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Abstract  

Despite the importance for ecosystem functioning, little is known about flow patterns at the 

cold-water coral-patch scale (i.e., centimetre-meter). In-situ flow speed measurements using 

moorings or landers only provide general near reef flow patterns and experimental studies so 

far focussed on single coral branches for feeding and behavioural studies. We address this 

knowledge gap by means of a flume study. The effect of different coral patches (4, 10 and 25 

cm height, respectively) created from dead coral branches on the ambient flow field and the 

refreshment rate of water within a patch was assessed, using three realistic current speeds 

(0.05, 0.15 and 0.3 m s-1). High bottom roughness in combination with strong currents 

increased current velocity and turbulence in the wake of all patches, even with very low relief. 

The formation of two dynamically different environments was observed. The framework-

water interface was characterised by high turbulence and enhanced vertical turbulent transport 

of momentum, while in the wake reduced turbulence and vertical mixing activity was 

observed, characterised by near stagnant flows. Subsequently, water-refreshment rates within 

a patch drastically decreased at current speeds less than 0.2 m s-1, while near to unobstructed 

stream conditions were observed at current speeds above 0.2 m s-1. Combining flume 

observations with available in-situ data suggest that heterogeneity and patchiness of cold-

water coral growth is likely induced by flow patterns at the coral patch scale, influencing the 

fate of particulate and dissolved matter as well as oxygen exchange rates in and around the 

reef.  
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Introduction 

Benthic ecosystems are governed by interactions between organisms and their chemical and 

physical environment. On the one hand, physical processes strongly affect the distribution of 

benthic fauna (Jumars & Nowell 1984, Cozzoli et al. 2014). Conversely, through their 

structural components (e.g. tubes, skeletons, leaves) protruding from the seafloor, organisms 

can modify the local near-bed flow and fate of dissolved and suspended matter (Bouma et al. 

2007, Borsje et al. 2014). Organisms that modify their physical environment are generally 

referred to as ecosystem engineers (Jones et al. 1997). Colony-forming cold-water corals are a 

clear example of globally occurring ecosystem engineers. Reef forming cold-water corals, like 

the commonly occurring species Lophelia pertusa (Linnaeus, 1758) can modify the seafloor 

landscape at large scales (Buhl-Mortensen et al. 2010). They have developed in a wide variety 

of growth forms, ranging from isolated individuals, to compact thickets, reefs and kilometres 

long and wide carbonate mounds of several 100 m’s height (Roberts et al. 2006). Such 

mounds, which are composed of a mixture of sediment and coral fragments (Mienis et al. 

2009), are for instance found on the eastern slope of Rockall Bank (Logachev mound 

province). In many, if not most cold-water coral habitats there is substantial small-scale 

variation in framework height and patchiness is high, whereby dense erect thickets alternate 

with low relief rubble (Buhl-Mortensen et al. 2010). 

In general cold-water coral reefs and mounds occur in areas characterized by strong 

bottom currents (Roberts et al. 2006, Mienis et al. 2007), which increases the potential for 

corals to alter flow and fluxes. The giant carbonate mounds on Rockall Bank (Kenyon et al. 

2003), for instance, are considered a result of baffling of the flow by the corals, leading to 

accumulation of sediment between the coral framework (Dorschel et al. 2005). At mounds 

and reefs where coral growth outpaces sedimentation, the framework consists of a layer of 

dead coral framework protruding above the sediment, with the living cold-water coral polyps 
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found at the distal ends of the framework (Mortensen et al. 2008). The preference for cold-

water corals to live on the outer parts of the framework is likely related to several factors. 

Corals will experience the highest food particle encounter rate at the distal ends of the 

framework and the lowest chance of depletion of food particles (Orejas et al. 2016a), which is 

important for their food supply. In addition living on open framework not being in close 

contact with the sediment will prevent the living polyps of corals from suffocation at times of 

high sediment load (Brooke et al. 2009). Furthermore, the dead coral framework forms a 

substrate for many epi-benthic species like sponges, hydroids, anemones and foraminifera as 

well as a shelter and nursery for mobile fauna, like fish, gastropods and echinoderms (Buhl-

Mortensen et al. 2010, Lessard-Pilon et al. 2010, Soeffker et al. 2011). As a result cold-water 

coral habitats are generally characterized by elevated biodiversity, benthic biomass and are 

sites of enhanced carbon mineralisation (Henry & Roberts 2007, Van Oevelen et al. 2009). 

Various observations support the contention that processes at the intermediate scale (e.g. food 

supply, oxygen refreshment, sedimentation rates) are important for the functioning and 

distribution of live corals, associated biota and structure of the habitat (e.g. heterogeneous 

distribution of corals) (Comeau et al. 2014, Findlay et al. 2014). For example the microbial 

community composition within the cold water coral framework differs significantly from that 

in the water above the reef. This was explained by the dense coral framework constraining 

exchange of water and solutes between reef and overlying water mass (van Bleijswijk et al. 

2015). Other studies showed that at L. pertusa reefs in areas with a dominant unidirectional 

current regime (e.g. Traena-Norway, Cape Lookout-USA) live corals are only found at the 

upstream site of structures, facing the strongest currents (Buhl-Mortensen et al. 2010, Mienis 

et al. 2014). Apparently organic matter in the water flow does not reach beyond the first 

frontier of live corals either because of distortion of the flow or depletion of food particles and 
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nutrients (Wagner et al. 2011). These observations emphasize the need for detailed 

understanding of flow patterns within and around coral patches.  

  

Recent studies suggest that turbulence might be a factor of importance for cold-water 

coral distribution on medium to large spatial scales (van Haren et al. 2014). For instance, a 

large-scale hydrographic model of the Logachev coral mounds predicted intensified bottom 

currents at mound slopes caused by internal tides interacting with topography. Distribution 

patterns of live cold-water coral seems to match with such high energy slopes (Mohn et al. 

2014). Actual in-situ measurements on a Logachev mound slope confirmed the intensified 

mixing which was 100 fold values in the open ocean (van Haren et al. 2014). A successive 

field and model study by Cyr et al. (2016) illustrated the interaction between coral mounds of 

different heights and flow resulting in enhanced tidal currents on the slopes where corals were 

found to be most abundant. 

Contrary to slopes of the Logachev Mounds with their extensive cover of cold-water 

coral framework, many coral habitats are composed of a collection of coral thickets. Most 

likely, also the extensive coral habitat on Rockall Bank once started as individual thickets that 

merged into an extensive framework (Wilson 1979). To understand the onset of coral cover 

growth and its subsequent evolution to heterogeneous habitats or mounds, it is important to 

obtain insight into coral-water flow interactions at a scale intermediate between the 

landscape-scale represented by a mound province, (e.g. Mohn et al. 2014, or whole reef 

studies e.g. Guihen et al. 2013), and the smallest scale represented by responses of individual 

polyps to flow (Purser et al. 2010, Gori et al. 2014, Orejas et al. 2016a). To our knowledge, 

there is scant information on this subject in the context of colony forming cold-water corals 

such as Lophelia pertusa. This in contrast with large number of studies on flow alteration by 
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underwater vegetation and consequences for sedimentation (e.g. Bouma et al. 2007, 

Kondziolka & Nepf 2014). 

As cold-water corals form vulnerable hotspot ecosystems, better insight is required 

into factors that affect where and even more importantly how corals grow (e.g. thickets, 

continuous coral cover). Collecting in-situ measurements in close vicinity of coral framework 

is a technical challenge. Only one study is known (Guihen et al. 2013) where in-situ 

measurements were made of near-bed current speeds inside and outside a cold-water coral 

reef in a 200 m deep coastal reef (Tisler, Norway). This showed that the roughness of coral 

structures created a thicker bottom mixed layer above the reef potentially allowing for more 

vertical transport of particles towards the polyps. However, so far it has not been possible to 

obtain detailed in-situ current measurements around individual coral patches or colonies in a 

deep coral reef or mound habitat. We aim to address this knowledge gap by means of a flume 

study, in which we assess the effect of cold-water coral patches of different dimensions (4, 10 

and 25 cm height) on the ambient flow field and turbulence levels, using three realistic current 

speeds (0.05, 0.15 and 0.3 m s-1) measured on the Irish margin (cf. field data by Dorschel et 

al. 2007 and Mienis et al. 2007). With these measurements we intend to expand insight into 

processes that influence transport of particulate and dissolved matter, and corresponding 

exchange rates between the coral framework and overlying water relevant for food capture, 

oxygen supply and particle settling.  

 

Methods 

Coral patches  

Fossil cold-water coral branches of non-eroded framework were collected with a box-corer in 

the Logachev mound province on the SE Rockall Bank margin during a cruise (64PE360) 

with the RV Pelagia in 2012. Sites with a dense coral framework were selected based on 
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video recordings and subsequently sampled with a squared NIOZ box-corer (55 cm height and 

50 cm wide). Video observations and bottom samples collected with the box-corer showed 

great heterogeneity in cold-water coral cover on the mounds (Figure 1). To simulate the in-

situ structures observed, coral patches were made with different characteristics (height and 

density) using various sized coral branches (Figure 1 and 2). Selected branches that were used 

were part of overlying unburied framework and therefore showed no signs of erosion. Only 

branches that were not covered by epifauna were selected and if present epifauna was 

removed.  

As observed in box-core samples, branch size decreased towards the seafloor, which has been 

related to bio-erosion of coral debris (Beuck & Freiwald 2005). Centimetre sized coral 

branches, representing coral rubble, were used as base for all patches, which were placed on 

top of steel plates of 50 cm in length and 58 cm in width. Patches were created as 

homogenous as possible, whereby the whole width of the flume was filled with a similar coral 

density and height. Three different patch types were created, representing different 

environmental settings as observed on in-situ video images (Figure 1 and 2). The low relief 

patch type (LP) consisted of a thin layer (maximum 4 cm above bottom) of centimetre sized 

coral branches. The middle relief patch type (MP) consisted of a layer of cm sized coral 

patches with some larger erect coral colonies on top (maximum 10 cm above bottom). The 

high relief patches (HP, maximum 25 cm above bottom) were created using even larger 

decimetre sized coral colonies (Figure 2). No sediment cover was present at the bottom of the 

flume. Only a small amount of fine sediment was kept in suspension in the flume to create 

backscatter, needed for the measurements with the Acoustic Doppler Velocimeter (ADV). 

 

Hydrodynamic measurements 
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The effect of flow on the different cold-water coral patches was measured in a large racetrack 

flume at the NIOZ laboratory in Yerseke (Figure 2). The water column height (z) was 0.4 m 

and the total volume of the flume was 10 m3 (for a detailed description see Bouma et al. 

2005). Flow velocity components in the downstream (u), cross stream (v) and in the vertical 

direction (w) were measured at 20 Hz with a Nortek AS Acoustic Doppler Velocimeter 

(ADV) mounted on a 3-dimensional positioning system. Measurements were performed at 

three free stream velocities (ū at z=0.3) of 0.05, 0.15 and 0.3 ms-1, which are representative 

current speeds for cold-water coral habitats on the Irish margin (Dorschel et al. 2007, Mienis 

et al. 2007). Vertical hydrodynamic profiles were measured in front, above and behind the 

different patch types and ranged from close to the bed (z = 0.01 m) to 0.3 m above the bed 

with step sizes of 0.02 m (Figure 2). Time averaged components (ū, ̅ݒ	and ݓഥ) and their 

fluctuations (u', v' and w') were calculated by averaging the temporal measurements at each 

sampling location (n=200). Data points with correlations less than 70% (indicating unreliable 

data) and obvious outliers were filtered and removed (Morris et al. 2008). Subsequently, 

turbulent kinetic energy (TKE, 0.5(ݑത ഥݓ+2'ݒ̅+2' '2) in m s-1), was calculated to define vertical 

mixing, which potentially influences vertical fluxes of food as caused by turbulence (Folkard 

& Gascoigne 2009). In addition the vertical flux of momentum, the Reynolds Stress (-ρ(ݑ'w') 

in Pa, was calculated, which is an indicator of vertical mixing activity and is thus a measure of 

access to water column resources, whereby a positive Reynolds stress indicates momentum 

flux towards the bed (Hendriks et al. 2008). 

 

Dye measurements  

In addition to flow measurements, the refreshment rate of water expressed as the residence 

time of water was measured in a high coral patch. A fluorescent dye Uranine (Na-salt of 

Fluorescein; C20H10Na2O5, M=376.28 g mol-1) was used as a conservative tracer. Uranine is a 
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relatively cheap, non-toxic tracer that can be monitored at low concentrations using a 

fluorosensor. Three fluorosensors (Cyclops-Turner designs) were placed at 4 cm above the 

bottom within the coral framework of a high coral patch at 10, 30 and 45 cm from the leading 

edge of the patch, respectively (Figure 1F and 2). A solution of 2 mg Uranine mixed in a litre 

of seawater collected from the flume was prepared and 10 ml of this solution was injected in 

one pulse at the leading edge of the patch at 4 cm above the bottom of the flume (Figure 2). 

Residence time of the solution was measured at a range of current speeds (0.05, 0.1, 0.15, 0.2, 

0.25 and 0.3 m s-1), resembling current speeds as measured in-situ near cold-water coral areas 

on the Irish margin (Dorschel et al. 2007, Mienis et al. 2007). Measurements were repeated 5 

times at each setting. The residence time was calculated by subtracting the arrival time after 

release of the dye at a specific sensor from the total time that dye was observed in front of a 

sensor until it disappeared. Peaks were integrated and analysed with the Origin Pro 9.1 peak 

analyser software. The Uranine solution was also injected in front of the second and third 

sensor in line to quantify the reduction in flow, due to presence of the coral framework, 

mimicking the effect of flow on dissolved and particulate matter that is captured in between 

the coral framework (e.g. from vertical settling). For comparison a blank measurement (i.e. 

without a coral patch) was also carried out, whereby the fluorosensors were placed in the 

same configuration.  

A second set-up was created, whereby the sensors were placed behind the coral patch at 4 and 

10 cm above the bottom, respectively. Uranine was injected at 4 cm above the bed at the 

leading edge of the patch and measurements were repeated 5 times. Again the residence time 

was calculated as well as the respective arrival time of the dye at the different sensors. Data 

from the Cyclops fluorosensors were continuously recorded with a frequency of 1 Hz.  

 

Statistics 
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To test whether velocity profiles measured in front and behind the patch differed significantly 

among each other and to the mean of all, a series of Generalized Additive Models (GAM) 

(Wood, 2006) was fitted through the velocity data over the measured depths. In a GAM, a 

penalized smoother function (spline regression) is fitted. In this case it was fitted through the 

velocity profiles describing the change of current speed (or TKE or residence time) over 

depth. No specific linear relationship between current speed or other variables is assumed but 

a smoother function is estimated, which fits the data best. The use of GAM, enables the 

simultaneous statistical comparison of the entire velocity profiles (smoother functions) instead 

of post hoc comparison of single measurements or means at specific depths and distances 

(treatments). The disadvantage is that no simple parametric function is derived by which the 

profiles can be predicted on basis of other parameter values. It is a best description of the 

observed patterns and differences therein under the tested conditions. 

In the first analyses the measured current speed in relation to depth (Z) and distance (X) are 

analysed. Measurements immediately above the patch were excluded, due to absence of data 

in a large part of the profile. A series of four nested models with increasing complexity were 

tested and the best of these 4 models (Equation1) was selected on basis of the lowest value of 

the Akaike Information Criterion statistic (AIC). 

 

Up = α + (Z : X) + 1 (X) + ε (Equation 1) 

   with ε N(0, 2)    

 

where Up, is defined as a constant (α) and a function of depth (Z) and distance (X) for each 

distance separately. 1 is the coefficient of the mean (common) current-depth profile for all 

distances (X), and the error (ε) is normally distributed. The model fit was checked by plotting 

residuals against fitted values and by checking for homogeneity of variance between the 
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tested factors. The resulting smoother functions for each distance (X) were statistically 

compared with an F-test and used to evaluate the effect of the factor Distance.  

A similar procedure was followed to test whether the relationship between residence time of 

the fluorescent dye with current speed differed between an experimental setup with and 

without a coral patch. 

 

log(tres)= α + (U : Patch) + 1 (Patch) + 2 (Xinj) + 3 (XSensor) + ε (Equation 2) 

   with ε N(0, 2)    

 

where α is a constant, residence time is a function of velocity and presence or absence of the patch,  

are coefficients and ε is the error. The residence time was modelled as being dependent on 

current speed (U) and the absence or presence of a coral patch (patch), the location of the 

injection point (Xinj) and position of the sensor (Xsensor) (Equation 2). To fulfil the 

requirements of a good fit, the residence times (tres) were log transformed to obtain normal 

distributed residuals and homogeneity of variances. 

 

Results 

Hydrodynamic measurements  

Velocity vector plots of ū and ݓഥ  clearly showed different patterns depending on patch type 

and velocity treatment. The high patch caused the largest changes in flow pattern. At high 

current speeds (0.3 m s-1), flow is deflected upwards and accelerated above the patches, 

resulting in a fast flowing upper layer and reduced velocities immediately behind the patches 

(Figure 3). Mean water velocity increased to 0.45, 0.23 and 0.06 m s-1 above the high patch at 

velocity treatments of 0.3, 0.15 and 0.05 m s-1, respectively (Figure 4). The accelerated upper 

layer was still detectable 2.2 m behind the patch in the 0.15 and 0.3 m s-1 velocity treatments 

while at 0.05 m s-1 free stream velocities were observed at 1.2 m behind the high patch. Flow 
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speeds in the wake of the coral patch (z=0.01-0.18) were reduced to almost 0, only to increase 

again at 2.2 m behind the patch (Figure 4). The mid patch had a smaller influence on the flow 

velocity as compared to the high patch. However, also here velocities were reduced to almost 

0 behind the patch and the division between fast flowing upper water and slow flowing water 

near the bottom of the flume could still be observed 2.2 m behind the patch (Figure 4). The 

low patch showed qualitatively similar patterns at all velocity treatments. At velocity 

treatments of 0.3 m s-1 mean water velocities at z=0.03 decreased to 0.12 m s-1 behind the low 

patch and showed a minor increase at 2.2 m behind the patch up to 0.2 m s-1, which shows 

that even a low relief, like coral rubble, already affects the flow within and near a reef system 

(Figure 3). At low velocity treatments of 0.05 and 0.15 m s-1 changes in flow behind the low 

patch were minimal (Figure 4). 

In all treatments, Reynolds stress showed positive peaks immediately behind the patches just 

below the maximum height of the patches, corresponding with the boundary between the fast 

and slow flowing layers. This distinct Reynold stress showed that this region is dynamically 

different from the area above and below, indicating that fluxes in this area are oriented 

towards the bed (Figure 5). The zone of positive Reynolds Stress became wider moving away 

from the patches, indicating increased mixing between the two hydrodynamically different 

environments. 

Turbulent kinetic energy (TKE) levels, a measure of turbulent activity, strongly increased 

above and specifically behind all patches (Figure 6). However, the position of the TKE 

maxima differed between velocity treatments and patch type. Maxima were again observed 

just below the maximum patch height at the boundary between the fast and slow flowing 

water layers, indicating increased mixing just below the height of the top of the patch. 

Prominent peaks in TKE were observed between 10 and 20 cm above the bottom behind the 

high patch at current speeds of 0.15 and 0.3 m s-1. At greater distance behind the high patch, 
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TKE values remained relatively high towards the bottom of the flume, indicating increased 

mixing. At 0.05 m s-1 a small TKE peak was observed immediately behind the high patch and 

only a minor peak at 2 m (Figure 6). The same patterns were observed for the mid patch, 

although TKE values were a factor two lower. At current speeds of 0.3 and 0.15 m s-1 the low 

relief patch showed a distinct TKE peak right behind the patch at 5 cm above the bottom, and 

a peak twice as small at 2 m behind the patch (Figure 6). At a current speed of 0.05 m s-1 

changes in TKE were observed immediately behind the low patch. However, no changes were 

observed at greater distance behind the patch. 

In all combinations of patch-type and flume current speed, the model as given in equation 1 

provided the best fit. The resulting model fits with confidence bands are shown in Figure 7 

and in the supplementary Figures 1 and 2. The p-values belonging to the significance test of 

the factor Distance are summarized in Table 1 together with the Rsq and percentage deviance 

explained.  

 

Dye measurements  

Dye was injected at the leading edge of a high patch and the refreshment rate expressed as the 

residence time of water was measured inside the coral patch and compared to measurements 

without a coral patch (blanks). Measurements were conducted under different velocities at 

three sensor positions, i.e. at 15, 30 and 45 cm from the front of the patch (Figure 2). In 

general residence times showed a tendency to decrease with increasing speed and increasing 

distance from the leading edge (Figure 8). A GAM model incorporating (log-transformed) 

residence times with speed and sensor position as covariates shows all parameters to have a 

significant effect on residence time. In figure 9 a comparison of the recalculated residence 

times excluding the effects of injection point or sensor is given showing an evident difference 

between the absence or presence of a coral patch. 
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At velocities above 0.2 m s-1 the influence of the coral patch on the residence time of the dye 

became minimal, implying that all water within the coral framework is renewed at a relatively 

constant rate. At velocities less than 0.1 m s-1 the coral patch increased residence times at the 

positions of the second and third sensor with a factor three as compared to blank (without 

patch) measurements (Figure 9). The effect of sensor position is clearly visible in Figure 8. At 

the first sensor position the increase of residence times compared to blank measurements, 

were minimal. However, at the second and third sensor residence times increased at velocities 

of 0.05 m s-1 with up to 25 and 35 seconds, respectively (Figure 9). This difference of about 

10 seconds between sensors most likely reflects flow inside the framework (not measured) 

becoming weaker with increasing distance from the leading edge. Dye injected at 4 cm before 

the second and third sensor showed an increase in residence time of the dye within the patch. 

Longest residence times were measured at the injection before the third sensor, whereby the 

average residence at 0.05 m s-1 time increased from 58 seconds at injection before the first 

sensor to 100 seconds at injection before the third sensor.  

A second experiment was carried out whereby dye was injected at the front of the high-relief 

patch and sensors were mounted in a vertical position behind the patch at 4 and 10 cm above 

the bottom, respectively. Longest residence times were observed at the lowest velocity 

treatments. Compared to blank measurements the presence of the coral patch increased the 

residence time with more than 15 seconds at the strongest current velocities (Figure 10). Dye 

arrived slightly earlier at the sensor mounted at 10 cm above the bottom of the flume and also 

the residence time was shorter at all velocity treatments, pointing to mixing and exchange at 

the boundary between framework and overlaying water, which was also observed in high 

TKE values at the boundary between the coral patch and the overlying water (Figure 5). 

 

Discussion 
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By using realistic flow velocities, the present flume experiments start to provide us with a basic 

understanding of how various forms of cold-water coral patches with different characteristics 

affect mixing and turbulence patterns. Such insights are needed to bring us closer to explaining 

water flow within and around coral patches, which strongly affect ecosystem functioning. So 

far flow patterns at the intermediate coral-patch scale are poorly studied due to technical 

limitations hampering in-situ studies and lack of experimental studies beyond the coral branch 

scale (Guihen et al. 2013, Gori et al. 2014). The flume tank experiments in this study thus 

provide novel insights in the quantitative near-bed flow processes and interactions around and 

within a coral patch. The experiments clearly showed that different sized coral patches changed 

flow patterns around and within patches and turbulence downstream of patches, as well as the 

refreshment rate of water within patches.  

These alterations on coral patch scale and specifically the turbulence that is created will affect 

particulate and dissolved matter supply to living corals, exchange of matter within the coral 

framework with the associated reef fauna and particle settlement as has been shown for tropical 

coral reefs (Reidenbach et al. 2006; Genin et al. 2002). This will ultimately steer coral 

distribution patterns, and might explain the heterogeneous mosaic of living and dead coral 

patches often observed on mounds and reefs (Buhl-Mortensen et al. 2010). In the discussion 

below reference is made to comparable flume studies using tropical corals. Though latter studies 

support the relevance of studying small and medium scale water movement, it needs to be 

stressed that the morphology of tropical corals strongly differs from the structures that cold-

water corals build. Moreover, environmental conditions (i.e. turbulent shallow versus quiescent 

deep-sea) and physiology and resources (i.e. light versus suspended particles) in cold and 

tropical reefs strongly differ. These fundamental differences preclude quantitative comparison 

of results from the two types of studies. 
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Hydrodynamic patterns and implications for coral growth 

Small scale turbulence on a coral patch scale (centimetres to meters) might influence (larval) 

dispersal processes and food acquisition, depending on the exchange rates between a reef and 

the surrounding ocean (Baird & Atkinson 1997, Reidenbach et al. 2006). Observations on 

shallow water tropical coral reefs have shown that topographic roughness greatly enhances 

turbulence and mixing within the benthic boundary layer, which plays an important role in 

replenishing the reef with particles (plankton), nutrients and even having an effect on ocean 

acidification (Genin et al. 2002, Comeau et al. 2014). This so called mass transfer limitation is 

affected by the roughness of the surface and current speed, whereby exchange rates increase 

with increasing roughness and current speed (Abelson et al. 1993; Reidenbach et al. 2007; 

Chang et al. 2009). The current study implies that most likely similar mechanisms apply to 

cold-water coral habitats where current speed attains similar levels as in the study of Genin et 

al. (2002) and roughness is sufficient to enhance shear stress (Guihen et al. 2013).  

In this study the presence of a cold-water coral patch in combination with high bottom 

roughness of the coral branches and enhanced currents, increased the current velocity and 

turbulence in the wake of all coral patches, even with very low relief. The formation of two 

dynamically different environments was also observed near other epi-benthic structures, like 

sea grass beds and tropical coral reefs (Baird & Atkinson 1997, Weitzman et al. 2015) and in 

flume experiments with artificial obstacles blocking the flow (Chen et al. 2012; Kondziolka & 

Nepf, 2014). One region is characterised by high turbulence and enhanced vertical turbulent 

transport of momentum at the framework-water interface. This is the part of the framework 

where living cold-water coral polyps are mostly observed, growing on the distal ends of the 

framework (Rogers 1999, Mortensen et al. 2008). This is also the part of the reef that has the 

highest potential to exchange metabolites (Baird & Atkinson 1997).   
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In the wake of the coral patch between the bottom of the flume and maximum framework 

height reduced turbulence and vertical mixing activity were observed, whereby mass transfer 

was reduced. Within the wake, immediately behind the patch, increased momentum fluxes to 

the seabed were observed as indicated by elevated values of Reynolds stress. This wake 

region is characterised by near stagnant flows which are suboptimal for coral growth due to 

reduced access to particle flux (see Chang et al. 2009). This effect is most likely exacerbated 

by gradual depletion of food resources (particulate matter and nutrients) and oxygen in the 

flow during passage over the frontal and distal parts with live corals. Moreover in areas with 

high sediment loads, stagnant flow induces sedimentation (cf. Bouma et al. 2007), which 

could negatively influence coral growth (Brooke et al. 2009). In conclusion, strongly reduced 

velocities behind the patches do not provide ideal environments for coral growth, which likely 

explains the occurrence of living corals at the current facing site of mound and reefs 

dominated by unidirectional flow (e.g. Cape Lookout (Mienis et al. 2014), Tisler reef 

(Lavaleye et al. 2009)). 

Wake effects related to the presence of the different patch types reach up to several meters in 

the high velocity treatments, while they dissipate quickly at velocity treatments at 0.05 m s-1. 

In the wake of the patches increased mixing and fluxes were observed towards the bottom of 

the flume, which can have a positive effect on deposition in close vicinity to the patch and 

inhibit deposition of particles further away from the patch due to enhanced levels of 

turbulence (Chen et al. 2012). Especially at current velocities above 0.15 m s-1 applied to the 

middle and high patch, wake effects were still clearly present at 2.2 m behind the patches. 

This flow diversion reduces the velocity in the wake downstream of the patch, which could 

lead to lateral expansion of patches through the interactions of patch wakes as has been 

modelled for aquatic vegetation (Kondziolka & Nepf 2014) and tropical coral canopies 

(Reidenbach et al. 2007). At some distance where vertical mixing in the benthic boundary 
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layer has replenished resources, new patches may arise leading to a series of spatially 

separated reefs as was observed at larger scales in Traena (Norway) (Cathalot et al. 2015), 

Florida slope (USA) (Grasmueck et al. 2006) or Darwin Mounds (NE Atlantic) (Masson et al. 

2003). 

Cold-water corals are highly dependent on currents that transport pelagic food (Duineveld et 

al. 2007) and they mainly feed on (phyto)detritus, suspended particulate organic matter or 

zooplankton (Duineveld et al. 2007, Becker et al. 2009, Wagner et al. 2011). Laboratory 

studies have shown that cold-water corals might exploit different food sources depending on 

the flow rate (Purser et al. 2010, Orejas et al. 2016b). They found that the net capture rate of 

zooplankton by L. pertusa decreases when flow velocity exceeds 0.07 m s-1. However, such 

optimal conditions for plankton capture clearly do not fit with field observations, showing 

most living polyps to be distributed on top of framework (Mortensen et al. 2008), which is 

subject to the highest current speed and turbulence as shown in this experiment. In addition, in 

many reef locations average current velocities exceed 0.1 m s-1 (Duineveld et al. 2007, Mienis 

et al. 2014, Kenchington et al. 2017). In fact, Lophelia pertusa has been observed in-situ with 

fully extended tentacles in current speed of 0.1 m s-1 and much higher (Buhl-Mortensen et al. 

2015).  

 

Water renewel within coral patches and its ecological implications 

In a laboratory flume study (Chang et al. 2009) measured decreased flow and stagnant patches 

of water inside a single colony of a tropical coral. The alteration of the flow in the experiment 

by Chang et al. was especially strong at the highest velocity they applied (0.07 m s-1) and 

downstream in the colony, and according to the authors could cause depletion of nutrients and 

reduced access to particulate matter. Likewise, in this study it was shown that within a coral 

patch residence time of water and conversely flow rates within the coral patch increased up to 
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3 times at velocities below 0.2 m s-1 with the effect becoming stronger at lower velocities. 

This could have a positive effect on the ability of associated epifauna to settle on or attach to 

the framework and exchange dissolved and particulate matter (Koehl & Hadfield 2010). 

However, if the flow is diverted and water resides too long between the coral framework 

depletion of particulate matter, nutrients and oxygen might occur. The high respiration rates 

of the framework community and notably of the underlying sediment at the Rockall coral 

mounds (van Oevelen et al. 2009) promote a rapid depletion of oxygen within the framework. 

Such conditions might explain why van Bleijswijk et al. (2015) found a completely different 

microbial community in the water in between the framework compared to both the water 

overlaying the reef and the sediment and why active N2 fixation (a process inhibited by 

oxygen) may take place within the coral holobiont (Middelburg et al. 2015).  

In contrast to Chang et al. (2009) who found increased stagnancy with increased velocity, the 

residence time of dye at the highest realistic velocities that we applied, i.e. above 0.2 m s-1 

dropped towards nearly unobstructed flow conditions. Under these circumstances water in a 

patch of this size will potentially become refreshed and oxidized, which is important for the 

epifauna living on the dead coral framework, such as sponges, bryozoans, hydrocorals, and 

molluscs. Indeed periods of strong flow seem to relate to higher oxygen uptake rates in 

Norwegian reefs (Rovelli et al. 2015). For some suspension feeders that live in between the 

dead coral framework like sponges strong currents are equally important. For example the 

common glass sponge Aphrocallistes a common species on cold-water coral reefs uses 

current-induced flow during bouts of high current speed (>0.15 m s-1) to filter up to 2/3 of its 

daily total filtration volume (Leys et al. 2011), but at the same time may stimulate water 

exchange by autonomous pumping in times of low current velocities. Beside energy 

requirements sponges are also dependent on the ambient flow for oxygenation (Schlaeppy et 

al. 2010). 
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It has been shown that cold-water coral reefs act as a filter depleting the overflowing water of 

high quality particulate organic matter. For example, at Tisler reef (Sweden) the amount of 

particulate organic carbon was depleted across the reef in spite of an increase in quality due to 

admixture of coral produced mucus (Lavaleye et al. 2009, Wagner et al. 2011). While 

accelerated flow over corals thickets promotes particle pick-up and respiration, the strongly 

reduced flow and collision with coral branches within coral patches will induce settlement of 

inorganic and organic particles as was shown by the increased residence times of water when 

dye was released within the framework before the second and third fluorosensor. The high 

respiration rates of the underlying sediment point at an enhanced input of organic material. 

This deposition, though essential for mound build-up (De Haas et al. 2009), also tends to 

deplete resources within the framework and limits its extension. Depletion through combined 

acceleration over and reduction of flow in the framework is most likely responsible for the 

observed heterogeneity of coral coverage in habitats which have a unidirectional current (~ 

resource supply) such as Traena where coral thickets alternate with bare sediment. 

Replenishment of resources through turbulent mixing behind the coral thickets is essential for 

the repetitive re-occurrence of thickets (Kondziolka & Nepf 2014). More in general, also in 

areas with tidally alternating current direction depletion of resources will at some point 

hamper framework development. For instance at the Logachev Mounds with a strong diurnal 

currents, the most extensive framework is found on the sloping faces of the mounds with a 

100-fold turbulent mixing (Mohn et al. 2014, van Haren et al. 2014). On flat mound tops, the 

framework is patch-like organized (Mienis, pers. Obs,). 

 

Summary 

Field measurements revealed heterogeneity of framework in many coral habitats notably those 

with unidirectional currents. Our flume experiments show that once heterogeneity is created, 
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flow patterns at the patch scale are likely to maintain and even enhance such heterogeneity. 

That is, some regions of the reef become more suitable for coral growth (fast flowing upper 

layer) and other regions less suitable (lee site of coral patches) due to low turbulence levels, 

increased sedimentation rates and depletion of dissolved and particulate matter. The different 

sets of hydrodynamic conditions above, inside and behind a coral patch found in this study in 

combination with consequences for coral feeding and sedimentation, match with observed 

heterogeneity in the field. This pertains specifically to live coral distribution in areas with a 

dominant unidirectional current regime, like in the West Atlantic along the US continental 

margin at the  Miami terrace and near Cape Lookout (Correa et al. 2012, Mienis et al. 2014) 

and along the Norwegian coast at the Tisler and Stjernsund reefs (Lavaleye et al. 2009, 

Rüggeberg et al. 2011). In these areas live cold-water corals solely occur at sites of the reef 

that are influenced by the strongest currents, where (food) particle encounter rates are highest 

(Thiem et al. 2006). Downstream, conditions for live coral apparently become less favourable 

giving rise to a zone with erect dead coral and coral rubble (Cathalot et al. 2015). Although in 

this part growth of live coral could be hampered by sedimentation, as indicated by our flume 

results, we assume that resource depletion is also an important factor here. 
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Figure and table captions 

 

Table 1: GAM models fitted through velocity data over the measured depth. Corresponding p-

values belonging to the significance test of the factor Distance, Rsq and percentage deviance 

of the different patch types are indicated.  

 

Figure 1: Areas with different characteristics in coral cover as observed in the Logachev 

mound area on the Irish margin, NE Atlantic. A. coral debris on top of sediment. B. Coral 

fragments on top of coral debris. C. Dense cold-water coral patches with living colonies on 

top of coral fragments. D. Box core taken in the Logachev mound area for collection of corals 

used in this study. E. High coral patch created in the laboratory. F. Positioning of the 

fluorosensors in the high patch. 

 

Figure 2: A. Representation of the low, middle and high relief coral patches. B. Schematic 

overview of the racetrack flume used to asses effects of unidirectional flow on coral patches 

(for details (Bouma et al. 2005). C. Representation of dye experiments, indicating position of 

dye injection and fluorosensors. Experiments were carried out whereby either sensors were 

placed within a high relief patch (dots) or behind the patch (squares). 

 

Figure 3: Vector plots of horizontal (ݑത) and vertical (ݓഥ) mean current speed (m s-1) over the 

low, middle and high relief coral patches. Patches were subjected to three velocity treatments 
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A. 0.3 m s-1, B. 0.15 m s-1 and C. 0.05 m s-1. Patch size and height is denoted by the grey 

contours. 

 

Figure 4: Velocity profiles (U) at free stream velocities of 0.05, 0.15 and 0.3 m s-1. Velocities 

were measured 0.5 m in front, above, 0.5 m behind and 3.0 m behind the different patch types. 

 

Figure 5: Reynold stress profiles at free stream velocities of 0.05, 0.15 and 0.3 m s-1, which 

were measured 0.5 m in front, above, 0.5 m behind and 3.0 m behind the different patch types. 

 

Figure 6: Turbulent kinetic energy profiles at free stream velocities of 0.05, 0.15 and 0.3 m s-

1, which were measured 0.5 m in front, above, 0.5 m behind and 3.0 m behind the different 

patch types. 

 

Figure 7. GAM models fitted through velocity data over the measured depth. A. High patch 

with 0.3 cm s-1 velocity. B. Low patch with 0.05 m s-1 velocity. Data of the different 

treatments are presented in supplement A. 

 

Figure 8: Residence times of dye injected at different positions in front and within a high 

relief coral patch at free flow velocities of 0.05, 0.1, 0.15, 0.2, 0.25 and 0.3 m s-1. A. Blank 

measurement with no coral patch. B. Dye injected in front of high relief coral patch. C. Dye 

injected in front of sensor 2 (S2). D. Dye injected in front of sensor 3 (S3). 

 

Figure 9: A. Plot showing increased residence times at position S1, S2 and S3, due to the 

presence of the high relief coral patch in the flume. B. GAM model data show modelled 

residence time (y-)axis being dependent on current speed and presence or absence of a coral 
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patch. A comparison of the recalculated residence times excluding the effects of injection 

point or sensor is given. 

 

Figure 10: Dye experiment with sensors placed behind the patch at 4 and 10 cm at free flow 

velocities of 0.05, 0.1, 0.15, 0.2, 0.25 and 0.3 m s-1. A. Residence and arrival time of blank 

measurement with no patch. B. Residence and arrival time of dye at sensor placed at 4 cm 

above bottom with presence of high coral patch. C.  Residence and arrival time of dye at 

sensor placed at 10 cm above bottom with presence of high coral patch. 

 

Supplementary figure 1: GAM models fitted through velocity data over the measured depth in 

order to test whether velocity profiles measured in front and behind the patch differed 

significantly among each other. Penalized smoother functions are fitted through the velocity 

profiles describing the change in current speed over depth. Note that measurements 

immediately above the patch were excluded, due to absence of data in a large part of the 

profile. 

 

Supplementary figure 2: GAM models fitted through the TKE data over the measured depth 

in order to test whether TKE profiles measured in front and behind the patch differed 

significantly among each other. Penalized smoother functions are fitted through the TKE 

profiles describing the change in TKE over depth. Note that measurements immediately above 

the patch were excluded, as well as other measurements that showed absence of data in a large 

part of the profile. 
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Tables and figures 

 

U Patch type fDist 
p-value 

R-sq % Dev expl

0.05 High 7.70E-05 0.94 96.2 
 Medium 3.84E-07 0.95 97.2 
 Low 1.16E-03 0.87 90.8 

0.15 High 3.07E-10 0.98 98.9 
 Medium 0.705 0.74 80.1 
 Low 0.691 0.91 93.7 

0.3 High 2.23E-15 0.99 99.6 
 Medium 8.74E-06 0.93 95.7 
 Low 0.0719 0.97 98.3 

 

Table 1 
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