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Abstract. Researchers employing resource selection functions (RSFs) and other related 
methods aim to detect correlates of space-use and mitigate against detrimental environmental 
change. However, an empirical model fit to data from one place or time is unlikely to capture 
species responses under different conditions because organisms respond nonlinearly to 
changes in habitat availability. This phenomenon, known as a functional response in resource 
selection, has been debated extensively in the RSF literature but continues to be ignored by 
practitioners for lack of a practical treatment. We therefore extend the RSF approach to 
enable it to estimate generalized functional responses (GFRs) from spatial data. GFRs employ 
data from several sampling instances characterized by diverse profiles of habitat availability.
By modeling the regression coefficients of the underlying RSF as functions of availability,
G FRs can account for environmental change and thus predict population distributions in new 
environments. We formulate the approach as a mixed-effects model so that it is estimable by 
readily available statistical software. We illustrate its application using (1) simulation and (2) 
wolf home-range telemetry. Our results indicate that G FR s can offer considerable 
improvements in estimation speed and predictive ability over existing mixed-effects 
approaches.
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I n t r o d l t c t io n

Em pirical models of space use by individuals, 
populations and species, aim to bolster their predictions 
with environmental covariates. This works well for 
spatial interpolation and, also, spatial extrapolation 
when the availability of habitat types remains approx­
imately the same (Mladenoff et al. 1999, Aarts et al.
2008). Nevertheless, in most scenarios of extrapolation, 
habitat availabilities will also change, implying that 
models estimated from single or pooled instances of data 
collection may fail to capture the response of species to 
changing environments. This phenomenon, known as a 
functional response in resource selection (Mysterud and 
Ims 1998), is particularly influential when the study 
organisms respond nonlinearly to  changes in the 
availability of different environments. Fig. 1 illustrates 
the problem using a simulated experiment: An animal
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whose priorities alternate between feeding and hiding is 
observed in a particular environment (Fig. la  and b). A 
generalized linear model (GLM) provides a good fit to 
these data (compare Fig. le and d). The same animal is 
then placed in a new environment (Fig. le and f) but the 
previously fitted model yields poor predictions of space 
use (compare Fig. lg  and h).

The problem was discussed by Boyce and M cDonald 
(1999), Mysterud and Ims (1999), and Boyce et al. (1999) 
and partially tackled for a few discrete habitats (Arthur 
et al. 1996, Mauritzen et al. 2003). Recent studies have 
adopted mixed-effects models to detect functional 
responses (Gillies et al. 2006, Hebblewhite and Merrill 
2008, Godvik et al. 2009, Duchesne et al. 2010) and 
extract the commonalities between animals exposed to 
different environments. Notably, Duchesne et al. (2010) 
have used a discrete choice modeling framework with 
random coefficients, because this framework allows the 
relative probabilities of selection to depend on the set of 
choices available to the animal. Here, we show how 
mixed-effects models can naturally arise by explicitly
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modeling the dependence of RSF coefficients on the 
availability of environmental resources.

We distinguish between environmental and geograph­
ical space (Hirzel and LeLay 2008, Elith and Leathwick
2009). The dimensions of environmental space are 
resources or environmental conditions (e.g.. Fig. lb , f). 
A point X =  (a.-!, . . .  , xj) in /-dimensional environmental 
space completely specifies a particular environment. A 
point s in geographical space is completely defined in 
terms of dimensions such as latitude, longitude, and 
altitude/depth (e.g., Fig. la, e). We consider arbitrarily 
small cells (lengths, areas, volumes, or hypervolumes), 
dx and c/s in environmental and geographical space 
respectively. A cell chi comprises the environmental 
neighborhood of the center point x and a cell c/s 
comprises the geographical neighborhood of the center 
point s.

Terminology for the units (chi) of environmental space 
is loaded with historical debate. An /-dimensional 
hypervolume in environmental space is similar to 
H utchinson’s (1959) definition of a species’ niche. 
Flowever, a unit of environmental space need not 
coincide with the niche of any one species and several 
species may use the same unit to different extents. Some 
authors (Arthur et al. 1996, Mauritzen et al. 2003, Aarts 
et al. 2008) use the term “habitat” for chi but this suffers 
from conflicting definitions (Flail et al. 1997). Being 
pragmatic, and to avoid confusion, we will call chi an 
“environmental unit.”

For free-ranging animals with equal access to the 
entire study region, the availability of an environmental 
unit is the proportion of area occupied by that unit 
within the region. M ore generally, in the case of 
unequal accessibility, availability can be defined as the 
proportion of time that animals would spend in an 
environm ental unit, in the absence of preference 
(M atthiopoulos 2003, M auritzen et al. 2003).

As defined by Johnson (1980), “preference” w(x) is the 
ratio of the usage g(x) over the availability f ix )  of an 
environmental unit chi centered at x. Typically, w(x), 
known as a resource selection function (RSF), is 
estimated as a generalized linear model (Manly et al. 
2002). The exact approach depends on how availability 
is m easured and whether environm ental space is 
discretized. For example, if the variables in environ­
mental space are continuous, then the data are either 1 
(presence) or 0 (absence) and can be modeled as a 
Bernoulli process (Aarts et al. 2008). Alternatively, a 
discretization of environmental space may allow several 
occurrences within each environmental unit. The result­
ing counts are often modeled as a Poisson process. In 
either case, the expectation /s (y |x )  of the response 
variable Y  is a linear function, i(x), of covariates, x, and 
regression parameters, ß, on a transformed scale:

E(Y  I x) =  t ( x )  =  i r 1 ^ ß o  +  ß r-F  j  • (1)

The link function, /;, is typically the log transformation

(for count data) or logit transformation (for binary 
data). The modeling objective is to estimate the 
coefficients ß and draw inferences about the importance 
and direction of the relationship between preference and 
environmental variables. When modeling count data 
arising from a regular discretization of space, it is often 
reasonable to assume M’(x) =  exp(Sß,A,-). Estimating w(x) 
from binary response models is more complicated, 
because the interpretation of i(x) depends on the 
sampling design (Keating and Cherry 2004, Aarts et 
al. 2008). However, in logistic regression exp(Sß,A,-) can 
approximate w(x) well (Johnson et al. 2006).

Although widely used, the term “resource selection” is 
perhaps inappropriate since the dimensions of environ­
mental space can be nondepletable conditions (e.g., 
temperature) as well as resources (e.g., forage) and 
because organisms select combinations of values of 
environmental variables rather than single resources or 
conditions (e.g., it makes little sense to say that a 
particular species selects temperature. It is more likely 
that it selects a particular range of temperatures 
combined with types of vegetation, and ranges of 
moisture, slope, etc,).

RSFs are usually fit in environmental space and then 
used for geographical predictions (e.g., Fig. 1). Under­
lying this process, is the implicit (and incorrect) 
assumption that if an empirical model of preference is 
not anchored to particular geographical locations, then 
it will automatically capture the essence of the behavior 
of the animals and will therefore be portable across 
space or time. This fallacious assumption has been made 
by several mainstream approaches to niche modeling, 
despite the fact that many studies (Johnson 1980, Boyce 
and M cDonald 1999, Mysterud and Ims 1999, M au­
ritzen et al. 2003, Osko et al. 2004, Aarts et al. 2008, 
Godvik et al. 2009, Beyer et al. 2010) have emphasized 
that parameter estimates of species distribution models 
are conditional on the availability of all environmental 
units to the study animals. Therefore, predictions of 
these models are valid only for the spatiotemporal frame 
of the data on which they were fit (Hirzel and LeLay 
2008) and are furthermore completely reliant on the ad 
hoc definition of availability imposed by the data 
collection or analysis protocols (Beyer et al. 2010).

Generalized functional responses

A solution to this problem, alluded to by Boyce et al. 
(1999), is to write the coefficients ß,- of Eq. 1 as linear 
functions of the availability of all environmental units 
and then estimate the parameters of these new functions 
from a wide a range of environmental scenarios. We call 
this approach a generalized functional response (GFR).

We define the availability function, ƒ, which takes 
values x from /-dimensional environmental space and 
satisfies the requirement fx, f ix )  chi — 1. For an arbitrary 
discretization of environmental space comprising N  
environmental units, fix,,) gives the relative availability
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F ig . 1. Models that have been fit to data from one type o f environment may predict usage poorly in new situations, as can be 
demonstrated by this simulated example (details on the simulation are provided in Appendix A and Supplement 1). The two rows of 
this composite plot represent two different environmental scenarios. The results in the top row (a-d) are based on equal overall 
availability of two resources. The bottom  row (e h )  was produced by assuming a 1:9 split between the two resources. The first 
column (a. e) shows geographical space, so local densities of the two resources are represented by the intensity o f the two colors (red 
and green). The second column (b. f) shows the environmental spaces corresponding to panels (a) and (e). The colors in these plots, 
going from green (low) to white (high), represent the prevalence o f a particular combination of values for the two resources. When 
using data on the observed usage (c) and its covariates (a) to estimate a GLM . the fit is quite good (d). The same animal responds to 
the new regime with a new distribution of usage (g). Using the model as estimated from the previous scenario to predict the new 
distribution of usage (h), gives particularly poor results [compare panel (h) with the true usage in panel (g)].

of the ;;th environmental unit centered at the point x„. 
The Zth coefficient of Eq. 1 may be written as an 
empirical function of all these availabilities:

1V

ß/ =  r,.o +  +  s,- (Z =  0 , . . . / ) .  (2)
n — 1

Here, s,- ~  iV(0, a j)  and the identity link function 
relating ß,- to its linear predictor is the default choice, 
given that the regression coefficients (ß) are uncon­
strained. The ß’s are assumed uncorrelated and are 
therefore modeled independently of each other. The 
intercept yi0 is the part of ß,- that does not depend on 
changes in availability ( ƒ  ). Therefore, Eq. 2 describes 
how changes in the availability of any environmental 
unit will make the slope (ß,-) of the animals’ response to 
the Zth environmental variable deviate from the baseline 
value y, 0. Note that, because/integrates to 1, changes in 
the availability of one environmental unit, have an 
impact on the availability of all units (i.e., within a given 
area, one environmental unit is made more abundant at 
the expense of others).

Eq. 2 is over-specified because it requires one y 
coefficient for each environmental unit. Neighboring 
environmental units are likely to have similar effects on 
ß,- so, considerable economies in the num ber of 
parameters can be achieved by replacing the individual 
Y’s by an interpolating function in environmental space

(Y,-: K7 -  R)

N

ßi =  Y/,o +  E  Y,-(x«)/(x«) +  e,-. (3)
n—1

Such economies are crucial for cases where it is difficult or 
undesirable to artificially discretize environmental space. 
For a continuous environmental space, Eq. 3 is written

ß,- =  Yí,o +  f  Yi(x)/(x) dx + s,-. (4)J  R'

The case of an environmental space comprising both 
discrete and continuous dimensions can be treated by 
specifying the ß,- as a nested combination of summation 
(Eq. 3) and integration (Eq. 4). W ithout loss of generality 
and to simplify notation we focus on Eq. 4. To retain 
some of the original flexibility of Eq. 2, the functional 
form of y (x )  must be allowed to be arbitrarily elastic. This 
may be achieved by using a polynomial of order Mj for 
each covaríate:

ƒ M¡

y w ^ E E E E  (5)
j —1 m—0

where Sf'!| is the coefficient used for the /nth power of the 
y'th environmental covariate. The intercepts are generated 
by allowing m to start from 0.
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We now consider K  sampling instances, each charac­
terized by a different availability scenario (e.g., sampling 
the distribution of the same population in different years 
or sampling geographically distinct subpopulations). 
The availability of environmental units in the Ärth 
sampling instance is fully described by an instance- 
specific function ./¡t(x). Although the parameters ß 
(describing the response to environmental variables) 
are expected to differ in different sampling instances, the 
parameters y (describing the response to changing 
availability) will not. Eqs. 4 and 5 give the following 
model for the ß’s:

ß/,* = y  i, o +  i  ( e  E  8i?*f }/*M d x  +  s,-y
JRl {.,=1 m=o J

ƒ M, .

= Y/,0 + E  E  Stf / x1 'A ( x ) d x  +  SA
1=1 m—0 ,

I Mj

: Y/,0+ E  E  +s'T
j=  1 m—0

(6 )

where E[XJ‘]t is the mth  moment of the y'th environmen­
tal variable calculated for the conditions prevailing in 
the kth sampling instance. Therefore, the coefficient of 
the /th covariate on the Ärth sampling instance can be 
expressed in terms of the moments of the availabilities of 
all environmental covariates on that sampling instance, 
i.e., the moments of the marginals of /y(x) are used as 
cluster-level predictors, that remain constant for all 
observations within a sampling instance.

The full model from Eq. 1 can now be expanded with 
the aid of Eq. 6:

t ( x ) =  h
I Mj

(Yo ' Soy )
j=  1 m—0

hE  (Y,: - S /y  )X i  +  Xi E E E 1̂*;
j —l m—0

-./ i t

(7 )

where x refers to the environmental conditions associ­
ated with a particular observation made in the Ärth 
sampling instance. The linear predictor therefore com­
prises (1) a random intercept of the form (y +  s), (2) 
mixed-effects terms of the form (y +  s)X, (3) fixed effects 
involving the expectations Sis^Y7"] of each environmen­
tal variable in each sampling instance, and (4) all 
pairwise interactions SXiflX"'] between environmental 
variables and their moments.

More complicated formulations fo r  the linear predictor

In accordance with the general methodology of 
GLMs, the formulation of the RSF in Eq. 1 can be 
extended by including nonlinear terms such as interac­
tions between environmental variables (e.g., ßvyay) or 
powers of single environmental variables (e.g., ßx2).

These additions can be readily accommodated by the 
G FR  framework: the nonlinear terms (ßxyxy, ßxf) enter 
Eq. 7 as additional variables but the expectation terms 
EptTLrefer only 1° the nonlinear terms of the model.

Mixed-effects implementation

Recent years have seen an increase in the use of mixed- 
effects models to take account of individual/group 
variation (Gillies et al. 2006, Aarts et al. 2008, Hebble­
white and Merrill 2008). Hebblewhite and Merrill (2008) 
suggested the use of mixed-effects models to capture 
variations due to differences in resource availability. The 
mixed-effects estimation framework is suitable for the 
model in Eq. 7 because it caters for random coefficients 
and quantifies the variance in each sampling instance. 
We therefore generalize on the approach of Hebblewhite 
and Merrill (2008) in the following sense: Like that 
paper, we detect the existence of a functional response 
and estimate a mixed model that refers to each and all of 
the sampling instances in the data. This is achieved by 
the terms of type 1 and 2 in Eq. 7. In addition, we 
introduce the terms of type 3 and 4, which help predict 
usage in any new scenario of availability.

Application to simulated data on home range use

We constructed a simple individual-based model of 
the trade-off between food (//) and cover (v, the converse 
of predation risk). A similar real-life scenario with 
mutually exclusive resources was considered by Maur- 
itzen et al. (2003) but in our simulation, the two 
resources were independently distributed. For simula­
tion details, see Appendix A and Supplement 1.

To generate different availabilities for most environ­
mental units, we randomly manipulated the overall 
amount of food (//) and cover (v), within a range of 1- 
100 arbitrary units. We obtained space use data from 10 
such “training” scenarios and combined them in the 
fitting data set. We fit log-linear GLMs to the rate of 
occurrence of observations per grid cell and standardized 
the spatial predictions to sum to 1. We used four linear 
predictors corresponding to different approaches: (1) 
random coefficients (RE), (2) random intercept with 
interactions involving first-order expectations (Ol), (3) 
random intercept with interactions involving second- 
order expectations (02), and (4) random coefficients, with 
interactions involving first-order expectations (REOl):

RE ao +  a\U  +  ay v

01 a o +  SjU + 8 3  V +  8 4 / /  +  8 5  V +  8  ¿ml + 8 7  vv +  S g V /7

+  8  9Z/V

0 2  ao +  Si // +  S3V +  84// +  S5 v +  8 oti1 +  S7i ’2 +  Sgz/z7

+  SjlT  +  SioVz7 +  811 uv +  S n /« /2 +  S13 vv2

+  S14VZZ2 +  5 15 uv~

R E O l ao +  a\U  +  03 V +  S4Z7 +  S5 v +  8 gzzz7 +  S7i ’V +  Sgvz7

+  89ZZV ( 8 )
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F ig . 2. Quality of extrapolation for simulated scenario 2. Each plate refers to one of the four models (RE. O l. 0 2 . and R E O l) 
and compares that model's predictions (on the y-axis) with the best possible estimate obtainable by a GLM  fit directly to  the new 
data (on the .v-axis). The scatter plot is smoothed to indicate high concentrations of points (in dark blue), but the 200 most extreme 
points are also shown as black dots. The 45° line is shown for easier reference.

where ¡7, v, it2, v2 are the first- and second-order 
expectations of food and cover in each environmental 
scenario, the a  s are random coefficients of the form a — 
y +  s whose random components (s) are grouped by 
scenario and the S’s are fixed effects throughout. The 
values of it, v in these models vary by observation but the 
values of it, v, it2, v2 vary only by sampling instance. Of 
these four models, RE corresponds to the approach of 
Hebblewhite and Merrill (2008) and the others are GFRs 
as in Eq. 7.

We asked each model to extrapolate usage in three 
new scenarios of availability. Scenario 1 (it — 50, v =  50), 
was in the middle of the ranges (0 to 100) used for the 10 
training scenarios. Scenario 2 (it — 80, v =  60) was away 
from the middle but still within the ranges used for 
fitting. Scenario 3 (it — 120, v =  120) was outside the 
range of the availabilities used for fitting. Predictions for 
each scenario were made from the fixed effects of each 
model, based on the two environmental layers.

To evaluate the models, a GLM was fit to the usage 
data from each of the three prediction scenarios. These 
fitted responses represented a smooth surface approxi­
mating the anim al’s true usage and were used to 
calculate the precision of the predictions from the four 
models: E(GLM — predicted)2.

Under scenario 1, all models performed equally well 
giving predictions that captured the unknown underly­
ing distribution (Appendix B: Fig. BÍ). This result 
indicated that the interaction terms of models O l and 
0 2  were able to perform the same role as the random 
coefficients of model RE. Under scenario 2, the G FR 
models (O l, 0 2 , REO l), performed considerably better 
than RE, giving better spatial predictions (Appendix B: 
Fig. B2) and considerably higher precision (Fig. 2). By 
comparison, all models performed poorly under scenar­
io 3. Models RE and O l mis-predicted many of the 
spatial features of the underlying distribution (Appendix 
B: Fig. B3). However, models 0 2  and REO l were more 
robust to such environmental extrapolation.

Application to wolf telemetry data

To illustrate the G FR  model alongside the mixed 
modeling approach of Hebblewhite and Merrill (2008), 
we used the same data as that paper. The authors found 
that nesting the data by pack and individual improved 
model fit, but most of the variance in the data was 
explained at the level of the individual. We used 
summertime data for 11 wolves with the same explan­
atory variables selected by Hebblewhite and Merrill 
(2008). To simplify this illustration, we only clustered
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the data by individual. We followed a use-availability 
design, in which the response data took the value 1 
(telemetry point) or 0 (point randomly selected from the 
home range of each wolf). We used one random point 
for each telemetry observation and calculated covariate 
expectations for each wolf from the random points.

We compared two models. The first, (RE) was similar 
to the model of Hebblewhite and Merril (2008) containing 
random coefficients for continuous variables (e.g., human 
activity) and fixed coefficients for factor levels (e.g., 
vegetation type). The second model (Ol), had a random 
intercept, interaction terms using 1st order expectations 
for the continuous variables and fixed coefficients for 
factor levels. Given that the 11 wolves belonged to only 
five packs, there was not sufficient diversity in the 
environmental scenarios to support more complex models 
(like 0 2  or REO l examined in the simulation study).

The performance of these two models was evaluated 
as follows. Models RE and O l were fit to the data from 
10 wolves and their estimated fixed effects were used to 
generate predictions for the 11th. These predictions were 
compared to the best estimates generated from a GLM 
that was fit to the data from the missing wolf. We 
compared the predictive precision of RE and O l 
repeatedly by omitting all 11 wolves in turn.

We found that O l gave better predictions than RE for 
8 out of 11 wolves. Graphical comparisons between the 
two models for all wolves can be found in Appendix C. 
The R code used for the analysis is listed in Supplement 2.

D is c u s s io n

Processes such as climate change and habitat frag­
mentation are occurring at increasing rates on a global 
scale, implying that most species will need to adapt to 
rapidly changing environmental conditions. Since miti­
gation often happens through spatially explicit conser­
vation measures, it is important to anticipate change in 
spatial distributions. This is easier said than done 
because observed large-scale population distributions 
arise from complex interactions between physiological, 
demographic and behavioral responses at the level of the 
individual (Guisan and Thuiller 2005).

We have presented an addition to the RSF and species 
distribution literature that increases the predictive reach 
of these widely used models. The main advantages of the 
method are: (1) It removes the bias imposed on the fixed 
effects by unbalanced sampling effort across different 
environmental scenarios. It therefore decouples the 
quality of the predictions from the vagaries of the 
sampling regime. (2) It potentially replaces random 
coefficients by interaction terms hence speeding up fitting 
and allowing the estimation of models with more 
covariates. (3) It can help make better use of a fixed 
am ount of sampling effort. For example, if data are 
collected from the extremes of a species’ range, GFRs 
may be used to predict species distribution in its interior. 
(4) It is easy to implement with available software. We 
used the lme4 library in R (Bates and Maechler 2010). (5)

It has intuitive appeal. Interactions terms are frequently 
employed in empirical models to capture changes in the 
response to one covariate brought about by another. 
Here, they describe changes in an organism’s response to 
environmental attributes as a nonadditive function of the 
statistical characteristics of its entire environment.

The components of the method could be further 
extended. For example, the linear formulation for the ß,- 
in Eq. 2 may be reconsidered in the light of more 
mechanistic arguments, involving animal behavior and 
life history priorities (Buckley et al. 2010). It is likely 
that this will further increase the model’s predictive 
power. The flexibility of the method might also be 
increased by exploring other possibilities for the 
function Y,(x) such as kernel and spline smoothers.

We illustrated the method using both simulated and 
real data. In both cases, use of a G FR  brought 
improvements in predictive ability but these were more 
pronounced for the simulation. There are several 
reasons why the wolf data might have proved more 
challenging. (1) The simulation assumed that the animal 
was observed until convergence of the home range had 
been achieved but this cannot be guaranteed for any of 
the wolves in the sample. (2) The simulation used two 
covariates and 10 environmental scenarios. The wolf 
analysis used three continuous covariates, several factor 
levels for habitat, and individuals from five environ­
mental scenarios (wolves in the same pack experience 
similar conditions, even if they do not respond in the 
same way). (3) Unlike the simulation that assumed 
exactly the same rules of behavior, real animals are likely 
to behave intrinsically differently from each other, even 
when exposed to the same environments. (4) The wolf 
territories were neighboring, so it could be argued that 
even the limited number of five scenarios were not too 
dissimilar from each other. If the above explanations are 
valid, they suggest that the G FR  model passed a rather 
strenuous validation test by extracting a predictive trend 
in the coefficients of the RSF based only on five 
contiguous environmental scenarios.

The difficult problem of predicting use in new 
environments will nearly always require extrapolation 
of some form. Spatial and temporal extrapolation are 
unavoidable for every applied objective. Environmental 
extrapolation will also be required whenever the 
multivariate distribution of environmental variables does 
not fall within the range of conditions experienced in the 
data set used to fit the model. Here, we have accepted 
this challenge and suggested a possible way through it. 
Our solution works well in cases of spatiotemporal 
extrapolation and may also prove more robust than 
other empirical models for environmental extrapolation.
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