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Abstract 

We investigated temporal differences in particulate organic matter (POM) composition and 

quality in the water column and sediment at three stations along a transect from the coast via 

Oyster Grounds to Dogger Bank within the southern North Sea, using a multiproxy approach 

covering a wide spectrum of organic matter (OM) degradation states. Results of pigments and 

phospholipid-derived fatty acids showed distinct OM composition and quality differences in 

these stations, as well as seasonal variations. Major events, such as a late fall bloom at 

Dogger Bank and a spring bloom at Oyster Grounds and the Coastal Station were highlighted 

and the semi-depositional status of Oyster Grounds was confirmed. The OM composition and 

quality were relatively constant in the upper 10 cm of the sediment at all stations. Finally, this 

study highlights the importance of lateral and vertical transport processes in seasonal 
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variations in the biogeochemical carbon cycle in this area and the intense pre-depositional 

processing before eventual burial in coastal settings. 

 

Keywords: Particulate Organic Matter; biogeochemistry; biomarkers; seasonal variations; 

OM quality; North Sea. 

 

1. Introduction 

The North Sea is a shelf system separating the United Kingdom from the European mainland. 

Up to fourteen water masses have been identified in this shelf system (NSTF, 1993), making 

the North Sea a complex and interesting area to investigate as the circulation and the 

distribution of these water masses influence the primary productivity and transport of living 

and non-living material (OSPAR Commission, 2000). Eisma and Kalf (1987) reported that 

these water masses are organised in a generally strong anti-clockwise circulating tidal motion, 

responsible for the transport of water and material. Waterborne transport of material in the 

southern North Sea has been well documented (Otto et al., 1990; De Haas, 1997; Dauwe and 

Middelburg, 1998). For instance, OM produced in the southern part of the North Sea is 

transported northwards with residual tidal currents, where it meets with OM transported from 

and produced in the north. Then the OM moves, via the frontal systems and the German Bight 

to the Skagerrak area (Otto et al., 1990), before eventually being accumulated in the 

Skagerrak, the depositional area of the North Sea (de Haas and van Weering, 1997; Dauwe 

and Middelburg, 1998). Some accumulation can also occur in areas such as the Oyster 

Grounds and the German Bight, considered as semi-depositional areas (Otto et al., 1990). 

Dauwe and Middelburg (1998) reported that during this transport, the labile organic matter, 

which undergoes repetitive cycles of sedimentation and resuspension, becomes more 

refractory. 
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Although the North Sea is a well-studied area, previous studies on OM cycling focused either 

on organic matter degradation via quantification of sediment-water exchanges (Boon et al., 

1998; Provoost et al., 2013), or on OM transport across and within specific sites (e.g. 

Kattegat and Skagerrak – de Haas and van Weering, 1999; Oyster Grounds – van Raaphorst 

et al., 1998). Dauwe and Middelburg (1998) were the first to clearly document the 

compositional consequences of the repetitive deposition-resuspension cycles of OM, a 

process called OM spiralling, during OM transport from the main primary production area in 

the Southern Bight to the main deposition area in the Skagerrak. In a recent study covering a 

set of stations along this main OM transport route, Le Guitton et al. (2015) showed how 

spiralling of particles leaves a clear imprint on the biogeochemical composition of water-

column and sedimentary OM. Whereas this previous study focused on large scale spatial 

patterns during one single period, a clear temporal signal is also expected, e.g. linked to 

seasonal primary production, or to rough weather conditions which will modify the erosion-

deposition cycle. High wind velocities, often found from December to March (Gerritsen et 

al., 2001), are known to be one of the driving forces in the large-scale transport and the 

sedimentation and erosion processes. A recent study of Davis et al. (2014) in the Celtic Sea 

showed that a storm could induce changes in the stoichiometry of OM. Understanding such 

temporal changes is of importance in a system where the turnover rate of water is about a year 

(Otto et al., 1990) or even less (Breton et al., 1992).  

We investigated the seasonal variation of POM composition and quality, in terms of 

degradation state, at three nearby stations located on the so-called Terschelling transect in the 

southern North Sea. Suspended particulate matter and surface sediments from 0 to 10 cm 

deep were analysed at various levels of the ‘biomarkers pyramid’ (see Bianchi and Canuel, 

2001, Le Guitton et al., 2015) at three different periods of the year: November, February and 

May. Linking the biochemical composition to calculated indicators of organic matter quality, 



 4 

our results are discussed in terms of seasonal variations both in SPM and down to 10 cm in 

the sediments.   

 

2. Material and methods 

2.1. Study area and samples collection 

Three stations were sampled along the ‘Terschelling transect’ (Peeters and Peperzak, 1990), 

on board the R.V. Pelagia (Tab. 1, Fig. 1). The Dogger Bank and the Coastal Station, the 

most offshore (235 km) and onshore (4 km) stations of the Terschelling transect, respectively, 

are considered as non-depositional areas for POM (Fig. 1), while the station in between, 

Oyster Grounds (100 km), is a temporary depositional area for OM (De Haas, 1997) (Fig. 1); 

its waters are stratified in summer (Bale et al., 2013). The Coastal Station is situated along the 

major OM transport route (De Haas et al., 1997; Dauwe and Middelburg, 1998; Le Guitton et 

al., 2015) (Fig. 1).  

The samples were collected in November 2010, February and May 2011. The summer season 

could not be included due to logistic constraints. The ship’s non-toxic pumping device 

(Aquaflow) was used to collect water samples at 5 m depth. These samples were filtered to 

collect Suspended Particulate Matter (SPM) on GF/6 filters (1-3 μm pore size) for pigment 

analysis and 0.70 μm GF/F filters for bulk and PLFA analyses. Sediment was sampled using a 

multi-corer (Octopus type) with four cores of 100 mm diameter. The sediment cores were 

directly sliced onboard, per cm down to 10 cm deep, using a manual core slicer. This 10 cm 

deep record was chosen to investigate the mixed layer at each season for each station (Dauwe 

and Middelburg, 1998). Due to logistic constraints, full depth profiles for sediments could 

only be made for November and February. The SPM and SS samples were then stored at -

20°C prior analyses, except for SPM and SS pigment samples, which were stored at -80°C. 
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Tab. 1. Main characteristics of the stations, and properties of the suspended particulate matter 

(SPM) and surface sediment (SS, section 0-1 cm) at Dogger Bank, Oyster Grounds and 

Coastal Station in November (N) 2010, February (F) and May (M) 2011. 

 

aData from Bale et al., 2013. 

bAt CS, temperature was measured at mid-depth due to the shallow depth of the station. 

POC = Particulate Organic Carbon, TOC = Total Organic Carbon 

 

2.2. Analyses 

The SPM and SS samples were analysed for organic carbon (OC), total nitrogen (TN), 

pigments and phospholipid derived fatty acids (PLFAs). For OC analysis, samples were 

acidified with 6 M HCl within Ag cups to remove inorganic carbon and analysed using a 

Carlo Elba elemental analyser NA-1500 (Nieuwenhuize et al., 1994). Reproducibility is ~2 % 

for OC and N; detection limits are about 2 µg C and 0.4 µg N, respectively, related to about 

0.02 and <0.01 wt% C and N for sediment samples. The pigments were extracted from SPM 

and SS samples and analyzed by reversed phase chromatography using the method described 

in Le Guitton et al. (2015) modified from Jeffrey et al. (1997). The PLFAs were extracted 
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from SPM and SS samples using the method described in Boschker et al. (1999) modified 

from Bligh and Dyer (1959).  

 

Fig. 1. Map of the North Sea with sampling stations adapted from Dauwe and Middelburg 

(1998) with DB = Dogger Bank, OG = Oyster Grounds, CS = Coastal Station. 
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2.3. POM quality derived parameters. 

The POM quality was explored in terms of OM degradation and microbial reworking based 

on the timescales of molecule degradation rates (Cowie and Hedges, 1994, Veuger and van 

Oevelen, 2011; Veuger et al., 2012). We considered three time scales: 

i. Short time scales - Pigments have higher degradation rates compared to lipids 

(Cowie and Hedges, 1994), thus we used pigments-derived parameters to assess 

the freshness of POM (Le Guitton et al., 2015): the chlorophyll a to phaeopigment 

ratio (CHLA/PHAEOs), and the intact to total pigments ratio (ITPIG) (Woulds 

and Cowie, 2009). Here the phaeopigments are defined as the sum of pheophytin 

and phaeophorbide, and intact pigments are the sum of chlorophyll a, alloxanthin, 

diatoxanthin, zeaxanthin and β carotene. High ratios indicate fresh OM.  

ii. Intermediate time scales – Lipids have a lower degradation rate compared to 

pigments, but a higher one compared to bulk OM and amino acids (Hoefs et al., 

2002; Sinninghe Damsté et al., 2002; Veuger et al., 2012). Thus, the composition 

of the PLFA pool in terms of saturated fatty acid (SFA), monounsaturated fatty 

acid (MUFA), polyunsaturated fatty acid (PUFA) and branched fatty acid (Br-FA) 

was used to investigate POM quality. Low percentage of PUFA and high 

percentage of SFA indicate more extensive OM degradation and high percentages 

of MUFA and Br-FA indicate higher bacterial contribution (Bechtel and Schubert, 

2009; Christodoulou et al., 2009). 

iii. Long time scales – The CN-ratio was used to represent POM quality on the long 

time scale. The CN-ratio increases from Redfield (6.6) up to values as high as 10 

with on-going marine OM decomposition (Henrichs, 2005).  

 

3. Results 
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3.1. Main characteristics 

Table 1 presents the main characteristics of the stations. The lowest temperatures were 

observed in February and the highest in May at all stations; temperature ranged from 4.9°C to 

14°C. Thermal stratification was only observed at Oyster Grounds in May (1.9°C difference 

between surface and bottom temperature). The salinity was relatively constant (34-35) at 

Dogger Bank and Oyster Grounds, whereas at Coastal Station, the salinity was more variable 

and lower (32 in November and May, 30 in February). In the water column, the organic 

carbon (OC) content of SPM samples was constant over the studied period at Dogger Bank 

and Oyster Grounds (0.1-0.2 mg-C.l-1). At Coastal Station, the OC content of SPM was 

similar though a bit higher than the one at Dogger Bank and Oyster Grounds (0.3 vs. 0.1-0.2 

mg-C.l-1) in November and was in the same range in May (0.5 mg-C.l-1), while in February it 

reached 2.6 mg-C.l-1. The TOC content of surface sediment and the porosity were higher at 

Oyster Grounds (0.28 to 0.50 %wt and 0.4 for porosity) compared to Dogger Bank and 

Coastal Station (0.03-0.08 %wt and 0.3 for porosity). The former varied over the studied 

period, while the later was constant. The grain size composition of Dogger Bank and Coastal 

Station showed a dominance of medium and fine sand, whereas the Oyster Grounds sediment 

was composed of very fine sand and silt.  

 

3.2. OM composition 

3.2.1. Surface waters  

The highest values of total pigments and total PLFAs in SPM were observed in May at Oyster 

Grounds and Coastal Station (Tab. 2). At Dogger Bank, the total pigment value was the 

highest in November and the total PLFAs showed high values in November and May 

(Tab. 2). 
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Figure 2 and figure 3 present some specific pigments and PLFAs biomarkers that were used 

to investigate the OM composition (Tab. 3). At all stations, the most abundant pigment 

biomarkers were chlorophyll a (38-56 %-total pigments) and fucoxanthin (12-30 %-total 

pigments); chlorophyll c also had a relatively high contribution (5-7 %-total pigments) 

(Fig. 2). However, their contributions varied over the studied period. At Dogger Bank 

chlorophyll a percentage was the highest in November (51%-total pigments), whereas it was 

highest in February at Oyster Grounds (56 %-total pigments) and in May at Coastal Station 

(46 %-total pigments). The fucoxanthin contribution was highest in November at all stations, 

while the highest contribution of chlorophyll c was recorded in February at Dogger Bank and 

in May at Oyster Grounds and Coastal Station. At Oyster Grounds, other chlorophylls (b and 

c3), alloxanthin, 19'-hexanoyloxyfucoxanthin and peridinin were observed over the studied 

period, while at Dogger Bank and Coastal Station, some pigments, such as chlorophyll b and 

alloxanthin at Dogger Bank in November, were not observed. None of the pigment 

biomarkers cited above was found at Coastal Station in February. The pigment biomarker 

lutein was only recorded at Coastal Station in February, contributing for about 1% to total 

pigments. 

The PLFAs C20:5ω3, C22:6ω3 and to a lesser extent C16:1ω7c contributed significantly to 

the total PLFAs pool at all stations over the studied period (12-24%, 7-25% and 4-16%-total 

PLFAs, respectively) (Fig. 3), whereas the PLFA C18:1ω7c and the iso- and anteiso-PLFAs, 

i.e. i-C14:0, i-C15:0, ai-C15:0, i-C17:0 and ai-C17:0, were less important (2-9% and 1-2%-

total PLFAs, respectively). Among the PLFA biomarkers presented in figure 3, C20:5ω3 was 

the most abundant at Dogger Bank in November (23%) and February (20%), at Oyster 

Grounds in February (15%) and at Coastal Station over the studied period (18-24%-total 

PLFAs). The PLFA second in abundance was C22:6ω3, its highest contribution was recorded 
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in May at Dogger Bank (21%), in November and May at Oyster Grounds (19% and 25%, 

respectively) and in May at Coastal Station (18%-total PLFAs). 

 

3.2.2. Surface sediments 

At all stations, the pigment biomarker composition in SS was less diverse than in SPM (Fig. 

2). Similar as for SPM, chlorophyll a and fucoxanthin were the most abundant pigment 

biomarkers at all stations over the studied period (Fig. 2). The abundance of chlorophyll a 

comprised up to 3% at Dogger Bank and Oyster Grounds and up to 6%-total pigments at 

Coastal Station over the studied period. The fucoxanthin pigment biomarker values showed a 

larger variability with depth in the sediment, constituting up to 8% at Dogger Bank, 9% at 

Oyster Grounds and 6%-total pigments at Coastal Station during the studied period. The 

chlorophyll c pigment biomarker was also recorded at all stations over the studied period and 

down to 10 cm depth in the sediment, except at Oyster Grounds in November. Other pigment 

biomarkers such as 19'-hexanoyloxyfucoxanthin, lutein, alloxanthin, chlorophyll b or 

zeaxanthin were also present in the sediments, with concentrations generally higher in 

November than in February. In May, only alloxanthin, chlorophyll a, fucoxanthin and 

chlorophyll c were found at all depths at Oyster Grounds.  

Contrary to the pigment biomarkers, the abundance of PLFA biomarkers was in a similar 

range in SS as in SPM, contributing on average 40-60% to the total PLFA pool (Fig. 3). A 

higher variability with depth in the sediment was observed at Oyster Grounds and Coastal 

Station, especially in February (Fig. 3). The PLFAs C16:1ω7c and C18:1ω7c were the most 

abundant PLFA biomarkers at all stations over the studied period (Fig 3). The PLFAs 

C20:5ω3 and C22:6ω3 contributed less than 10% to the total PLFA pool over the studied 

period, while the iso- and anteiso-PLFA biomarkers, i.e. i-C14:0, i-C15:0, ai-C15:0, i-C17:0 
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and ai-C17:0, contributed 13-30% in November, 6-39% in February and 11-20%-total PLFAs 

in May. 
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Tab. 2. Total pigments and total PLFAs in SPM and SS samples, presented as mean ± standard deviation or as single value (mainly the May 

data) at Dogger Bank (DB), Oyster Grounds (OG) and Coastal Station (CS) in November (N) 2010, February (F) and May (M) 2011. 
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Fig. 2. Specific pigment biomarkers composition (in %-total pigments) of SPM and SS 

samples (from 0 to 10 cm deep) at Dogger Bank, Oyster Grounds and Coastal Station in 

November (Nov.) 2010, February (Feb.) and May 2011.  

Chl.a = chlorophyll a, Chl.b = chlorophyll b, Chl.c = chlorophyll c, Chl.c3 = chlorophyll c3, 

Fuco = fucoxanthin, Allo = alloxanthin, Hexa = 19'-hexanoyloxyfucoxanthin, Lut = lutein, 

Zea = zeaxanthin, Peri = peridinin. 
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Fig. 3. Specific PLFA biomarkers composition (in %-total pigments) of SPM and SS samples 

(from 0 to 10 cm deep) at Dogger Bank, Oyster Grounds and Coastal Station in November 

(Nov.) 2010, February (Feb.) and May 2011. 
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Tab. 3. Specific pigment and PLFA biomarkers in phytoplankton used to investigate OM composition. 

References: 

1. Jeffrey, 1974; 2. Chishlom et al., 1988; 3. Jeffrey, 1989; 4. Jeffrey and Wright, 1987; 5. Vesk and Jeffrey, 1987; 6. Bjørnland and Liaaen-

Jensen, 1989; 7. Pennington et al., 1985; 8. Wright and Jeffrey, 1987; 9. Bjørnland et al., 1989; 10. Guillard et al., 1985; 11. Gieskes et al., 

1988; 12. Jeffrey et al., 1975; 13. Johansen et al., 1974; 14. Dalsgaard et al., 2003; 15. Braeckman et al., 2012; 16. Ahlgren et al., 1992; 17. 

Dunstan et al., 1993; 18. Volkman et al., 1989.

Biomarkers Group Reference

Pigments 

Chlorophyll a All photosynthetic microalgae, except prochlorophytes 1

Chlorophyll b Chlorophytes, prasinophytes, euglenophytes, prochlorophytes 1, 2

Chlorophyll c Chromophyte algae 3

Chlorophyll c3 Some prymnesiophytes, chrysophytes, diatoms 3, 4, 5

Fucoxanthin Diatoms, prymnesiophytes, chrysophytes, raphidophytes, a few dinoflagellates 1, 6

Alloxanthin Cryptomonads 7

19'-hexanoyloxyfucoxanthin Some chrysophytes, prymnesiophytes, 1 diatom, a few dinoflagellates 5, 6, 8, 9

Lutein Green algae (chlorophytes and some prasinophytes) 1

Zeaxanthin Cyanobacteria (blue-green algae), prochlorophytes, green-algae 10, 11

Peridinin Most photosynthetic dinoflagellates 12, 13

PLFAs

i-C14:0, i-C15:0, ai-C15:0, i-C17:0, ai-C17:0 Bacterial: Cytophaga–Flavobacteria and Gram-positive bacteria 14

C18:1! 7c Bacterial: mainly Gram-negative, and Proteobacteria 15

C16:1! 7c Diatoms, bacteria 14

C20:5! 3 Diatoms (Bacillariophyceae) 16, 17, 18

C22:6! 3 Dinoflagellates, Phaeocystis 14
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3.3. POM quality 

The POM quality parameters are presented in figure 4 (pigment derived parameters), 

figure 5 (PLFA composition) and figure 6 (CN-ratio). 

 

3.3.1. Pigment-derived parameters 

In the water column, both pigment-derived parameters, i.e. the chlorophyll a to 

phaeopigments (CHLA/PHAEOs) ratio and the intact to total pigments (ITPIG) ratio, 

were highest at Oyster Grounds (Fig. 4). No data of CHLA/PHAEOs can be presented 

at OG in February because phaeopigment data are missing. The SPM CHLA/PHAEOs 

ratio was highly variable over the studied period at Dogger Bank ranging from 5 ± 0.3 

in May to 20 ± 0.2 in February while at Coastal Station, this ratio ranged from 2 in 

February to 7 in May. The seasonal variability of SPM ITPIG ratio was very limited 

with a difference of only 0.1 at Oyster Grounds (0.5 in May, 0.6 in November and 

February) and Coastal Station (0.4 in February, 0.5 in November and May), and no 

variation at Dogger Bank (0.5). 

In the sediment, the CHLA/PHAEOs ratio was rather constant and very low (<1) at 

Oyster Grounds. At Dogger Bank and Coastal Station, the sediment CHLA/PHAEOs 

ratios varied with depth and between the samplings (Fig. 4). The ITPIG ratio also 

varied substantially, with Oyster Ground values lower than Dogger Bank over the 

studied period and Coastal Station values lower in November (≥ 0.1 differences). In 

February and May, ITPIG ratios at Dogger Bank and Coastal Station were relatively 

similar (< 0.1 differences) over the full depth profile, except for a rather high value at 

10 cm deep in February at Coastal Station. 
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Fig. 4. Chlorophyll a to phaeopigments (CHLA/PHAEOs) on the left and intact to total 

pigments (ITPIG) ratios on the right for SPM (water column) and SS (from 0 to 10 cm 

deep) at Dogger Bank (DB – dark grey square), Oyster Grounds (OG – grey circle) and 

Coastal Station (CS – white diamond) in November (Nov.) 2010, February (Feb.) and 

May 2011.  

 

3.3.2. Phospholipid derived fatty acid composition 

Phospholipid derived fatty acids were characterized by high contributions of PUFA in 

SPM (Fig. 5). They ranged from 50 ± 3 to 59 ± 7%-total PLFA at Dogger Bank, from 

46 ± 6 to 62 ± 0%-total PLFA at Oyster Grounds, but contributing less at Coastal 
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Station (41 ± 2 to 48 ± 4%-total PLFA). Branched fatty acids (Br-FA) were low (less 

than 10%) at all stations and especially at Dogger Bank (≤ 3%) and at Oyster Grounds 

(≤ 2%). At Coastal Station, the Br-FA contribution was higher, ranging from 6 ± 1 to 9 

± 3%-total PLFAs. At Dogger Bank, the highest contribution of SFA and Br-FA was 

found in May, whereas the highest contribution of MUFA was found in November. The 

PUFA contribution was the highest in February. At Oyster Grounds, the highest 

contribution of SFA was found in November, while Br-FA and MUFA were the highest 

in February and PUFA in May. At Coastal Station, Br-FA and MUFA contributions 

were also the highest in February, but the highest contribution of SFA was found in 

May and the highest contribution of PUFA in November. 

In sediments, the PLFA composition was dominated by MUFA at all stations over the 

studied period, especially at Dogger Bank and Coastal Station (Fig. 5). The PUFA 

contributions were much lower in sediments than in SPM (≤ 26 ± 19% vs. ≥ 41 ± 2%) 

and tended to decrease with depth. The Br-FA contributions were higher in sediments 

than in SPM (≥ 12 ± 6% vs. ≤ 9 ± 3%) and tended to increase with depth at Oyster 

Grounds. Each station showed a relatively similar PLFA composition depth profiles in 

November and February, but with a higher variability in February. In May, the data 

recorded in the sections 0-1 cm and 2-3 cm fitted in the same range of the data recorded 

in November and February at all stations. 

3.3.3. Carbon to nitrogen ratio 

In the water column, the molar organic carbon to total nitrogen ratio (CN-r) was higher 

at Coastal Station than at Dogger Bank and Oyster Grounds (8 vs. 6-7 on average) in 

November and February (Fig. 6). The CN-r was lowest in February at Dogger Bank and 

Oyster Grounds and in May at Coastal Station. In sediment depth profiles, the CN-r was 

variable, especially at Coastal Station in February, where it varied from 4 ± 3 in the 2-3 
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cm section to 12 ± 6 in the 4-5 cm section. At Oyster Grounds, the CN-r SS depth 

profile ranged around 9-10 ± 1 over the studied period, whereas at Dogger Bank, it 

ranged from 4 ± 1 to 7 ± 2 in November and February. In May, a CN-r of 9 was found 

in the 0-1 cm section at Dogger Bank and a CN-r of 6 was found in the same section at 

Coastal Station. 
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Fig. 5. Composition of the phospholipid derived fatty acids (PLFAs) pool in terms of 

Br-FA, SFA, MUFA and PUFAs (see significance of abbreviation in section 2.3.ii) (in 

%-total PLFAs ± standard deviation) for SPM (Water column) and SS (from 0 to 10 cm 

deep) at Dogger Bank (DB – dark grey square), Oyster Grounds (OG – grey circle) and 

Coastal Station (CS – white diamond) in November (Nov.) 2010, February (Feb.) and 

May 2011.  
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Fig. 6. Carbon to nitrogen ratio (CN-r) for SPM (Water column) and SS (from 0 to 10 

cm deep) at Dogger Bank (DB – dark grey square), Oyster Grounds (OG – grey circle) 

and Coastal Station (CS – white diamond) in November (Nov.) 2010, February (Feb.) 

and May 2011. Mind the different scale in February. 
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4. Discussion 

4.1. Seasonal variation of the OM composition  

Short branched fatty acids and the PLFA C18:1ω7c are often used to trace Bacteria 

(Boschker and Middelburg, 2002, Braeckman et al., 2012), while the PLFAs C20:5ω3 

and C22:6ω3 are commonly used to trace diatoms and dinoflagellates (Dalsgaard et al., 

2003). Specific pigments allow better resolution of major groups of phytoplankton (van 

den Hoek et al., 1994), although this method also has limitations such as the presence 

of the same pigment in more than one taxon (Martin and Kowallig, 1999; McFadden, 

2001) and the underestimation of non-pigmented, heterotrophic microplankton species 

such as some Dinophyceae (Sherr and Sherr, 2007). In this study, we used both specific 

PLFAs and pigments biomarkers in phytoplankton (Tab. 3) to investigate the OM 

composition and its seasonal variation. 

4.1.1. Surface waters 

PLFAs and pigment biomarkers indicated that Bacillariophyceae (e.g. Diatoms), 

Chrysophyceae, Raphidophyceae, Prymnesiophyceae (e.g. Phaeocystis) and 

Dinoflagellates dominated the OM composition at all stations over the studied period 

(Fig. 2, Fig. 3, Tab. 3). It was somehow less clear at Coastal Station, because some 

pigments concentrations such as chlorophyll c3, 19'-hexanoyloxyfucoxanthin and 

peridinin were below the detection limits defined as three time the standard deviation of 

a very low sample (e.g. 0.01 μg.l-1 for chlorophyll c3 and 0.02 μg.l-1 for 19'-

hexanoyloxyfucoxanthin and peridinin). At this station, our results indicate that 

Raphidophyceae contribute much to the OM composition (Fig.2, Tab. 3), which is 

consistent with literature. Raphidophyceae are nowadays regularly found in the Dutch 

coastal waters (Vrieling et al., 1985; Elbrächter, 1999). Evidence of the presence of 

Euglenophyceae, Cryptomonads, Cyanobacteria, Prochlorophyceae, Chlorophyceae and 
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Prasinophyceae were also found, but they were less abundant, and not at all stations nor 

at each sampling time (Fig. 2, Tab. 3). Results of i-C14:0, i-C15:0, ai-C15:0, i-C17:0 

and ai-C17:0, as well as C18:1ω7c suggested the presence of heterotrophic bacteria at 

Dogger Bank and Coastal Station (Fig. 3, Tab. 3). 

The seasonality in the OM composition differed between stations. At Dogger Bank, 

maximum abundance of specific PLFAs and pigments biomarkers of Bacillariophyceae 

(e.g. Diatoms), Chrysophyceae, Raphidophyceae and Prymnesiophyceae associated 

with high value of total pigments and total PLFAs indicated that a late fall bloom might 

have occurred at this station in November 2010. Our results for this station were 

consistent with previous studies indicating that high primary production occurs through 

the year in this region (Brockmann and Wegener, 1985; Richardson and Olsen, 1987; 

Brockmann et al., 1990). Maximum primary production occurred in winter and spring 

in the Dogger Bank area (Kröncke and Knust, 1995). As our samples were collected in 

May, i.e. after the spring bloom, this can explain the highest presence of Bacteria in 

May at this station (Fig. 3, Tab. 3). At Oyster Grounds, no clear seasonal variation was 

observed in the OM composition of SPM. However the total pigments, total PLFAs 

(Tab. 2) and the OC content in SPM (Tab. 1) varied in a similar way, being higher in 

May than in November and February, suggesting a bloom of primary production then, 

consistent with results of Joint and Pomroy (1993) for this area. At Coastal Station, the 

highest abundance of bacterial biomarkers was measured in February (Fig. 3, Tab. 3) as 

well as the highest OC content in SPM (2.6 mg C.l-1) and the lowest salinity (30.1). 

These high values may reflect the shallow depth of Coastal Station (Tab. 1) and its 

location close to the Wadden Sea (Fig. 1); it may also be due to it being located along 

the major OM transport route (De Haas et al., 1997; Dauwe and Middelburg, 1998; Le 

Guitton et al., 2015) (Fig. 1). 
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4.1.2. The sediments 

Pigments in the sediment were far less recognizable than in the water due to diagenesis. 

However our results of specific pigments and PLFA biomarkers suggest the presence of 

the same phytoplankton groups as in SPM, i.e. Bacillariophyceae (e.g. Diatoms), 

Chrysophyceae, Raphidophyceae, Prymnesiophyceae (e.g. Phaeocystis) and 

Dinoflagellates, at all stations over the studied period and down to 10 cm deep (Fig. 2, 

Fig. 3, Tab. 3). Evidence of the presence of Chlorophyceae, Prasinophyceae, 

Prochlorophyceae and Cyanobacteria were also observed at Oyster Grounds, especially 

in the deeper section of the sediment (Fig. 2, Tab. 3). In addition, PLFA biomarkers 

specific for heterotrophic bacteria were found in higher abundance in the sediment than 

in SPM (Fig. 3, Tab. 3), especially at Oyster Grounds, confirming the temporary 

deposition character of this station (De Haas, 1997).  

The depth profiles of specific pigments and PLFA biomarkers are often uniform, 

indicating that sediments were well mixed down to 10 cm at the three stations (Fig. 2, 

Fig. 3), consistent with Dauwe and Middelburg (1998). No clear seasonality was 

observed in the sediment depth profile compared to SPM, except in the first layers (0-1 

cm, down to 1-2 cm). At all stations, the highest abundance of total pigments and total 

PLFAs were measured in May (Tab. 2). At Dogger Bank, this reflects the deposition of 

the spring bloom as only a small part of the spring bloom degrades within the water 

column, the major part of this primary produced material settles to the sediment surface 

(Nielsen and Richardson, 1989). At Oyster Grounds, these results suggested that either 

the OM produced in the stratified water column (Tab. 1) deposited on the seafloor 

and/or the OM originating in the southern area, where primary production also mainly 

occurs during spring (Fig. 1) (Dauwe and Middelburg, 1998; Le Guitton et al., 2015), 

was deposited on the surface sediment of Oyster Grounds. 
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4.2. Seasonal variation of the POM quality 

To investigate the seasonal variation of the POM quality three time scales were defined 

in terms of OM degradation and microbial reworking, based on molecule degradation 

sensitivities (Cowie and Hedges, 1994, Veuger and van Oevelen, 2011; Veuger et al., 

2012).  

4.2.1. Surface waters 

At Dogger Bank, the ‘late November bloom’ deduced from the pigment and PLFA 

composition (Fig. 2, Fig. 3) was not clear from the SPM quality parameters. If primary 

produced OM would dominate then, one would have expected to observe the highest 

CHLA/PHAEOS, ITPIG and PUFA and the lowest MUFA, Br-FA and CN-r values in 

November in SPM. However, the CHLA/PHAEOS and the ITPIG in November were 

relatively similar as those in February, and May for the later (Fig. 4). The highest 

PUFA value was observed in February in SPM (Fig. 5) and PUFA are known to be 

relatively good indicators of the presence of fresh algal sources (Shaw and Johns, 1985; 

Canuel and Martens, 1993; Bianchi and Bauer, 2011). Only the high MUFA value (Fig. 

5) and the CN-r of 6.8 in November (Fig. 6) combined with the highest values of 

pigment and PLFA biomarkers for algae are consistent with the presumed late 

November bloom, as most of MUFA are considered to be indicative of algal species 

(Volkman et al., 1989; Dunstan et al., 1993).  

At Oyster Grounds, the POM quality parameters were also not in accordance with the 

POM composition. On the one hand, highest values of ITPIG (Fig. 4) as well as Br-FA 

and MUFA (Fig. 5), and the lowest CN-r (Fig. 6) were observed in February in SPM, 

indicating fresh POM in the water column at this period and a higher bacterial biomass 

(Bechtel and Schubert, 2009). On the other hand, the highest value of pigments and 
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PLFA biomarkers for algae observed in May (Tab. 2), suggested that the phytoplankton 

production occurs in this region mainly when the water column is stratified. The PUFA 

abundance was highest in May (Fig. 5) but this was not so for the other POM quality 

parameters, suggesting that the fresh POM produced at Oyster Grounds in May is 

quickly consumed and degraded in the water column. Another surprising result is the 

high value of CHLA/PHAEOs in SPM in November, suggesting freshly produced 

POM, whereas results of the POM composition in this area showed that the bloom 

occurs in spring. It is possible that this fresh POM comes from the Dogger Bank area 

located close by: the Oyster Ground area receives Atlantic waters coming from the 

north, which meets residual currents to the south of the Dogger Bank (Böhnecke, 1922) 

and joins the anti-clockwise current system of the North Sea.  

At Coastal Station, the POM quality parameters were rather consistent with the results 

deduced from the pigments and PLFAs composition (Fig. 2, Fig. 3. See section 4.1.2.). 

The highest values of MUFA and Br-FAs and the highest CN-r were also found in 

February (Fig. 5, Fig. 6), emphasizing the presence of a higher bacterial biomass 

(Bechtel and Schubert, 2009) then. Similar values of ITPIG and PUFA were observed 

in November and May, indicating the presence of relatively fresh algal OM (Shaw and 

Johns, 1985; Canuel and Martens, 1993; Bianchi and Bauer, 2011) (Fig. 4, Fig. 5). 

Indicators of fresh OM were more expected in May at this station, rather than in 

November as primary production usually occurs in spring like at Oyster Grounds. A 

recent study of Le Guitton et al. (2015) showed that the OM in SPM along the principal 

OM route from the southwestern North Sea to the Skagerrak was of relatively high 

quality in September. Flushing time (in days), calculated from three numerical models 

and from measurements ranged from 28 to 73 days for this area (ICES, 1983; 

Backhaus, 1984; Lenhart and Pohlmann, 1997; Skogen et al., 1995). Therefore one 
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could hypothesize that this fresh OM comes from the main primary production area 

(Fig. 1), as the time scale for degradation of POM was relatively short (Le Guitton et 

al., 2015).  

4.2.2. The sediments 

Similarly to OM composition, no clear seasonal variation was observed in the 

sedimentary quality parameters. Moreover, the slight variation with depth confirm that 

the sediment was well mixed down to 10 cm deep at all stations and indicate that OM 

was of relatively ‘fresh’ quality especially at Dogger Bank (Fig. 4, Fig. 5, Fig. 6). The 

three stations investigated are inhabited by benthic macrofaunal species known to 

facilitate ecological processing of organic matter and burial. Several specimen of 

Echinocardium cordatum at Dogger Bank, Upogebia deltaura at Oyster Grounds and 

Ensis directus at Coastal Station were observed over the studied period. The high 

abundance of Ensis directus at Coastal Station could explain the highest variability of 

the OM quality parameters.  

Results of OM quality parameters sets apart the nature of the Oyster Ground sediments 

from the other two stations and confirms its semi-depositional status (De Haas, 1997). 

Short-time scales proxies, i.e. the pigment-derived parameters, were the lowest at this 

station compared to the other stations, denoting higher OM degradation. At 

intermediate time scales, the PUFA sediment profiles clearly showed that the diagenetic 

alteration was more advanced at Oyster Grounds compared to Dogger Bank and Coastal 

Station (Fig. 5). In addition, the abundance of Br-FA and MUFA were the highest 

compared to the other stations, tending to increase with depth, indicating increasing 

bacterial biomass (Bechtel and Schubert, 2009). Finally on the long time scales, the 

CN-r was the highest in the Oyster Grounds also indicating OM has been degraded 

more.  
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5. Conclusion 

The seasonal variation of POM composition and quality was investigated at three 

stations located on the Terschelling transect in the southern North Sea. Despite the 

close distance between stations, the POM composition and quality in SPM and SS were 

quite distinct. Pigments and PLFAs results showed evidence of a late fall bloom at 

Dogger Bank and a spring bloom at Oyster Grounds and Coastal Station. POM was of 

‘better’ quality in SPM compared to SS at all stations over the studied period, except at 

Coastal Station in February, where POM was of higher quality in SS than in SPM. We 

could not find evidence of intensification of the erosion-deposition cycle due to bad 

weather conditions, but perhaps the sampling frequency was too low for that.  

Our study also highlights strong differences in composition and quality of organic 

matter in both SPM and the sediments. Nevertheless in Dogger Bank and Oyster 

Grounds, the OM composition and quality was relatively constant down to 10 cm deep 

in the sediment, while at Coastal Station, more variability was observed, most likely 

due to the processing by benthic macrofauna and microbes. The semi-depositional 

status of Oyster Grounds was clearly highlighted as well by specific pigments and 

PLFAs biomarkers, and by all OM quality parameters that indicated higher diagenetic 

alteration of the OM in this station.  

The southern North Sea is a complex and heterogeneous system with large spatial and 

temporal variation in lateral and vertical transport and in the extent of the processing of 

organic matter. Whereas the use of biomarkers does not allow full reconstruction of 

OM origin, it does elucidate spatial and temporal signals in OM quality, therefore 

aiding in interpreting the biogeochemical carbon cycle. These degradation sensitive 
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biomarkers clearly revealed the extensive pre-depositional degradation of OM before 

eventual burial in coastal sediments. 

 

6. Acknowledgement 

We thank the officers, crew and scientific party of the R.V. Pelagia for their support 

during the cruise and the analytical laboratory of NIOZ-YE for their advices and for 

performing the analyses. We thank the anonymous referees and the handling Editor Dr. 

Bianchi for constructive feedback. This project is part of the FOKUZ program and 

contributes to the Netherlands Earth System Sciences Center. 

 

7. Terms and acronyms 

Br-FA – Branched fatty acid 

CHLA/PHAEOs – Chlorophyll a to phaeopigments ratio 

CN-r – Carbon to nitrogen ratio 

ITPIG – Intact to total pigments ratio 

MUFA - Monounsaturated fatty acid 

OM – Organic matter 

PLFA – Phospholipid derived fatty acids 

POC – Particulate organic carbon 

POM – Particulate organic matter 

PUFA – Polyunsaturated fatty acid 

SFA – Saturated fatty acids 

SPM – Suspended particulate matter 

SS – Surface sediment 
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