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Abstract

The Ecopath with Ecosim (EwE) modeling approach combines software for ecosystem trophic mass balance analysis (Ecopath),
with a dynamic modeling capability (Ecosim) for exploring past and future impacts of fishing and environmental disturbances
as well as for exploring optimal fishing policies. Ecosim models can be replicated over a spatial map grid (Ecospace) to allow
exploration of policies such as marine protected areas, while accounting for spatial dispersal/advection effects.

The Ecopath approach and software has been under development for two decades, with Ecosim emerging in 1995, and
Ecospace in 1998, leading to an integrated and widely applied package. We present an overview of the computational aspects of
the Ecopath, Ecosim and Ecospace modules as they are implemented in the most recent software version. The paper summarizes
the capabilities of the modeling system with respect to evaluating how fisheries and the environment impact ecosystems. We
conclude by a warning about pitfalls in the use of the software for policy exploration.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The modeling approach ‘Ecopath with Ecosim’
(EwE, http://www.ecopath.org) is being widely used
as a tool for analysis of exploited aquatic ecosystems,
having reached 2400 registered users in 120 coun-
tries, and leading to in excess of 150 publications.
EwE combines software for ecosystem trophic mass
balance (biomass and flow) analysis (Ecopath) with a
dynamic modeling capability (Ecosim) for exploring
past and future impacts of fishing and environmental
disturbances. It has an elaborate user interface that
eases a variety of data management chores and calcu-
lations that are a cumbersome but necessary part of
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any endeavor to systematically examine an ecosystem,
its resources, and their interactions and exploitation.

Recent versions of the software have brought
Ecosim much closer to traditional single-species stock
assessment, by allowing age-structured representation
of particular, important populations and by allowing
users to ‘fit’ the model to data. Ecosim models can be
replicated over a spatial map grid (Ecospace) to allow
exploration of policies such as marine protected ar-
eas, while accounting for spatial dispersal/advection
effects and migration.

The Ecopath approach was initiated byPolovina
(1984) in the early 1980s, and has been under con-
tinuous development since 1990 (Christensen and
Pauly, 1992), with Ecosim emerging in 1995 (Walters
et al., 1997, 2000), and Ecospace in 1998 (Walters
et al., 1999), leading to an integrated software pack-
age, ‘Ecopath with Ecosim’. We give an overview
of the computational aspects and capabilities of the
Ecopath, Ecosim and Ecospace modules as they are
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implemented in the most recent software version
(EwE Version 5), along with some reflections of po-
tential pitfalls related to application of the software.

2. Mass-balance modeling: Ecopath

The core routine of Ecopath is derived from the
Ecopath program ofPolovina (1984), and since mod-
ified to make superfluous its original assumption of
steady state. Ecopath instead bases the parameteriza-
tion on an assumption of mass balance over a given
time period (usually 1 year, but see discussion below
about seasonal modeling). In its present implemen-
tation Ecopath parameterizes models based on two
master equations, one to describe the production term
(Eq. (1)), and one for the energy balance for each
group (Eq. (7)). A summary of symbols used for vari-
ables is presented inTable 2.

2.1. Prey mortality is predator consumption

The total production ratePi for each groupi can be
split in components:

Pi = Yi + M2i × Bi + Ei + BAi + M0i × Bi (1)

where Yi is the total fishery catch rate ofi, M2i is
the instantaneous predation rate for groupi, Ei the
net migration rate (emigration− immigration), BAi
is the biomass accumulation rate fori, while M0i is
the ‘other mortality’ rate fori. Pi is calculated as
the product ofBi, the biomass ofi and (P/B)i, the
production/biomass ratio fori. The (P/B)i rate under
most conditions corresponds to the total mortality
rate,Z (seeAllen, 1971), commonly estimated as part
of fishery stock assessments. The ‘other mortality’ is
a catch-all rate including all mortality not elsewhere
included, and is internally computed from

M0i = Pi × (1 − EEi)

Bi

(2)

where EEi is called the ‘ecotrophic efficiency’ ofi, and
can be described as the proportion of the production
that is utilized in the system as described, seeEq. (6).

The predation term,M2, in Eq. (1) serves to link
predators and prey as

M2i =
n∑

j=1

Qj × DCji

Bi

(3)

where the summation is over alln predator groupsj
feeding on groupi, Qj is the total consumption rate
for groupj, and DCji is the fraction of predatorj’s diet
contributed by preyi. Qj is calculated as the product
of Bj, the biomass of groupj and (Q/B)j, the con-
sumption/biomass ratio for groupj.

An important implication of the equation above is
that information about predator consumption rates and
diets concerning a given prey can be used to estimate
the predation mortality term for the group, or, alterna-
tively, that if the predation mortality for a given prey
is known the equation can be used to estimate the con-
sumption rates for one or more predators instead.

For parameterization Ecopath sets up a system with
(at least in principle) as many linear equations as there
are groups in a system, and it solves the set forone
of the following parameters for each group, biomass,
production/biomass ratio, consumption/biomass ratio,
or ecotrophic efficiency. The other three parameters
along with following parameters must be entered for
all groups, catch rate, net migration rate, biomass ac-
cumulation rate, assimilation rate and diet composi-
tions.

It was indicated above that Ecopath does not rely
on solving a full set of linear equations, i.e. there may
be less equations than there are groups in the system.
This is due to a number of algorithms included in the
parameterization routine that will try to estimate itera-
tively as many ‘missing’ parameters as possible before
setting up the set of linear equations. The following
loop is carried out until no additional parameters can
be estimated:

1. The gross food conversion efficiency,gi, is esti-
mated using

gi = (P/B)i

(Q/B)i
(4)

while (P/B)i and (Q/B)i are attempted solved by
inverting the same equation.

2. TheP/B ratio is then estimated (if possible) from

Pi

Bi

= Yi + Ei + BAi +
∑

j Qj × DCji

Bi × EEi
(5)

This expression can be solved if both the catch,
biomass and ecotrophic efficiency of groupi, and
the biomasses and consumption rates of all preda-
tors on groupi are known (including groupi if
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a zero order cycle, i.e. ‘cannibalism’ exists). The
catch, net migration and biomass accumulation
rates are required input, and hence always known.

3. The EE is sought estimated from

EEi = Yi + Ei + BAi + Bi × M2i
Pi

(6)

where the predation mortalityM2 is estimated from
Eq. (3).

4. In cases where all input parameters have been
estimated for all prey for a given predator group
it is possible to estimate both the biomass and
consumption/biomass ratio for such a predator.
The details of this are described in the EwE Help
System, Appendix 4, Algorithm 3 (available at
http://www.ecopath.organd distributed with EwE).

5. If for a group the total predation can be estimated
it is possible to calculate the biomass for the group
as described in detail in the EwE Help System,
Appendix 4, Algorithm 4.

6. In cases where for a given predatorj theP/B, B, and
EE are known for all prey, and where all predation
on these prey apart from that caused by predator
j is known theB or Q/B for the predator may be
estimated directly.

7. In cases where for a given prey theP/B, B, EE
are known, and where the only unknown predation
is due to one predator for which theB or Q/B is
unknown, it may be possible to estimate theB or
Q/B of the prey in question.

After the loop no longer results in estimate of any
‘missing’ parameters a set of linear equations is set
up including the groups for which parameters are still
‘missing’. The set of linear equations is then solved
using a generalized method for matrix inversion de-
scribed by (Mackay, 1981). It is usually possible to
estimateP/B and EE values for groups without re-
sorting to including such groups in the set of linear
equations.

The loop above serves to minimize the computa-
tions associated with establishing mass-balance in
Ecopath. The desired situation is, however, that the
biomasses, production/biomass and consumption/
biomass ratios are entered for all groups and that only
the ecotrophic efficiency is estimated, given that no
procedure exists for its field estimation. As a con-
sequence, the estimated ecotrophic efficiency can be

considered an expression of model uncertainty rather
than an ecologically meaningful term.

In some, but very rare, cases it may not be possible
to estimate the ‘missing’ parameters using the meth-
ods referred to above, for instance if a feeding cycle
(e.g. A eatsB eatsC eatsA), is included where the
biomasses of all groups in the cycle are unknown. In
such cases a routine will break the cycle by removing
the link where the difference between the trophic level
of the consumer and the prey has the lowest value, typ-
ically this will be where a low trophic-level consumer
eats high trophic-level prey (which are actually lower
trophic-level juveniles). An iterative routine will then
estimate all ‘missing’ biomasses.

The mass balance constraint implemented in the two
master equations of Ecopath (seeEqs. (1) and (7))
should not be seen as questionable assumptions but
rather as filters for mutually incompatible estimates of
flow. One gathers all possible information about the
components of an ecosystem, of their exploitation and
interaction and passes them through the ‘mass balance
filter’ of Ecopath. The result is a possible picture of
the energetic flows, the biomasses and their utiliza-
tion. The more information used in the process and the
more reliable the information, the more constrained
the outcome will be.

2.2. The energy balance of a group

After the ‘missing’ parameters have been estimated
so as to ensure mass balance between groups energy
balance is ensured within each group using the fol-
lowing equation:

Consumption= production+ respiration

+ unassimilated food (7)

This equation is in line withWinberg (1956), who
defined consumption as the sum of somatic and go-
nadal growth, metabolic costs and waste products. The
main differences are that Winberg focused on mea-
suring growth, where we focus on estimating losses,
and that the Ecopath formulation does not explicitly
include gonadal growth. The Ecopath equation treats
this as included in the predation term (where nearly
all gonadal products end up in any case). This may be
a shortcoming, but it is one that can be remedied, and
actually is in Ecosim as described below.

http://www.ecopath.org
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We have chosen to perform the energy balance so
as to estimate respiration from the difference between
consumption and the production and unassimilated
food terms. This mainly reflects our focus on applica-
tion for fisheries analysis, where respiration rarely is
measured while the other terms are more readily avail-
able. To facilitate computations we have, however, in-
cluded a routine (‘alternative input’) where the energy
balance can be estimated using any given combination
(including ratios) of the terms in the equation above.

Ecopath can work with energy as well as with nutri-
ent related currencies. If a nutrient-based currency is
used in Ecopath the respiration term is excluded from
the above equation (as nutrients are not respired), and
the unassimilated food term is estimated as the differ-
ence between consumption and production.

2.3. Addressing uncertainty

A resampling routine, Ecoranger, has been included
in EwE to accept input probability distributions for
the biomasses, consumption and production rates,
ecotrophic efficiencies, catch rates, and diet composi-
tions. Using a Monte Carlo approach a set of random
input variables is drawn from user-selected frequency
distributions and the resulting model is evaluated
based on user-defined criteria, and physiological and
mass balance constraints. The results include proba-
bility distributions for the estimated parameters along
with distributions of parameters in the accepted model
realizations.

The Ecoranger routine can provide probability dis-
tributions for transformation of the input variables.
The derived probability distributions are likely to be
narrower than the original distributions indicating that
we have gained information in the process of check-
ing for mass balance constraints, and eliminating
parameter combinations that violate thermodynamic
constraints. The information that is gained comes
from evaluation of structural relationships as imple-
mented in the Ecopath model, contrary to standard
Bayesian approaches, which rely on data sampling.
Combining such structural information from Ecopath
with prior probabilities (the original probability dis-
tributions) corresponds to combining data with priors
to derive the posterior distributions in the Bayesian
sense. A procedure implementing such an approach
using a ‘sampling–importance–resampling’ scheme

(McAllister et al., 1994) is included in the Ecor-
anger module of EwE making it straightforward to
derive what may be called ‘Bayes marginal posterior
distributions’ (Walters, 1996).

2.3.1. Categorizing data sources
The Ecoranger module has been available for sev-

eral years but only a few examples of its use have
been published, and so far none has fully exploited its
Bayesian capabilities. A major reason for this is that
it was a very data intensive task to describe the proba-
bility distributions for all input parameters (including
the diet compositions matrices). To facilitate this task
and to make the process more transparent we have im-
plemented a ‘pedigree’ (Funtowicz and Ravetz, 1990)
routine that serves a dual purpose by describing data
origin, and by assigning confidence intervals to data
based on their origin (Pauly et al., 2000).

The pedigree routine allows the user to mark the
data origin using a pre-defined table for each type
of input parameters. An example pertaining to both
production/biomass and consumption/biomass ratios
is given inTable 1. The Ecoranger module can sub-
sequently pick up the confidence intervals from the
pedigree tables and use these as prior probability dis-
tributions for all input data.

The pedigree index values inTable 1are also used to
calculate an overall pedigree index for a given model.

Table 1
Options included in EwE for definition of ‘pedigree’ for consumer
production/biomass and consumption/biomass ratios in Ecopath

Option Index CI (%)

Estimated by Ecopath (other model) 0.0 ±80
Guesstimate 0.1 ±70
From other model 0.2 ±60
Empirical relationship 0.5 ±50
Similar group/species, similar system 0.6 ±40
Similar group/species, same system 0.7 ±30
Same group/species, similar system 0.8 ±20
Same group/species, same system 1.0 ±10

Similar option tables are implemented for biomasses, catches, and
diets. For each group in an ecosystem one of these options is used
to define the pedigree of the input parameter. The index value is
used for calculation of a pedigree index. The confidence intervals
(CI) are used to describe parameter uncertainty in the balanced
ecosystem model using the Ecoranger, auto mass balance, and
Ecosim modules. Index values and confidence intervals are defaults
that can be changed by users.
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Table 2
List of symbols used

Symbol Description Unit

B Biomass t km−2

BAi Biomass accumulation rate t km−2 per year
c Per biomass food intake, same asQ/B Per year
DCji Fraction of predatorj’s diet contributed by preyi
E The net migration rate (emigration− immigration), orei × Bi − Ii t km−2 per year
e Emigration rate per unit biomass t km−2 per year
EE Ecotrophic efficiency
F Instantaneous fishing mortality rate Per year
g Gross food conversion efficiency, estimated as theP/Q ratio
I Immigration rate t km−2 per year
i Index used for prey groups (all consumer groups can be prey as well as predators)
j Index used for predator groups
K von Bertalanffy curvature parameter Per year
M0 Instantaneous ‘other mortality’ rate Per year
M2 Instantaneous predation rate Per year
n Number of living groups in the model
P Total production rate t km−2 per year
P/B Production/biomass ratio Per year
Q Total consumption rate, calculated as the product ofB and Q/B t km−2 per year
Q/B Consumption/biomass ratio Per year
SS Summed squared residuals
vij Vulnerabilities (rescaled to range [1,ω])
Y Total fishery catch rate t km−2 per year
Z Total mortality rate, equivalent to the production/biomass ratio Per year

Omits symbols that are used in only one section. Many symbols will have an index (or indices) referring to a group.

The index values for input data scale from 0 for data
that is not rooted in local data up to a value of 1 for
data that are fully rooted in local data. Based on the
individual index value an overall ‘pedigree index’,τ,
is calculated as the average of the individual pedigree
value based on

τ =
n∑
i=1

τi,p

n
(8)

whereτi,p is the pedigree index value for groupi and
input parameterp for each of then living groups in the
ecosystem;p can represent eitherB, P/B, Q/B, Yor the
diet composition, DC. To scale based on the number
of living groups in the system, an overall measure of
fit, t∗ is calculated (using an equation based on how
the t-value for a regression is calculated) as

t∗ = τ ×
√
n − 2√
1 − τ2

(9)

This measure of fit is seen to describe how well
rooted a given model is in local data. It addresses an

often-aired concern of to which degree ‘models feed
on models’, i.e. whether models are based on data
from other models, which again are based on data
from other models, etc. Work is presently in progress
to describe the pedigree indices for all published
Ecopath models where we have access to the model
descriptions (in excess of 140 cases; Lyne Morisette,
Fisheries Centre, UBC, personal communication).

2.4. Automated mass-balance

Getting hold of and entering input parameters for
an Ecopath model is only the start of the modeling
process, ensuring mass-balance is the next major step.
Previously this had to be done by manually adjust-
ing biomasses, mortality rates, diets, etc., searching
for data inconsistencies and gradually obtaining a
balanced model. An iterative method for obtaining
mass-balance has, however, been added to EwE, of-
fering a well defined, reproducible, approach, while
also allowing exploration of alternative solutions
based on parameter confidence intervals. Background,
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implementation and computational aspects of the
auto-mass balance routine are described byKavanagh
et al. (2004).

The auto-balancing routine uses the pedigree rou-
tine described above to obtain confidence intervals,
which in turn constrains how far the routine can per-
turb parameters from their original values as part of the
balancing. While seeking to obtain a balanced model
(i.e. EEi ≤ 1 for all groupsi) with minimal changes to
input parameters, especially for well-known parame-
ters (with narrow confidence intervals), which are al-
lowed less adjustment than parameters with wide con-
fidence intervals.

At each iteration step, the model is perturbed by
adjusting the biomass and diet components affecting
groups with EE> 1. Model perturbation may be per-
formed in three different ways:

(1) Random lookup of parameters within confidence
interval (no memory of current state) similar to the
Ecoranger approach discussed above, except for
changing only parameters affecting unbalanced
groups;

(2) Random steps in the neighborhood of the current
state;

(3) Gradient descent method using the first derivative
of EE with respect to the parameter to be per-
turbed.

The approach allows for user-defined specification of
the cost function as well as of the decision logic, which
includes a simulated annealing method. Also, a Monte
Carlo approach allows for quantification of sensitivity
to starting conditions and perturbations.

2.5. Particle size distributions

Based on growth and mortality information (see in-
put data) the particle size distribution (PSD;Sheldon
et al., 1972) for a model can be calculated. A rou-
tine for this is included in EwE, where for each living
group the following steps are conducted:

The time spent in each of a user-defined number of
weight class is calculated starting at time 0, using

t = ln[1 − (Wt/W∞)−b]

−K
+ t0 (10)

where Wt is the lower limit of the weight interval,
W∞ is the asymptotic weight,b the exponent in the

length-weight relationship,K the curvature parameter
of the von Bertalanffy Growth Function (VBGF), and
t0 is the usually negative ‘age’ at which the weight is
estimated to be zero in the VBGF. Once the time spent
to reach each weight class limit is calculated, the time
spent in each weight class is calculated by subtraction.

The survival is calculated as

Nt = Nt−�t × e−Z×�t = Nt−dt × e−Z×�t (11)

whereNt is the number alive at timet, Nt−�t the num-
ber alive at the previous time step,�t before, andZ
is the total mortality rate, equivalent to the produc-
tion/biomass ratio for the group;

The biomass contribution for the group to each
weight class is calculated as

Bt = Nt × Wt × �t (12)

whereBt is the biomass contribution,�t is the time the
groups spends to grow through the given weight class
(t), and the rest as explained above.Bt is scaled over
all weight classes so as to sum up to the total biomass
of the group. The system PSD is calculated, finally, by
summing up over all groups within each weight class.

2.6. Ecosystem ‘health’

The health status of a patient can often be captured
with a single parameter, the temperature. Many have
tried to find an index with similar ability to describe
the health of an ecosystem to avoid the insurmount-
able task associated with bottom-up approach sum-
ming up the health of all ecosystem components, but
a clear candidate has not appeared. The effort has led
to development and description of a variety of system
indicators, typically though with a given researcher
exploring only one or a few of the potential indicators
and on one or a few systems only.

We have sought to include a selection of ecosystem
indicators in EwE using the criteria that the indicators
can be estimated based on information included or po-
tentially includable in EwE, typically based on quan-
tified descriptions of food webs. In doing so we have
facilitated straightforward calculation of the indices,
opening for a comparison of their properties through
application to a variety of the models described using
Ecopath.

One area of research where we have used this
approach relates to ecosystem maturity, a perceived
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descriptor of ecosystem ‘health’.Odum (1969, 1971)
described how ecosystems in a non-deterministic way
develop over time. We can assume an undisturbed
ecosystem to be maturesensuOdum. Implications of
this include that in a more mature system all niches
should tend to be filled; that a larger part of the
energy flows should be through detritus-based food
webs; that primary production should be more effi-
ciently utilized; that the total system biomass/energy
throughput ratio should be higher, etc.

When ecosystems are disturbed, notably by fishing,
we expect their maturity to decrease. This was indi-
cated by the findings ofChristensen (1995a), who used
a series of indicators to rank a large number of ecosys-
tem representations after maturity, and concluded that
the ranking obtained was in agreement with the ex-
pected state of maturity. The study included several
ecosystems for which the maturity state could be com-
pared before and after a disturbance, and the findings
were in all cases in agreement with disturbances lead-
ing to a reduction in maturity.Christensen and Pauly
(1998)modeled the recent and the unfished state for
two marine ecosystems, and for both systems con-
cluded that the indices of ecosystem maturity for the
fished and unfished states in all cases were in agree-
ments with Odum’s theory.

While these studies cannot be seen as providing
definitive answers, they do indicate that it is feasible to
use a composite of ecosystem indices to describe the
state of a given system and how it may have changed
over time. We intend to explore this further, and to
include a number of additional measures of ecosystem
‘health’ in EwE.

The selection of ecosystem indicators referred to
above is included in EwE as part of a series of network
analyses. In overview form (see references below and
the EwE Help system for more detailed descriptions)
the following routines are among those included:

• Cycling index: fraction of an ecosystem’s through-
put that is recycled (Finn, 1976).

• Predatory cycling index: corresponds to the cycling
index but computed with cycles involving detritus
groups excluded.

• Cycles and pathways: a routine presents the numer-
ous cycles and pathways that are defined by the
food web representing an ecosystem based on an
approach suggested byUlanowicz (1986).

• Connectance index: defined for a given food web
as the ratio of the number of actual links to the
number of possible links. Feeding on detritus (by
detritivores) is included in the count, but the oppo-
site links (i.e. detritus ‘feeding’ on other groups) are
disregarded.

• System omnivory index: defined as the average
omnivory index of all consumers weighted by the
logarithm of each consumer’s food intake. The log-
arithms are used as weighting factors because it can
be expected that the intake rates are approximately
log normally distributed. The system omnivory in-
dex is a measure of how the feeding interactions are
distributed between trophic levels. An omnivory
index is also calculated for each consumer group,
and it here is a measure of the variance of the
trophic level estimate for the group.

• Trophic level decomposition: aggregates the system
into discrete trophic levelssensuLindeman based
on an approach suggested byUlanowicz (1995). The
routine reverses the routine for calculation of frac-
tional trophic levels.

• Trophic transfer efficiencies: calculated for a given
trophic level as the ratio between the sum of the
exports plus the flow that is transferred from one
trophic level to the next, and the throughput on the
trophic level. The transfer efficiencies are used for
construction of trophic pyramids, and others.

• Primary production required (PPR): to estimate the
PPR (Christensen and Pauly, 1993) to sustain the
catches and the consumption by the trophic groups
in an ecosystem the following procedure is used.
All cycles are removed from the diet compositions,
and all pathways in the flow network are identified
using the method suggested byUlanowicz (1995).
For each pathway the flows are then raised to pri-
mary production equivalents using the product of
the catch, the consumption/production ratio of each
path element times the proportion the next element
of the path contributes to the diet of the given path
element.

• Mixed trophic impact (MTI): Leontief (1951)devel-
oped a method for input–output analysis to assess
the direct and indirect interactions in the economy
of the USA, using what has since been called the
‘Leontief matrix’. A modified input–output analy-
sis based on the procedure described byUlanowicz
and Puccia (1990)is implemented in EwE. The MTI
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describes how any group (including fishing fleets)
impacts all other groups in an ecosystem trophically.
It includes both direct and indirect impact, i.e. both
predatory and competitive interactions.

The MTI for living groups is calculated by con-
structing ann × n matrix, where thej, ith element
representing the interaction between the impacting
group j and the impacted groupi is

MTI ji = DCji − FCij (13)

where DCji is the diet composition term expressing
how muchi contributes to the diet ofj, and FCij is a
host composition term giving the proportion of the
predation onj that is due toi as a predator. When
calculating the host compositions the fishing fleets
are included as ‘predators’.

For each fishing fleet a ‘diet composition’ is cal-
culated representing how much each group con-
tributes to the catches, while the host composition
term as mentioned above includes both predation
and catches. The matrix is inversed using a standard
matrix inversion routine.

• Ascendency: EwE includes a number of indices re-
lated to the ascendency measure described in detail
by Ulanowicz (1986). Ascendency is seen as a mea-
sure of ecosystem growth and development.

3. Time-dynamic simulation: Ecosim

The basics of Ecosim are described in detail by
Walters et al. (1997, 2000), and will only be given a
cursory treatment here, omitting details that have been
previously published, focusing instead in describing
more recent additions to the modeling approach. In
overview, Ecosim consists of biomass dynamics ex-
pressed through a series of coupled differential equa-
tions. The equations are derived from the Ecopath mas-
ter Eq. (1), and take the form

dBi

dt
= gi

∑
j

Qji −
∑
j

Qij + Ii

− (M0i + Fi + ei) × Bi (14)

where dBi/dt represents the growth rate during the
time interval dt of group i in terms of its biomass,
Bi, gi is the net growth efficiency,Eq. (4), M0i the
non-predation (‘other’) natural mortality rate esti-

Fig. 1. Simulation of flow between available (Vi) and unavailable
(Bi − Vi) prey biomass in Ecosim.ai is the predator search rate
for prey i, v is the exchange rate between the vulnerable and
un-vulnerable state. Fast equilibrium between the two prey states
implies Vi = vBi/(2v + aBj). Based onWalters et al. (1997).

mated from the ecotrophic efficiency,Fi is fishing
mortality rate,ei is emigration rate,Ii is immigration
rate (assumed constant over time, and hence inde-
pendent of events in the ecosystem modeled), and
ei × Bi − Ii is the net migration rate ofEq. (1). The
two summations estimates consumption rates, the first
expressing the total consumption by groupi, and the
second the predation by all predators on the same
group i. The consumption rates,Qji , are calculated
based on the ‘foraging arena’ concept, whereBi’s are
divided into vulnerable and invulnerable components
(Walters et al., 1997, Fig. 1), and it is the transfer rate
(vij ) between these two components that determines if
control is top-down (i.e. Lotka–Volterra), bottom-up
(i.e. donor-driven), or of an intermediate type. The
set of differential equations is solved in Ecosim using
an Adams–Basforth integration routine (default) or a
Runge–Kutta fourth-order routine.

Detritus flows are for each detritus group and for
each time step estimated from the amount of detritus
imported, transferred from other detritus groups, and
produced by ecosystem groups (from unassimilated
food plus contribution from dead organisms) less the
amount of detritus eaten by living groups, transferred
to other detritus groups and the export of detritus.

3.1. Predicting consumption

Ecosim bases the crucial assumption for prediction
of consumption rates on a simple Lotka–Volterra or
‘mass-action’ assumption, modified to consider ‘for-
aging arena’ properties. Following this, prey can be
in states that are or are not vulnerable to predation,
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for instance by hiding (e.g. in crevices of coral reefs
or inside a school), when not feeding, and only be-
ing subject to predation when having left their shelter
to feed (Fig. 1). In the original Ecosim formulations
(Walters et al., 1997, 2000) the consumption rate for
a given predator feeding on a prey was thus predicted
from the effective search rate for predator–prey spe-
cific interactions, base vulnerabilities expressing the
rate with which prey move between being vulnerable
and not vulnerable, prey biomass, predator abundance
(numbers for split pool groups as discussed later, and
biomasses for other groups).

The model as implemented implies that ‘top-down
versus bottom-up’ control is in fact a continuum,
where low v’s implies bottom-up and highv’s
top-down control. The input vulnerability rates (υij ) in
EwE are scaled to range from 0 to 1, with 0.3 serving as
default for mixed control, and 0 implying bottom-up,
1 implying top-down control. The actual vulnerabili-
ties (vij ) used in the computations are rescaled from
the enteredυij ’s as:vij = exp[2× (exp(υij ) − 1)].

As a consequence of user requests for adding new
facilities the equation for describing consumption has
gradually grown to the following, more elaborate ex-
pression:

Qij =
aij × vij × Bi × Bj × Ti × Tj

×Sij × Mij/Dj

vij + vij × Ti × Mij + aij × Mij

×Bj × Sij × Tj/Dj

(15)

whereaij is the rate of effective search fori by j, Ti
represents prey relative feeding time,Tj the predator
relative feeding time,Sij the user-defined seasonal or
long term forcing effects,Mij the mediation forcing
effects, andDj represents effects of handling time as
a limit to consumption rate:

Dj = hj × Tj

1 + ∑
k akj × Bk × Tk × Mkj

(16)

wherehj is the predator handling time. The feeding
time factors, allocation of food for growth and re-
cruitment, fecundity constraints, etc. are discussed by
Walters et al. (1997, 2000). The consumptionEq. (15)
above includes terms to describe forcing functions and
mediation effects. These are described in more detail
below.

3.1.1. Forcing functions
The impact of physical or other environmental fac-

tors on ecosystem groupings may be modeled using
forcing functions are of two types:

• seasonal, which may be applied to biomass produc-
tion or to egg production (for groups with onto-
genetic representation) occurring within a year and
repeated in all years of the run; and

• longer term, which may be applied to modify the
Q/B ratio of the consumer groups, to represent, for
instance, decadal regime shifts, and to force con-
taminant contributions (seeSection 3.4) below.

3.1.2. Mediation
It is not uncommon for some third type of organism

to affect the feeding rate of one type of organism on
another. At least two types of effects are possible:

• Facilitation: The third organism type behaves in
some way that makes prey more available to a
predator when the third organism is more abundant.
For example, pelagic piscivores like tuna may drive
smaller fishes to the surface making them more
accessible for birds. This is a concern for modeling
marine mammals and bird dynamics, especially
in areas where fishing has reduced abundances of
tunas and billfishes.

• Protection: The third organism provides protection
for a prey type when the third organism is more
abundant. For example, juvenile fishes may use
corals, macrophytes, and/or sponges for protection
from predators, and fishing may directly impact
these ‘cover’ types, making the juvenile fishes
accessible for predation.

3.2. Life history handling

Ecosim offers to ways to handle life history dy-
namics, through splitting groups in adult and juvenile
components, and through a recently added facility for
modeling of multiple life stages.

3.2.1. Adult-juvenile split
To better represent ontogenetic shifts in Ecosim

groups can be split in juvenile and adult components,
Ecosim applies a Deriso–Schnute delay-difference
model (Deriso, 1980; Schnute, 1987) to keep track of
the number that recruits from juvenile to adult stages,
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and the number at age/size in the adult groups. The
implementation and computational aspects of this are
described byWalters et al. (2000).

The delay-difference representation of population
age and size structure permits explicit representation
of changes in growth, mortality, and recruitment pro-
cesses with changing feeding conditions. It also makes
it straightforward to include: (1) changes in how food
intake is allocated between growth and reproduction
as food conditions varies; (2) changes in vulnerability
to predation associated with changes in feeding be-
havior as prey densities vary; and (3) recruitment con-
straints related to juvenile size and fecundity. These
aspects will be described further below.

3.2.2. Multiple stanza representations
EwE users can create a set of biomass groups rep-

resenting life history stages or stanzas for species that
have complex trophic ontogeny. Mortality rates and
diet composition are assumed to be similar for indi-
viduals within each stanza. The procedure requires
baseline estimates of total mortality rate,Z and diet
composition for each stanza, but biomass,Q/B, and
biomass accumulation, BA for one ‘leading’ stanza
only.

For Ecopath mass balance calculations, the total
mortality rateZ entered for each stanza-group is used
to replace the EcopathP/B for that group. Further, the
B and Q/B for all stanza-groups besides the leading
(entry) stanza are calculated before entry to Ecopath,
using the assumptions that:

(1) body growth for the species as a whole follows a
von Bertalanffy growth curve with weight propor-
tional to the length-cubed;

(2) the species population as a whole has had rela-
tively stable mortality and relative recruitment rate
for at least a few years, and so has reached a sta-
ble age–size distribution.

Under the stable age distribution assumption, the
relative number of agea animals is given byla/

∑
la,

where the sum is over all ages, andla is the population
growth rate-corrected survivorship:

la = e−∑
aZa−a×BA/B (17)

where the sum ofZ’s is over all ages up toa, and
the BA/B term represents effect on the numbers at
age of the population growth rate. Further, the relative

biomass of animals in stanzas should be

bs =
∑as,max

a=as,min
la × wa∑amax

a=1 la × wa

(18)

wherewa = [1 − exp(−K × a)]3 is the von Berta-
lanffy prediction of relative body weight at agea, s,
min ands, max are the youngest and oldest age for
animals in stanzas, and amax is the oldest age in-
cluded overall. Knowing the biomass for one leading
stanza, and thebs for each stanzas, the biomasses for
the other stanzas can be calculated by first calculating
population biomassB = Bleadings/bleadings, then set-
ting Bs = bs ×B for the other stanzas.Q/B estimates
for non-leading stanzas are calculated with a similar
approach. This assumes that the feeding rates vary
with age as the 2/3 power of body weight (a ‘hidden’
assumption in the von Bertalanffy growth model).
This method for ‘extending’ biomass andQ/B esti-
mates over stanzas avoids a problem encountered in
‘split-group’ EwE representations, where users could
enter juvenile biomasses and feeding rates quite in-
consistent with the adult biomasses and feeding rates
that they had entered. The internal calculations of
survivorship and biomass are done in monthly age
steps, so as to allow finer resolution than 1 year in
the stanza biomass and mortality structure (e.g. lar-
val and juvenile stanzas that last only one or a few
months).

The stanza age–size distribution information (la,
wa) is used to initialize a fully age–size structured
simulation for the multi-stanza populations. That is,
for each monthly time step in Ecosim, numbers at
monthly agesNa,t and body weightswa,t are updated
for ages up to the 90% maximum body weight age
(older, slow growing animals are accounted for in
an ‘accumulator’ age group). The body growthwa,t

calculations are parameterized so as to follow von
Bertalanffy growth curves, with growth rates depen-
dent on body size and (size- and time-varying) food
consumption rates. Fecundity is assumed propor-
tional to body weight above a weight at maturity, and
size-numbers-dependent monthly egg production is
used to predict changes in recruitment rates of age 0
fish. Compensatory juvenile mortality is represented
through changes inZ for juvenile stanzas associated
with changes in foraging time and predator abun-
dances, as in split-group calculations.
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In Ecospace (see below), it is not practical to dy-
namically update the full multi-stanza age structures
for every spatial cell due to computer time and memory
limits. The multi-stanza dynamics are retained, but the
population numbers at age are assumed to remain close
to equilibrium (changes in numbers at age associated
with changes in mortality rates, foraging times, etc. are
assumed to ‘immediately’ move the numbers-at-age
composition to a new equilibrium). We have found
that this moving-equilibrium representation of popu-
lation numbers generally gives results quite close to
those obtained when full age–size accounting is done
dynamically, provided feeding and mortality rates do
not change too rapidly. This is similar to the general
finding with Ecospace that time predictions of overall
abundance change are quite similar to those obtained
with Ecosim, even though the ‘dynamic’ calculation
in Ecospace is really just a stepwise movement toward
predicted spatial equilibrium values for all variables.

3.3. Nutrient recycling and limitation

Ecosim uses a simple strategy to represent nutri-
ent cycling and potential nutrient limitation of pri-
mary production rates. It is assumed that the system at
any instant in time has a total nutrient concentration,
NT, which is partitioned between nutrient ‘bound’ in
biomass versus free in the environment (accessible to
plants for nutrient uptake). That is,T is represented as
the sum:

NT =
∑
i

ηi × Bi + Nf (19)

whereηi is (fixed) nutrient content per unit of pooli
biomass, andNf is free nutrient concentration. Then
assuming that NT varies as

dNT

dt
= I − v × NT (20)

whereI is total inflow rate to the system from all nu-
trient loading sources, andv is total loss rate from
the system due to all loss agents (volume exchange,
sedimentation, export in harvests, etc.), and thatv is
relatively large, NT is approximated in Ecosim by
the (possibly moving) equilibrium value NT= I/v.
Changes in nutrient loading can be simulated by as-
signing a time forcing function number to NT, in which
case NT is calculated as NT= ft × NT0, where NT0

is the Ecopath base estimate of NT, andft is a time
multiplier (ft = 1 implies Ecopath base value of NT).
Under the moving equilibrium assumption, changes in
ft can be viewed as caused by either changes in input
rate I or nutrient loss ratev. The Ecopath base esti-
mate NT0 of total nutrient is entered by specifying the
base free nutrient proportionpf = Nf /NT0 on entry to
Ecosim, from which we can calculate NT0 as simply

NT0 =
∑

i ηi × Bi

1 − pf
(21)

Primary production rates for producer poolsj are
linked to free nutrient concentration during each simu-
lation through assumed Michaelis–Menten uptake re-
lationships of the form

(
P

B

)
j

= (P/B)max,j × Nf

Kj + Nf
(22)

3.4. Predicting movement and accumulation of
tracers in food webs

Ecosim flow rates along with auxiliary information
about factors such as isotope decay rate and physical
exchange rates can be used to predict changes in con-
centrations of chemicals (e.g. organic contaminants
and isotope tracers) that passively follow the biomass
flows. The dynamic equations for such passive flow
differ from biomass flow rate equations, and are gener-
ally linear dynamical equations with time-varying rate
coefficients that depend on the biomass flow rates.

A routine, Ecotracer, has been implemented to
model such movement and accumulation of contam-
inants and tracers in food webs allowing simulation
of one tracer or contaminant type while the biomass
dynamics equations in Ecosim are being solved in
parallel. Tracer molecules are assumed to be either
in the ‘environment’ (typically the water), or in the
biota at any moment. Molecules are assumed to
flow between pools at instantaneous rates equal to
the probabilities of being ‘sampled’ as part of the
biomass flow. The routine also allows for direct flows
from the environment into pools, representing direct
uptake or absorption of the tracer material, and for
differential decomposition/decay/export rates by pool
and from the environmental pool. Schematically, the
flow of tracer molecules through any biomass pool
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Fig. 2. Representation of the flow of tracer molecules through a
biomass pool.

is represented by the components shown below (see
alsoFig. 2).

In the rate equation for time changes in contaminant
concentration in pooli, these components are repre-
sented as follows:

(1) Uptake from food: Cj ×GCi ×Qji/Bj, whereCj:
concentration in foodj; GCi: proportion of food
assimilated by typei organisms;Qji : biomass flow
rate fromj to i, Bj: biomass of foodj;

(2) Direct uptake from environment: ui × Bi × C0,
where ui: parameter representing uptake per
biomass per unit time and per unit environmental
concentration;Bi: biomass in pooli; C0: environ-
mental concentration;

(3) Concentration in immigrating organisms: ci × Ii,
where ci: a parameter giving tracer per unit
biomass in immigrating biomass;Ii: biomass of
pool i immigrants per time;

(4) Predation: Ci × Qij/Bi;
(5) Detritus: Ci×M0i+(1−GCi)×

∑
j Cj×Qji/Bj,

whereM0i: non-predation mortality rate of typei
(per year);

(6) Emigration: ei×Ci, whereei: emigration rate (per
year);

(7) Metabolism: di × Ci, where di is the summed
metabolism and decay rate for the material while
in pool i.

3.5. Fleet and effort dynamics

Ecosim users can specify temporal changes in fish-
ing fleet sizes and fishing effort in three ways: (1)
by sketching temporal patterns of effort in the model
run interface; (2) by entering annual patterns via ref-
erence files along with historical ecological response
data; and (3) by treating dynamics of fleet sizes and
resulting fishing effort as unregulated, and subject to

fisher investment and operating decisions (‘bionomic’
dynamics, fishers as dynamic predators).

When the fleet/effort response option is invoked,
Ecosim replaces all previously entered time patterns
for fishing efforts and fishing rates with simulated
values generated as each simulation proceeds. The
fleet/effort dynamics simulation model uses two time
scales of fisher response: (1) a short time response of
fishing effort to potential income from fishing, within
the constraints imposed by current fleet size, and
(2) a longer time investment/deprecation ‘population
dynamics’ for capital capacity to fish (fleet size, vessel
characteristics). These response scales are represented
by two ‘state variables’ for each gear typeg: Eg,t is
the current amount of active, searching gear (scaled
to 1.0 at the Ecopath base fishing mortality rates),
andKg,t is the fleet effort capacity (Eg,t < Kg,t). At
each time step, a mean income per effort indexIg,t is
calculated asIg,t = ∑

i qg,i × Bi × Pg,i, where i is
the ecological species or biomass group,qg,i is the
catchability coefficient (possibly dependent onBi)
for speciesi by gearg, andPg,i is the market price
obtained per biomass ofi by gearg fishers. Also,
mean fleet profit rates PRg,t for fishing are calculated,
equal to(Ig,t − cg) × Eg,t , wherecg is the cost of a
unit of fishing effort for gearg. For each time step,
the ‘fast’ effort response for the next (monthly) time
step is predicted by a sigmoid function of income per
effort and current fleet capacity:

Eg,t+1 = Kg,t × I
p
g,t

I
p

hg + I
p
g,t

(23)

Here,Ihg andp are fleet-specific response parameters,
where the income level needed for half of the maxi-
mum effort is Ihg and p represents a ‘heterogeneity’
parameter for fishers: highp values imply all fishers
‘see’ income opportunity similarly, while lowp values
imply fishers initiate their effort over a wide range of
mean incomes, as shown inFig. 3.

3.6. Compensatory mechanisms

Sustaining fisheries yield when fishing reduces
stock size depends on the existence of compensatory
improvements in per capita recruitment, growth,
and/or natural mortality rates. Ecosim allows a va-
riety of specific hypotheses about compensatory
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Fig. 3. Effort response relationship describing the statistical be-
havior of a fleet of fishers that have heterogeneous fishing abili-
ties and perceptions of the current income level needed to attract
their participation. The slope of the plot represents the amount of
additional fishing effort expected for each increment in mean in-
come; it is steepest at the mean income level where the majority
of fishers see the possibility of just breaking even by going out.

mechanisms, and these mechanisms broadly fall in
two categories:

• direct—changes caused over short time scales (of
the order of 1 year) by changes in behavior of or-
ganisms, whether or not there is an ecosystem-scale
change due to fishing; and

• indirect—changes over longer time scales due to
ecosystem-scale responses such as increased prey
densities and/or reduced predator densities.

Usually we find the direct effects to be most im-
portant in explaining historical response data. Here
we describe how to generate alternative models or hy-
potheses about direct compensatory responses; these
hypotheses fall in three obvious categories: recruit-
ment, growth, and natural mortality.

3.6.1. Compensatory recruitment (models with split
pools/multiple stanza only)

Compensatory recruitment effects are usually ex-
pressed as a flat or dome-shaped relationship between
numbers of juveniles recruiting to the adult pool ver-
sus parental abundance (stock-recruit relation). There
are two main ways to create such effects in Ecosim:

(a) non-zero feeding time adjustment for the juvenile
pool combined with fixed time in juvenile stage
and high EE, or high proportion of the ‘other’
mortality (the mortality not accounted for) being
sensitive to changes in predator feeding time;

(b) zero feeding time adjustment combined with vari-
able time in juvenile stage.

Mechanism (a) represents density-dependent
changes in juvenile mortality rate associated with
changes in feeding time and predation risk, while
(b) represents density-dependent changes in juve-
nile growth rate and hence total time spent exposed
to high predation rates over the juvenile life stage.
Other, generally weaker compensatory responses can
also be caused by changes in adult energy allocation
to reproduction. For mechanisms (a) and (b), it is
usually also important that the vulnerabilities of prey
to the juvenile group also be relatively low.

3.6.2. Compensatory growth
Compensatory growth rate responses are modeled

by setting the feeding time adjustment rate to zero, so
that simulatedQ/B is allowed to vary with a group’s
biomass (non-zero feeding time adjustment results in
simulated organisms trying to maintain Ecopath base
Q/B by varying relative feeding time). Net produc-
tion is assumed proportional (growth efficiency) to
Q/B, whether or not this production is due to recruit-
ment (for groups where ontogenetic changes are mod-
eled) or growth. TheQ/B increase with decreasing
pool biomass is enhanced by lowering vulnerability of
prey to the pool. In the extreme as vulnerability ap-
proaches zero (donor or bottom-up control), total food
consumption rateQ approaches a constant (Ecopath
base consumption), soQ/B becomes inversely propor-
tional toB.

3.6.3. Compensatory natural mortality
Compensatory changes in natural mortality rate (M)

can be simulated by combining two effects: non-zero
feeding time adjustment, and either high EE from Eco-
path or high proportion of ‘other’ mortality being sen-
sitive to changes in predator feeding time. With these
settings, especially when vulnerabilities of prey to a
group are low, decreases in biomass lead to reduced
feeding time, which leads to proportional reduction in
natural mortality rate.

3.6.4. Compensation in recruitment
The ‘split pool’ representation of juvenile and adult

biomasses was originally included in Ecosim to allow
representation of trophic ontogeny (differential diets
for juveniles and adults). To implement this represen-
tation it was necessary to include population numbers
and age structure, at least for juveniles, so as to prevent
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‘impossible’ dynamics such as elimination of juvenile
biomass by competition/predation or fishing without
attendant impact on adult abundance (graduation from
juvenile to adult pools cannot be well represented just
as a biomass ‘flow’).

When we elected to include age structure dynamics,
we in effect created a requirement for model users to
think carefully about the dynamics of compensatory
processes that have traditionally been studied in
terms of the ‘stock-recruitment’ concept and relation-
ships. To credibly describe the dynamics of split-pool
populations, Ecosim parameters for split pools usu-
ally need to be set so as to produce an ‘emergent’
stock-recruitment relationship that is at least quali-
tatively similar to the many, many relationships for
which we now have empirical data (see data sum-
mary in http://www.mscs.dal.ca/∼myers/data.html).
In most cases, these relationships are ‘flat’ over a
wide range of spawning stock size, implying there
must generally be strong compensatory increase in
juvenile survival rate as spawning stock declines (oth-
erwise less eggs would mean less recruits on average,
no matter how variable the survival rate might be).

Ecosim can generate direct (as opposed to just
predator–prey) compensatory changes in juvenile re-
cruitment via at least three alternative mechanisms or
hypotheses:

1. simple density-dependence in juvenile production
rate by adults, due to changes in adult feeding rates
and fecundity (not a likely mechanism);

2. changes in duration of the juvenile stage and hence
in total time exposed to relatively high predation
risk;

3. changes in juvenile foraging time (and hence ex-
posure to predation risk) with changes in juvenile
feeding rates.

For all of these mechanisms, compensatory effects are
increased (recruitment relationship flat over a wider
range of adult stock size, steeper slope of recruitment
curve near the origin) by

1. limiting availability of prey to juveniles by forcing
juveniles to use small ‘foraging arenas’ for feeding;

2. make effective time exposed to predation while
feeding drop directly with decreasing juvenile
abundance (simulates possibility that when juve-
niles are less abundant, remaining ones may be

able to forage ‘safely’ only in refuge sites with-
out exposing themselves to predation risk). This
option should be used only if field natural history
observation indicates that the juveniles do in fact
restrict their distribution to safe habitats when at
very low abundance.

3.7. Parameter sensitivity

Ecosim does not include complete formal sensitivity
analyses to test the effect of all input parameters. There
are, however, a number of routines that can be used to
examine various aspects of the model sensitivity, and
we expect that additional routines will be added.

Ecosim runs can be repeated as Monte Carlo sim-
ulations with initial Ecopath biomass estimates cho-
sen from normal distributions centered on the initial
input estimates (with confidence intervals that can be
based on the model pedigree, as discussed above).
Each Monte Carlo simulation trial begins by select-
ing at least one random biomass combination and
re-balancing the Ecopath model; the random selection
is repeated until a balanced model is found—a pro-
cess is similar to the Ecoranger method for analysis of
uncertainty for Ecopath parameters described above.
Then the resulting balanced Ecopath model is used to
initialize an Ecosim run.

The results can be shown as simple ‘bands of
uncertainty’ giving indications for how sensitive
Ecosim results are to input parameter quality. Strong
divergence in biomass time patterns among simula-
tion trials under this option is usually associated with
changes in fishing mortality rate estimates.

If time series data have been included in the analysis
(see below) it is possible to retain the best fitting es-
timates, i.e. the parameters which minimize the sums
of squared residuals (SS) between model and observa-
tions. This approach (technically known as a ‘Matyas
search’ technique) is useful in parameter estimation
and optimization problems where the parameters being
varied can result in non-feasible solutions (constraint
violations) but where the feasible parameter values
are not readily predicted from constraint equations.
Non-feasible solutions commonly arise when Ecopath
biomasses are changed so as to violate mass balance
(e.g. to values that would imply EE> 1.0). In fact, we
cannot use other nonlinear estimation procedures to
search for better initial (Ecopath) biomass estimates as

http://www.mscs.dal.ca/~myers/data.html
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we do for some Ecosim parameters, since these proce-
dures generally rely upon there being smooth change
in the SS criterion with changes in the parameters.
Such procedures use the gradient in SS to decide steps
in the parameter estimates, and good steps cannot be
efficiently estimated when any step can unpredictably
result in violation of mass balance constraints.

While there has been no comprehensive study pub-
lished of Ecosim parameter sensitivity, our preliminary
experience indicates that simulations are very sensitive
to the ‘behavioral exchange rate’, or ‘vulnerability’.
This parameter expresses the exchange rate between
the prey being in vulnerable and non-vulnerable states
(Fig. 1). It is generated by a multitude of processes,
e.g. physical mixing, movement of organisms between
resting/hiding and active feeding states, dispersal (vul-
nerability to predators while moving), growth into and
out of vulnerable size range, and behavioral reactions
to growth in body parasite loads.

The vulnerability parameter is not subject to direct
measurement. There are, however, other ways of esti-
mating it:

1. Sensitivity analysis (see the section below);
2. Fitting to time series data (see the section below);
3. Two model comparisons, build Ecopath models for

a system covering two different time periods, and
use a routine included in Ecosim to search for vul-
nerability parameter settings that with the given ex-
ploitation rates will make it possible to move from
the first to the second model state;

4. Estimate biomass depletion relative to the Ecopath
base biomasses (Bunfished/B0);

5. Estimate maximum fishing mortality relate to nat-
ural mortality (Fmax/M).

It is possible and indeed recommended to use all of
these methods to obtain estimates for the vulnerability
parameters.

Ecosim simulations are very sensitive to variations
in primary productivity, see, e.g.Martell et al. (2002),
therefore a variety of tools have been added for com-
paring simulations with series data as described in
more detail below.

3.8. Fitting Ecosim to time series data

Based on time series ‘reference’ biomass data, and
on total mortality of various pools over a particu-

lar historical period, along with estimates of changes
in fishing impacts over that period Ecosim estimates
a statistical measure of goodness-of-fit to these data
each time Ecosim is run. This goodness-of-fit mea-
sure is a weighted sum of squared deviations (SS) of
log biomasses from log predicted biomasses, scaled
in the case of relative abundance data (y) by the max-
imum likelihood estimate of the relative abundance
scaling factor (q) in the equationy = q × B, where
B is the absolute abundance. The reference data se-
ries can be assigned a relative weight expressing how
variable or reliable that type of data is compared to
the other reference time series. Based on the time se-
ries three types of analyses with the SS measure are
available:

1. determine sensitivity of SS to the critical Ecosim
vulnerability parameters by changing each one
slightly then re-running the model to see how
much SS is changed;

2. search for vulnerability estimates that give better
‘fits’ of Ecosim to the time series data;

3. search for time series values of forcing functions,
e.g. annual relative primary productivity that may
represent historical productivity ‘regime shifts’ im-
pacting biomasses throughout the ecosystem.

The searches include a SS minimization procedure
based on a Marquardt nonlinear search algorithm with
trust region modification of the Marquardt steps (see,
e.g. More, 1977). For users familiar with the non-
linear estimation procedures used in single-species
stock assessment, e.g. for fitting production models
to time series CPUE data, the procedure implemented
in Ecosim should be quite familiar. In essence, the
Ecosim search procedure for vulnerabilities is an ‘ob-
servation error’ fitting procedure where vulnerability
changes usually have effects quite similar to changes
in population ‘r’ parameters in single-species mod-
els. Allowing the search to also include historical pri-
mary productivity ‘anomalies’ corresponds to search-
ing also for ‘nuisance parameter’ estimates of what
is usually called the ‘process errors’ in single-species
assessment (Hilborn and Walters, 1992).

3.9. In search of an optimum fishing policy

Fisheries management aims to regulate fishing
mortality rates over time so as to achieve defined
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sustainability objectives, and modeling serves a role
for providing insight about how high these mortal-
ity rates should be, and how they should be varied
over time. The impacts of alternative exploitation pat-
terns can be explored using two different approaches
in Ecosim, either by sketching fishing mortalities
over time and evaluate the results, or by a formal
optimization routine to evaluate the fishing effort
over time that would maximize particular perfor-
mance measures or ‘objective functions’ for manage-
ment.

The objective function is defined (by the user) as
a combination of net economic value, employment,
mandated rebuilding of target species, and ecologi-
cal ‘stability’ criteria, seeWalters et al. (2002)for
details.

Ecosim uses the Davidson–Fletcher–Powell (DFP;
Fletcher, 1987) nonlinear optimization procedure to
iteratively improve an objective function by changing
relative fishing rates, where each year/fleet block de-
fines one parameter to be varied by the procedure. The
parameter variation scheme used by DFP is known as
a ‘conjugate-gradient’ method, which involves testing
alternative parameter values so as to locally approxi-
mate the objective function as a quadratic function of
the parameter values, and using this approximation to
make parameter update steps. It is one of the more
efficient algorithms for complex and highly nonlinear
optimization problems.

The search procedure results in what control sys-
tems analysts call an ‘open loop policy’, i.e. a pre-
scription for what to do at different future times
without reference to what the system actually ends up
doing along the way to those times. In practice, actual
management needs to be implemented using feedback
policies where harvest goals are adjusted over time as
new information becomes available and in response
to unpredicted ecological changes due to environmen-
tal factors. But this need for feedback in application
does not mean that open loop policy calculations are
useless; rather, we see the open loop calculations as
being done regularly over time as new information
becomes available, to keep providing directional guid-
ance for where the system can/should be heading. For
an example of this approach to design of policies for
dealing with decadal-scale variation in ocean produc-
tivity for single-species management, seeWalters and
Parma (1996).

3.9.1. Maximizing risk-averse log utility for
economic and existence values

One option in the search procedure for optimum
fishing patterns is to search for relative fleet sizes that
would maximize a utility function of the form

w1 × log(NPV) + w2 × S × log(B) − w3 × V (24)

where thewi’s are utility weights, and the utility com-
ponents NPV,S×log(B), andV are defined as follows:

(1) NPV is net present economic value of harvests,
calculated as discounted sum of catches over all
fleets and time multiplied with prices minus costs
of fishing, i.e. the discounted total profit from fish-
ing the ecosystem;

(2) S× log(B) is an existence value index for all com-
ponents of the ecosystem over time. It is calculated
as the discounted sum over times and biomass
pools of user-entered structure weights times logs
of biomasses, scaled to per-time and per-group
by dividing the sum by the number of simulation
years and number of living biomass pools;

(3) V is a variance measure for the prediction of
log(NPV)+ S × log(B). It is assumed to be pro-
portional to how severely the ecosystem is dis-
turbed away from the Ecopath base state, where
disturbance is measured at each time in the sim-
ulation by the multidimensional distance of the
ecosystem biomass state from the Ecopath base
state. This term is subtracted, implying that in-
creased uncertainty about the predictions for more
severe disturbances causes a decrease in the mean
of log(NPV). The term represents both aversion
to management portfolio choices that have high
variance in predicted returns, and the observation
that the mean of the log of a random variable
(NPV × PB) is approximately equal to the log of
the mean of that variable minus 1/2 the variance
of the variable. Largew3-values can be used to
represent both high uncertainty about predictions
that involve large deviations of biomass from the
Ecopath base state, and strong risk aversion to
policy choices that have high uncertainty.

This utility function combines several basic concepts
of utility. First, the log scaling of value components
represents the notion of ‘diminishing returns’, that
adding some amount to any value measure is less im-
portant when the value measure is already large than
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it is when the value measure is small. Second, the log
scaling also represents the notion of ‘balance’, that no
value component should be ignored entirely (unless
it is assigned a zerowi); the overall utility measure
approaches minus infinity if either net economic per-
formance (NPV) or if any biomass component of the
ecosystem (any biomassBi in S× log(B)) approaches
zero. Third, it represents the notion that our predictions
about the future of both economic performance and
biodiversity (biomasses) become progressively more
uncertain for policies that result in more extreme de-
partures from the Ecopath base state.

In the terminology of portfolio selection theory
in economics, fishing policies result in a portfolio
of value components with ‘expected total returns on
investment’ equal to NPV+ S × B. But policies that
have higher expected total returns are most often
also ones that would push the ecosystem into more
extreme states, and hence represent portfolio choices
with higher variance in total returns.

3.10. Closed-loop simulations

In order to model not only ecological dynamics over
time, but also the dynamics of the stock assessment
and regulatory process, a ‘closed-loop’ simulation rou-
tine has been added to Ecosim (seeWalters et al., 2002,
for more details). This routine includes ‘submodels’
for the dynamics of assessment (data gathering, ran-
dom and systematic errors in biomass and fishing rate
estimates), and for the implementation of assessment
results through limitation of annual fishing efforts. The
closed-loop policy simulation model, allows specifi-
cation of:

(1) how many closed-loop stochastic simulation trials
to do;

(2) type of annual assessment to be used (F = C/B
versusF directly from tags);

(3) accuracy of the annual assessment procedures (co-
efficient of variation of annual biomass orF esti-
mates, by stock); and

(4) value or importance weights for theF’s caused on
various species by each fishing fleet.

Closed-loop policy simulations could obviously in-
clude a wide range of complications related to the de-
tails of annual stock assessment procedures, survey
designs, and methods for directF estimation. We as-

sume that users will use other assessment modeling
tools to examine these details, and so need only enter
overall performance information (coefficients of vari-
ation in estimates) into the ecosystem-scale analysis.

4. Spatial simulation: Ecospace

Ecospace is a dynamic, spatial version of Ecopath,
incorporating all key elements of Ecosim and is de-
scribed in detail byWalters et al. (1999). It works by
dynamically allocating biomass across a user-defined
grid map while accounting for:

1. symmetrical movements from a cell to its four ad-
jacent cells modified by whether a cell is defined
as ‘preferred habitat’ or not;

2. user-defined increased predation risk and reduced
feeding rate in non-preferred habitat; and

3. a level of fishing effort that is proportional, in each
cell, to the overall profitability of fishing in that
cell, and whose distribution is sensitive to spatial
fishing costs.

4.1. Prediction of mixing rates

The instantaneous emigration rates from a given
cell in Ecospace are assumed to vary based on the
pool type, the groups preference for the habitat type
represented by the cell, and a ‘risk ratio’ representing
how the organisms in the cell respond to predation
risk. Base dispersal rates are calculated based on this,
but weighted based on a habitat gradient function in-
creasing the probability of organisms moving towards
favorable habitats. The mechanisms involved in this
procedure are explained in more detail byWalters
et al. (1999).

4.2. Predicting spatial fishing patterns

EwE works with multiple fishing fleets, with fishing
mortality rates (F) initially distributed between fleets
based on the distribution of catch rates in the under-
lying Ecopath base model. In Ecospace theF’s are
distributed using a simple ‘gravity model’ where the
proportion of the total effort allocated to each cell is
assumed proportional to the sum over groups of the
product of the biomass, the catchability, and the prof-
itability of fishing the target groups (Caddy, 1975;
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Hilborn and Walters, 1987). This profitability of fish-
ing includes factors such as the cell-specific cost of
fishing.

4.3. Numerical solutions

Ecospace is based on the same set of differential
equations as used in Ecosim, and in essence performs
a complete set of Ecosim calculations for each cell for
each time step. This represents a formidable amount of
computations, but it has been possible to take a number
of shortcuts to speed the processing up to an accept-
able rate. Briefly explained the background for this
takes its starting point inEq. (14), which expresses the
rate of change for each biomass pool over time. If the
rate constants were constant over time (they are not,
but if!) the biomass would change as a linear dynam-
ical system, and would move exponentially towards
an equilibrium. Hence, if input and output rates were
constant, the time solutions would behave as weighted
averages of past values and equilibrium values with
weights depending on the mortality and migration
rates. Using such expressions the Ecospace computa-
tions can be greatly increased by using a variable time
splitting, where moving equilibria are calculated for
groups with high turnover rates (e.g. phytoplankton),
while the integrations for groups with slower turnover
rates (e.g. fish and marine mammals) are based on
a Runge–Kutta method. Comparisons indicate that
this does not change the resulting time patterns for
solutions in any noticeable way—hence, the ‘wrong’
assumption of time rate constancy introduced above
is useful for speeding up the computations without
noticeable detraction of the final results. The result-
ing computations are carried out orders of magnitude
faster than if the time splitting was not included.

4.4. Advection in Ecospace

Advection processes are critical for productivity in
most ocean areas. Currents deliver planktonic produc-
tion to reef areas at much higher rates than would be
predicted from simple turbulent mixing processes. Up-
welling associated with movement of water away from
coastlines delivers nutrients to surface waters, but the
movement of nutrient rich water away from upwelling
locations means that production and biomass may be
highest well away from the actual upwelling locations.
Convergence (down-welling) zones represent places

where planktonic production from surrounding areas
is concentrated, creating special opportunities for pro-
duction of higher trophic levels.

Ecospace provides a user interface for sketching
general current patterns or wind/geostrophic forcing
patterns for surface currents. Based on these patterns
Ecospace calculates equilibrium horizontal flow and
upwelling/down-welling velocity fields that maintain
continuity (water mass balance) and effects of Corio-
lis force. That is, the advection field is calculated by
solving the linearized pressure field and velocity equa-
tions df/dt = 0, dvu/dt = 0, dvv/dt = 0 across the
faces of each Ecospace grid (u, v) cell, wheref is sea
surface anomaly, thev’s are horizontal and velocity
components (u, v directions) and the rate equations at
each cell face satisfy (omitting grid size scaling fac-
tors for clarity):

dh

dt
= vuh

u
+ vvh

v
− Dh (25)

dvu
dt

= k × Wu − k × vu − f × vv − g × h

u
(26)

dvv
dt

= k × Wv − k × vv − f × vu − g × h

v
(27)

Here, theW’s represent the user sketched forcing or
general circulation field,h the sea surface anomaly,k
the bottom friction force,f the Coriolis force,D repre-
sents downwelling/upwelling rate, andg acceleration
due to sea surface slope.

Solving these equations for equilibrium is not meant
to be a replacement for more elaborate advection mod-
els; generally theWu andWv need to be provided either
by such models or by direct analysis of surface current
data, so the Ecospace solution scheme is only used to
assure mass balance and correct for ‘local’ features
caused by bottom topography and Coriolis forces. That
is, absent shoreline, bottom, and sea surface anomaly
(h) effects, the equilibrium velocities are justvu = Wu,
vv = Wv up to corrections for Coriolis force. Solv-
ing the equations using general forcing sketches ofW
patterns allows internal correction for factors such as
topographic steering of currents near shorelines, with-
out requiring enteredW fields that precisely maintain
mass balance (and/or correct upwelling/downwelling
velocities) absent any correction scheme.

Once an advection pattern has been defined, a
user can specify which biomass pools are subject
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to the advection velocities (vu, vv field) in addition
to movement caused by swimming and/or turbulent
mixing. This allows examination of whether some
apparent ‘migration’ and concentration patterns of
actively swimming organisms (e.g. tuna aggregations
at convergence zones) might in fact be due mainly to
random swimming combined with advective drift.

4.5. Seasonal migration

Larger organisms commonly have seasonal mi-
gration patterns that allow them to utilize favorable
seasonal resource and environmental conditions over
large spatial areas. Such movements can be repre-
sented in Ecospace through a ‘Eulerian’ approach
involving explicitly modeling changes in instanta-
neous rates of biomass flow among the Ecospace
spatial cells, in some way that approximates at least
the changing center of distribution of the migratory
species. The approach is implemented by defining a
monthly sequence of ‘preferred’ map cell positions,
and how spread out the migrating fish are likely to be
around these preferred cells by specifying north–south
and east–west ‘concentration parameters’.

The mathematical method used in Ecospace to cre-
ate migratory behavior is quite simple. Spatial move-
ment is represented in general in Ecospace as a set
of instantaneous exchange rates across the boundaries

Fig. 4. Representation of the relative movement rate across the
southern boundary of a cell as a function of gradient steepness
in the seasonal migration module of Ecospace. The function is
reversed for movement across the northern cell boundary, and
a similar function is used for east–west movements with map
column-preferred column as the independent variable.

of adjacent spatial cells. For migratory species, these
exchange rates are multiplied by relative factors at
each simulation time step, where the factors depend
on distance from the preferred cell for that time step as
shown inFig. 4. The factor has no effect for cells near
the preferred cell, and ‘shuts down’ movement away
from the preferred cell for cells far from that preferred
cell. The base movement rates that are multiplied by
the migration factors may not be the same in all direc-
tions to start with; these base rates can include advec-
tion effects and/or increased/oriented movement rates
towards preferred habitat types. That is, migration ef-
fects can be combined with advection and orientation
of movement toward preferred habitats.

5. Capabilities and limitations

EwE has been developed largely through case stud-
ies, where users have challenged us to add various
capabilities and as we have seen inadequacies through
comparison to data; see as a good example the discus-
sions in the proceedings from two recent FAO/UBC
workshops on the application of EwE (Pauly and
Weingartner, 1998; Pitcher and Cochrane, 2002). Var-
ious capabilities have been added to EwE in response
to these challenges, and there has inevitably been
some uncertainty about what the approach and soft-
ware presently can and cannot do, and about how it
should be used in the design of sustainable fisheries
policies. Such uncertainty may be expressed through
too simplistic interpretations of what mass balance
and biomass dynamics models are capable of repre-
senting, through to unwarranted optimism about how
it should be used to replace or complement existing
assessment tools. Here we review the capabilities
and limitations through a series of ‘frequently asked
questions’, followed by explanations of what we think
EwE is actually capable of doing.

Note that many of the questions discussed below
have their root in an assumption that EwE is some-
how intended to supplant or replace single-species
assessment methods. This is clearly not the case;
ecosystem-based methods rely on information from
traditional assessment, and have their force when
it comes to addressing strategic management ques-
tions, not tactical management questions to which
single-species assessment is much better suited. Our
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primary goal when developing EwE has been to de-
velop a capability for asking policy questions that
simply cannot be addressed with single-species as-
sessment. Examples are questions about impacts of
fishing on non-target species, and the efficacy of pol-
icy interventions aimed at limiting unintended side
effects of fishing. Also, as is shown through exam-
ples below, EwE can incorporate time series data
from single-species assessment as input and use these
for parameter fitting. We indeed advocate an iter-
ative process where information is passed between
single-species analysis and EwE to check and improve
estimates in the process, addressing questions about
the degree to which ecosystem events can and cannot
be attributed to impact of fisheries, climate change, etc.

5.1. Does Ecopath assume steady state or
equilibrium conditions?

Ecopath provides an ‘instantaneous’ estimate of
biomasses, trophic flows, and instantaneous mortality
rates, for some reference year or multi-year averaging
window. Biomasses need not be at equilibrium for the
reference year, provided the Ecopath user can provide
an estimate of the rate of biomass ‘accumulation’ (or
depletion) for each biomass for that reference year. In
fact, in a number of cases, e.g. in a model of the North
Sea in 1981 (Christensen, 1995b) it was necessary
to recognize that biomasses were in fact changing
over the period for which Ecopath reference data (B,
P/B, Q/B, diet composition) were provided. In these
cases, assuming equilibrium for the reference year led
to overly optimistic estimates of sustainable fishing
mortality rates.

5.2. Should Ecopath be used even if there is
insufficient local information to construct models, or
should more sampling go first?

It is a fairly common conception that since we do
not know enough to make perfect models at the indi-
vidual or species level there is no way we can have
enough information at hand to embark on modeling
at the ecosystem level. This may hold if we try to
construct models bottom-up—we cannot account for
all the actions and processes involving all the indi-
viduals of the world. This is, however, not what Eco-
path models do, instead they place piecemeal infor-

mation in a framework that enables evaluation of the
compatibility of the information at hand, gaining in-
sights in the process. Adding to this is that there is
much more information of living marine resources
available than most will anticipate. A good demon-
stration of this can be obtained by searching the Fish-
Base database on finfish (Froese and Pauly, 2000,
http://www.fishbase.org) for Ecopath-relevant infor-
mation using the semi-automated search routine avail-
able for the specific purpose at the website.

Another aspect is that ecosystem models can help
direct research by pinpointing critical information and
gaps in the present knowledge. As more information
becomes available it is straightforwardly included in
the model, improving estimates and reducing uncer-
tainty (see ‘Addressing uncertainty’ above).

5.3. Does EwE ignore inherent uncertainty in
assembling complex and usually fragmentary
trophic data?

Ecopath has a number of routines that encourage
users to explore the effects of uncertainty in input in-
formation on the mass balance estimates. In particular,
the ‘Ecoranger’ routine allows users to calculate prob-
ability distributions for the estimates when they spec-
ify probability distributions for the input data compo-
nents. Similarly, Ecosim has a graphical interface that
encourages policy ‘gaming’ and sensitivity testing.

Lack of historical data and difficulty in measuring
some ecosystem components and processes will likely
always plague efforts to understand trophic structure
and interactions. This is not a problem with Ecopath,
but rather with aquatic ecology in general (Ludwig
et al., 1993). We need to respond to it not by complain-
ing about the incompleteness of our data, but rather
by using models like EwE to direct research attention
toward components that are most uncertain and also
make the most difference to policy predictions. We
also need to use the models to search for robust policy
options and management approaches that will allow
us to cope with the uncertainty, rather than pretending
that someday it will just go away.

When EwE is used for policy comparison, it is im-
portant to recognize that incorrect comparisons (EwE
leading user to favor a wrong policy) are not due to
uncertainty in general about the model parameters, but
rather to errors to which the particular policy compar-

http://www.fishbase.org
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ison is sensitive. In other words, EwE can give correct
answers for some policy comparisons but wildly in-
correct ones for others, so it is meaningless to claim
that it should not be used because of uncertainty in
general. For example, EwE predictions of the impact
of increasing fishing rates for a particular species are
most sensitive to assumptions about vulnerability of
prey to that species, since the vulnerability parameters
largely determine the strength of the compensatory re-
sponse by the species to increased mortality rate. But
even if EwE predicts the strength of the compensatory
response to fishing correctly, it may still fail to pre-
dict response of that same species to a policy aimed at
increasing its productivity by reducing abundance of
one or more of its predators: EwE may have a good
estimate of total mortality rate for the species, but a
very poor estimate of how that mortality rate is dis-
tributed among (or generated by) predators included
in the model.

5.4. Can Ecopath mass balance assessments provide
information directly usable for policy analysis?

Instantaneous snapshots of biomass, flows, and rates
of biomass change have sometimes been used to draw
inferences about issues such as ecosystem ‘health’
as measured by mean trophic level or other indices
of fishing impact (e.g.Christensen, 1995a; Pauly and
Christensen, 1995; Pauly et al., 1998). But the snap-
shots cannot be used directly to assess effects of pol-
icy changes that would result in changes in rates (e.g.
reduction in fishing rates) since the cumulative effects
of such changes cannot be anticipated from the system
state at one point in time. In fact the Ecosim part of
EwE was initially developed specifically to provide a
method for predicting cumulative changes, while rec-
ognizing that all rate processes in an ecosystem may
change over time, as biomasses change. For example,
one might conclude from the Ecopath mortality rate
estimates or mixed trophic impact analysis (see above)
that reducing the abundance of some particularly im-
portant predator might result in lower mortality rates
of its prey, and hence growth in abundance of these
prey. This prediction may hold for a short time, but
might be reversed entirely over longer time scales due
to increases in abundance of other predators or on an
intermediate time scale due to predator prey switching
in response to the initial responses in prey density.

5.5. Can Ecopath provide a reliable way of estimating
potential production by incorporating knowledge of
ecosystem support capabilities and limits?

Ecologists have long sought simple ways of pre-
dicting productive potential of aquatic ecosystems
from ‘bottom-up’ arguments about efficiency of
conversion of primary production into production
of higher trophic levels (e.g.Polovina and Marten,
1982). While Ecopath inputs can be organized so as
to provide such predictions, we do not recommend
using EwE for management this way. There are sim-
ply too many ways that simple efficiency predictions
can go wrong, particularly in relation to ‘shunting’ of
production into food web components that are not of
direct interest or value in management (e.g. ungraze-
able algae, inedible zooplankton, etc.) Ecopath can
help provide broad bounds for potential abundances
and production in an exploratory research mode, but
these bounds are unlikely to be tight enough to be
useful for management planning related to fishery
development or recovery potential.

5.6. Can Ecopath predict biomasses of groups for
which no information is available?

We try to avoid using the Ecopath biomass esti-
mation capability for more biomass components than
absolutely necessary. Estimation of biomass with
Ecopath usually requires making explicit assumption
about the ecotrophic efficiency, i.e. about the pro-
portion of the total mortality rate of a group that we
account for by the predation, migration, biomass ac-
cumulation and fishing rates included explicitly in the
Ecopath data. There is rarely a sound empirical basis
for using any particular value of EE, except perhaps
for top predators in situations where total mortality
rate (Z = P /B) is well estimated and EE represents
a ‘known’ ratio of fishing rate (F) to total Z (and the
rest ofZ, e.g. the natural mortality (M) is known not
to be due to other predators included in the model nor
to other factors not considered).

Where biomasses really are unavailable or esti-
mates are known to be biased, e.g. if the only biomass
estimates for pelagics are from swept-area analysis
based on demersal trawling, it may still be better to
use assumed EE’s than to stop short of construct-
ing an ecosystem model pending, e.g. funding and
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development of capabilities to conduct acoustic sur-
veys. In such cases one can assume reasonable EE
values for groups where biomasses are missing—an
example: small pelagics do not die of old age in an
exploited ecosystems, most are either eaten or caught,
hence EE is likely to be in the range 0.90–0.99.
As confidence intervals can be assigned to all input
parameters and can be estimated for the output pa-
rameters using the Ecoranger module of EwE (where
a range for acceptable output parameters is also in-
corporated as part of the model evaluation process),
the mass balance constraints of the model can be
used to predict potential ranges for biomasses in the
system.

5.7. Should Ecopath mass balance modeling be used
only in situations where data are inadequate to use
more detailed and realistic methods like MSVPA?

Multispecies virtual population analysis (MSVPA)
has been used to reconstruct age–size and time-depen-
dent estimates of trophic flows and mortality rate
components, using the VPA assumption that historical
abundances can be inferred by back-calculating how
many organisms must have been present in order to ac-
count for measured and estimated removals from those
organisms over time (e.g.Sparre, 1991; Magnusson,
1995). In a sense, Ecopath does this as well, but
generally does not account for age–size dependency
and temporal variation (biomasses are constrained
to be large enough to account for assumed removals
estimated from biomasses, consumption/biomasses,
and diet composition of predators, just as in
MSVPA).

But the really big difference between Ecopath and
MSVPA is not in the detail of calculations; construct-
ing an Ecopath model that details age, size and time
components is tedious but feasible. The more impor-
tant difference is in the use of direct data on total
mortality rate by Ecopath, in the form of theP/B ra-
tio that Ecopath users must provide. Ecopath biomass
and mortality estimates are ‘constrained’ to fit the to-
tal mortality rates entered asP/B data. In contrast,
MSVPA (like single-species VPA) can produce cohort
abundance patterns (die-off patterns over age–size and
time) that do not agree in any way with apparent co-
hort decay patterns evident from direct examination of
the age–size composition data. In effect, the MSVPA

(and VPA) user must reject or ignore any direct evi-
dence about total mortality rateZ that might be present
in age–size composition data, and must treat discrep-
ancies between apparentZ from the cohort reconstruc-
tions versus apparentZ from composition data as be-
ing due to age–size-dependent changes in vulnerability
to the composition sampling method. As an example,
Newfoundland cod VPA’s resulted in much lower es-
timates ofZ than would be estimated from catch-curve
analysis of the age composition data, and in this case
it turned out that VPA tuning resulted in underesti-
mates of fishing mortality rate, see, e.g.Walters and
Maguire (1996).

It is obviously comforting to us as biologists to be
able to provide more detailed accounting of preda-
tion interactions, which are almost always size and
age-dependent. But in assessments of ecosystem-scale
impacts of changes in trophic conditions, it is not au-
tomatically true that the best aggregate estimate is the
sum of component estimates, any more than it is auto-
matically true in single-species assessment that more
detailed models and data always provide better assess-
ments than simpler models. For statistical and logical
reasons, the ‘more is better’ argument is no more valid
in dynamic modeling than it is in multiple regression
analysis, where we are familiar with how adding more
independent variables is often an invitation to better
fits but poorer predictions.

As noted in the following two points, Ecopath and
Ecosim do not ‘ignore’ the fact that trophic interac-
tions are strongly age–size and seasonally structured.
Rather, we assume that initial (Ecopath base or ref-
erence period) structuring has been adequately cap-
tured in preparing average/total rate input data, and
that changes in structural composition over time are
not large enough to drastically and persistently al-
ter interaction rates/parameters. This is very similar
to the assumption in single-species biomass dynam-
ics and delay-difference modeling that stock compo-
sition changes produce regular or predictable changes
in overall (stock-scale) production parameters, not that
there is no composition effect in the first place.

5.8. Do EwE models ignore seasonality in
production, mortality, and diet composition?

In most applications, Ecopath calculates compo-
nents of biomass change over a 1-year accounting
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step. There is no explicit assumption about how mor-
tality rates, consumption rates, and diet composition
may have varied within this step, except that the Eco-
path user is assumed to have calculated a correct,
weighted average of the rates over whatever seasonal-
ity may have been present in the data. Such averages
can be difficult to calculate in practice, and a program
interface component has been developed to help users
with this chore (Martell, 1999).

In Ecosim, model users can define seasonal ‘forc-
ing shapes’ or functions that can be applied as sea-
sonal multipliers to the modeled production and con-
sumption rate functions. Generally, including seasonal
variation in this way results in graphics displays that
are hard to follow visually (strong seasonal oscilla-
tions in ecosystem ‘fast’ variables like phytoplankton
concentration), but very little impact on predicted in-
ter annual (cumulative, long term) patterns of system
change.

5.9. Do biomass dynamics models like Ecosim treat
ecosystems as consisting of homogeneous biomass
pools of identical organisms, hence ignoring, e.g.
size-selectivity of predation?

The biomass rate equations in Ecosim (sums of con-
sumption rates less predation and fishing rates) can be
viewed as ‘sums of sums’, where each trophic flow
rate for an overall biomass pool is the sum of rates
that apply to biomass components within that pool. In
this view, doing a single overall rate calculation for a
pool amounts to assuming that the proportional con-
tributions of the biomass components within the pool
remain stable, i.e. the age–size-species composition
of the pool remains stable over changes in predicted
overall food consumption and predation rates. In fact,
the assumption is even weaker: pool composition may
indeed change over time provided that high and low
rate components change so as to balance one another
or proportional contribution of major components is
stable enough so that total rates per overall biomass
are not strongly affected.

We know of at least one condition under which
the compositional stability assumption may be
violated—when ratios of juvenile to adult abundance
can change greatly (e.g. under changes in fishing mor-
tality) for a species that has strong trophic ontogeny
(very different habitat use and trophic interactions

by juveniles). To deal with such situations, Ecosim
allows model users to ‘split’ biomass pools repre-
senting single-species with strong trophic ontogeny,
into ‘juvenile’ and ‘adult’ pools (or if desired in
to multiple stanza). If so, the Ecosim biomass dy-
namics equations are replaced with an explicit age
structured model for monthly age cohorts in the ju-
venile pool, and a delay-difference model for the
adult pool. That is, for ‘split pool’ species Ecosim
replaces the biomass dynamics model with a much
more detailed and realistic population model (see
Section 3.2above). This allows Ecosim users to
not only represent compositional effects, but also
to examine the emergent stock-recruitment relation-
ship caused by density-dependent changes in adult
fecundity and juvenile growth and foraging time
behavior.

5.10. Do ecosystem biomass models ignore
behavioral mechanisms by treating species
interactions as random encounters?

Historically, trophic interaction rates in biomass
dynamics models have been predicted by treating
predator–prey encounter patterns as analogous to
‘mass-action’ encounters between chemical species
in chemical reaction vat processes, where reaction
(encounter, ‘predation’) rates are proportional to
the product of predator and prey densities. Such
‘Lotka–Volterra’ models generally predict much
more violent dynamic changes, and considerably
simpler ecosystem organization, than we see in field
data.

Ecosim was constructed around the proposition that
this mass-action principle is deeply incorrect for eco-
logical interactions, and instead interactions take place
largely in spatially and temporally restricted ‘forag-
ing arenas’ where prey make themselves available to
predation through activities such as foraging and dis-
persal. To represent this within-pool heterogeneity, we
treat each biomass pool as consisting at any instant of
two biomass components with respect to any predator,
one sub-pool of individuals vulnerable to the preda-
tor and another sub-pool ‘safe’ from the predator. In
this view, predation rate is limited jointly by search
efficiency of the predator for vulnerable prey individ-
uals, and exchange rate of prey between the invulner-
able and vulnerable states. When Ecosim users set the
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vulnerability exchange rates to high values, the model
moves toward ‘top-down’ or mass-action control of
predation rates. When users set the vulnerability rates
to low values, the model moves toward ‘bottom-up’
control where predation rates are limited by how fast
prey move (or grow, or disperse) into the vulnerable
state.

Obviously the two-state (vulnerable/invulnerable)
representation of prey biomass composition is a first
approximation to the much more complex distribution
of vulnerabilities among prey individuals that is likely
to be present in most field situations. But it goes a
remarkable way toward explaining dynamic patterns
(lack of predator–prey cycles, persistence of appar-
ent competitors and high biodiversity) that we have
been unable to explain with simpler Lotka–Volterra
mass-action models.

5.11. Do Ecosim models account for changes in
trophic interactions associated with changes in
predator diet compositions and limits to predation
such as satiation?

In nature, diet compositions and feeding rates can
change due to five broad factors:

(1) changes in ‘habitat factors’ such as water clarity,
temperature, and escape cover for prey;

(2) changes in prey abundance and activity, and hence
encounter rates with predators;

(3) changes in predator abundance, and hence in-
terference/exploitation competition for localized
available prey;

(4) changes in predator search tactics (search images,
microhabitat used for foraging);

(5) handling time or satiation limitations to predator
feeding rates.

Ecosim allows (or requires) representation of four
of these factors, namely all but predator search tac-
tic changes (4). Type (1) factors can be optionally
introduced by including ‘time forcing’ functions rep-
resenting temporal habitat change, and or ‘trophic
mediation’ functions where other biomasses mod-
ify predation interaction rates for any predator–prey
pair(s). Types (2), (3), and (5) are built into the cal-
culations by default (though some effects can be
switched off through parameter choices).

In Ecosim, changes in prey abundance (factor (2)
above) lead to proportional changes in predator diet
composition only when prey feeding times are delib-
erately held constant by ‘turning off’ Ecosim forag-
ing time adjustment parameters. When prey foraging
time is allowed to vary (default assumption), declines
in prey density generally result in apparent sigmoid
(type (3)) decreases in predator consumptions of that
prey type: as the prey declines, it generally spends less
time feeding (reduced intraspecific competition for its
own prey) and hence reduced encounter rates with its
predators. The user can exaggerate this sigmoid effect
by turning on parameters that cause the prey to spend
less time feeding when predation risk is high (i.e. di-
rect response to perceived predation risk).

Predator satiation effects are represented in Ecosim
by foraging time adjustments such that predators ‘try’
to maintain constant food consumption rates (unless
foraging time adjustments are switched off), by spend-
ing more time feeding when feeding rates begin to de-
crease due to decreasing densities of one or more prey
types. Likewise, handling time limits to feeding rate
(lower attack rate on any one prey type as abundance
of another increases, due to predator spending more
time pursuing/handling individuals of the other type)
are represented by a ‘multispecies disc equation’ (gen-
eralization of Holling’s Type II functional response
model).

Ecosim, for regions of parameter space with fairly
slow dynamics, offers a reasonable approximation of
most types of studied functional response forms. It is
possible, as in all functional responses that the shape
of the curves as evidenced in Ecosim departs sub-
stantially from the actual mechanisms which give rise
to those shapes in nature. Further, good fits to one
type of data (e.g. biomass) may hide poor fits to other
types (e.g. capture inappropriate changes in feeding
rate).

Our philosophy in developing Ecosim predation rate
predictions has been to look first at the fine-scale
(space, time) behavioral ecology of prey and preda-
tors, and in particular at how they vary and ‘manage’
their time. Overall predation response patterns, such as
Type II sigmoid effects of reduced prey density, then
‘emerge’ as effects of the time management represen-
tation rather than being ‘hardwired’ into the model
by particular overall equations for predation rates and
diet composition.



V. Christensen, C.J. Walters / Ecological Modelling 172 (2004) 109–139 133

5.12. Are the population models embedded in
Ecosim better than single-species models since they
explain the ecosystem trophic basis for production?

In a number of case studies, Ecosim users have
treated the model as though it were a single-species
assessment tool, varying its parameters so as to fit
time series data for a particular species (e.g.Cox
et al., 2002). In such cases, it generally turns out that
the biomass dynamics or delay-difference ‘submodel’
for the target species behaves quite similarly when
‘embedded’ in Ecosim (with explicit accounting
for production and mortality rate as function of
food resources and predators) to the corresponding
single-species assessment model where competition
effects are represented as implicit functions of stock
size (e.g. stock-recruitment model) and predation
mortality rates are assumed constant.

So if one has an Ecosim model whose ‘production’
parameters have been estimated by fitting the
model to single-species data, and a corresponding
single-species model also fitted to the data, one
should not be surprised that the two approaches usu-
ally give about the same answers to policy questions
related to changing fishing mortality rate for the
species (e.g. fishing rates for MSY). Ecosim models
may diverge from the single-species predictions at
very low stock sizes (Ecosim may predict ‘delayed
depensation’ effects due to changes in predation rates
on juveniles), but otherwise do not generally lead
us to interpret the single-species data any differ-
ently with respect to single-species assessment issues
(e.g. MSY) than if we just used the single-species
model.

Thus, it would be wrong when applying Ecosim for
single-species harvest policy analysis to contend that
Ecosim is ‘better’ than a single-species model, when
both give the same answer. It may comfort us to know
as biologists that the Ecosim representation has some-
how explained production in terms of ecosystem re-
lationships rather than implicit relationships on stock
size, but making biologists ‘feel better’ should not be
a criterion for judging the effectiveness of a policy
tool. When fitting Ecosim to the data we encounter
the same risks as in single-species assessment of in-
correct biomass estimation, misinterpretation of trend
data (e.g. hyperstability of catch per effort data), and
failure to account for persistent effects such as en-

vironmental regime changes or confounding of these
effects with the effects of fishing.

5.13. Do Ecosim population models provide more
accurate stock assessments than single-species
models by accounting for changes in recruitment and
natural mortality rates due to changes in predation
rates?

As noted above, using Ecosim for single-species
assessments usually results in similar fits to historical
data as would be obtained with traditional surplus
production or delay-difference models. In principle
Ecosim should be able to improve a bit on models
that assume stationary stock-recruitment relation-
ships and constant natural mortality rates, at least
for mid-trophic level species that may be subject to
highly variable predation risk. But in practice we have
so far not obtained substantial improvements in fit to
data, which could be due to poor data or to stability
in mortality rates of the sort predicted when Ecosim
vulnerability parameters are set to mimic ‘bottom-up’
control of predation rates.

In one case where we have fit Ecosim to multiple
time series data on major species (herring, salmon,
hake, ling cod, seals) by estimating ‘shared produc-
tion anomalies’ attributed in the fitting to changes in
primary productivity, we were able to show that about
half the total variance around single-species model fits
to changes in relative abundance over time could be
explained by ecosystem-scale effects (Martell et al.,
2002). That is, we were able to ‘improve’ on the
single-species fitting, but this improvement was due to
assuming changes in ecosystem scale ‘forcing’ rather
than to accounting for temporal variation in preda-
tion mortality rates associated with impacts of fishing
on predators. In another case (French Frigate Shoals,
Hawaii) we were again able to fit time series data
(rock lobsters, monk seals) better by including ef-
fects of an ecosystem-scale regime shift (decreased
primary production in the Central North Pacific after
1990), and were not able to explain deviations from
single-species model fits through changes in trophic
interactions alone (Polovina, 2002).

These cases, along with experience that Ecosim
generally does not behave much differently from
single-species models when only fishing effects are
considered, lead us to suspect that accounting for
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predator–prey effects by itself may not lead to substan-
tial improvements in stock size prediction. However,
there is a good chance that Ecosim will be very helpful
in interpreting effects of large-scale, persistent regime
changes that are likely to have caused ecosystem-scale
changes in productivity. In such situations, Ecosim
may be particularly helpful in finding some resolution
for the so-called ‘Thompson–Burkenroad’ debates
about the relative importance of fishing versus envi-
ronmental changes in driving historical changes in
abundance (Skud, 1975).

Rather than pretending that Ecosim and single-
species methods are competitors, a useful assessment
tactic may be to work back and forth between Ecosim
and single-species assessment methods, using each to
check and improve the other. For example, we have
used ordinary VPA and stock synthesis results for
Pacific herring as reference ‘data’ (summary of raw
age composition, harvest, and spawn survey data)
for fitting Ecosim models of the Georgia Strait. The
Ecosim herring model predicts somewhat lower abun-
dances than VPA during periods of low stock size,
and somewhat higher abundances than VPA during
high stock periods. Ecosim also estimates lower nat-
ural mortality rates (M) for herring during the low
abundance periods. If Ecosim is correct in estimating
that M has been (weakly) density-dependent, then
VPA has probably overestimated abundance (used too
high anM in the VPA back calculation) during popu-
lation lows, and is probably underestimating juvenile
abundance now (due to using anM that is too low for
the current high stock size).

5.14. Can one rely on the Ecosim search procedure
time series fitting to produce better parameter
estimates?

Ecosim users are cautioned that the search proce-
dure in no way guarantees finding ‘better’ Ecosim pa-
rameter estimates. Better fits to data can easily be ob-
tained for the wrong reasons, e.g. some time series,
particularly catch/effort data, can be misleading in the
first place, as can historical estimates of changes in
fishing mortality rates. Many parameter combinations
may equally well ‘explain’ patterns in the data. Non-
linear search procedures can become lost or ‘trapped’
at local parameter combinations where there are local
minima in the SS function far from the combinations

that would actually fit the data best. The best way to
insure against the technical problems of searching a
complex SS function is to use ‘multiple shooting’: start
the search from a variety of initial parameter combi-
nations, and see if it keeps coming back to the same
final estimates. Look very closely at the time series
data for possible violations of the assumption that the
relative abundance,y, is a product of a scaling fac-
tor and the total biomass, due to progressive changes
in the methods ofy or by nonlinearities caused by
factors such as density-dependent catchability. Ify is
a biomass reconstruction from methods such as VPA
that assume constant natural mortality rateM, spuri-
ous trends iny caused by the sort of changes inM that
Ecosim predicts, particularly for younger animals, call
for concern. Alternative combinations of Ecosim pa-
rameters may fit the data equally well but would im-
ply quite different responses to policy changes such
as increases in fishing rates.

Search procedures are most useful in diagnosing
problems with both the model and data. That is, the
greatest value of doing some formal estimation is
while it seems not to be working, when it cannot find
good fits to data. Poor fits can be informative about
both the model and the data.

5.15. Does Ecosim ignore multispecies technical
interactions (selectivity or lack of it by gear types)
and dynamics created by bycatch discarding?

By separating groups into juveniles and adults, each
with different biomasses and catches (and hence fish-
ing mortalities), fundamental differences in selection
can be accounted for. Moreover, Ecosim users can
specify fishing mortality patterns over time either at
the group level (fishing rate for each group over time)
or the fleet level. Fleet level changes are specified as
changes in relative fishing effort (relative to the Eco-
path baseline model), and these changes impact fish-
ing rates for the species caught by each gear in propor-
tion to Ecopath base estimates for the species compo-
sition of the gear. That is, technical interactions (fish-
ing rate effects on a variety of species caused by each
gear type) are a basic part of the Ecopath data input
and Ecosim simulations. However, Ecosim does not
provide simple scenario development options for sim-
ulating tactics that dynamically might make each gear
more or less selective.
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Discarded bycatch can be treated as a biomass pool
in Ecopath, i.e. as a diet component (and hence com-
ponent of production) by species that consume dis-
cards (e.g. sharks, birds, shrimp). Ecopath input data
on bycatch and discard rates are passed to Ecosim, and
Ecosim does time accounting for changes in discard
rates and biomass in relation to simulated changes in
fishing fleet sizes. In scenarios where some species
are heavily dependent on bycatch, Ecosim will then
track impacts of bycatch management on food avail-
ability and feeding rates of such species. For instance,
Ecosim has produced some very interesting scenarios
for shrimp fishery development and how shrimp of-
ten appear to become more productive under fishing,
by including effects of both reducing abundance of
predatory fishes (when they are killed as bycatch) and
providing biomass from those fishes as food for the
shrimp.

5.16. Does Ecosim ignore depensatory changes in
fishing mortality rates due to range collapse at low
stock sizes?

Ecosim users have two options for specifying fish-
ing mortality rate patterns: (1) direct entry of fish-
ing rate (F) values over time; or (2) entry of rela-
tive fishing effort values over time, with fishing rate
calculated asq(B) × (relative effort), whereq(B) is a
biomass-dependent catchability coefficient. Under the
second option,q is modeled as a hyperbolic function
of B (q = qmax/(1 + kB)), so thatq can be increased
dramatically with decreases in stock size. The concept
in this formulation is to recognize that catchabilityq
can be expressed as a ratioq = a/A, wherea is the
area swept by one unit of effort andA is the area over
which fish are distributed. Increases inq with decreas-
ing stock biomass are usually assumed to be caused
by decreases in stock areaA occupied with decreases
in B.

5.17. Does Ecosim ignore the risk of depensatory
recruitment changes at low stock sizes?

Depensatory recruitment changes are apparently not
common (Myers et al., 1995; Liermann and Hilborn,
1997), but should not be ignored in risk assessments
for situations where a depensatory recruitment decline
would have large economic or social consequences.

Depensatory effects are usually assumed to be due
to Type II predator feeding effects, where predators
would exert an increasing mortality rate on juvenile
fishes if they tend eat a constant number of juveniles
despite decreasing juvenile density. There are rela-
tively few field situations where we would expect such
Type II predator feeding effects (like migrating pink
salmon fry being eaten by resident trout in a small
stream).

Ecosim has helped identify another possible depen-
sation mechanism that may be more common, which
we call the ‘delayed depensation’ or ‘cultivation-
depensation’ effect (Walters and Kitchell, 2001).
When a large, dominant species is fished down,
Ecosim often predicts a substantial increase in
smaller-sized predators that have been kept down in
abundance by a combination of direct predation and
competition effects with the large dominant species.
These predators then cause an increase in predation
mortality rate on (or compete for food with) juveniles
of the large, previously dominant group. This causes
a depensatory decrease in the recruitment rate per
spawner for the large dominant, slowing or prevent-
ing population recovery even if the fishing effects
are removed. Thus, far from ignoring depensatory re-
cruitment effects, Ecosim warns us to be more careful
about the risk of these effects. It warns us to be espe-
cially wary in the management of the most common,
large, and dominant fish species that are the most
valuable components of most fisheries.

6. Major pitfalls in the application of EwE

EwE can produce misleading predictions about even
the direction of impacts of policy proposals. Erroneous
predictions usually result from bad estimates or er-
rors of omission for a few key parameters, rather than
‘diffuse’ effects of uncertainties in all the input infor-
mation. We warn EwE users to be particularly care-
ful about the following problems that we have seen in
various case studies.

6.1. Incorrect assessments of predation impacts for
prey that are rare in predator diets

It is easy to overlook a minor diet item in specifying
diet composition for some predator. Unfortunately,
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while that prey type may not be important for the
predator, it may represent a very large component of
total mortality for the prey type. This is a particu-
larly important problem in representation of mortality
factors for juvenile fishes, which usually suffer high
predation mortality rates but are often not major
components of any particular predator’s diet and are
notoriously difficult to measure in diet studies (fast
digestion rates, highly erratic and usually seasonal
occurrence in predator diets).

Another way that ‘minor’ diet items can come
to assume considerable importance is through
‘cultivation-depensation’ effects (Walters and Kitchell,
2001) as discussed above. Suppose for example that
some small predatory fish is kept at low densities by
another, larger predator, but the number of predation
events needed to exert this control is small compared
to the total prey consumption by the larger preda-
tor. It would be easy to miss this linkage entirely in
formulating the initial Ecopath model. But then sup-
pose the larger predator is fished down, ‘releasing’
the smaller predator to increase greatly in abundance.
The smaller predator may then cause substantial de-
crease in juvenile survival rates of the larger predator,
creating a ‘delayed depensation’ effect on the larger
predator’s recruitment. Possibly the larger predator
was abundant in the first place at least partly because
it was able to exert such control effects on preda-
tors/competitors of its own juveniles. Even if such
‘perverse’ trophic interactions are rare, they are cer-
tainly worth worrying about because they imply a
risk that overfishing will result in delayed recovery
or a persistent low equilibrium abundance for larger
predators.

6.2. Trophic mediation effects (indirect trophic
effects)

We use the term ‘mediation effect’ for situations
where the predation interaction between two biomass
pools is impacted positively or negatively by abun-
dance of a third biomass type. For example, predation
rates on juvenile fishes by large piscivores may be
much lower in situations where benthic algae, corals,
or macroinvertebrates provide cover for the juveniles.
Pelagic birds like albatrosses that feed on small fishes
may depend on large piscivores to drive these small
fishes to the surface where they are accessible to the

birds. Some large piscivores may create enough pre-
dation risk for others to prevent those others from for-
aging on some prey types in some habitats.

When a mediation effect is in fact present but is
not recognized in the Ecosim model development, it
is not unlikely for the model to predict responses that
are qualitatively incorrect. For example, fishing down
tunas in a model of a pelagic ecosystem is likely to
result in predicted increases in abundance of forage
fishes, and hence to predicted increases in abundance
of pelagic birds. But in fact, reducing tuna abundance
may have exactly the opposite effect, resulting in bird
declines due to the baitfish spending less time at the
surface when tuna are less abundant.

6.3. Underestimates of predation vulnerabilities

Predation impacts can be limited in Ecosim by
assuming low values of the exchange parameters
(v’s) between behaviorally invulnerable and vulnera-
ble prey ‘states’. We call these exchange parameters
‘vulnerabilities’, and they are estimated by assuming
ratios of maximum to Ecopath base estimates of prey
mortality rates for each predator–prey linkage. That
is, if M(o)ij = Q(o)ij/B(o)i is the base instantaneous
natural mortality rate for prey typei caused by preda-
tor j base (Ecopath estimate) consumption rateQ(o)ij
on prey base biomassB(o)i, we assume that the maxi-
mum possible rate for very high predatorj abundance
would bevij × Bi, wherevij = K × M(o)ij , K > 1,
represents the rate at which prey become vulnerable
to predatorj. By using aK near 1, i.e.vij only a
little larger thanM(o)ij , Ecosim users can simulate
the ‘bottom-up’ control possibility that changes in
predator abundances do not cause much change in
prey mortality rates because these rates are limited by
physiological or behavioral factors of the prey. The
assumption that there are such limitations is supported
by scattered observations where total mortality rates
(Z) were poorly correlated with changes in predator
abundances.

Another way expressing that vulnerabilities of prey
to predators are very limited is to say that predators
are already eating almost every prey that does be-
come vulnerable. If this is indeed true, then there is
likely intense exploitation competition among preda-
tors for the prey that do become vulnerable, i.e. the
number of vulnerable prey seen by each predator is
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severely limited by the number of other predators com-
peting for those prey. This has potentially large impli-
cations for the dynamics of the predator: reductions in
predator abundance may be accompanied by large in-
creases in the densities of vulnerable prey available to
each remaining predator. In such cases, Ecosim will
predict a strong compensatory effect on the predator
of reduced predator abundance (strong increases in
food consumption rate and growth, or large decreases
in predator foraging time with attendant decreases in
mortality risk faced by the predator).

So the net effect of assuming low prey vulnerabil-
ities is also to assume that predators should exhibit
strong compensatory responses to reduced abundance
of conspecifics, which in simulations of increased fish-
ing pressure means strong compensatory responses
and hence lower risk of overfishing. An enthusiastic
proponent of ‘bottom-up’ control of trophic processes
must therefore also be a strong proponent of the idea
that it is hard to overfish. This is a very risky assump-
tion.

6.4. Non-additivity in predation rates due to shared
foraging arenas

The default assumption in Ecosim is to treat each
predation rate linkage as occurring in a unique ‘for-
aging arena’ defined by the behaviors of the specific
prey and predator. In this formulation, elimination of
one predator will result in a decrease in total prey
mortality rate equal (at least initially) to the Ecopath
base estimate of that predator’s component of the prey
total mortality rate. This may be partly compensated
by increases in mortality rate due to other predators
if the prey increases in abundance and spends more
time foraging in response to increased intraspecific
competition, but in general this compensatory effect
will not completely replace the initial mortality rate
reduction.

But suppose this formulation is wrong, and in fact
the mortality rate of the prey represents movement of
the prey into behavioral or physiological states (e.g.
parasite loads) for which it is vulnerable to predators
in general. In this case, removal of any one predator
may simply result in the vulnerable prey individuals
being taken just as fast, but by other predators. In this
case, the total mortality rate of the prey will change
much less than predicted by Ecosim.

6.5. Temporal variation in species-specific habitat
factors

Attempting to fit Ecosim models to time series data
has revealed some cases where an important species
or biomass pool shows dramatic change that cannot be
attributed to any known change in trophic relationships
or harvesting. Then this dramatic but ‘unpredictable’
change appears to result in major trophic impact on the
rest of the ecosystem. An example would be a plank-
tivorous fish species, which shows high recruitment
variation and occasional very strong year classes. If
this species is important to piscivores in the system,
the piscivores may respond strongly to changes in the
planktivores abundance. It is quite possible for such re-
cruitment ‘events’ to be linked to very localized habi-
tat factors that affect juvenile survival of the plank-
tivore, so that each event results in a persistent cas-
cade of abundance changes throughout the food web.
Another example would be loss of specific spawning
sites or habitat for one species that causes it to decline
despite favorable trophic conditions in terms of food
supply and predation risk.

Ecosim can help us detect possible habitat prob-
lems, by revealing prediction ‘anomalies’ from
biomass patterns expected under trophic and fishing
effects alone. But there is also a risk of producing
‘spurious’ good fits to Ecosim, when Ecosim parame-
ters are varied so as to explain as much of the biomass
change as possible; that is, Ecosim may explain pat-
terns as trophic/fishing effects that in fact have been
due to habitat changes. This is a particular risk in
situations where habitat change involves some fairly
regular ‘regime shifts’ or cycles in habitat variables.
Ecosim may well attribute cyclic biomass changes in
such situations to predator–prey instabilities rather
than environmental forcing.
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