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Phospholipid-derived fatty acids (PLFAs) are commonly used to characterize microbial communities in situ and the phyloge-
netic positions of newly isolated microorganisms. PLFAs are obtained through separation of phospholipids from glycolipids and
neutral lipids using silica column chromatography. We evaluated the performance of this separation method for the first time
using direct detection of intact polar lipids (IPLs) with high-performance liquid chromatography-mass spectrometry (HPLC-
MS). We show that under either standard or modified conditions, the phospholipid fraction contains not only phospholipids but
also other lipid classes such as glycolipids, betaine lipids, and sulfoquinovosyldiacylglycerols. Thus, commonly reported PLFA
compositions likely are not derived purely from phospholipids and perhaps may not be representative of fatty acids present in

living microbes.

Examining microbial communities in situ is one of the major
challenges in microbial ecology. Traditionally, isolation and
cultivation techniques were used, in addition to microscopic ob-
servations, to characterize microorganisms in environmental
samples. This traditional approach has its limitations, as it was
estimated that, depending on the habitat, only about 0.001 to 1%
of all microorganisms are cultivable by standard techniques (1).
Over the last 2 decades, a number of cultivation-independent
techniques for the examination of microbial community compo-
sition have been established, using in particular genomic tech-
niques.

One of the earliest alternative approaches to study microbial
communities independent of cultivation was the analysis of the
compositions and abundances of fatty acids in environmental
samples and comparison to the fatty acid compositions of pure
cultures (2—4). Fatty acids do not occur as such in living biomass
but instead occur as intact polar lipids (IPLs) with the fatty acids
esterified via either a glycerol or an amide moiety to a polar head
group. These fatty acids are released after cell death and can persist
in natural environments. Therefore, fatty acids derived from liv-
ing biomass have to be distinguished from those derived from
dead and fossil biomass when analyzing microbial communities in
situ. One way to do this is to study phospholipid-derived fatty
acids (PLFAs), as phospholipids are thought to be relatively labile
and fall apart shortly after cell death (5, 6). Furthermore, they are
the major lipids in cell membranes and are rarely used as storage
products. In contrast, glycolipids are generally classified as storage
products (7), although it was recently shown that they can also be
major membrane lipid components in chloroplasts of plants and
algae and in cyanobacteria (8). PLFAs are thus commonly used as
indicators for living microbes. The interpretation of the PLFA
patterns of environmental samples is done by comparison with
the PLFA patterns of microorganisms grown in pure cultures (9—
11). Furthermore, they are used to investigate metabolic activity in
situ by stable-isotope analysis in combination with labeling exper-
iments (12, 13). PLFA analysis is also often used as chemotaxo-
nomic information to characterize the phylogenetic positions of
new microorganisms (14).

In order to obtain PLFAs rather than free fatty acids or fatty
acids contained in storage lipids, Vorbeck and Marinetti (15) pro-
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posed a method to separate bacterial lipids into “neutral lipid,”
“glycolipid,” and “phospholipid” fractions by applying a silicic
acid column and eluting the fractions with different mixtures of
chloroform, acetone, and methanol (MeOH). The obtained phos-
pholipid fraction was subsequently hydrolyzed to obtain phos-
pholipid-derived fatty acids which could be analyzed by gas chro-
matography (GC). The efficacy of the silicic acid column
separation was verified by measuring the phosphorus and carbo-
hydrate contents in the different fractions using colorimetric
methods (carbohydrates by the anthrone reaction described by
Radin et al. [16] and phosphorus content by the molybdenum
blue method described by Harris and Popat [17] and modified by
Marinetti et al. [18]). The separation method has subsequently
been modified over the years by decreasing the volumes of eluents
used, replacing chloroform with the less toxic dichloromethane
(DCM), and using pure acetone and methanol, to obtain the neu-
tral, glycolipid, and phospholipid fractions (9, 19-21). This mod-
ified separation method is now routinely used in environmental
studies as well as for chemotaxonomy of microbes belonging to
the bacteria and eukaryotes (10, 22-24). However, since the initial
studies, the performance of the separations has been rarely reeval-
uated, particularly whether the PLFAs are truly derived from
phospholipids only. Additionally, recent studies have shown that
both betaine lipids and sulfoquinovosyldiacylglycerols (SQDGs)
are abundant IPLs in the marine environment (25-29). The fate of
these IPLs after separation on a silica column is, to the best of our
knowledge, unknown, and thus it is unclear to what degree the
fatty acids contained in these membrane lipids are accounted for
in PLFA analysis.

In the last 15 years, analytical techniques were developed that
made it possible to directly analyze IPLs, including phospholipids,
using high-performance liquid chromatography—mass spectrom-
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etry (HPLC-MS). Typically, IPLs are separated according to the
polarity of the head group and identified by multistage mass spec-
trometry (11, 30, 31). However, this type of analysis does not allow
detailed identification of the various fatty acids contained in the
IPLs. For detailed identification, separation and hydrolysis of the
lipid extract and subsequent GC(-MS) analysis is still required.
Additionally, for stable-isotope probing, which requires GC-ame-
nable compounds, PLFAs are still needed. Therefore, PLFA anal-
ysis is still an important method within microbial ecology.

In this study, we have reassessed the compositions of the dif-
ferent chromatographic fractions isolated by silica chromatogra-
phy, using lipid extracts from different environmental samples.
Through direct analysis of IPLs using HPLC-MS, we accurately
studied the fates of several environmentally important types of
IPLs during one of the most used chromatographic fractionations
and assessed whether PLFAs are truly representative of membrane
lipids.

MATERIALS AND METHODS

Sampling. A marine sediment was collected in January 2012 during low
tide in the Mokbaai on the Dutch Wadden Island Texel. A microbial mat
sediment was collected in August 2010 on the Dutch Wadden Island Schi-
ermonnikoog. Similar microbial mats from the same location were de-
scribed by Bolhuis and Stal (32). The microbial mat was sampled from the
top of the sediment and immediately sealed. Sediment cores with a diam-
eter of 7 cm were taken by hand and sliced on location, and the first
centimeter was collected. All samples were freeze-dried, homogenized,
and stored at —40°C until extraction.

Extraction of intact polar lipids. The freeze-dried samples were ex-
tracted using a modified Bligh-Dyer method (11, 33). In short, the sam-
ples were extracted with MeOH-DCM-phosphate buffer (2:1:0.8, vol/vol/
vol) ultrasonically three times for 10 min. The supernatants were
collected, and DCM and phosphate buffer were added to achieve a phase
separation. The DCM fraction was transferred to a round-bottom flask,
and the aqueous phase was washed three times with DCM. All DCM
fractions were combined and dried using a rotary evaporator. The result-
ing Bligh-Dyer extract (BDE) was transferred into a vial with DCM-
MeOH (9:1), further dried under a nitrogen flow, and stored dry at
—20°C.

Separation of different IPL classes. The BDE was splitinto three equal
(by volume) aliquots. All subsequent treatments were performed in trip-
licate. In order to obtain the so-called neutral, glycolipid, and phospho-
lipid fractions, the BDE was separated on a DCM-prerinsed silica column
(0.5 g; activated for 3 h at 150°C) by eluting with 7 ml DCM, 7 ml acetone,
and 15 ml MeOH, respectively (9). The resulting fractions were dried
under nitrogen and stored at —20°C.

In order to test the effects of slightly different solvent mixtures, the
BDE was also separated on a prewashed silica column (0.5 g) by eluting
with 7 ml of DCM, 7 ml of acetone-MeOH (99:1) and 15 ml MeOH,
respectively. These fractions were also dried under nitrogen and stored at
—20°C.

IPL analysis. For the IPL analysis, the original BDE and the different
chromatographic fractions were dissolved and filtered in 250 pl of injec-
tion solvent (hexane-2-propanol-H,O, 718:271:10). IPLs were analyzed
directly afterwards by high-performance liquid chromatography—electro-
spray ionization—tandem mass spectrometry (HPLC/ESI-MS?) as de-
scribed by Sturt et al. (30) with some modifications. We used an Agilent
1200 series LC (Agilent, San Jose, CA), which was equipped with a ther-
mostatted autoinjector and a column oven and coupled to a Thermo LTQ
XL linear ion trap with an Ion Max source with an electrospray ionization
(ESI) probe (Thermo Scientific, Waltham, MA). To each sample, 5 pg/ml
of 1-O-hexadecyl-2-acetoyl-sn-glycero-3-phosphocholine (C16 PAF)
standard was added in order to monitor the performance of the machine.
Separation was achieved on a Lichrosphere diol column (250 by 2.1 mm,
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5-pm particles; Alltech Associates Inc., Deerfield, IL) maintained at 30°C.
The following elution program was used with a flow rate of 0.2 ml/min:
100% A for 1 min, followed by a linear gradient to 66% A-34% B in 17
min, which was maintained for 12 min, followed by a linear gradient to
35% A—65% B in 15 min (where A is hexane-2-propanol-formic acid—
14.8 M aqueous NH; [79:20:0.12:0.04, vol/vol/vol/vol] and B is 2-propa-
nol-H,O—formic acid-14.8 M aqueous NH; [88:10:0.12:0.04, vol/vol/
vol/vol]). The total run time was 60 min, with a reequilibration period of
20 min in between runs. The settings for the ESI were as follows: capillary
temperature, 275°C; sheath gas (N,) pressure, 25 arbitrary units (AU);
auxiliary gas (N,) pressure, 15 AU; sweep gas (N,) pressure, 20 AU; and
spray voltage, 4.5 kV. The lipid extract was analyzed by positive-ion scan-
ning (m/z 400 to 2000), which was followed by a data-dependent MS?
experiment where the four most abundant masses in the mass spectrum
were fragmented (normalized collision energy, 25; isolation width, 5.0;
activation Q, 0.175).

For each IPL class, the individual IPL species were identified in the
total BDE by their fragmentation pattern in MS* (34). In order to evaluate
the chromatographic behaviors of the different IPL classes during silica
chromatography, the three to five most abundant IPL species within each
IPL class were selected for quantification. The peak areas of these IPL
species were integrated in their MS' mass chromatograms. Since the same
equivalent amount of extract was consistently injected, the peak areas of
the total extract and the different fractions could be directly compared. To
calculate the distribution of the IPLs over the fractions, the peak areas of
the selected species within an IPL class in each fraction were summed and
the percentage relative to the total amount in both the acetone and the
methanol fractions was calculated. The final percentage is the average of
the percentage in each of the triplicates. To determine the recovery, the
peak areas of the selected species within an IPL class in each fraction was
summed, and the percentage relative to the amount in the BDE could be
calculated since identical injection volumes and concentrations were used
for the fractions and BDE, respectively. The final value is an average of the
triplicates. Due to different ionization efficiencies of different IPL classes,
the different treatments for each IPL class were compared and not the
amounts of IPL classes with each other within a single fraction.

RESULTS AND DISCUSSION

IPL composition. To evaluate the commonly used separation
method in PLFA analysis, we subjected extracts from a microbial
mat (Schiermonnikoog, The Netherlands) and a marine sediment
(Mokbaai, The Netherlands) to the various silica chromatography
protocols.

We first studied the IPL composition of the whole extracts of
both samples prior to chromatographic separation (Fig. 1). This
showed that the microbial mat sediment contained two types of
glycolipids, monogalactosyldiacylglycerols (MGDGs) and di-
galactosyldiacylglycerols (DGDGs) (Fig. 2). For both of these IPL
classes, the main sugar moiety has been recognized as galactose,
which is why they are in general referred to as galactolipids (27).
Both of these glycolipids mainly contained C,4 and C, fatty acids
with 0 to 3 double bonds in different combinations (Table 1). In
addition to glycolipids, the microbial mat sediment also contained
three different phospholipid classes, phosphatidylglyceride (PG),
phosphatidylcholine (PC), and phosphatidylethanolamine (PE)
(Fig. 1 and 2). The different phospholipid classes contained
mainly two fatty acids with a combined total number of carbon
atoms of 30 to 40 and a total number of double bonds of 0 to 6
(Table 1). Due to the lack of specific fragments, we were not able to
assess the compositions of individual fatty acids in these lipid
classes. Sulfoquinovosyldiacylglycerols (SQDGs) (Fig. 2), which
structurally resemble glycolipids but contain a sulfate group, were
also found in the extract. The SQDGs contained mainly C,, and
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FIG 1 HPLC/ESI-MS base peak chromatogram of the Bligh-Dyer extracts of
the Schiermonnikoog microbial mat (A) and the Mokbaai sediment (B).
Monogalactosyldiacylglycerol (MGDG), digalactosyldiacylgylcerol (DGDG),
phosphatidylglycerol (PG), phosphatidylcholine (PC), phosphatidylethanol-
amine (PE), sulfoquinovosyldiacylglycerol (SQDG); and diacylglyceryl-hy-
droxymethyl-trimethylalanine (DGTA) are indicated. For structures of IPLs,
see Fig. 2.

C, ¢ fatty acids with 0 to 3 double bonds. Lipids with a diacylglyc-
eryl-hydroxymethyl-trimethylalanine (DGTA) head group (Fig.
2), belonging to the class of betaine lipids, were also detected in the
extract. The DGTAs contained mainly C,; and C, 4 fatty acids with
0 to 2 double bonds (Fig. 1A).

The BDE extract of the Mokbaai sediment also contained
MGDGs and DGDGs, both containing mainly C,4 and C,, fatty
acids with 0 to 5 double bonds (Table 1). Of the different phos-
pholipid classes, both PGs and a large variety of different PCs
could be identified, containing two fatty acids with a combined
total carbon number of 31 to 42 and a total number of double
bonds of 0 to 12. SQDGs were much less diverse in their fatty acid
composition, containing mainly C, ¢ fatty acids with 0 to 2 double
bonds (Table 1). We also found DGTAs in this sample, consisting
mainly of C,4 and C,4 fatty acids with no or one double bond
(Fig. 1B).

Thus, both the microbial mat and the marine sediment contain
a variety of IPLs, including glycolipids (MGDG and DGDG) as
well as phospholipids (PG, PC, and PE), making them suitable for
evaluation of the commonly used silica separation method. In
addition, they contained other IPLs such as SQDG and betaine
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FIG 2 Overview of head groups of analyzed intact polar lipids (IPLs). (A)
MGDG; (B) DGDG; (C) PG; (D) PG; (E) PE; (F) SQDG; (G) DGTA. R, and R,
represent different fatty acid moieties. For definitions of IPL abbreviations, see
the legend to Fig. 1.

lipids (DGTA), for which the fraction in which they elute is not
known.

Standard separation method. Analysis of the different chro-
matographic fractions obtained from the most commonly used
silica gel separation method showed for the microbial mat that
MGDGs were distributed evenly between the acetone (“glyco-
lipid”) and the methanol (“phospholipid”) fractions (54% = 5%
and 46% = 5%, respectively) (Table 2). In contrast, all of the
DGDGs were detected in the methanol fraction. Of the phospho-
lipids, only PCs eluted exclusively in the methanol fraction. Both
PGs and PEs were also present in minor amounts in the acetone
fraction, i.e., 9% = 1% and 11% = 1% in the acetone fraction and
91% = 1% and 89% = 1% in the methanol fraction, respectively.
Of the “nonphospholipids,” the majority (68 = 3) of the SQDGs
eluted in the methanol fraction, although a relatively high per-
centage (32% = 1%) eluted in the acetone fraction. DGTAs were
found exclusively in the methanol fraction (Table 2). We also
assessed the overall recovery of the different IPLs by normalizing
on the original amounts in the extract. Of the DGDGs, SQDGs,
DGTAs, and PCs, 75 to 98% could be recovered in the different
fractions. All PGs could be recovered in the different fractions. Of
all studied IPL classes, the recovery of the PEs was the lowest, with
30% not recovered from the column (Fig. 3A). The recovery of the
MGDGs was higher than 100%, which at first may be surprising.
However, this could be due to ion suppression; i.e., the ionization
of the early-eluting MGDGs might be suppressed due to matrix
effects in the complex total BDE extract. This ion suppression may
be much less in the cleaner chromatographic fractions, leading to
enhanced ionization and thus an increase in peak areas.
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TABLE 1 Fatty acid compositions of different IPL classes in the BDE

Separation of Glyco- and Phospholipids

Fatty acid composition in:

Lipid class” Microbial mat Marine sediment
MGDG Ciao Ciso-163 Crsoas:0 Cao3205 Ciao Ciso16:0 Ciz:017:0 Ci73 Cigts Crga Cooua20:5
DGDG C14:0’ 616:0—16:3’ C]8:3—18:4 C]G:O—IG:S’ C20:4—20:5
b
PG C30:0»30:l’ C3l:l’ C32:1-32:3’ C33:l’ C34:1-34:3’ C36:2 C32:1-32:2’ C33:l’ C34:1-34:2’ C36:2’ C36:5»36:6
b
PC Cs003010 Car Caziosz: Gz Cagnaao Caaasas Casazs Cii Caow Casigazno Csan> Caaases Casins Cssiasss Cagonen

Css:5 Cs6:20 Cagisaeer Ca7:20 Ca7:a37:0 Casor Caguaozso
Cs0:5-30:60 Caoie
PE’ Gzt Cagr 34
SQDG
DGTA

C14:0’ 616:0—16:2’ C] 8:0-18:3

Cl4:0’ C16:0-16:1’ CIS:O-IS:Z’ Cl‘):O»l‘):l’ C20:5

C37:5—37:6) C37:9’ C37:12’ C38:5—38:6) C38:9’ C39:0’ C39:2—39:3) C39:1 1
C40:5-40:6’ C40:8’ C4l:0»4l:4’ C42:6

ND¢

C]G:O—IG:S’ C20:4—20:5

C14:0-14:1’ Clé:O»lé:l’ Cl7:0’ CIS:I-IS:Z’ CZO:I

“ For structures and abbreviations of IPLs, see Fig. 1 and 2.

¥ Combined total number of carbon atoms and total amount of double bond equivalents for both fatty acid moieties.

¢ ND, not detected.

The distributions of the IPL classes over the different chro-
matographic fractions for the Mokbaai sediment extract were sim-
ilar to those observed for the microbial mat (Table 2). The major-
ity (61% = 5%) of the MGDGs eluted in the acetone fraction
(versus 39% = 5% in the methanol fraction). The DGDGs eluted
nearly completely (96% = 5%) in the methanol fraction, with the
remainder (4% * 5%) eluting in the acetone fraction. The PCs
and PGs eluted in the methanol fraction, with a small percentage
of the PGs (9% = 2%) eluting in the acetone fraction. For the
SQDGs, 67% = 3% eluted in the methanol fraction and 33% =+
3% in the acetone fraction. All DGTAs were found in the metha-
nol fraction (Table 2). For recovery, results similar to those for the
microbial mat sediment were found. For example, 90% to 230% of
the SQDGs, MGDGs, and the DGTAs were recovered after sepa-
ration, while about 20% of the PGs and PCs could not be recov-
ered. The lowest recovery was for the DGDGs, at 55% (Fig. 3B).

Our results show that, independent of sample type, a large part
of the phospholipids elute in the “phospholipid” fraction as ex-
pected. However, crucially, a major part of the glycolipids also
elute in this fraction and not, as anticipated, in the glycolipid frac-
tion. Furthermore, “nonphospholipids” such as SQDGs and
DGTA also elute in the “phospholipid” fraction, while SQDGs are
also found in the “glycolipid” fraction. Both lipid classes contrib-
ute to the membrane lipid pool, especially under phosphate limi-

TABLE 2 Elution of different IPL classes after separation of BDE on a
silica column

% (mean * SD)

Microbial mat

Microbial mat Marine sediment modified

standard separation  standard separation  separation
Lipid Acetone MeOH  Acetone MeOH  Acetone MeOH
class” fraction  fraction fraction fraction fraction fraction
MGDG 54*5 46 £ 5 61 £5 39*5 65 *1 35x1
DGDG 00 1000 4=*5 96 £ 5 0*+0 100 =0
PG 9+1 91 =1 9+2 91 =2 6*1 94 + 1
PC 0x0 1000 0=x0 1000 0=x0 100 £ 0
PE 11*1 89*1 ND* ND 18 £4 82 +4
SQDG 32%1 68 £1 333 67 =3 60 =8 40 £ 8
DGTA 0x0 1000 0=*0 1000 1=x2 99 *2

“ For structures and abbreviations of IPLs, see Fig. 1 and 2.
Y ND, not detected.
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tation (28, 29), and therefore have to be considered when looking
at membrane lipids as biomarkers for living biomass. Neither the
“glycolipid” nor the “phospholipid” fraction thus consists of
glyco- or phospholipids only. These results indicate that using this
common separation method, a complete separation between glyco-
lipid and phospholipid cannot be obtained and that the “PLFAs”
reported are not derived exclusively from phospholipids but also are
derived from glycolipids, betaine lipids, and SQDGs. Therefore, we
experimented with a slightly modified elution scheme in an attempt
to optimize separation.

Adaptation of the separation method. To assess the possibility
of obtaining better separation between glyco- and phospholipids,
we used a mixture of acetone and methanol (99:1, vol/vol) as a
second eluent. This slightly more polar solvent should result in a
slightly different separation, with possibly more of the glycolipids,
especially MGDGs, ending up in the second fraction. This modi-
fied elution scheme was tested on the microbial mat extract. In-
deed, slight differences in the separation of the different lipid
classes were observed. For example, the major part of the MGDGs
now ended up in the acetone-methanol fraction and 35% = 1% in
the methanol fraction (Table 2). The separation of DGDGs was
the same as that in the standard method, with all lipids eluting
in the methanol fraction. As in the standard method, all PCs
eluted in the methanol fraction, with slightly less PG (6% * 1%
compared to 9% * 1%) but slightly more PE (18% = 4% com-
pared to 11% = 1%) in the acetone-methanol fraction. The largest
difference was observed for the SQDGs, with twice as much being
found in the acetone-methanol fraction as in the original acetone
fraction (60% * 8% versus 32% = 1%). Concerning the DGTAs,
99% =+ 2% was still found in the methanol fraction (Table 2).
Compared to those in the standard separation, recoveries for
DGDGs, PCs, PEs, and PGs were similar, but for MGDGs and
SQDGs, the recoveries were increased to 153% to 184% and to
75% to 120%, respectively. The apparently high recovery of
SQDG could again be due to ion suppression and therefore a
suboptimal ionization of the SQDGs in the complex total BDE,
similar to what is observed for the MGDGs. In contrast, the recov-
ery of the DGTAs had decreased by 40% (Fig. 3C).

These results show that an increase in the polarity of the second
eluent changes the elution patterns of some of the IPL classes but
does not result in an improved separation of glyco- and phospho-
lipids. Further adaptations of the solvent mixture ratios are un-
likely to succeed in providing a better separation, as either more of
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FIG 3 Recovery of different IPL classes after separation on a silica column for
the Schiermonnikoog microbial mat (A and C) and the Mokbaai sediment (B),
normalized to the abundance in the original extract. For structures of IPLs and
definitions of abbreviations, see Fig. 2 and the legend to Fig. 1. n.d., not de-
tected.

the glycolipids will end up in the phospholipid fraction or phos-
pholipids will elute in the glycolipid fraction. This is due to the fact
that the separation on a silica column is based on the polarity of
the head groups. Therefore, MGDGs will always elute together
with PCs and SQDGs.

Implications. Our results show that it is not possible to obtain
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a complete separation between phospho- and glycolipids using
the commonly used silica acid chromatography separation
method. Furthermore, the recovery varies between different IPL
classes, with some of the phospholipids (e.g., PE) not fully recov-
ered in the “phospholipid” fraction. Thus, previous studies exam-
ining PLFAs might have analyzed fractions that also contained
fatty acids derived from glycolipids, betaine lipids, and to some
extent SQDGs, while missing a certain amount of phospholipids
and SQDGs. In the marine environment, different IPLs can con-
tain different fatty acids (25-27, 35), and specific fatty acids do not
necessarily always derive from the same lipid class. This will give a
biased view of fatty acids present in microbial communities in situ.
Furthermore, PLFA analysis of microbial isolates will also give an
incomplete picture of the full diversity of fatty acids derived from
IPLs. Therefore, microbial fingerprints based on PLFA fractions
are unlikely to reflect the true fatty acid pattern coming from
phospholipids only. Future studies using PLFA fingerprints of en-
vironmental samples and microbial biomass have to at least be
aware of this less-than-perfect separation and, preferably, com-
bine this with direct analysis of IPLs. Alternatively, one can just
separate a neutral and a polar fraction (using DCM and metha-
nol), with the latter containing the full suite of intact polar lipids.

Conclusion. Silica column chromatography results in incom-
plete separation of glyco- and phospholipids, leading to the pres-
ence of “nonphospholipids” in the PLFA fraction. Therefore,
studies of microbial activity using stable-isotope analysis of PLFAs
may be biased by fatty acids derived from glycolipids, SQDGs, and
betaine lipids. Because of the imperfect separation and the fact
that other IPL classes such as SQDGs and betaines (and even
MGDGs and DGDGs) are also part of the membrane lipids of
living and active microorganisms, a separation in only two frac-
tions, a neutral fraction containing free fatty acids of dead biomass
and a polar fraction containing all intact polar lipids, is preferable.
The “polar lipid”-derived fatty acids can then be used to study
microbial communities and their activity.
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