turned out to be the most
productive, as some representatives of genera Botrytis, Beauveria, Acremonium,
Arthrinium, Phialophora, Geomyces, Alternaria were isolated only from these
sources.

Cultivation of Antarctic isolates

The cultivation of Antarctic heterotrophic bacteria and filamentous fungi was
optimized in terms of medium composition and incubation temperature by a
screening of different nutrients in pre-culture and fermentative media and by varying
growth and production temperatures (data not shown). Major changes in the
fermentation conditions were the introduction of less concentrated media and the
addition of marine salts, which are common adaptations of classical medium
composition to the cultivation of marine microbes (Sponga et al. 1999; Bernan et
al. 1997). About half of the bacteria grew better in marine derived media whereas
for the other half rich classical media were suitable. In any cultivation condition
used, all the bacteria and fungi produced a high biomass. When growth was
monitored at different temperatures (4°C, 10°C, 22°C, 28°C), optimal temperatures
were in the range of 22 to 28°C, suggesting that all these isolates are
psychrotolerant rather than psychrophilic. However, Thelebolus strains produced
more biomass around 20°C but sporulated at 10°C, indicating true psychrophily.
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Antimicrobial activity

A total of 6,348 and 1,422 samples were prepared from the fermentation of
the 723 bacteria and 158 fungi, respectively. Up to four different sample preparation
methods - three based on the extraction by/with solvents with different polarity
and another one consisting in the adsorption/elution to polystyrenic resin - were
used to widen/favour the recovery of secondary metabolites with different molecular
weights and lipo/hydrophilic properties/polarities. These samples were tested for
growth inhibition against a panel of human pathogenic microorganisms
(Staphylococcus aureus, Enterococcus faecium, Escherichia coli, Candida albicans,
Aspergillus fumigatus and Cryptococcus neoformans) either in solid or liquid assay
formats.

Table 3 reports the frequency of microbiological activity against each test
pathogen among the heterotrophic bacteria. From 124 bacteria out of 723 that
were active, 110 produced only antibacterial activities and 14 showed some
inhibition of the tested fungal strains. The frequency of antibacterial activity was
normal against the Gram-positive S. aureus (13.2%) and high against the Gram-
negative E. coli (7.4%). The active strains were distributed among 21 clusters out
of the 41 above described and in several lineages in the alpha, beta and gamma
subclasses of the Proteobacteria, the Bacteroidetes, and the high and low
percentage G+C Gram-positives. Almost 64 % of the active bacteria (79 isolates)
were members of the 6 major fatty acid clusters (5, 22, 23, 26, 30, 41) that contained
isolates widely distributed in the different sampling areas (see Table 1). In contrast,
39 active cultures were associated to 15 minor clusters; 4 strains formed single
branches and 2 belonged to the not clustered group.

Further studies were performed with a subset of these strains (hits) that
exhibited some relatively potent antibacterial activities against bacterial human
pathogens (Table 4). None of the selected strains showed antifungal activity in
the production conditions tested (data not shown). Two isolates (R-7513 and R-
7941) obtained in the McMurdo Dry Valleys, specifically in the lakes Fryxell and
Hoare, were studied more in detail. The isolates corresponded to coccoid high
%GC Gram positives, which exhibited antibacterial activity against B. subtilis, S.
aureus and E. faecium. Both strains, although isolated in different lakes, turned
out to have similar fatty acid composition and 99.6 % 16SrDNA sequence similarity
to Arthrobacter agilis. They apparently produced similar compounds. Preliminary
mass spectrometry of purified extracts suggests these compounds to be cyclic
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thiazolyl peptide antibiotics with similar antibacterial spectrum of activity against
Gram positive bacteria (Z. Guan, personal communication). The other isolate (R-
7687) from Lake Hoare in the McMurdo Dry Valleys belonged to the beta-
Proteobacteria and differs from the previous ones for the activity on E. coli. Seven
other isolates, six from Lake Reid and one from Pendant, were also particularly
active against Gram-positive and Gram-negative pathogens. Three of them are
similar to Pseudomonas orientalis, whereas the others belonged to taxa isolated
from cold, aquatic environments such as Shewanella baltica and Psychrobacter
glacincola.

Table 5 shows the distribution of the antimicrobial activities among filamentous
fungi belonging to different species, genera and orders. The frequency of
antimicrobial activities was more than 29 % in total. As in the case of bacteria, the
frequency of antibacterial activity was high against the Gram-positive S. aureus
(14 %) and the Gram-negative E. coli (10 %). In contrast to bacteria, high antifungal
activities against C. albicans, A. fumigatus and C. neoformans were obtained
from these fungal isolates. It is worth noting that although Thelebolus was the
taxon most frequently isolated (71 strains tested originated from nine lakes in the
three different areas), it was one of the less productive (only 11 active isolates, 15
%) in contrast to Penicillium and Cladosporium, two of the most active groups that
were isolated from the Vestfold Hills and Larsemann Hills (see Table 2). Penicillium
spp. were among the most active species with a rate of 93 % active strains, while
lower percentages were obtained with Cladosporium spp. (35 %), two genera
where comparable numbers of strains were tested.

Since many fungi are good producers of toxins, a cytotoxicity test based on
the inhibition of labeled thymidine uptake in HeLa was introduced to select
molecules not toxic to mammalian cells among those active extracts coming from
fungi. Two thirds of the fungal extracts showed a high cytotoxicity against eukaryotic
cells (data not shown). Table 6 reports the cytotoxicity test results and the
antimicrobial spectrum of activity (expressed as end point inhibition) for eight
selected fungi (hits). Aspergillus clavatus (IWW447) showed potent antibacterial
and antifungal properties associated with a marked cytotoxic effect. This spectrum
is typical of toxins produced by aspergilli and other fungi. The five selected
Penicillium strains showed different antimicrobial profiles associated with lower
values in the cytotoxicity test, demonstrating that although isolated in the same
region, they may produce diverse metabolic compounds. More interesting for the
discovery of new specifically acting anti-infectives are those metabolites showing
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Annex IV

lower but more specific and not cytotoxic activities, such as the antifungal
characteristics of Beauveria (IWW1017) or the specific E. coli inhibition effect of
Cladosporium extract (IWW1019).

Discussion and general considerations

Although Antarctic lakes have been for a long time considered as inhospitable
and isolated environments inhabited by species-poor communities, studies funded
by the EC project MICROMAT revealed the presence of a large microbial diversity,
especially for prokaryotes. Results from this interdisciplinary and polyphasic
approach, of which part has been published up to now (Van Trappen et al. 2002;
Van Trappen et al. 2003; Tindall et al. 2000; Brambilla et al. 2001; Gattlich et al.
2003) showed that bacterial diversity in the sampled mats from Antarctic lakes is
extremely high and novel phylotypes were discovered. The observed lower
eukaryotic diversity was indeed dominated by a few but highly specialized and
often endemic taxa. The overall evidence supported the strategy for industrial
screening of these fresh isolates as unexplored source of biotechnologically
valuable bioactive molecules.

The main purpose of the studies reported in this paper was to evaluate and
compare the ability of Antarctic bacteria and fungi to produce anti-microbial
molecules. The frequency of the antimicrobial activities produced by these isolates
was considered to be an indicator of their capability to produce anti-infective
procedures already in place at Biosearch Italia S.p.A. (now Vicuron Pharma-
ceuticals) and Merck Research Centers and the resulting frequencies of
antimicrobial activities were thus comparable with those routinely achieved by “in
house” screening of thousands actinomycetes and fungi isolated from different
sources.

Antarctic bacteria have been extensively isolated by using enrichment
methods under oligotrophic and psychrotrophic conditions, from freshwater lakes,
saline and hypersaline lakes and ponds, soil, sandstone and sea ice (Friedmann
1993; Tan et al. 1996; Tan et al. 1999; Bowman et al. 1997; Bowman et al. 2000;
Gosink and Staley 1995; Mergaert et al. 2001b; Murray 1998; Tindall et al. 2000;
Brambilla et al. 2001; Staley and Gosink 1999; Wery et al. 2003). Several new
species have been isolated from Antarctic benthic microbial communities, e.g.
Flavobacterium gelidilacus (Van Trappen et al. 2003), Flavobacterium degerlachei,
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Flavobacterium frigoris, Flavobacterium micromati (Van Trappen et al. 2004a),
Gillisia limnaea (Van Trappen et al. 2004b), Flavobacterium tegetincola
(McCammon and Bowman 2000), Arthrobacter flavus (Reddy et al 2000),
Rhodoferax antarcticus (Madigan et al. 2000), and the anaerobes Psychromonas
antarcticus (Mountfort et al. 1998) and Clostridium vincentii (Mountfort et al. 1997).
Indeed, only few studies were devoted to the high-throughput cultivation and
screening of Antarctic microbial isolates (Ashbolt 1990; Bull et al. 2000). In this
work, the 723 Antarctic bacteria belonging to 41 fatty acid clusters and 28 single
branches and phylogenetically affiliated with 24 lineages in the alpha, beta and
gamma Proteobacteria, the Bacteroidetes, and the high and low percentage G+C
Gram-positives, were massively cultivated and screened for their antimicrobial
activities. The nearest validly named phylogenetic neighbours of these strains
often belonged to taxa isolated from cold, aquatic environments, such as
Shewanella baltica, Psychrobacter glacincola, Sulfitobacter pontiacus,
Flavobacterium frigidarium, Flavobacterium gillisiae, Salegentibacter salegens,
Gelidibacter algens. Sequences from many strains showed pairwise sequence
similarities of less than 97 % to their nearest validly named neighbours (Van
Trappen et al. 2002), indicating that they represent taxa that have not been
sequenced yet or as yet unnamed new taxa, related to Alteromonas, Bacillus,
Clavibacter, Cyclobacterium, Flavobacterium, Marinobacter, Mesorhizobium,
Microbacterium, Pseudomonas, Salegentibacter, Sphingomonas and Sulfitobacter.
These results on the taxonomic diversity and novelty of these isolates supported
that they constitute a unique biotechnologically exploitable collection.

From the screening results we observed a high percentage of antibacterial
activities (ca. 15 %) that contrasts with the few producers of antifungal metabolites
(almost 2 %). These frequencies were comparable to the ones observed in the
screening of soil actinomycetes, which are considered the most prolific and versatile
microbial source of antibiotics (Waksman and Lechevalier 1962; Axelrood et al.
1996; Lazzarini et al. 2000; Sponga et al. 1999), supporting the idea that mats
from these different lakes contain a rich prokaryotic diversity where the antibiotic
production can confer survival advantage. This is indeed not surprising if we
consider that these complex microbial communities dominated by prokaryotes
have accumulated during thousands of years and bacteria were confronted with
extreme conditions, such as low temperatures, freezing-thawing cycles, UV-
irradiation, desiccation and varying light conditions, salinities and nutrient
concentrations. As a consequence they have been under a high selective pressure
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and may belong to indigenous new taxa with potentially novel biochemical
adaptations.

Distribution of fungi in Antarctica was previously studied mainly in
environments such as mosses, lichen communities or in relation to the distribution
of “hosts” such as birds, penguins and invertebrates (Del Frate and Caretta 1990;
Tosi et al. 2002; Vishniac 1993). Most of the filamentous fungi and yeasts described
by these authors are cosmopolitan and cold tolerant, but some such as Thelebolus
appear to be indigenous species (Del Frate and Caretta 1990). Our investigations
(Gottlich et al. 2003) revealed that benthic mats are dominated by a relatively
small number of fungal species, given the high diversity in eubacteria in the same
lakes and compared to the number of species known in the fungal kingdom. None
of the filamentous fungi proved to be truly psychrophilic, except Thelebolus strains.
They often produced markedly pigmented mycelia, probably to protect themselves
from strong UV irradiation (Hughes et al. 2003). Also the production of abundant
and resistant spores typical of some of these genera such as Cladosporium and
Geomyces may represent a survival tool to desiccation, to low temperatures or to
the presence of high saline concentrations such as it occurs in the lakes of the
Vestfold Hills. Finally some species such as Thelebolus and Geomyces previously
isolated by other authors from Antarctic soils or other material such as mosses
(Del Frate and Caretta 1990; Tosi et al. 2002) showed a high tolerance to low
temperatures.

The frequency of antibacterial and antifungal activities detected among fungal
isolates (29 % active isolates) was higher than the one usually detected in the
screening of other ecological groups of fungal isolates (Suay et al. 2000, Sponga
et al. 1999). Valuable activities were noted against C. albicans, C. neoformans or
A. fumigatus and it is interesting to note that many yeast-like organisms were
isolated from Antarctic samples: they often were true psychrophiles and among
them were the most frequently isolated genera such as Candida and particularly
Cryptococcus (E. Gottlich and G.S.de Hoog, personal communication; Tosi et al.
2002). Possessing metabolic potential to produce active molecules against yeasts
can confer a competitive advantage to local filamentous fungi, which turned out to
be a further appealing aspect for the biotechnological exploitation of such isolates.

Further work is now in progress on the chemical and biological profiling of
metabolites produced by the selected “hits” among these Antarctic fungi and
bacteria, which show an interesting antimicrobial spectrum of activities. The
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assessment of their novelty will help to understand to which extent chemical
diversity correlates with the taxonomical diversity so far discovered in these
Antarctic benthic microbial communities.
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Annex V

POLARSTERN K2
ARK IV/2
Bacteriological [: 4L
stations 3 BO 2
195 gz
|
27.223
o]
o* .
242 |700 .
~
100 w o°
[
1 Figure 1. Bacteriological stations in Fram
» \ Strait and the Western Greenland Sea
£ leoen § (from Tan & Ruger, 1991).
Station Water Position of Enrichment Strain No.
No. depth [m] Station Technique ARK
223 25 75°33.3N: Dialysis 176; 179; 180; 184;
08°48.8'W 186; 188; 189; 190;
193; 194; 195; 196;
197, 199, 201, 204;
205; 206, 212; 213;
215;217:.219:. 222
223 200 Dialysis 164; 165; 166; 167,
168; 169, 170; 171
223 1000 Dialysis L2 173
235 25 75°09.4'N; DoublePetri 105; 107, 109; 111;
12°27.6'W 112; 113; 115; 116;
119; 120; 122; 124
233 25 Dialysis 133,137, 138
242 25 71°56.1'N; DoublePetri 129; 131
08°21.1'W
242 200 Dialysis 145

Table 1. Origin of bacterial strains from the Western Greenland Sea (from

Tan, 1997).
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Figure 2. Cruise track of RV POLARSTERN during Leg ANT-VIII/6 and positions

of bacteriological stations (from Tan et al., 1999).

Station | Sampling | Water Position of station Strain no.
no. 16/ | date depth, m AN
507 |03.24.90 | 025 66°11.2°8; 35°18.5°E | 011; 021; 031; 041; 042; 051; 061; 071;
081; 091
509 |03.25.90 | 025 66°06.7°S; 34°17.8°E | 101; 111; 121, 122; 131; 141; 151
100 161; 184; 193
518 |03.28.90 | 025 64°57.4°5; 33°37.4°E | 251, 261; 262; 271; 273; 281; 291
100 331; 341; 351
526 |03.31.90 | 023 67°44.178; 33°17.9E | 401; 411; 441; 451; 461; 481
530 | 04.01.90 | 025 66°21.978; 33°46.7°E | 521; 541; 542
534 104.02.90 [ 025 67°03.9°S; 37°27.6E | 581; 602
535 |04.03.90 | 025 66°55.17S; 34°18.2°E | 621
547 |04.12.90 | 025 66°20.0°S; 08°53.4°E | 691; 701; 702
549 104.13.90 | 025 65°01.6°S; 09°11.2°E | 731; 741
554 | 04.15.90 | 025 65°49.37S; 14°08.5°E | 802; 811; 812
557 [04.15.90 | 025 65°44.7°S; 13°39.6'E | 821; 822; 832; 841; 843

Table 2. Origin of oligotrophic Antarctic strains from enrichment cultures in

dialysis chambers (from Tan & Riiger, 1999).
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% Scans
8 g 2 2 2 g g
] 24 (4), 25 (8), F (5), NC (1)
H (59)
23 (72)
NC (2), 39 (19)
. ] 23 (1), E (5), F (2)
38 (43)
23 (4), C (24)
— EM 32 (2), 33 (5), 34 (4), NC (5)
40 (13), 41 (1), NC (1)
26 (37), 27 (2)
] 28 (13), 29 (4)
41 (58), A (12), B (6), NC (3)
30 (58)
NC (4), 5 (8)
< 40 (9)
5 (59)
D (75)
5(8), 6 (5)
7(5), 8 (2), 9 (4), NC (1)
ﬂ 35 (5), C (1), NC (2)
| 10 (31)
36 (7), 37 (3), J (3), NC (2)

1(2),2(6),3(2),4(3), 11 (4),
12 (4), 13 (4), G (6), NC (4)

14 (7), 15 (8), 16 (7), 17 (5),
1(2), K(3), NC (4)

22 (57), NC (3)
22 (19)
) 22(1),31(2), NC (3)

Figure 1. Abridged dendrogram obtained by numerical analysis of the fatty acid compositions of

18 (61)

16 (2), 18 (3), 19 (10), NC (5)

20 (12), 21 (2), NC (3)

all Antarctic lake and polar sea isolates (975) using the Canberra metric similarity coefficient
(S...,) and UPGMA clustering. Clusters were delineated at a cut-off value of 80% and numbered
as described in Van Trappen et al. (2002) and Mergaert et al. (2001b). Number of strains per
cluster are indicated between brackets.
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r20

% Sequence divergence

L L L n L L L L T

Jannaschia helgolandensis
Loktanella vestfoldensis (41)
Loktanella fryxellensis (41)
Loktanella salsilacus (41)
ARK 177 (NC)
Octadecabacter antarcticus
Ruegeria atlantica
Ruegeria algicola
Antarctobacter heliothermus
ANT 8 (A)

ARK 152 (NC)
ANT 34 (A)
Staleya guttiformis
Sulfitobacter pontiacus
Roseobacter denitrificans
Roseobacter litoralis
R-9221 (36)
Sphingomonas natatoria
Porphyrobacter neustonensis
R-9216 (34)
R-9478 (33)

Brevundimonas subvibrioides
R-8358 (40)
Devosia riboflavina
R-10753 (35)

ARK 126 (B)
R-9219 (41)
Rhizobium mediterraneum

Mesorhizobium loti
Janthinobacterium lividum
R-7687 (28)
R-7614 (30)
R-8875 (24)

Pseudomonas saccharophila
Aquaspirillum delicatum
R-7724 (29)

R-8890 (30)
Hydrogenophaga palleronii
R-9284 (29)
ARK 158 (NC)
Shewanella frigidimarina
Shewanella baltica
R-12605 (22)
Pseudoalteromonas espejiana
ARK 102 (E)
Pseudoalteromonas antarctica
Pseudoalteromonas nigrifaciens
ARK 108 (NC)
Pseudoalteromonas elyakovii
Alteromonas macleodii
Aestuariibacter salexigens
Alteromonas marina
Alteromonas stellipolaris (E)
Glaciecola punicea
ARK 101 (NC)
R-11381 (25)
Glaciecola polaris (F)
Glaciecola mesophila
ANT 12a (F)
R-8160 (38)
4’: Psychrobacter glacincola
r Halomonas desiderata

Halomonas meridiana

ARK 176 (NC)

ARK 105 (D)

ARK 173 (NC)
ANT 41 (D)
R-9035 (39)
Marinobacter hydrocarbonoclasticus
ARK 161 (C)
ARK 104 (C)
ANT 34 (C)
Pseudomonas anguilliseptica
R-8971 (23)
Pseudomonas libaniensis

R-7616 (26)

Pseudomonas orientalis
R-9113 (31)
Bacteroides fragilis

Figure 2. Neighbour-joining dendrogram
based on all 16S rDNA sequences of the
Antarctic lake and polar sea isolates
belonging to the Proteobacteria using
Bacteroides fragilis as an outgroup. Bar,
20% sequence divergence. Between
brackets: the clusters as delineated in Van
Trappen et al. (2002) and Mergaert et al.
(2001b). In bold face: the novel taxa
described in this study.
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% Sequence divergence

30
2
0

L ) L T L 9

Bacillus oleronius
R-8161 (20)
Planococcus memeekinii
Nocardioides simplex
Rhodococcus fascians
ANT 31 (NC)
ARK 107 (H)
ARK 131 (H)
ANT 1 (H)
R-7549 (18)
Arthrobacter agilis
Micrococcus luteus
R-9183 (17)
Microbacterium keratanolyticum
R-9112 (16)
R-8287 (19)
Clavibacter michiganensis
Hymenobacter actinosclerus
R-7572 (14)
Reichenbachia agariperforans
Flexibacter flexilis
Belliella baltica
Cyclobacterium marinum
Hongiella ornithinivorans
Hongiella mannitolivorans
Algoriphagus ratkowskyi
Algoriphagus halophila
Algoriphagus aquimarina
Algoriphagus antarcticus (15)
R-9046 (10)
Algoriphagus chordae
Algoriphagus winogradskii
Brumimicrobium glaciale
Polaribacter franzmannii
Gillisia limnaea (4)
Psychroflexus gondwanensis
Salegentibacter salegens
[Cytophaga] latercula
Aequorivita antarctica
[Cytophaga] marinoflava
ANT 14 (G)
Psychroserpens burtonensis
Gelidibacter algens
R-9217 (13)
___ Flavobacterium aquatile
Flavobacterium gelidilacus (10)
R-8893 (10)
R-7581 (5)
R-9033 (2)
| R-7515(9)
— R-7585 (5)
R-7666 (12)
R-9476 (15)
1 ‘[ Flavobacterium fryxellicola (5)

R-8963 (11)
R-9331 (11)
— R-7579 (7)
Flavobacterium micromati (5)
‘[ R-7933 (5)
R-10847 (10)
l' Flavobacterium psychrolimnae (5)
R-7550 (5)
R-11271 (2)
R-9010 (5)
R-9003 (1)
Flavobacterium frigoris (5)
Flavobacterium degerlachei (5 + 6)
R-7518 (5)
R-11385 (11)
Shewanella baltica
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Figure 3. Neighbour-joining dendrogram
based on all 16S rDNA sequences of the
Antarctic lake and polar sea isolates
belonging to the Bacteroidetes and Gram-
positives using Shewanella baltica as an
outgroup. Bar, 30% sequence divergence.
Between brackets: the clusters as
delineated in Van Trappen et al. (2002) and
Mergaert et al. (2001b). In bold face: the

novel taxa described in this study.
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