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Abstract
Animal-borne sensors enable researchers to  remotely track animals, the ir physiological state and body movements. 
Accelerometers, for example, have been used in several studies to measure body movement, posture, and energy 
expenditure, although predominantly in marine animals. In many studies, behaviour is often inferred from  expert 
interpretation o f sensor data and not validated w ith direct observations o f the animal. The aim o f this study was to  derive 
models that could be used to classify oystercatcher (Haematopus ostralegus) behaviour based on sensor data. We measured 
the location, speed, and tri-axial acceleration o f three oystercatchers using a flexible GPS tracking system and conducted 
simultaneous visual observations o f the behaviour o f these birds in the ir natural environment. We then used these data to 
develop three supervised classification trees o f behaviour and finally applied one o f the models to  calculate tim e-activity 
budgets. The model based on accelerometer data developed to classify three behaviours (fly, terrestrial locomotion, and no 
movement) was much more accurate (cross-validation error = 0.14) than the model based on GPS-speed alone (cross- 
validation error = 0.35). The most parsimonious acceleration model designed to  classify eight behaviours could distinguish 
five: fly, forage, body care, stand, and sit (cross-validation error = 0.28); other behaviours that were observed, such as 
aggression or handling o f prey, could not be distinguished. Model lim itations and potential improvements are discussed. 
The workflow  design presented in this study can facilitate model development, be adapted to  a wide range o f species, and 
together w ith  the appropriate measurements, can foster the study o f behaviour and habitat use o f free living animals 
throughout the ir annual routine.
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Introduction
U nderstand ing  how  anim als in teract w ith their environm ent is 

one o f the fundam ental aims o f anim al ecology. In  o rder to acquire 
this knowledge we need  inform ation w hich can  be used to quantify 
w hat anim als are doing, w hen, where, how an d  for how  long. For 
a  b ro ad  spectrum  of ecological research, from  theoretical to 
applied, quantitative tim e budget inform ation a t the individual 
level is im portan t [1-3]. A quantitative approach  can provide 
essential inform ation for species an d  hab ita t conservation [4-5], 
understand ing  ecosystem dynam ics [2,6], understand ing  and  
m itigating the spread o f anim al borne diseases [7-8], anim al 
adap tation  to clim ate and  landuse change [4,9], spread of 
in troduced and  invasive species [3] and  the developm ent o f 
environm ental policy [10], For exam ple, w hen addressing the 
direct and  indirect im pact o f fisheries on  seabirds (see question 26 
[10]), we w ould like to know w here, w hen and  how a species 
forages [2,11-12].

O u r ability to visually observe the behaviour o f free-ranging 
anim als is generally quite restricted in space and  time. In  recent 
decades, technological advances have enabled researchers to track 
anim als during  local an d  m igratory m ovem ents, in the air, on  land

and  in the sea [13-17]. Similarly, bio-logging features such as 
body acceleration, heart rate, stom ach tem perature, diving depth  
enable rem ote m onitoring  o f an  an im al’s physiological state and  its 
activity in 3 dim ensional space and  in tim e [18-20], T h e  data  
collected by these sensors can  then  be used to infer w hat an  anim al 
is doing. For exam ple, speed m easured directly using G PS (global 
positioning system) or derived from  consecutive tracking locations 
has been  used to infer behaviour, to distinguish betw een travelling 
and  resting during  m igration [21-23], and  during  foraging trips 
[24-25]. Yet, instantaneous speed m easured with a  G PS is 
p robably  too inaccurate for distinguishing small differences in 
locom otion, especially at low speeds [26], Accelerom eters are a 
prom ising sensor for studying anim al behaviour rem otely since 
accelerom eters can m easure the posture and  body m ovem ents 
([27] and  references therein) as well as estim ate the speed and  
energy expenditure [3,28-30] o f  the anim al to w hich it is attached. 
In  the last decade, dynam ic and  static body acceleration have been 
used to study a diverse range o f behaviours including diving [31- 
33], swim m ing and  flight strategy [34—37], feeding an d  b reath ing  
[38] and  m ating  behaviour [39]. B ehavioural studies utilizing 
accelerom eter da ta  have focused prim arily  on m arine anim als [40]
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and  very few studies have focused on terrestrial locom otion in wild 
anim als [3,41-43].

Q uantifying behaviour from  bio-logging da ta  requires an 
interm ediate step to translate the m easured sensor da ta  into 
specific behaviours. T hree  general approaches to achieve this 
translation are: (1) non-au tom ated  in terpreta tion  o f sensor da ta  by 
an  expert, w ith [2,44—45]) o r w ithout [35,41] field observations o f 
the an im al’s behaviour; (2) au tom ated  segm entation or clustering 
o f sensor da ta  w ithout field observations o f anim al behaviour, 
sometimes followed by labelling o f the identified segments by an 
expert [46]; (3) au tom ated  classification o f sensor da ta  in 
com bination w ith observations o f the an im al’s behaviour 
[3,38,47]. For brevity we will call the first m ethod expert 
interpretation, the second clustering, and  the th ird  m ethod  classification. 
In  m ost studies o f wild anim als, behaviour has been inferred by 
expert in terpretation; however, the inferred behaviour canno t be 
validated via this m ethod. In  cases w here behavioural observations 
are no t available, only the m ethods o f expert in terpreta tion  and  
clustering can be applied to sensor data. T he essential difference 
betw een the two m ethods is th a t for expert in terpreta tion  the 
behavioural classes have to be  specified prio r to the classification 
task, w hereas in clustering the specification (and meaning) o f 
behavioural classes follow from  the clustering results. H ence, 
expert in terpreta tion  is deductive w hereas the clustering is 
inductive in nature . D ue to the lack of behavioural observations 
w hich m atch  the sensor data, the uncertain ty  o f the results cannot 
be assessed for either o f  these m ethods. In  contrast, the 
classification m ethod  can provide inform ation abou t the uncer­
tainty o f the classification result. K now ledge o f classification 
uncertain ty  can  be used to answer various kinds o f inferential 
questions such as w hether a  given m odel (using sensor data) is able 
to pred ic t behaviour bette r th an  a null-m odel o r w hether a  given 
num ber o f behavioural classes can  be distinguished.

T h e  prim ary  aim  o f this study was to derive, evaluate and  
com pare m odels to classify m easurem ents from  sensors a ttached  to 
individual shorebirds, the oystercatcher (Haematopus ostralegus), into 
pre-defined behaviours; one m odel w ould only be  based on speed 
m easured by  G PS and  o ther models w ould include accelerom eter 
data. T h e  use o f accelerom eter da ta  to rem otely determ ine the 
behaviour o f terrestrial wild anim als is still quite new. W e expected 
th a t classification m odels based on G PS-speed alone w ould 
im prove if accelerom eter da ta  w ould be  included. W e describe a 
m ethodological workflow th a t we used in this study to develop and  
apply classification m odels o f anim al behaviour. T he aim  o f such a 
workflow is to provide researchers w ith a  clear outline o f  the 
diverse processing an d  analysis steps needed to quantify behaviour 
based on  sensor data; it can  be applied to o ther studies, stream line 
analysis o f new  data  and  the reanalysis o f existing data. By using 
sensor da ta  to quantify behaviour in com bination  with location 
data, tim e-activity budgets o f anim als can  be quantified a t the 
individual level and  in relation to their environm ent [19]. T o  show 
the added  value of incorporating  behavioural inform ation with 
location da ta  we calculated the tim e-activity budget o f an 
individual b ird  for areas an d  times o f day th a t are norm ally 
difficult to visually observe in the field. M ore specifically, we 
w anted  to determ ine if an  individual spends its tim e differently 
during  the day com pared to during the night an d  how does it 
spend its tim e w hen outside the territory.

Methods

S tu dy  spec ie s  a n d  s tu d y  a rea
T h e  oystercatcher is a  long lived, m onogam ous w ader th a t feeds 

on  intertidal prey, such as hard-shelled bivalves they can open with

their strong bill an d  large m arine  worm s. T hey  b reed  predom i­
nantly  in  coastal habitats, although inland breeding increased 
during  the second ha lf o f the previous century [48]. O n  the D utch 
W adden  Island Schierm onnikoog (53.26°N, 06.10°W , Figure 1) a 
population  o f oystercatchers has been  studied and  individuals have 
been  colour ringed since the 1983 (e.g. [49-51]). In  this 
population, colour ringed individuals can be easily identified and  
a range of behaviours can  be visually observed in the field from 
two observation towers (Figure 1).

M e th o d o lo g ica l  w orkflow
In  the following sections we briefly describe how each of the 

following research steps was applied in the curren t study: data  
collection, da ta  processing, m odelling an d  m odel application. A 
m ore detailed description is provided in T ex t S I. T h e  steps are 
also shown in a  schematic workflow diagram  (Figure 2) and  
present a  general m ethodological approach  th a t can be applied to 
any study w here m easurem ents from  sensors a ttached  to anim als 
will be  used in  com bination  with observations o f behaviour to 
derive and  apply a  classification m odel o f anim al behaviour.

D ata collection
In  this study, we used the recently developed UvA Bird 

T racking System (UvA-BiTS, University o f A m sterdam  Bird 
T racking System) w hich has been  used to study several resident 
and  m igratory b ird  species (e.g. [24]). T h e  tracking device is solar- 
pow ered an d  weighs 13.5 g, an d  includes a  tri-axial accelerom eter 
and  a  G PS receiver w hich m easures geographic position, altitude 
above m ean  sea level, tim e and  instantaneous speed. T h e  tri-axial 
accelerom eter m easurem ents were converted to acceleration in g 
(1 g = 9.8 m s 2) w ith respect to the earth ’s gravitational field in 
three  directions: surge (X), sway (Y) and  heave (Z).

D uring  the b reeding season o f 2009 (May-July 2009), oyster­
catchers were observed for several weeks and  three colour ringed 
birds b reeding in high quality territories adjacen t to the m udflats 
were selected for our tracking study and  trapped  towards the end 
o f the b reeding season (Table SI). O bservations in the breeding 
area  p rio r to trapp ing  were described in  m ore detail in previous 
studies [50-52]. T he birds were caught on  their nest w ith a  walk-in 
trap. After the birds were weighed and  m orphological m easure­
m ents were taken, a  tracking device was fitted on their back using 
a  Teflon ribbon  harness (weight ~ 2  g). T h e  harness was a ttached 
to the b ird  using a  figure eight configuration. T h e  straps were 
connected  a round  the neck and  the wings to one weak p o in t a t the 
sternum . T he weak p o in t was m ade ou t o f cotton thread , w hich is 
expected to deteriorate in two to three years. T h e  harness and  
tracking device weighed less th an  3% o f the m ean body mass o f 
the birds (Table SI). Birds were released within 60 m inutes o f 
capture.

A G PS fix was taken every 10 m inutes from  30 Ju n e  2009 
th rough  20 Ju ly  2009 and  every 30 m inutes from  21-31 July. 
D irectly following each G PS fix, acceleration was m easured with a 
frequency o f 20 H z for 3 seconds. From  30 Ju n e  th rough  14 Ju ly  
2009 each b ird  was observed daily for 30 m inutes with a  telescope 
(20-60 X , Zeiss D iascope 85 T*FL) positioned in one o f the 
observation towers (Figure 1). D uring  visual observations, the 
tracking device was set to take a  G PS fix a t 10 s intervals followed 
by 3 seconds o f acceleration m easurem ents. W hen  a b ird  started a 
new  behaviour, it was reported  by the observer and  recorded by a 
field assistant in a  P S IO N  handheld  com puter (W orkabout Pro) 
with O bserver X T  software (ww w.noldus.com ). T o  accurately link 
the visual observations with the GPS an d  accelerom eter 
m easurem ents, the handheld  com puter was synchronized to 
G PS tim e using a handheld  GPS. T h e  recording procedure was
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Schiermonnikoog

t h e  N e ther lands

Sait marsh

M udfiat

Figure 1. The study area on the island of Schiermonnikoog, the Netherlands (53.29°N , 06.10 E) at different spatial scales. The points 
represen t GPS fixes of th ree  oystercatchers (green -  tag 166, red -  tag 167, blue -  tag 169; Table S I) from 1 July 2009 to  31 July 2009, with 
consecutive points connected  by lines. The black circles are the  nests o f these birds. The locations o f the  observation tow ers are indicated by a square 
and the  base station by a triangle. Black lines represents creeks, dark grey lines represent urban infrastructure. 
doi:10.1371/journal.pone.0037997.g001

first practised  extensively on non  tagged birds. T h e  m ain 
behaviours defined by  K ersten  [53] were extended with sub­
behaviours observed in the field (Table 1); the classes to express the 
behaviours as well as the sub-behaviours are bo th  exhaustive and  
exclusive.

D ata  p ro cess ing
In  this study da ta  processing (Figure 2) included da ta  storage, 

m erging datasets an d  filtering data. All the G PS and  accelerom eter 
da ta  that were collected during  the study period w ere stored in a 
dedicated postgreSQ L  database (h ttp ://w w w .uva-b its .n l/v irtua l- 
lab /)  and  the visual observations were stored in a  separate data  
base. This enables researchers to systematically explore o r re-use 
(parts of) the data  sets if needed. T h e  GPS and  accelerom eter data  
were labelled w ith the visually observed behaviours, while 
accounting for a  m axim um  o f 10 s recording delay on  the 
handheld  com puter (‘m erge’ in Figure 2), see T ext S I for m ore 
details. Next, all da ta  were checked for anom alies (‘filter’ in 
Figure 2). For exam ple, da ta  that could no t be  unam biguously 
linked to a  behavioural observation were rem oved from  further 
analysis.

M odelling
N ote that the decisions m ade during  the m odel building phase 

(grey ‘m odel building’ rectangle in Figure 2) regarding the data,

m odel design an d  analysis steps are dependent on  each o ther and, 
in general, can  also be dealt w ith in a  different o rder th an  chosen 
here. O ne o f the first steps in  our analysis was defining the m odel 
aim  (‘m odel a im ’ in Figure 2) w hich was to accurately predict 
behaviour, w hereby all behavioural classes w ere considered 
equally im portant. In  this study, we report three  m odelling cycles, 
each leading to a  different m odel. W e first start a  simple m odel 
with three behavioural classes an d  increm entally working towards 
m ore detailed models. T h e  aim  o f the first m odel (‘m odel S3’, 
speed m odel o f three  behaviour classes) was to predict three 
behaviour classes. T h e  predictor variable specified for this m odel 
(‘specify predictors’ in Figure 2) was G PS speed. T h e  original 
behaviour classes were grouped (‘reclassify’ in Figure 2) into three 
behaviour classes (Table 1, colum n 4). W ith the aim  o f predicting  
three  behaviour classes, we then  w ent th rough  feedback loop 1 to 
develop the second m odel (‘m odel SA3’, speed-acceleration m odel 
o f three  behaviour classes) using pred ic tor variables based  on 
accelerom eter data, described in m ore detail below, as well as GPS 
speed.

W hile speed was provided by the G PS sensor, the acceleration 
m easurem ents h ad  to be  processed to calculate m eaningful 
p red ic tor variables. W e derived 15 pred ictor variables from  the 
tri-axial acceleration segments (m easurem ent frequency of 20 H z 
for 3 seconds). All p red ic tor variables used in this study are listed 
in T able  2 (see T ex t SI for m ore detailed inform ation on  how the
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Predict
results
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Figure 2. A schematic workflow of the d ifferent methodological steps conducted in this study. The workflow is broken dow n into three 
main categories of activity show n on the  upper bar: Data collection, Data processing and Modelling. The objects in the  grey rectangle indicate the  
aspects involved in building classification m odels and th e  objects in the  dark grey rectangle indicate application of th e  classification m odels for 
diverse analyses such as calculating tim e budgets. Ovals indicate data  in various form ats (files from data  loggers, w ritten field forms, etc). Cylinders 
indicate inform ation th a t is stored in a database. White rectangles indicate (com putational) activities and decisions. Solid arrows presen t the  
workflow to  m ove from field data  to  the  establishm ent and application of a m odel. Dashed arrows presen t feed-back loops w here a certain part of 
the  workflow is repeated  in response to  progressive insights (only th e  m ost im portant feed-back loops are shown). Feed-back loops are p resen t from 
a point after m odel calibration as well as a point after m odel evaluation back to  the  beginning of th e  modelling sequence (2) or later in the  m odelling 
sequence (1). These steps are generalized so th a t they  can be applied to  o ther studies, for exam ple visual observations may be replaced by video 
observations or expert interpretation o f sensor data. 
doi:10.1371/journal.pone.0037997.g002

accelerom eter data  were processed). All the predictors, except for 
the m ean  dynam ic body acceleration in single dimensions (odbaX, 
odbaY  an d  odbaZ), have been used in o ther studies [27,35,44,47] 
and  are described in [47]. T he overall dynam ic body acceleration 
(odba) was calculated as the sum of odbaX , odbaY  and  odbaZ  and  
has been  used in o ther studies as a  single m easure o f body 
m ovem ent and  a potential proxy for energy expenditure, see [30] 
for a  detailed explanation.

In  the th ird  m odelling cycle (‘m odel SA8’, speed-acceleration 
m odel o f eight behaviour classes) we went th rough  feedback loop 
2; the m odel aim  is to classify the eight m ain  behavioural classes 
(Table 1, colum n 1) using all available predictors. In  o rder to 
ensure a  sufficient sample size pe r behaviour (Table 1, colum n 5) 
to train  the models, the observations o f the three individuals were 
pooled (‘pool d a ta ’ in Figure 2), treating  each individual 
observation an d  each individual equally. Even after pooling the 
data, the sample size was very small for several o f the sub­
behaviours.

W e selected classification trees (‘select m odel type’ in Figure 2) 
as our m odelling approach  [54—55], using the im plem entation in

the rp a rt R  package [56-57]. O verall cross-validation erro r was 
used as a  single criterion to m easure the degree o f success (‘error 
criteria’ in Figure 2). W e did not split the da ta  into sub-sets for 
m odel calibration and  evaluation because the dataset was already 
lim ited in size (with only a  few observations for some behavioural 
classes) and  also because da ta  splitting is an  integral p a rt o f  the 
m odel calibration procedure  for regression trees as described 
below.

Classification trees were derived (‘calibrate m odel’ in Figure 2) 
by initially growing a m axim um  (over-fitted) tree, w hich was 
subsequently p ru n ed  to an  optim al size. T o  determ ine the optim al 
tree size, we applied the ‘one standard  deviation ru le’: select the 
smallest tree whose cross validation erro r is less th an  the m inim um  
cross validation erro r +1 standard  deviation [54], M odel 
perform ance was evaluated (‘evaluate m odel’ in Figure 2) by 10- 
fold cross-validation in w hich the dataset is split into 10 partitions, 
9 o f w hich are used to calibrate the m odel and  1 is used to evaluate 
the m odel; the calibration and  evaluation is then  repeated  10 times 
using a new  da ta  partition  [58], O nce a  m odel could not
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T a b le  1. Different behaviours and sub-behaviours visually observed during the study and linked to  GPS and accelerometer 
measurements.

Behaviour Sub behaviour Description 3-class m odel behaviours n

Aggression Bobbing Bird is standing and moves its body up and down No locomotion 4

Chasing Bird is chasing conspecifics Terrestrial locomotion 3

Stand Solitary piping Bird is calling loudly while standing, conspecifics are 
nearby

No locomotion 18

Piping ceremony Bird is calling loudly together with other birds, while 
walking

Terrestrial locomotion 12

Walk Solitary piping Bird is calling loudly while walking, conspecifics are 
nearby

Terrestrial locomotion 12

Body care Preen Bird is preening its feathers No locomotion 82

Wash Bird is bathing No locomotion 3

Fly normal flight Bird is flying Fly 13

Forage By sight Bird is searching for prey by sight while walking Terrestrial locomotion 249

By touch Bird is searching for prey by touch while walking Terrestrial locomotion 5

Handle Handling a t surface Bird is handling the  prey a t the  surface No locomotion 15

Handling in situ Bird is handling the  prey beneath the  surface No locomotion 29

Walking with prey Bird is walking with the  prey Terrestrial locomotion 7

Sit Bird is sitting No locomotion 100

Stand Bird is standing No locomotion 125

Walk Bird is walking Terrestrial locomotion 25

The column '3-class model behaviours' shows the  behavioural classes reclassified a priori and used to  calibrate the  3-class models (S3 and SA3). The behavioural classes 
in the  first column were used as the predicted variable in the  8-class model (SA8). The num ber of visual observations (n) is provided per behaviour. 
doi:10.1371 /journal.pone.0037997.t001

T a b le  2. Predictive parameters used in this study, derived from the GPS (speed) and the accelerometer sensors.

predictor direction label explanation

body pitch (c pitchX angle of the  body along the surge axissurge

body roll (c rollY angle of the  body along the sway axissway

mdbaY maximum dynamic body acceleration along the sway axissway

overall dynamic body acceleration (g) odbaX Mean dynamic body acceleration along the surge axissurge

heave odbaZ Mean dynamic body acceleration along the  heave axis

odba overall dynamic body acceleration (odbaX+odbaY+odbaZ)

heave pitchZ angle of the  body along the heave axis

heave mdbaZ maximum dynamic body acceleration along the heave axis

maximum dynamic body acceleration (g) surge mdbaX maximum dynamic body acceleration along the surge axis

sway odbaY Mean dynamic body acceleration along the  sway axis

GPS speed (m s speed 3D speed

dominant power spectrum (g2Hz 1) surge dpsX maximum power spectral density (psd) of dynamic acceleration along the surge
axis

sway dpsY maximum psd along the  sway axis

heave dpsZ maximum psd along the  heave axis

frequency at the dominant power surge fdpsX frequency at the  maximum psd along the surge axis
spectrum (Hz)

sway fdpsY frequency at the  maximum psd along the sway axis

heave fdpsZ frequency at the  maximum psd along the heave axis

The dominant power spectrum measures the  relative am ount of kinetic energy that is spent a t the  dominant periodicity in a signal (see Text S1 for more details).The 
integration interval of the measurement for the accelerometer sensor is 3 seconds with 20 Hz. The direction in which each variable is defined is given in Cartesian 
coordinates relative to  the  ground surface: surge represents the x-axis, sway the y-axis and heave the z-axis. The m easurement units (SI) are provided in parentheses. 
doi:10.1371 /journal.pone.0037997.t002
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accurately p red ict behaviour, the m odelling cycle w ould no t be 
repeated  to pred ict behaviour in m ore detail.

M odel ap p lica t ion
T o exemplify m odel application we calculated tim e budgets per 

individual, including areas and  times o f day th a t are difficult to 
visually observe in the field. W e applied m odel SA8 to the sensor 
da ta  collected in Ju ly  2009, a  period  for w hich visual observations 
were no t collected, to classify each da ta  po in t into discrete 
behaviours associated to the geographic position provided by the 
GPS (‘pred ic t’ in Figure 2). W e then  used the pred ic ted  behaviours 
to calculate the tim e budget during the day and  at night for three 
different habitats (territory, m udflats and  salt marsh). For m ore 
details see T ex t S I.

T h e  percentage of tim e devoted to each o f the classified 
behaviours was calculated by dividing the num ber o f  observations 
pe r behaviour by the total num ber o f  observations during  the day 
or during  the night. W e associated each G PS fix to one o f the 
following habitats: territory, m udflats and  salt m arsh  using the 
geographic database o f global adm inistrative areas (GADM , 
h ttp ://w w w .g ad m .o rg ). A b ird  was considered to be  in its territory 
w hen it was within 150 m  from  its nest. T his distance was chosen 
after visually inspecting the locations o f each individual in relation 
to their nest. All terrestrial areas outside the territory, w hich are 
p redom inantly  salt m arsh  in the study area, were labelled salt 
m arsh. T h e  inter-tidal areas were labelled mudflats. D ay was 
defined as the hours betw een sunrise an d  sunset a t Schierm onni­
koog (53.47 N, 6.23 E).

S oftw are  im p le m e n ta t io n  o f  th e  various  analysis s t e p s
T h e  da ta  processing steps, the definition o f prediction  variables 

and  subsequent m odelling were conducted  using the R  language 
for statistical com puting  [57]. W e provide a  m odelling package 
with the scripts developed for da ta  analysis (model building and  
m odel application) and  the data  presented  in this study (Dataset 
S I ) .

Results

Behavioura l m e a s u r e m e n t s
T able  SI provides an  overview o f the num ber o f G PS and  

acceleration segments (60 m easurem ents pe r segment) collected 
for each bird. D uring  visual observations 16 behaviours were 
observed and  702 G PS fixes and  acceleration segments could be 
linked to the visual observations (Table 1). Forage by  sight was the 
m ost frequently observed behaviour. T h e  m ean  value o f each 
pred ic to r variable is provided pe r observed behaviour in Tables 
S2A -C . M ean  speeds did no t differ significantly betw een 
behaviours w ithin the no locom otion and  terrestrial locom otion 
behaviours (P> 0 .05 , T ukey F1SD test). This justified the reclas­
sification o f behaviours into three  categories, fly, terrestrial 
locom otion and  no locom otion, before fitting the speed m odel 
(Table 1, C olum n 4).

3-class s p e e d  m o d e l
T h e  best m odel for three behavioural classes, based  on speed 

alone (model S3), classified 470 ou t o f  695 observations correctly (7 
ou t o f the 702 observations in our dataset did no t have a  speed 
m easurem ent) resulting in an  absolute cross-validation erro r o f 
0.35. Speeds below 0.18 m  s-1 w ere classified as no locom otion, 
speeds h igher or equal to 3.4 m  s_1 as fly an d  interm ediate speeds 
as terrestrial locom otion (Figure 3A). Fly was classified incorrectly 
as terrestrial locom otion in 8% (1 ou t o f 13) o f the cases. O bserved 
behaviours belonging to the terrestrial locom otion group were

incorrectly classified as no locom otion in 44%  o f the cases and  
behaviours belonging to the no locom otion group w ere incorrectly 
classified as terrestrial locom otion in 24%  o f the cases.

3-class acce le ra t io n  m o d e l
T h e  best m odel for three behavioural classes, using speed and  

acceleration data  (model SA3), classified 609 o f the 702 
observations correctly (absolute cross-validation erro r = 0.14). 
O bserved behaviours belonging to the terrestrial locom otion 
group were incorrectly classified as no locom otion in 9% o f the 
cases, and  no locom otion observations were incorrectly classified 
as terrestrial locom otion in 18% of the cases. T he predictors that 
were included in the m odel were the m ean  dynam ic acceleration 
in the surge axis (odbaX) an d  m axim um  pow er spectral density 
(psd) o f dynam ic acceleration along the heave axis (dpsZ) 
(Figure 3B, T able  2). I f  odb aX  was less th an  0.09 g, equivalent 
to no dynam ic acceleration in the surge axis, then  behaviour was 
classified as no m ovem ent, if odb aX  was h igher and  dpsZ  was 
greater th an  or equal to 5.1 W  Flz , then  behaviour was 
classified as fly an d  if odb aX  was greater th an  or equal to 0.09 g 
and  dpsZ  was less th an  5.1 W  F lz— 1, then  behaviour was 
classified as terrestrial locom otion (Figure 3B). Speed was not 
re ta ined  as a  p red ictor variable.

8-class acce le ra t io n  m o d e l
T h e  best m odel for the eight behavioural classes, using speed 

and  acceleration data  (model SA8), classified 517 o f the 702 
observations correctly (absolute cross-validation erro r = 0.282). 
O nly five o f the eight behaviours were classified: ‘fly’, ‘forage’, 
‘body care ’, ‘stand’ and  ‘sit’ (Figure 4). W alk was generally 
misclassified as forage w hich is no t surprising as forage included, 
by definition, walking m ovem ent (see T able  1). Aggression was 
generally misclassified as body care o r forage, and  handle was 
predom inantly  misclassified as forage. F rom  the 15 different 
explanatory variables, only four variables were re ta ined  in the 
classification m odel: od b aX  an d  dpsZ, bo th  also included in  m odel 
SA3, as well as overall dynam ic body acceleration (odba) an d  the 
p itch  angle m easured in the surge (pitchX). As w ith m odel SA3, 
odb aX  can be used to distinguish betw een forw ard locom otion (fly 
and  forage) and  no locom otion (body care, stand and  sit). 
Similarly, as in m odel SA3, dpsZ greater th an  or equal to 
5.1 g2 Flz 1 could be used to distinguish fly from  forage.

T h e  decision rules in this m odel (Figure 4) are easy to in terpret 
w ithin the context o f  the field observations and  locom otion. 
D ynam ic acceleration or deceleration in the surge axis (odbaX) 
describes active forw ard m ovem ent, an d  the b ird  is either flying or 
walking, depending on the am o u n t o f energy invested a t the 
dom inan t periodicity in the heave axis signal (dpsZ). W hen  there is 
no t m uch m ovem ent in the heave or surge, the b ird  is either 
standing or sitting, depending on  the p itch angle o f the body; a 
zero or slightly positive angle m eans th a t the logger is horizontal 
and  the b ird  is sitting an d  a negative angle m eans th a t the anterior 
o f  the b ird  is tilted upw ards and  the b ird  is standing (see T ex t SI 
for m ore details). W hile standing, the b ird  m ay p reen  its feathers 
m oving its bill and  body, resulting in h igher overall dynam ic body 
acceleration (odba) th an  w hen standing still. Figure 5 shows 
characteristic exam ples o f dynam ic and  static acceleration signals 
for fly, forage, body care, stand an d  sit behaviours, w hich were 
correctly classified by the SA8 m odel. See V ideo SI for an 
exam ple o f foraging behaviour coupled w ith accelerom eter data.

T h e  SA8 m odel effectively reduced the num ber o f behavioural 
classes from  8 to 5. This result and  the cross validation error 
indicated th a t m ore detailed behavioural classes o r trying to
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Is speed < 0.18 m s '1?

NOYES

Is speed > 3.40 m s '1?

NOYES

no locomotion Terrestrial
locomotion

predicted
observed Totals

predictedfly no
movement

terr.
locomotion

fly 12 0 0 12
no locomotion 0 283 136 419

terr. locomotion 1 88 175 264
Totals observed 13 371 311 695

Is odbaX < 0.092 g?

NOYES

Is dpsZ>  5.126 W  Hz'1 ?

YES NO

terrestrial
locomotion

no locomotion

predicted:
observed: Totals

predictedfly no
locomotion

terr.
locomotion

fly 13 0 0 13
no locomotion 0 310 27 337

terr. locomotion 0 66 286 352
Totals observed 13 376 313 702

Figure 3. Decision tree and confusion m atrix for models S3 and SA3. For m odel S3 (A) and m odel SA3 (B), th e  num ber of observations 
correctly classified per behaviour is show n in bold. See Table 2 for a description o f the  predictor variables. Out of the  702 observations, there  w ere no 
speed m easurem ents in 7 cases, hence the  sam ple size o f 695 for m odel S3. 
doi:10.1371/journal.pone.0037997.g003

classify the 16 m utually exclusive classes o f behaviour observed 
(column sub-behaviour in T able  1) was no t feasible.

Tim e b u d g e t  analysis
T h e  SA8 m odel was applied to classify behaviour per 

accelerom eter segm ent an d  then  associated to the respective 
GPS fix (time an d  location). Subsequently, the tim e spent on  five

different behavioural activities (‘fly’, ‘forage’, ‘body care ’, ‘stand’ 
and  ‘sit’) in several habitats was calculated for each bird. T h e  time 
budget analysis results for the b ird  fitted with logger 169 (a female) 
are presented  in Figure 6 an d  for birds fitted with loggers 166 and  
167 (both males) in Figures SI an d  S2. T he tim e budgets differed 
betw een individuals p redom inantly  in w here an d  w hen they spent 
their tim e on different activities ra th e r than  the total p roportion  of 
tim e spent on any one activity. All three  birds spent a  similar
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Is odbaX < 0.097 g?
YES NO

Is dpsZ > 5.126 W Hz'1 ?

YES NO

Is pitchX < 0.802’ ?

YES NO

Is odba >= 0.489 g ?

NOYES

forage

standbody care

predicted:
observed: Totals

predictedaggressior Body
care

fly forage handle sit stand walk

aggression 0 0 0 0 0 0 0 0 0
body care 20 71 0 10 0 0 17 4 122

fly 0 0 13 0 0 0 0 0 13
forage 24 9 0 237 50 1 3 20 344
handle 0 0 0 0 0 0 0 0 0

sit 1 2 0 4 1 99 8 0 115
stand 4 3 0 3 0 0 97 1 108
walk 0 0 0 0 0 0 0 0 0

Totals
observed

49 85 13 254 51 100 125 25 702

Figure 4. Decision tree and confusion m atrix for model SA8. The num ber of observations correctly classified per behaviour is show n in bold. 
See Table 2 for a description o f th e  predictor variables. 
doi:10.1371/journal.pone.0037997.g004

proportion  o f tim e during  the day foraging as during  the night 
(166: 39% an d  45% ; 167: 38% and  40% ; 169: 37%  and  38% 
respectively). Individual 169 spent m ost o f this tim e foraging on 
the mudflats. W hen  on the salt m arsh, w hich functions p redom ­
inantly as a  roosting site outside the b reeding season, the three 
birds spent m ost o f their tim e on other activities, such as standing, 
sitting (barely at night) and  body care (Figure 6). All three birds 
spent relatively little tim e in flight during  the day and  at night 
(< 2 %  o f total time) and  spent relatively m ore tim e during the day 
sitting than  a t night. W hile the p roportion  o f tim e spent foraging 
barely differed betw een day and  night, the spatial distributions o f 
the classified behaviours clearly differed (Figure 6).

Discussion

Classification m o d e l s
T h e  prim ary  aim  o f this p ap er was to develop and  assess 

classification m odels to convert sensor da ta  into specific behaviours 
observed in the field. As we expected, variables derived from  body 
acceleration are clearly bette r predictors o f behaviour th an  speed 
alone. Thus, w hen tracking anim als, collecting acceleration has a 
great added  value if  inform ation about behaviour is desired. 
How ever, since m any GPS tracking studies only provide 
inform ation on speed and  location it is useful to note that ground 
speed m easured by the G PS can, in some cases, be used to 
distinguish flight from  non-flight quite reliably. Yet the threshold 
will differ pe r species, flight strategy used (e.g. soaring or flapping

flight [59]) and  environm ental conditions such as w ind speed and  
direction. In  this study, 3.4 m  s an d  higher is associated with 
flight (Figure 3a and  T able  S2), however this threshold is based on 
a very small sample o f 13 observations m ade close to the nest. In  a 
study on M anx  Shearw aters (Puffinus puffinus), using a  different 
m ethodology, a  g round speed of 2.5 m  s-1 was found as the 
optim al threshold betw een sitting and  flying [60]. Since terrestrial 
locom otion in oystercatchers is quite slow (Table S2) and  GPS 
speed is no t accurate enough [26], distinguishing betw een 
terrestrial locom otion and  no locom otion is m ore difficult.

T h e  m odels we developed can be applied to autom atically 
classify additional sensor da ta  from  the same individuals and  
potentially the same species. How ever, as w ith any m odel, if the 
dataset used to fit the m odel is very lim ited, for exam ple in the 
num ber o f m easurem ents per behaviour o r the environm ental 
conditions experienced, the chance o f misclassification m ay 
increase. In  general, once behaviours can  be reliably classified, 
the locom otion param eters such as flight speed, wing beat 
frequency, gait rates, odba  can  then  be used for com parative 
analysis betw een species, individuals, environm ental conditions or 
for com parison w ith theoretical estim ates [37,40,61-63]. O ne 
aspect w hich deserves m ore a ttention  in the future, especially 
w hen samples are large enough, is the extent to w hich predictor 
variables differ w ithin and  betw een individuals. I f  predictor 
variables differ significantly betw een individuals and  enough data  
is available, then  building an d  applying m odels pe r individual m ay 
result in lower classification errors th an  w hen using m odels
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Figure 5. Examples of behaviours with characteristic signals from dynamic acceleration and static acceleration. Characteristic signals 
from dynam ic acceleration (A-D) and static acceleration (E-F) are show n. In all panels, acceleration in the  surge (X) axis is show n with a continuous 
grey line, in the  sway (Y) axis with a dashed line and in th e  heave (Z) axis with a continuous black line. Fly and forage (A, B) are especially 
characterized by high-am plitudes of all dynam ic acceleration com ponents , b u t th e  frequency of the  signals is higher for fly than  it is for forage 
(especially in th e  Z direction, see dpsZ in Figure 4). Many of th e  accelerom eter signals for foraging are characterized by the  alternation betw een
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relatively sm ooth  lateral m ovem ent (changes in acceleration predom inantly  in the  surge axis) and short bursts of high frequency changes in 
acceleration in all th ree  axes (e.g. catching prey, a t 2.2 s panel B, see also Video S I). The changes in dynam ic acceleration for body care (C) are much 
smaller than  for fly and forage, b u t still considerably higher than  for stand and sit (D, see also odbaX and odba in Figure 4). The static acceleration can 
be used to  distinguish sit (E) and stand (F) due to  differences in body posture (see pitchX in Figure 4). 
doi:10.1371/journal.pone.0037997.g005

calibrated on  pooled data. How ever, if predictive variables are 
robust enough, they could encom pass individual variability.

U nfortunately, in the curren t study we could no t derive a 
reliable m odel th a t could classify the 16 sub-behaviours observed 
in the field, and  could only classify five o f the eight m ain 
behaviours. Nevertheless, classification m odels could potentially be 
im proved in several ways in the future. W e strongly believe that 
video observations w ould be extrem ely useful for classifying 
behaviour, developing pred ic to r variables, and  re-evaluating 
models [44—45]. As video can  be observed again after the activity 
has taken place, synchronization betw een observations and  
m easurem ents can be im proved, observations and  interpretations 
can be cross-validated an d  the im portance o f context (for exam ple 
presence o f o ther individuals, o r past events) can also be 
considered w hen classifying behaviour. As hum ans we are not 
always conscious o f all the inform ation we are visually processing

to reach a  certain  conclusion an d  yet w hen only using pa rt o f this 
inform ation for au tom ated  classification we expect the same 
conclusions to em erge. By re-exam ining videos carefully we m ay 
be able to identify these gaps an d  fill them . For exam ple, studying 
posture, properties o f m ovem ent and  the m easurem ents sim ulta­
neously (see video SI), m ay provide a better understanding of how 
they are related  and  enable researcher to derive m ore suitable 
p red ic tor variables. T h e  pred ic tor variables included in this study 
are all aggregate m easures which, for exam ple, do no t p a ram e­
terize dependencies w ithin the 3 s observation period, and  are 
hence crude in some respects. A good exam ple is given in 
Figure 5B, showing alternating  patterns (with regard  to total 
energy as well as frequency) o f acceleration w ithin the 3-second 
observation period. Thus, predictor variables w hich account for 
dependencies w ithin an  acceleration segm ent m ay also result in 
m odel im provem ent.

Day b e h a v io u r  July

Territory
45%

Saltmarsh
15%

Mudflats
39% m

m fly
□ forage
□ body care
□ stand
□ sit

i 1--------1--------1--------i--------1
0 20 40 60 80 100

% Behaviour

Night behaviour July
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Saltmarsh
11%

Mudflats
34% 1
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□ forage
s  body care
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i i i i I
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Figure 6. Diurnal and nocturnal tim e budget of one oystercatcher during July 2009, using model SA8 to  classify behaviours. Diurnal 
(top) and nocturnal (bottom ) tim e b udgets for one oystercatcher (logger 169, Table S I) during July 2009, using m odel SA8 (Figure 4) to  classify 
behaviours. The locations of each behaviour (fly, forage, body care, stand and sit) are presen ted  on the  m ap; th e  colours of the  icons on the  m ap 
correspond to  those in the  tim e b u d g e t bar graphs. 
doi:10.1371/journal.pone.0037997.g006
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Q uan tify ing  b e h a v io u r  in s p a c e  a n d  t im e
By com bing inform ation on the location o f the b ird  an d  the time 

from  the GPS, behaviour from  the accelerom eter an d  inform ation 
abou t the environm ent we can  calculate spatio-tem poral activity 
budgets for com parative analysis. T h e  strength o f this approach  is 
th a t once a  classification m odel is built, it can be applied to data  
w here additional observations (visual o r video) are no t available or 
no t possible. In  the cu rren t study we apply the classification m odel 
to da ta  from  three  individuals for w hich sim ultaneous observations 
were no t always available. O n e  aspect we were interested in was a 
com parison o f d iurnal and  nocturnal tim e budgets as oystercatch- 
ers are know n to forage a t night in tidal areas. In  a  GPS tracking 
study o f oystercatchers in the W adden  Sea [64], the authors 
showed th a t oystercatchers travel farther a t night than  during  the 
day, suggesting th a t they foraged extensively a t night, although 
inform ation on  behaviour was no t available. In  our study, we 
showed th a t a lthough individuals visited different locations during 
the day and  night, all three individuals spent similar proportions o f 
tim e foraging during  the night as during  the day (Figures 6, S I, 
S2). O u r study also showed th a t the three  individuals spent very 
little tim e in flight (>2% ) bo th  inside an d  outside o f the territory, 
w hich is similar to findings from  a tim e budget analyses based on 
visual observations w ithin the territory  and  im m ediate surround­
ings [53,65]. Furtherm ore, our study supports previous suggestions 
th a t oystercatchers forage predom inantly  in their territory  an d  in 
the m udflats close by [53,65]. W hile we canno t generalize these 
results on  the basis o f the small sam ple used in this case study, it 
shows how these m ethods can  be used to com pare tim e budgets 
w ithin and  betw een individuals. In  the future, we will apply the 
classification m odel in the future to a  longer tim e series and  m ore 
individuals to study inter-seasonal carry-over effects o f hab ita t 
selection and  tim e-activity budgets. In  this context, the type of 
tracking system is very relevant, the UvA -BiTS enables the 
retrieval o f  da ta  or re-program m ing the sensors rem otely while 
with m ost o f the com m ercially available tracking equipm ent an 
individual m ust be  recap tured  to retrieve the da ta  (e.g. [27,64]).

M e th o d o lo g ica l  w orkflow
T h e  m ethodological workflow presented  here can be used for 

similar studies regardless o f the study species o r the environm ent in 
w hich the study is conducted  (e.g. terrestrial or m arine). By 
im plem enting such a  workflow in a  p rogram m ing  language with a 
connection to a  database w here the da ta  is stored, the researcher 
greatly facilitates the reproducibility o f results, re-analysis, m odel 
im provem ent, knowledge transfer and  collaboration, especially for 
researchers first entering  the field o f bio-logging. T o  facilitate the 
transfer o f knowledge, we have provided a  m odelling package 
(Dataset SI) w hich includes a  database an d  R-scripts w ritten to 
ru n  the analysis in this study. As shown in this study, several 
processes m ay be iterative, such as the specification of m odel 
predictors o r m odel design; each iteration m ay im prove our 
understand ing  an d  in terpreta tion  o f the da ta  as well as our models 
and  a m ethodological workflow can stream line this process.

C o n c lu d in g  rem arks
T h e  application of accelerom eters in behavioural research has 

greatly increased in the last few years. Similarly, new  develop­
m ents a t the interface o f ecology and  com puter science m ay 
greatly facilitate the analysis, visualization and  exploration o f such 
da ta  [46,66]. R ecent studies have also shown th a t m easures o f 
dynam ic body acceleration can be  used to estim ate energy 
expenditure in a  num ber o f species during  active locom otion as 
well as m ore sedentary behaviour [3,28,30,67-68]. T hus, the 
potential for using accelerom eters to quantify behaviour and

energy expenditure makes it a  very powerful tool in ecological 
research. O nce different characteristics o f  behaviour an d  body 
locom otion are quantified they can be com pared betw een studies, 
individuals, species, environm ental conditions, seasons or even 
different life history stages such as m igratory com pared  to foraging 
m ovem ents. C om parative studies m ay also help increase our 
understand ing  o f biom echanics an d  evolution o f locom otion [37]. 
Perhaps m ost exciting is the possibility to link behaviour and  
energy expenditure to space use and  tim e a t the individual level to 
gain new  insight into the ability o f anim als to ad ap t to an  ever 
changing world. In  this study we provided a b lueprin t for the 
developm ent an d  application o f classification m odels for this 
purpose.

Supporting Information
T ext SI E xtended m ethods.
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Figure SI D iu r n a l a n d  n o c tu r n a l t im e  b u d g e t  o f  o n e  
o y s te r c a tc h e r  d u r in g  J u ly  2 0 0 9 , u s in g  m o d e l  SA8 to  
c la s s i fy  b e h a v io u r s .  D iurnal (top) and  nocturnal (bottom) time 
budgets for one oystercatcher (logger 166, T ab le  SI) during  Ju ly  
2009, using m odel SA8 (Figure 4) to classify behaviours. T he 
locations o f each behaviour (fly, forage, body care, stand and  sit) 
are presented  on the m ap; the colours o f the icons on  the m ap 
correspond to those in the tim e budget graph.
(PDF)
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budgets for one oystercatcher (logger 167, T ab le  SI) during  Ju ly  
2009, using m odel SA8 (Figure 4) to classify behaviours. T he 
locations o f each behaviour (fly, forage, body care, stand and  sit) 
are presented  on the m ap; the colours o f the icons on  the m ap 
correspond to those in the tim e budget graph.
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T ab le  SI T h e  total num ber o f G PS fixes and  accelerom eter 
segments (3 s intervals) obtained from  the date o f deploym ent 
th rough  31 Ju ly  2009 for each o f the three oystercatchers in this 
study. Individual ring  code, logger num ber, sex and  body mass (g) 
on  date o f deploym ent are also provided.
(PDF)

T ab le  S2 List o f behaviours observed in the field an d  the m ean 
and  standard  deviation o f the p red ictor variables pe r behaviour 
according to T able  1 as follows: T ab le  S2-A, 3-class m odel (S3 and  
SA3) behaviours (Table 1 colum n 4); T ab le  S2-B, behaviours for 
SA8 m odel (Table 1 colum n 1); T ab le  S2-C, 16 sub behaviours 
(Table 1, colum n 2). T h e  pred ic to r variables are described in 
T ab le  2.
(PDF)

D a ta se t SI A d a ta s e t  a n d  so ftw a r e  p a c k a g e . T h e  R-scripts 
and  dataset for this study can  be  found in this self-contained 
archive w hich also includes a  readm e-file th a t explains its contents. 
(ZIP)

V id eo  SI A short video of an  oystercatcher foraging by sight 
(Table 1) shown sim ultaneously w ith corresponding dynam ic and  
static acceleration in the heave axis (green), surge axis (red) and  
sway axis (blue) in units o f g (1 g = 9.8 m /s 2). T he m easurem ent 
d uration  is 10 s, the film is shown at a  slower rate. This record  was 
no t included in this study.
(WMV)
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