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Abstract
Spatially complex habitats provide refuge for prey and mediate many predator–prey interactions. Increasing anthropogenic 
pressures are eroding such habitats, reducing their complexity and potentially altering ecosystem stability on a global scale. 
Yet, we have only a rudimentary understanding of how structurally complex habitats create ecological refuges for most eco-
systems. Better informed management decisions require an understanding of the mechanisms underpinning the provision of 
physical refuge and this may be linked to prey size, predator size and predator identity in priority habitats. We tested each 
of these factors empirically in a model biogenic reef system. Specifically, we tested whether mortality rates of blue mussels 
(Mytilus edulis) of different sizes differed among: (i) different forms of reef structural distribution (represented as ‘clumped’, 
‘patchy’ and ‘sparse’); (ii) predator species identity (shore crab, Carcinus maenas and starfish, Asterias rubens); and (iii) 
predator size. The survival rate of small mussels was greatest in the clumped experimental habitat and larger predators gener-
ally consumed more prey regardless of the structural organisation of treatment. Small mussels were protected from larger A. 
rubens but not from larger C. maenas in the clumped habitats. The distribution pattern of structural objects, therefore, may be 
considered a useful proxy for reef complexity when assessing predator–prey interactions, and optimal organisations should be 
considered based on both prey and predator sizes. These findings are essential to understand ecological processes underpin-
ning predation rates in structurally complex habitats and to inform future restoration and ecological engineering practices.

Introduction

Habitat complexity plays a key role in mediating biotic 
interactions, such as predator–prey relationships (Heck 
and Crowder 1991; Warfe and Barmuta 2004; Klecka and 
Boukal 2014). Structurally complex habitats may provide 
refuge space for prey (Křivan 1998; O’Connor and Crowe 
2008), thus modifying predator–prey dynamics (Beck 1995; 

Barrios-O’Neill et al. 2015), and lead to a cascade of indirect 
effects on multiple trophic levels (Grabowski and Kimbro 
2005; Grabowski et al. 2008; O’Connor et al. 2013). Spatial 
refuges within complex habitats can be of particular impor-
tance for smaller individuals (Hacker and Steneck 1990; 
Strain et al. 2017), including recent recruits and juveniles, 
which are usually more vulnerable to predation than larger 
individuals (Gosselin and Chia 1995). Studies of habitat 
complexity often use different definitions of complexity 
or confound complexity with other habitat characteristics, 
such as surface area or heterogeneity (Beck 2000; Frost 
et al. 2005; Kovalenko et al. 2012; Loke et al. 2015), which 
can lead to misuses of these metrics for management pur-
poses (Wedding et al. 2011). Habitat complexity per se is 
often used as an over-arching term that encompasses varia-
tion in several habitat ‘components’, e.g. density of specific 
habitat component such as pits, pneumatophores or crevices 
(McCoy and Bell 1991), which limits the application of the 
results of studies using generic or obtuse terminology. A 
more useful approach is to use only specific metrics of indi-
vidual habitat components (Beck 2000).
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Many structurally important habitats, e.g. rainforests, 
saltmarshes, and aquatic biogenic reefs, are under threat 
from anthropogenic disturbances (Ellison et al. 2005; Air-
oldi et al. 2008; Silliman et al. 2009; Newbold et al. 2014; 
Firth et al. 2015). Biogenic reefs formed by bivalves play an 
essential role as ecosystem engineers (Geraldi et al. 2017) 
by: (i) promoting higher levels of biodiversity than surround-
ing local environments (Gutierrez et al. 2003; O’Connor and 
Crowe 2007); (ii) providing habitat that acts as a nursery for 
commercially important species (Kent et al. 2016, 2017); 
(iii) stabilising sediments (Meadows et al. 1998); (iv) acting 
as natural wave barriers and protecting soft coastal habi-
tat (Stone et al. 2005); and (v) contributing substantially 
to nutrient cycling (Kellogg et al. 2013). The loss of such 
biogenic habitat following disturbance events can lead to 
changes in many biotic interactions, which can impede the 
recovery of a system following further disturbances (Lotze 
et al. 2006; Bertness et al. 2015; Mrowicki et al. 2016). It 
is often assumed that biogenic reefs have a self-sustaining 
mechanism, such that once a reef is established, its complex 
structure provides refuge from predation, which facilitates 
recruitment (Bertness and Grosholz 1985; Nestlerode et al. 
2007; Walles et al. 2015, 2016) and maintains a healthy and 
stable reef system. When a reef is damaged, however, this 
process will be diminished (Lenihan 1999), which could 
de-stabilise a reef-dominated system by reducing the estab-
lishment of new recruits and subsequent reef re-formation 
(Barrios-O’Neill et al. 2017; Fariñas-Franco et al. 2018; 
Fariñas‐Franco and Roberts 2018), potentially leading to 
an alternative stable state which may be represented as a 
‘degraded’ system lacking in complexity (Petraitis and 
Dudgeon 2004).

It is essential to understand how predator–prey relation-
ships interact with spatial complexity (Warfe et al. 2008; 
Hesterberg et al. 2017) so that we can comprehend how these 
processes are linked to refuge availability, which underpins 
biogenic reef formation and persistence. The density of 
reef-forming species can be used as a proxy to estimate the 
organisation (or spatial arrangement) of vertical objects in 

horizontal space (Bell et al. 1991). Density is a tractable 
measure that can be quantified and manipulated experimen-
tally and, thus provides useful insights into the recruitment 
dynamics of reef-forming species (Carroll et al. 2015). The 
density of reef-formers, however, is often confounded with 
other factors, such as volume or abundance of individuals 
(e.g. Humphries et al. 2011a, b). The aim of our study was 
to test whether different, but typical, spatial arrangements of 
habitat structure within an experimental reef system affected 
the survival of small mussels. Specifically, by ensuring that 
other components of habitat structure were constant and 
manipulating only density, we tested directly whether the 
size of interstitial spaces available affected overall mussel 
survival, and whether different spatial arrangements of this 
habitat provided better protection for small-sized mussels 
from differently sized predators (Toscano and Griffen 2014; 
Bartholomew et al. 2016). Additionally, we tested whether 
refuge efficacy differed between species of common preda-
tors with distinct methods of catching and killing prey 
(O’Connor et al. 2008; Farina et al. 2014). Small interstitial 
spaces which are typical of mussel beds may be beneficial 
for the smaller mussels, whilst being of limited use for larger 
mussels, which may become more vulnerable to predation 
from larger or different predator species (Enderlein et al. 
2003; Calderwood et al. 2015b).

In two separate experiments, the effects of predation of 
two common benthic predators (the shore crab, Carcinus 
maenas, and the starfish, Asterias rubens), on their shared 
prey (mussels) was quantified using artificial reefs that 
were designed to represent three different forms of habitat 
organisation. The size of the predators and of prey was also 
manipulated to test explicitly for size-dependent effects and 
to identify mechanisms that underpin predation in this sys-
tem. Specifically, both experiments tested the hypotheses 
that: predation rates on mussels are dependent upon habitat 
organisation (‘sparse’, ‘patchy’ and ‘clumped’) with (1) mor-
tality rate of small mussels being lowest in the ‘clumped’ 
habitat organisation; whereas (2) a ‘patchy organisation’, 
with heterogeneous sizes of refugia available, will provide 

Fig. 1  Hypothetically predicted 
predator–prey relationships in 
‘sparse density’ (dotted line), 
‘patchy organisation’ (dashed 
line) and ‘clumped density’ 
(black line) treatments with 
predators of increasing size for: 
a total mussel mortality, and b 
small mussels
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generally more options for refuge, thus decreasing the mor-
tality of larger individuals; and that (3) the size of predators 
will affect the mortality rates of their prey, in relation to 
accessibility to the interstitial spaces (Fig. 1), while (4) the 
ratio of small mussel mortality compared to total mortality 
will only differ with habitat spatial organisation.

Materials and methods

Experimental design

The experiments were conducted in outdoor, flow-through 
mesocosms at Queen’s University Marine Laboratory, Por-
taferry, Northern Ireland. Mesocosms consisted of opaque 
plastic boxes (55.5 × 35.5 × 22 cm) arranged on shallow 
tables and supplied independently with sand-filtered, sea-
water from the adjacent Strangford Lough cascading from 
the top on all of the tanks (further detail in Mrowicki and 
O’Connor 2015).

The first experiment quantified predation rates of crabs 
on mussels based on: (i) habitat organisation as a fixed fac-
tor (with three levels: ‘sparse’, ‘patchy’, and ‘clumped’); 
(ii) crab size (as a continuous variable); and (iii) trial (3 
levels), which was included as a random factor. The second 
experiment, quantified predation rates of starfish on mus-
sel beds based on: (i) habitat organisation as a fixed factor 
(with three levels: ‘sparse’, ‘patchy’, and ‘clumped’); (ii) 
starfish size as a fixed factor (with two levels: small, large) 
given the lack of intermediate-sized individuals; and, (iii) 
trial (2 levels), which was included as a random factor.

Artificial reefs were designed to manipulate interstitial 
space size whilst keeping overall area constant in all treat-
ments. Artificial reefs were constructed from 30 × 30 cm 
Perspex plates (Fig. 2) each containing 9 mimics made 
from white PVC pipe (diameter 2.5 cm, height 3.5 cm). 
The experimental treatments were designed to represent 
reefs with ‘sparse’, ‘patchy’ and ‘clumped’ distributions 
based observations of local mussel abundance patterns. 
For example, in the sparse distribution treatment, individ-
ual mussel mimics were each placed 8.5 cm apart, which 
is representative of a degraded habitat of isolated mus-
sels (Fariñas-Franco et al. 2014). This sparse treatment 
was hypothesised to provide limited or no physical refuge 
available. In the patchy distribution treatment, three mus-
sel mimics were placed 8.5 cm apart, another three were 
3.5 cm apart and another three were 1 cm apart, represent-
ing a patchy mussel organisation. This patchy treatment 
was hypothesised to provide several refugia for mussels 
of various sizes. In the clumped distribution treatment, 
the distance between all nine mussel mimics per plate 
was 1 cm, representing a densely packed and uniformly 

distributed mussel reef. This clumped treatment was 
hypothesised to provide refuges for small mussels.

Experiment 1: Carcinus maenas predation

This experiment ran from December 2015 to January 2016 
with three trials comprising all treatments running over 
this time period. Each of the three experimental treatment 
(sparse, patchy and clumped) were replicated eight times 
in each trial yielding a total of 72 experimental units. New 
crabs and mussels were collected for each experimental 
trial.

Mussel sizes used in the experiment were designed to 
mimic two common sizes available on mussel patches at 
local intertidal, soft-sediments shores: one small and able to 
find refuge and a larger one which would not be able to hide 
in small interstitial spaces. The specific abundance of the two 
classes was chosen to mimic natural conditions (mean abun-
dance ± SE: small mussels 6.4 ± 1, large 4.8 ± 1.2/900 cm2), 
thus ten mussels (five mussels of two size classes, mean shell 
length ± SE: small, 11.2 ± 0.4 mm and large 22.7 ± 0.5 mm) 
were added to each experimental plate described above, 
which was then allocated randomly to a mesocosm. All mus-
sels selected had clean shells, were collected from a local 

Fig. 2  Top view (dorsal) of the design of artificial reefs with three 
different spatial organisations (experimental treatments). a ‘Sparse’, b 
‘clumped’, c ‘patchy’. Squares represent perspex tile, circles represent 
PVC pipe
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shore (54°29′15.96″N, 5°32′24.74″W) and were within the 
recorded feeding range of C. maenas (Mascaró and Seed 
2000; Enderlein et al. 2003; Calderwood et al. 2016). Fol-
lowing pilot studies, mussels were allowed to acclimatise 
for 24 h prior to the addition of the predator (C. maenas), 
allowing them to find a suitable space within the model reef 
and to form a byssal attachment to the structure. All mussels 
attached to the habitat provided by the artificial structures, 
but no mussel-to-mussel clumping was observed during the 
experiment.

Shore crabs, C. maenas, were collected from a local shore 
(54°23′26.6424″N, 5°34′19.5126″W) and to standardise 
motivation to feed, only male individuals without any vis-
ible signs of damage were selected for use in this study. Crab 
carapaces were measured with digital calipers. Only crabs 
with carapace width > 30 mm were selected because crabs 
of this size are known to have M. edulis as a large compo-
nent of their diet (Ropes 1968). All crabs were transferred 
into three holding tanks (35 L) and acclimatised for 24 h 
with ad libitum food supply of M. edulis. Crabs were then 
starved for 48 h prior to the beginning of the experiment 
to standardise hunger level (Elner and Hughes 1978). One 
crab was assigned randomly to each mesocosm and left to 
forage overnight for 18 h from 16.00 to 10.00 h (Ropes 1968, 
Calderwood et al. 2016). At the end of each trial, crabs were 
removed and the number of surviving small and large mus-
sels was recorded. First, we analysed total mussel mortal-
ity and small mussel mortality. Then to assess whether the 
consumption of small mussels differed among experimental 
treatments and across the range of predator sizes we further 
analysed the small mussels consumed as a proportion of all 
mussels consumed.

Experiment 2: Asterias rubens predation

Two experimental trials were run in February and May 2016. 
Each of the three experimental treatments (sparse, patchy and 
clumped) was replicated four times in per each starfish size 
class per trial yielding a total of 48 experimental units. New 
starfish and new mussels were collected prior to the start of 
each experimental trial. To keep mussel density similar to 
the previous experiment and to avoid confounding effects of 
clumping while investigating habitat use, nine mussels (three 
mussels of three size classes: small, mean shell length ± SE 
9.5 ± 0.4 mm, medium 20 ± 0.5 mm, and large 32.4 ± 0.6 mm) 
were added to each plate, which was then randomly allocated 
to a mesocosm. Clean shelled M. edulis were also collected at 
low tide from a local shore (54°29′15.96″N, 5°32′24.74″W), 
and sorted into the three size classes: all mussels were cho-
sen to be sizes normally consumed by starfish (Hummel 
et al. 2011), with the small mussels able to seek refuge in the 
‘clumped’ reef organisation. In contrast, medium and large 

mussels were chosen since they were excluded from the ref-
uge space, with medium-sized mussels accessible by smaller 
starfish and large mussels possibly chosen by larger starfish 
(Hummel et al. 2011; Calderwood et al. 2015b). Mussels were 
then left for 24 h to acclimatise, move to a suitable space and 
form a byssal attachment to the structure. Again all mussels 
attached to the habitat provided by the artificial structures, 
but no mussel-to-mussel clumping was observed during the 
experiment.

Undamaged starfish were collected manually from a local 
shallow subtidal shore (54°23′29.9214″N, 5°34′29.301″W). 
Owing to the starfish sizes available locally, starfish were 
sorted by size with small (arm length 24.2 ± 1.7 mm) and large 
(96.02 ± 0.45 mm) individuals transferred into separate hold-
ing tanks (volume 330 L) where they were left to acclimatise 
for 24 h with ad libitum food supply (M. edulis). Starfish were 
then starved for 7 days prior to the beginning of experiment to 
standardise hunger levels. At the start of each trial, a small or 
large starfish was assigned randomly to a mesocosm and left 
to forage for 4 days. At the end of the foraging period, star-
fish were removed and the number of surviving mussels was 
recorded. Percentage mortality of all mussels and percentage 
mortality of smaller mussels was used for statistical analyses. 
To differentiate whether the consumption of the small class 
changed with organisation or predator size we further consid-
ered the proportion of small mussels consumed in relation to 
total mortality, expressed as a percentage.

Statistical analysis

All analyses were carried out using R (R Development Core 
Team 2015). Data were tested for homogeneity of variances 
using Levene’s test in the car package. For both experiments, 
linear mixed models fitted by maximum likelihood t tests using 
Satterthwaite (1946) approximations of degrees of freedom 
were chosen to incorporate the random effect of ‘trial’ (Bates 
2005; package lme4). The initial model included fixed terms 
(‘habitat organisation’, ‘predator size’), their interactions and 
the random factor (‘trial’). Where the interactions were not 
significant they were removed from the model. The models 
with and without interactions were then compared based on 
AIC score and that with a lowest score was chosen. Moreover, 
the random effect ‘trial’ always explained < 5% of the total 
variance. Therefore, mixed linear models were compared to 
linear models that did not include the random factor using 
AIC scores. AIC were lower for linear models in all cases. 
The residuals were tested for normality with Shapiro–Wilk test 
and the model was validated. Type II ANOVA tables using the 
Anova function in the package car was then used to generate p 
values and test for significance. If terms were significant, pair-
wise comparisons between levels were carried out using least 
means squares estimates based on Tukey adjustments (lsmeans 
and multcomp packages).
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Results

Experiment 1: Carcinus maeanas predation

Small mussel (ca. 10 mm in shell length) mortality was 
significantly lower in the ‘clumped density’ treatment 
(F2,68 = 5.9, p < 0.01, Table  1, Fig.  3d–f). A ‘patchy’ 
organisation did not contribute to a decreased mortality 
(p > 0.05). The lowest total mussel mortality was in the 
‘clumped density’ organisation (F2,68 = 5.88, p < 0.01, 
Fig. 3a–c, Table 1) and increased with increasing crab size 
(F1,68 = 5.9, p < 0.001, Fig. 3a–c). There was no interaction 
between organisation and crab size, however, both small 
and total mussels mortality was found to increase with 
increasing size of crabs (F1,68 = 5.9, p < 0.05, Fig. 3d–f). 

Table 1  Pairwise comparisons using least squares means estimates 
between complexity treatments for all mussel mortality in the pres-
ence of a crab

Significant differences in bold

Pairwise Estimate Std. error t ratio p

Total mussel mortality
 Sparse-clumped 16.25 4.8 3.44 0.004
 Sparse-patchy 11.12 4.8 2.29 0.063
 Patchy-clumped 5.11 4.8 1.06 0.541

Small mussel mortality
 Sparse-clumped 28.14 8.2 3.43 0.003
 Sparse-patchy 15.31 8.2 1.87 0.155
 Patchy-clumped 12.82 8.2 1.56 0.266

Fig. 3  The relationship between mussel mortality and crab size 
in “sparse density” (squares, dotted line, a, d, g), “patchy” (circles, 
dashed line, b, e, h) and “clumped density” (triangles, continuous 
line, c, f, i) organisations based on: total mussel mortality (panels 

a–c), small mussel mortality (d–f), and proportion of small mussels 
mortality compared to total expressed as percentage (g–i). Lines and 
shading represent 95% confidence intervals extrapolated from linear 
models
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The proportion of small to total mussel mortality did 
not change with different organisations, however, this 
ratio decreased with increasing crab sizes (F1,63 = 25.1, 
p < 0.0001, Fig. 3g–i).

Experiment 2: Asterias rubens predation

Small mussel (ca. 10 mm in shell length) mortality was 
significantly lower in the ‘clumped density’ (F2,44 = 6.2, 
p < 0.01, Table 2, Fig. 4d–f), however, this did not differ 
among starfish sizes, nor were there interactions between 
habitat organisation and predator size (p > 0.05).

A ‘patchy’ organisation did not contribute to a decreased 
mortality (p > 0.05).

In the starfish experiment (Fig. 4) total mussel mortal-
ity rate did not differ among habitat organisations, how-
ever, total mussel mortality increased when starfish were 
larger (F1,44 = 25.5, p < 0.001, Fig. 4a–c). The proportion 
of small to total mussel mortality decreased with increas-
ing complexity of organisation from sparse to clumped 
(F2,38 = 3.5, p < 0.05), and was lower when starfish were 
larger (F1,38 = 8.8, p < 0.001, Fig. 4g–i).

Table 2  Pairwise comparisons using least squares means estimates 
between complexity treatments for small mussel mortality in the pres-
ence of a starfish

Significant differences in bold

Pairwise Estimate Std. error t value p

Sparse-clumped 35.41 10.2 3.5 0.003
Sparse-patchy 22.92 10.2 2.2 0.073
Patchy-clumped 12.5 10.2 1.2 0.443

Fig. 4  Boxplot with overlying raw data representing medians and 
interquartile ranges of percentage mortality of mussels exposed to 
different starfish sizes in “sparse density” (squares, a, d, g), “patchy” 
(circles, b, e, h) and “clumped density” (triangles, c, f, i) organisa-

tions based on: total mussel mortality (a–c), small mussel mortality 
(d–f), and proportion of small mussels mortality compared to total 
expressed as percentage (g–i)
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Discussion

In agreement with our initial hypotheses (Fig. 1), we found 
that in the presence of crabs, different habitat organisa-
tions affected mussel predation rates differently, and that 
mussel survival was greatest in the clumped density treat-
ment. In contrast, we did not identify any effects of dif-
ferent habitat organisation on total mussel mortality in 
the presence of starfish. However, when predation effects 
were examined for small mussels only, clumped habitat 
organisation significantly increased survival of small mus-
sel classes independent of predator species. There was no 
effect of organisation on the ratio of small mussels con-
sumed compared to total mortality when crabs were the 
predators, while there was a slight decrease in this ratio 
with increasing organisation density when starfish were 
predators.

In the present study, habitat organisation was manipu-
lated only with regard to horizontal space by manipulating 
object (mussel mimic) density. Despite this simplification 
of variability in reef structure, which did not consider 
variations in three dimensions (Hesterberg et al. 2017), 
and used habitat mimics, it was a highly suitable proxy to 
test for effects of different interstitial space sizes among 
objects (Bartholomew and Burt 2015; Bartholomew et al. 
2016) and was a suitable mediator of predation rates. 
Where habitat organisation was clumped, prey mortal-
ity, in general, was lower, suggesting that altering habitat 
organisation even in two dimensions reveals useful mecha-
nistic insights with regard to refuge availability and refuge 
efficacy. The reduction in mortality owing to predation 
in habitats with clumped density organisation could be 
driven by the ability of prey to hide from predators and/
or the inability of predators to reach inside the refuge to 
access prey (Klecka and Boukal 2014), rendering the task 
too difficult or energetically prohibitive (Dolmer 1998).

Variability in the efficacy of refugia was prey size 
specific. Small mussels benefitted from the clumped-
density organisation, where they found refuge. Mortality 
for this size class was lower in the clumped compared to 
the lower density organisation treatments, suggesting an 
effect of habitat organisation and not general prey size 
preference per se. These findings suggest that promoting 
a habitat with small available refuge spaces can signifi-
cantly increase survival of small mussels in the presence 
of predators, and thus enhance their potential to increase 
reef sustainability and growth (van de Koppel et al. 2005; 
Commito et al. 2014; Folmer et al. 2014; Bertolini et al. 
2017).

The size of the predators affected mussel mortality 
positively and the lack of interactions showed that this 
occurred independently of habitat organisation. This result 

was in contrast to our third and fourth hypotheses, as we 
found that in general consumption rate, particularly the 
consumption of larger mussels, increased with predator 
size. Smaller predators in both experiments were small 
enough to use the interstitial spaces in the ‘clumped den-
sity’ organisation, and were observed doing so. In contrast 
to predictions, larger crabs were able to feed on small mus-
sels in the clumped organisation. This did not occur when 
starfish were present because predator size did not affect 
their predation rates on mussels in the clumped organi-
sation. This could be because of their different physical 
feeding methods, with crabs having strong claws (Vermeij 
1977) and able to reach into a refuge space and pull a mus-
sel out. Starfish might not be able to reach and secure a 
small mussel in a small space because of the bulk of their 
arms and relative weakness of a hydrostatic tube foot sys-
tem leading to a poor capacity to grip prey (Dolmer 1998). 
Moreover, predators with different prey-detecting strate-
gies (visual vs chemical vs tactile cue) may have different 
rates of prey encounter in complex habitats (Farina et al. 
2014; Klecka and Boukal 2014).

Larger predators consumed more mussels and tended to 
prefer larger sizes, whilst smaller predators were limited to 
consumption of smaller mussels, suggesting that larger mus-
sels may be able to escape predation from smaller predators 
in all of the organisations tested here. This was consistent 
with results from studies of crab predation on oyster reefs 
where the presence of large crabs was the major determi-
nant of mussel and oyster mortality (Toscano and Griffen 
2012; Pickering et al. 2017). Thus, mussels that are excluded 
from refuge space and are of edible size may suffer from 
high mortality rates. While other experiments found that, A. 
rubens (Hummel et al. 2011) and C. maenas (Smallegange 
and Van Der Meer 2003) often prefer small prey items. We 
found that overall small mussel mortality also increased 
with increasing predator size, and the ratio of small mus-
sels mortality compared to total mortality decreased with 
increasing predator size, suggesting that consumption of 
larger size classes is important for larger predator sizes. In 
natural reefs, refugia may be highly variable in size with 
suitable but limited refuge space for all size classes, how-
ever, for damaged reefs to recover it is important that refugia 
for small mussels is present so they can grow to regenerate 
a self-sustaining reef.

Different predator species were found to have gener-
ally similar effects on mortality rates, but some differences 
were highlighted. For example, larger crabs were found 
to eat small mussels in the clumped density organisation. 
This was not observed in trials involving large starfish. The 
importance of considering predator assemblage composi-
tion has been highlighted for commercial mussel seeding 
operations (Calderwood et al. 2015a) and this is reinforced 
by the present study. Clumped mussel habitat can also be 
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beneficial for smaller predators which may hide therein 
(Thiel and Dernedde 1994), highlighting the importance 
of considering the ontogenetic and behavioural responses 
of predators (Pirtle et al. 2012). It is known, for example, 
that mussel reefs are nursery grounds for whelks (Kent 
et al. 2016) and crabs (Lindsey et al. 2006) and the size of 
small predators used in this experiment may spend more 
time sheltering from larger predators in refuge space 
afforded by a reef than actively feeding. This should be 
tested empirically.

It is concluded that refuge efficacy in reducing mortal-
ity from predation is greatest in clumped density habitat 
organisation but is strongly dependent on prey size rather 
than predator size. This contrasts with previous research, 
which found that space size relative to predator width (Sp/
Pr) was one of the most important predictors of survivor-
ship, with prey survivorship decreasing sigmoidally with 
increasing Sp/Pr (Bartholomew et al. 2000). We recom-
mend that refuge size should be evaluated in relation to 
prey size (Sp/Py) (Hacker and Steneck 1990; Bartholomew 
and Shine 2008; Bartholomew 2012), that habitats con-
taining multi-sized interstitial spaces should be promoted 
to offer refuge to multiple size classes, and ultimately 
should be context-specific with regards to the identity of 
predators present in the system.

Our findings demonstrate the use of spatial organisation 
as a measure of habitat complexity to explain the effects 
of predator–prey interactions (Almany 2004; Carroll et al. 
2015; Hesterberg et al. 2017). Also, the density and size 
of mussels may be critical in off-setting the effects of one 
or more predator species each able to access and exploit 
different components of the mussel population (Garner 
and Litvaitis 2013). These findings have important con-
sequences for ecological engineering projects (Firth et al. 
2016) and the management of structures when the aim is to 
aid the reintroduction of species (e.g. canopy algae, Susini 
et al. 2007; Perkol-Finkel et al. 2012; or native oysters, 
Strain et al. 2017) while keeping in mind the role of biotic 
interactions (Ferrario et al. 2016; Gianni et al. 2018) to 
promote self-sustainability after initial restoration efforts.
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