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Coral-associated bacteria demonstrate
phylosymbiosis and cophylogeny
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Rebecca Vega Thurber2 & Jesse R. Zaneveld7

Scleractinian corals’ microbial symbionts influence host health, yet how coral microbiomes

assembled over evolution is not well understood. We survey bacterial and archaeal

communities in phylogenetically diverse Australian corals representing more than 425 million

years of diversification. We show that coral microbiomes are anatomically compartmenta-

lized in both modern microbial ecology and evolutionary assembly. Coral mucus, tissue, and

skeleton microbiomes differ in microbial community composition, richness, and response to

host vs. environmental drivers. We also find evidence of coral-microbe phylosymbiosis, in

which coral microbiome composition and richness reflect coral phylogeny. Surprisingly, the

coral skeleton represents the most biodiverse coral microbiome, and also shows the stron-

gest evidence of phylosymbiosis. Interactions between bacterial and coral phylogeny sig-

nificantly influence the abundance of four groups of bacteria–including Endozoicomonas-like

bacteria, which divide into host-generalist and host-specific subclades. Together these results

trace microbial symbiosis across anatomy during the evolution of a basal animal lineage.
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S ince their first appearance around 425 million years ago,
scleractinian (‘stony’) corals (Cnidaria: Hexacorallia: Scler-
actinia) have radiated into more than 1500 species, many of

which serve as the major architects of coral reef ecosystems
worldwide1. Modern corals harbor complex communities of
microorganisms, including dinoflagellates, fungi, bacteria, and
archaea which are collectively termed the coral microbiome2.
Shifts in the composition of the coral microbiome and virome are
linked to changes in coral health, disease, and resistance to
stressors3–6. It is likely that ancestral corals also harbored com-
plex and functionally important microbial communities. Yet
much remains to be understood about how these coral-microbe
symbioses evolved, and which key factors influence microbial
communities in modern corals. Coral diversity is too great to
individually assess the biotic and abiotic factors that maintain the
microbiome of every coral species. The present challenge is thus
to uncover general rules for the assembly of coral microbiomes
that inform estimates of the effects of microorganisms in
understudied portions of the coral tree. However, disentangling
the many host and environmental features that influence the
microbiome requires large and methodologically consistent sur-
veys of phylogenetically diverse corals across geography

Many host-microbial symbiosis studies find correlations
between host phylogenetic relationships and microbial commu-
nity composition, a pattern known as phylosymbiosis7. Phylo-
symbiosis has been reported for the root microbiome of flowering
plants;8 the mesohyl of marine sponges;9 insect microbiomes;7,10

and the gut microbiome of terrestrial mammals11 (including
Peromyscus deer mice7 and wild hominids7). Phylosymbiotic
patterns can be explained by several mechanisms, including
codiversification of abundant microbial lineages with their hosts,
filtering of microbial communities by host traits, or coupling
between host phylogeography and environmental effects on the
microbiome7,10,12. We are only beginning to differentiate these
alternatives10, and studies accounting for the joint effects of
phylogeny, geography, and host traits are sorely needed. More-
over, different animal secretions, tissues and organs typically
harbor distinct microbiomes (e.g. ref.13.) that may also show
different patterns of phylosymbiosis, although this possibility has
not yet been fully explored.

The phylum Cnidaria diverged prior to the bilaterian radiation.
Thus, scleractinian coral microbiomes represent a key piece in the
broader puzzle of how animal microbiomes arose. Coral mucus,
tissue, and skeleton show distinct microbial community compo-
sition (e.g. refs14,15.), affording the opportunity to test whether
they also show different patterns of phylosymbiosis. Additionally,
the high diversity and wide geographic distribution of reef-
building corals presents a natural experiment for testing how host
traits and environmental context influence the microbiome, and
are invaluable resources for understanding how modern host-
microbial symbioses evolved.

Scleractinian corals have been diversifying for longer than
some more commonly studied symbiotic systems such as flow-
ering plants and placental mammals16. Their microbiomes are
known to be partially species-specific (e.g., ref.14.), and reports
from other Cnidaria, such as gorgonians, suggest potential codi-
versification with Endozoicomonas symbionts17,18. Yet compar-
isons of six species of coral and an octocoral outgroup found
microbiome similarities that seemed to better align with mor-
phology than phylogeny19, suggesting a strong influence of host
traits on the microbiome. Whether scleractinian corals show
phylosymbiosis in overall community composition or cophylo-
geny with specific bacteria or archaea has not yet been definitively
established.

The abundance of overlapping factors that affect the coral
microbiome is difficult to disentangle. Many host traits are highly

correlated with one another due to phylogenetic constraints, and
many environmental variables are correlated due to large-scale
patterns of climate and geography. Thus, analyses of these vari-
ables cannot be conducted in isolation.

We designed a comprehensive sampling and analysis strategy
that asked how the microbial communities residing in the mucus,
tissue, and skeleton of diverse Australian corals were shaped by
host phylogeny, host functional traits, geography and environ-
mental variables. We collected DNA samples from the mucus,
tissue, and skeleton of phylogenetically diverse scleractinian
species, as well as selected outgroups and environmental refer-
ences. We sequenced 691 16S rRNA gene libraries from these
samples, primarily targeting bacterial and archaeal members of
the microbiome. We paired these microbiome data with a mul-
tigene molecular phylogeny of scleractinian corals20, coral func-
tional traits from the Coral Trait Database21, and extensive in-situ
metadata (Methods)22. For questions that were sensitive to host
phylogeny, we integrated these diverse datasets using phyloge-
netic Generalized Linear Mixed Models (pGLMMs). This
approach provided a unified Bayesian framework in which to test
hypotheses in coral-microbe coevolution and the influence of
various environmental factors on coral-microbe symbiosis.

We show that coral microbiomes differ in richness, composi-
tion, and consistency across anatomy. In all anatomical com-
partments, both host and environment influence the microbiome.
However, the relative influence of host vs. environmental para-
meters varies strongly across anatomy. We confirm phylo-
symbiosis in coral tissue and skeleton microbiomes, yet also
present evidence that host-microbial cophylogeny influences
microbial abundance for only a select subset of bacterial taxa
associated with corals. Notably, that subset includes certain
host-specific subclades of the prominent coral symbiont Endo-
zoicomonas. Together, these results help to clarify how the evo-
lution and ecology of the coral microbiome varies across
anatomy.

Results
Data collection and workflow. Coral, water, and sediment
samples were collected from 21 sites around Australia spanning
17° of latitude. A total of 236 coral colonies were sampled from
32 scleractinian and 4 cnidarian outgroup taxa representing both
the Hexacorallia and Octocorallia (Supplementary Data 1).
Hexacorallia (anemones, corallimorpharians, zoanthids and
scleractinian corals) and Octocorallia (gorgonians) are both
monophyletic groups within class Anthozoa. A subset of corals
was resampled at Lizard Island in summer and winter to assess
seasonal effects. Up to 162 host and environmental metadata
parameters were recorded or calculated for each sample (Sup-
plementary Data 2). Combined, these data represent more than
425 million years of coral evolution20.

A workflow summarizing the major analytical steps is
presented in Supplementary Fig. 1. Coral samples were
partitioned into mucus, tissue, and skeleton compartments
(Methods), and sequenced alongside water and sediment samples
from the same reefs, yielding a total of 691 samples for small
subunit ribosomal RNA (16S rRNA) gene sequencing. These
included 227 mucus samples, 223 tissue samples, 230 skeleton
samples, and 11 additional reference samples (e.g., sediment and
water; Supplementary Data S1). All samples were subjected to
identical DNA extraction, PCR amplification using 515f/806r
primers specific to the V4 region of the 16SrRNA gene of bacteria
and archaea23, and Illumina MiSeq sequencing. We note that
despite the utility of 16S rRNA gene surveys, they are estimated to
miss ~10% of environmental microbes24, including certain
archaea and the newly uncovered bacterial candidate phylum
radiation25.
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Corals are regarded as challenging targets for DNA extraction.
However, we found that the Earth Microbiome Project DNA
extraction protocol provided sufficient DNA for analysis in most
samples. After quality control, sequencing resulted in a total of
9,441,738 microbial reads (per sample median: 14,010; per sample
mean: 13,664) partitioned across 129,305 unique OTUs (Meth-
ods, 97% similarity cutoff).

To avoid biases due to sequencing depth, we rarefied to even
read depth (1000 sequences per sample) for most analyses
(Supplementary Note 1). This strategy is conservative, in that it
trades minimization of false positives for some loss of power. We
also tested alternative rarefaction depths for characterization of
core microbiomes (Supplementary Data 3), comparison of
multivariate dissimilarities (Supplementary Data 4) and α-
diversity across compartments (Supplementary Data 5). In the
specific case of differential abundance testing, we either rarefied at
1000 reads/sample or used a parametric model without rarefac-
tion (i.e., all pGLMMs, Methods) to maximize power from read
depth in each sample. In total, we detected 69 microbial phyla
associated with scleractinian corals (i.e., excluding outgroups),
with 56.5% of the sequenced microbes in an average sample
represented by Proteobacteria, while all Archaea represented just
2% of observed sequences (Supplementary Note 2).

To compare microbial community structure to host trees, we
inferred a coral phylogeny using coral mitochondrial 12S rRNA
gene sequences identified in our amplicon libraries (Methods),
but constrained to match the topology of the multigene molecular
phylogeny of corals published by Huang and Roy20. Typically,
these unique mitochondrial sequences (mitotypes) had a resolu-
tion of around the coral genus level (but in some cases resolved
species and intra-specific lineages), and were consistent with
visual taxonomic identifications of the host. This had the effect of
mapping this study’s samples to the multigene Huang and Roy
phylogeny wherever possible, while also estimating branch
lengths among additional outgroup taxa and allowing for
inclusion of samples that were not visually identifiable to the
species level. A conceptually similar procedure (Methods)
mapped microbial reads to the Greengenes 13_8 reference
phylogeny26.

Drivers of coral microbiome structure vary across anatomy.
Coral tissue, mucus, and skeleton microbiomes differed in
richness (Fig. 1a) and microbiome composition (Fig. 1b).
Surprisingly, the coral endolithic skeleton was richer in microbial
diversity than the tissue microbiome (Fig. 1a; Supplementary
Note 3). Differences in microbiome composition between com-
partments were robust to choice of multivariate dissimilarity
measures (Adonis permutational p for Weighted UniFrac,
Unweighted UniFrac and Bray-Curtis distance matrices<0.001;
Supplementary Note 4).

Compartments differed in core microbiome membership
(Supplementary Note 5), the fraction of the microbiome that
was core (Supplementary Fig. 2a) and inter-colony variability
(Supplementary Fig. 2b). Observed core microbiomes were
consistent with past reports of the coral mucus core microbiome
(Supplementary Note 6). Core microbiome analysis also con-
firmed the presence of Candidatus Amoebophilus (an intracellular
symbiont of eukaryotes) as present in>50% of tissue microbiomes
(consistent with;14 see Supplementary Note 7). Overall, mucus
microbiomes were notable for their relative stability between
colonies and their high abundance of core vs. variable microbes
(Supplementary Note 8).

Across all compartments, host species was the single most
important variable structuring the coral microbiome in our data
(Fig. 3, Supplementary Note 9, Supplementary Data 4). Broader

taxonomic levels were also associated with microbiome composi-
tion, with more specific taxonomic levels always explaining more
microbiome variance than more general taxonomic levels. This
finding held across several dissimilarity metrics and rarefaction
depths, and in all 3 compartments (Supplementary Note 10,
Supplementary Data 4). The influence of the coral host was thus a
commonality of coral mucus, tissue, and skeleton microbiomes.

However, microbiomes associated with the three portions of
coral anatomy differed in the extent of their relative responsive-
ness to host vs. environmental factors (Fig. 1c; Supplementary
Fig. 3; Supplementary Data 6; additional discussion in Supple-
mentary Note 11). For each environmental and host parameter,
we tested its relative influence on coral mucus, tissue, and skeletal
microbiomes (Fig. 1c). We then clustered host and environmental
parameters in terms of their effects on the microbiome across
compartments. Intrinsic host-based traits clustered separately
from environmental traits. This was driven by the fact that
environmental factors (e.g., season, temperature and turf algal
competition) had a stronger influence on mucus microbiomes
than tissue or skeleton microbiomes; whereas the coral species
and its functional traits (e.g., growth form and disease suscept-
ibility; Fig. 1c) had a stronger influence on tissue and skeletal
microbiomes than mucus. Intriguingly, the diverse endolithic
skeletal microbiomes were nearly as responsive to many host
traits as the tissue microbiome (Fig. 1c), and showed the strongest
response to the divide between Robust and Complex clade corals.

The finding that coral anatomical compartments differ in
overall community composition raises the possibility that one
could predict a given sample’s compartment from knowledge of
its microbial community. To quantify the accuracy with which a
sample’s compartment can be predicted from bacterial commu-
nity membership at the genus level, a supervised classification
model was developed using random forest analysis (a machine
learning method). This model was 74.3% accurate—a 2.58-fold
improvement on error rates compared to random
guessing–demonstrating that a predictable set of bacteria are
shared within compartments but differ among them.

We also used machine learning methods to quantify how much
information the microbial community of each compartment
conveyed about a suite of categorical host and environmental
traits and host physiological and phylogenetic parameters
(Supplementary Data 7). Consistent with our dissimilarity
analysis (i.e., Fig. 1c), tissue microbiomes were better predictors
of host factors like host genus (34% accuracy, 1.35x lower error
rates than random guessing) and vertical transmission of
Symbiodinium (86% prediction accuracy; 3.41-fold more accurate
than random guessing) than were mucus microbiomes (Supple-
mentary Data 7). Exploration of anatomical differences in coral
microbiomes using machine-learning methods also revealed that
the coral skeleton microbiome could better predict the deep
phylogeny of the coral host (i.e., membership in the ‘Complex’ or
‘Robust’ clade) than could the microbiome of the coral tissue
(Supplementary Results, Supplementary Data 7). Conversely,
mucus communities were much better predictors of environ-
mental features like contact with turf algae (82% accuracy; 2.14×
lower error rates than random guessing) and sampling location
(53% accuracy; 1.46× lower error rates than random guessing).

Together these multivariate and machine learning results
clarify that while host species influences the microbiome across
anatomy, the extent of host vs. environmental influence on coral
microbiomes is not consistent in coral mucus, tissue, and
skeleton. They further suggest that mucus microbiomes are
useful for detecting environmental perturbations and that
skeleton communities warrant greater attention as a diverse
community strongly structured by host traits. Because coral
compartments differed in both their composition and
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responsiveness to host and environmental variables, we report
results of all subsequent analyses separately for each.

Latitude and colony size influence the coral microbiome. In
addition to these general observations, two specific findings

emerged that bear mentioning (Fig. 2). First, the latitude of the
sampling location significantly influenced the richness and
composition of coral microbiomes. Moving away from the
equator, coral microbiomes became less rich (Fig. 2a). This effect
was significant for coral mucus and tissue, but not skeleton
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Fig. 1 Anatomical differences in coral microbiomes. Coral mucus, tissue, and skeleton microbiomes differ in richness, composition, and response to host vs.
environmental factors based on 16S rRNA gene sequence data. a Microbial community richness (observed OTUs) in coral mucus (teal), tissue (orange)
and skeleton (purple), assessed at an even depth of 1000 reads per sample. P-values reflect Tukey’s HSD. b Principal coordinates plot of coral-associated
microbial communities (Unweighted UniFrac; n= 614). Reads were rarefied to 1000 reads per sample. Coral compartments show significant differences in
community composition (Adonis R2= 0.028; permutational p < 0.001). The percent variation explained by the principal coordinates is indicated at the
axes. Boxplots of the second PC elucidate differences among compartments. P-values reflect Tukey’s HSD. c Relative influence of host and environmental
factors on microbiome composition (Weighted UniFrac, Adonis adjusted R2) in each compartment. Darker cells for a compartment indicate that it is more
strongly influenced by that trait than the other compartments (Adonis adjusted R2 values z-score normalized within columns). Cell values reflect adjusted
R2, which penalizes R2 for each factor downward to allow for fair comparison among factors with varying degrees of freedom. Asterisks indicate a
significant effect of that factor (Adonis permutational p < 0.05) on the microbiome in that compartment, following stringent Bonferroni correction across all
traits and compartments. While both host and environmental factors influenced all compartments, host factors tended to influence coral tissue and
skeleton more strongly than mucus, whereas host environment more influenced mucus microbiomes. All values in the table, plus other combinations of
rarefaction depth and multivariate dissimilarity measure are presented in Supplementary Data 4
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microbiomes, even after accounting for the uneven distribution of
species across locations (Fig. 2a and legend). In addition to its
effects on richness, latitude had a small but significant influence
on microbiome composition, accounting for between 1–4% of
variance in microbiome composition (Weighted UniFrac adjusted
Adonis R2), depending on the compartment (Fig. 1c). Phyloge-
netic GLMMs were fit separately to each compartment and
showed that more bacterial genera were positively than negatively
correlated with latitude (11, 13, and 9% of genera positively
correlated with latitude in mucus, tissue, and skeleton, compared
to 4, 1, and 4% negatively correlated with latitude in these
compartments) (Fig. 2; Supplementary Data 6). Together these
results suggest that patterns of diversity in coral microbiomes
may mirror latitudinal diversity gradients seen in free-living
communities27.

We also found that proportionally larger corals (those closer to
their species’ maximum recorded size) showed differential
microbiome composition and richness relative to smaller speci-
mens (Fig. 2b). Effects of coral relative size on microbiome
richness were significant in coral tissue and skeleton, but not
mucus, after accounting for phylogeny (Fig. 2b). Coral size also
had minor but statistically significant effects on microbiome
composition in coral skeleton (Supplementary Note 12; Supple-
mentary Data 4). Two bacterial genera, Aurantimonas and
Balneola, were significantly reduced in larger corals (Supplemen-
tary Data 6). Aurantimonas has been proposed as the causative
agent of White Plague Type II28 and Balneola was previously
identified as an indicator of sewage pollution in the Red Sea29.
These trends may reflect increased vulnerability of smaller corals
to opportunistic pathogens or may simply reflect normal shifts in
microbiome composition over the course of coral development30.

Coral phylogeny influences microbiome diversity. Phylo-
symbiosis refers to the evolutionary pattern in which the phylo-
geny of a related group of host organisms correlates with changes
in multivariate community dissimilarities among their micro-
biomes31. Mantel tests assessed phylosymbiosis in the coral
microbiome (Supplementary Data 8). These tests quantify the
correlation between matrices of coral host phylogenetic distances
and multivariate dissimilarity as measured by the Bray-Curtis or
Weighted UniFrac measures. Using Bray-Curtis dissimilarities,
more closely related corals had more similar microbiomes in both

tissue (Mantel r= 0.16, p= 0.0001; Supplementary Fig. 4a,
dashed red regression line) and skeleton compartments (Mantel r
= 0.18, p= 0.0001), but not mucus (Mantel r= 0.02, p= 0.18).
Using the phylogenetically-aware Weighted UniFrac method
deemphasized fine variation at the tips of the microbial tree,
resulting in a significant signal of phylosymbiosis in skeleton, but
not tissue or mucus microbiomes (Supplementary Data 8).

Our Mantel test results demonstrate patterns consistent with
phylosymbiosis in skeleton and perhaps tissue microbiomes, but
do not clarify the evolutionary scales over which these patterns
emerged. Therefore, we used Mantel correlograms to assess how
these correlations varied across multiple scales of phylogenetic
divergence. Across all compartments and dissimilarity measures,
microbiomes of the most closely related coral hosts were
significantly more similar than expected by chance (Mantel r >
0; p < 0.05). In general, tissue and skeletal microbiomes became
gradually more dissimilar throughout the entire range of host
phylogenetic distances (Supplementary Fig. 4b, Supplementary
Data 8). Mucus microbiomes, on the other hand, did not become
more dissimilar as host phylogenetic distance increased past the
second distance class (Supplementary Data 8).

We employed a similar procedure to test the evolution of
microbiome richness in corals. As richness is a univariate rather
than multivariate quantity, we conducted these tests using
Moran’s I as a measure of univariate autocorrelation. These
phylogenetic correlograms demonstrated that, like community
composition, richness was significantly more similar among
closely related corals than expected by chance (Moran’s I 95%
lower CI > 0; Supplementary Fig. 4c, red confidence intervals).
Additionally, richness was more dissimilar than expected among
samples that were separated by phylogenetic distances of
approximately 0.2 to 0.25 (Moran’s I 95% CI < 0; Supplementary
Fig. 4c; blue confidence intervals), which corresponded roughly to
between-family distances in our tree. At greater phylogenetic
distances, they were no more or less similar than expected. These
trends were consistent across coral mucus, tissue, and skeleton
microbiomes. Coral microbiome richness is therefore influenced
by the evolutionary histories of host corals. Importantly, the
scales of phylogenetic divergence at which these effects appear,
suggest that the radiation of modern reef-building coral families
(between roughly 25 and 65 mya) was accompanied by large
changes in microbiome richness, with changes continuing to
accumulate during more recent speciation events. What’s more,
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coral relative size and microbiome richness was significant in tissue and skeleton, but a positive association in mucus was not significant (pMCMC: mucus,
0.86; tissue, 0.0008; skeleton, 0.02; pGLMM effect sizes: mucus, 0.028; tissue, −0.591; skeleton, −0.392). c Percent of tested microbial genera
significantly associated with latitude and colony size in phylogenetically-controlled pGLMMs (Supplementary Data 6)
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these results demonstrate that the phylogenetic histories of corals
partially constrain the composition of their tissue and skeletal
microbiomes and the richness of all coral compartments. In other
words, corals and their microbiomes exhibit phylosymbiosis32.

Limited cophylogeny despite phylosymbiosis. Phylosymbiosis
results from a number of different mechanisms: the steady evo-
lution of host traits that directly influence the microbiome (e.g.,
by excluding certain microbes); spatial patterning of hosts that
indirectly influence the microbiome via environmental or ecolo-
gical interactions (e.g., dispersal to areas with intensive turf algae
competition), or long-term codiversification between hosts and
specific microbial symbionts12,33.

To address these alternatives, we tested all microbial genera for
associations with tips of the coral tree (host identity) or wider
regions of the coral tree (host phylogeny). Genera were defined
based on Greengenes taxonomic annotations, and therefore
included some imprecise pools of unannotated taxa, but were
deemed sufficient for our intended analyses (a complementary
fine-scale approach is pursued below). Both host identity and host
phylogeny were assessed using the genus-resolution 12S mito-
chondrial RNA gene markers extracted from amplicon libraries
for each sample, and pGLMMs (see Methods) were used to
separate the effects of environmental and physiological variables
from host effects.

Even after accounting for some of the most important
environmental and physiological factors from the multivariate
analysis (e.g., geographic region, turf algal contact, disease
susceptibility, and maximum corallite width), most microbial
genera showed host-specific abundance patterns (Supplementary
Table 5). Yet most coral-associated microbes were correlated with
host identity, not host phylogeny. Phylogenetic GLMMs esti-
mated that the abundances of between 62% (tissue) and 75%
(mucus) of microbial genera were significantly correlated with at
least one host mitotype (host identity), depending on the
compartment analyzed (Supplementary Data 6). For example,
100/446 microbial genera detected in tissue microbiomes were
significantly more abundant in the Acropora mitotype than in
others. Overall, 276/446 (62%) of microbial genera were
associated with a host mitotype, but only 13/446 (3%) of genera
in coral tissue were associated with host phylogeny (Supplemen-
tary Data 6). Genera associated with host phylogeny include
Candidatus Amoebophilus (Cytophagales: SGUS912), a taxon
previously identified as a core coral microbiome member across
three species15. Candidatus Amoebophilus was associated in the
skeleton with the coral clade formed by both Seriatopora and
Stylophora, rather than with individual ‘host identity’ mitotypes
(for additional discussion see Supplementary Results). Mucus
microbiomes showed fewer genera (1.6%) associated with host
phylogeny than tissue, while skeletal microbiomes showed more
(4.9%). Taken together, this analysis confirmed that while the
coral microbiome is highly host-specific, only a restricted subset
of the microbiome members show preferences for entire groups
of related corals.

Cophylogeny identifies 4 long-term coral-bacterial symbioses.
The above GLMM analyses were conducted at the level of
microbial genera, but finer-scale taxonomic variation is likely to
exist. Also, the previous analysis identified only the response of
microbial genera to host phylogeny, rather than any potential
interactions between microbial and coral phylogenies. Therefore,
we ran pGLMMs incorporating both coral and microbial phylo-
geny on fine-scale microbial sequence variants using Minimum
Entropy Decomposition (MED)34. These methods tested whether
corals showed patterns of cophylogeny with any of their microbial

associates, which in this context refers to the tendency for groups
of related microbes to be associated with groups of related hosts.
Such patterns can arise from coevolution or codiversification, and
may thus be a sign of intimate symbiosis, mutualistic or
otherwise.

Because these analyses are computationally intensive, only
the most prevalent microbial taxa were tested. A total of 25
bacterial family-level groups present in>50% of samples from
at least one coral compartment were selected for detailed
analysis. All but two of the families tested had some form of
host specificity, with members either associated with particular
coral mitotypes (representing species or genera) or particular
regions of the coral tree. More formally, each of these bacterial
families showed one of the following interaction effects (Fig. 3):
host identity by bacterial identity; host identity by bacterial
phylogeny; host phylogeny by bacterial identity; or host
phylogeny by bacterial phylogeny (i.e., cophylogeny). One-to-
one associations between individual bacterial sequence variants
and individual coral hosts (i.e., host identity by bacterial
identity interaction effects) were only significant in three bacterial
groups: Clostridiaceae (mucus), unclassified Myxococcales
(mucus), and unclassified Kiloniellales (mucus and tissue). In
19 of 25 families, host identity interacted significantly with
bacterial phylogeny, meaning individual coral mitotypes were
significantly associated with clades of related bacteria. However,
the converse pattern did not occur: no individual bacterial
sequence variants were significantly associated with clades of
related coral hosts.

Four bacterial groups exhibited significant cophylogenetic
effects (i.e., host phylogeny by bacterial phylogeny interaction):
Clostridiaceae, Endozoicomonas-like bacteria (Endozoicomona-
ceae in Greengenes), unclassified Kiloniellales, and unclassified
Myxococcales (Fig. 3, red box). Cophylogeny in Endozoicomonas-
like bacteria was detected in both tissue and mucus (ICCs, 95%
lower bounds: 0.20 and 0.17, respectively) (Figs. 3, 4).
Cophylogeny in Clostridiaceae and unclassified Myxococcales
was detected within the coral skeleton only (ICCs, 95% lower
bounds: 0.06, and 0.29, respectively), and it was detected in
unclassified Kiloniellales in only the tissue compartment (95%
ICC lower bound: 0.03).

Together, these results show that while overall coral micro-
biome composition and richness do track phylogeny, and
the majority of microbial genera show significant host-
specificity, only a small subset of coral-associated microbial
diversity shows larger-scale interactions between coral and
bacterial phylogeny.

Endozoicomonas clades vary in host preference and host range.
Endozoicomonas-like bacteria are important coral symbionts35,
and in our data showed the strongest signal of cophylogeny
among bacteria found in coral tissues. We therefore analyzed this
group in greater depth. Inspection of the phylogeny of Endozoi-
comonas-like bacteria (Methods) revealed two major coral-
associated divisions within the group (Fig. 4, Supplementary
Fig. 4): one in which most strains were host-specific (hereafter
‘Clade HS’ for ‘Host-Specific’), and another where most strains
had a cosmopolitan distribution across multiple hosts (hereafter,
‘Clade HG’ for ‘Host Generalist).

Within the host-specific clade HS, two bacterial sub-clades
were strongly associated with the two major lineages of corals
(‘Complex’ or ‘Robust’ corals). We have termed these clades of
Endozoicomonas-like bacteria ‘HS-R’ for ‘Host-Specific: Robust’
and ‘HS-C’ for ‘Host-Specific: Complex’. All of these clades and
subclades were well-supported by posterior probabilities (poster-
ior probabilities: Clade HG, 1.00; HS-R 0.92; HS-C 0.72) with the
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exception of Clade HS, which was only weakly supported
(posterior probability 0.33).

To further assess the relationship between corals and Clade HS
Endozoicomonas-like bacteria, we fitted a GLMM that included all
corals but only clade HS bacteria, and another that included only
the Robust clade corals and clade HS-R bacteria. The cophylo-
geny terms from both these tests were highly significant (ICCs,
95% lower bounds: 0.34 and 0.21, respectively).

The coral-associated members of Clade HS from this study
were more closely related to Endozoicomonas strains previously
reported to live in symbiosis with diverse non-scleractinian hosts
(gorgonians, mollusks, sponges, and other marine invertebrates)
than they were to members of Clade HG. Thus it appears that
Endozoicomonas-like bacteria have formed novel associations
with scleractinian corals multiple times throughout their evolu-
tion, but that such host-swapping has been a relatively rare
occurrence.

Discussion
Scleractinia have been diversifying for almost half a billion
years20. In about half that timespan, flowering plants appeared,
diversified and evolved important specialized microbial
symbioses in specific lineages36. Here we demonstrate that a
phylogenetic framework for analysis of coral microbes can reveal
how scleractinian corals’ evolutionary history, host traits and
the local environment interact to shape coral microbiomes.
Our results test longstanding hypotheses that bear on potential
coral-microbe coevolution, and add quantitative details and

taxonomic breadth to several previously explored patterns in
coral microbiology.

We originally hypothesized that corals would show signs of
phylosymbiosis throughout their entire phylogenetic history.
While our results are in accord with this hypothesis in coral
skeleton and tissue, the same is not true for the coral
mucus microbiome. Despite documented variability in the
chemical composition of coral mucus between species32,
and significant host-specificity in the mucus microbiome, host
specificity in the mucus microbiome was limited to relatively
recent divergences and was not significantly structured by larger
scales of host phylogeny. Importantly, because this analysis
focused on the entire Scleractinian order, it did not test whether
patterns of phylosymbiosis occur in the mucus within specific
coral lineages or at intrageneric timescales generally. In contrast
to the patterns in the mucus, the coral skeleton, which has been
less intensively studied than mucus and tissue, showed both the
greatest microbiome richness and the strongest signal of long-
term phylosymbiosis. These findings emphasize that different
anatomical regions of animal hosts may show distinct evolu-
tionary patterns. This observation will be relevant for studies in
other systems (e.g., mammals) where most studies of host-
microbe coevolution have emphasized a single body site (e.g., the
distal gut).

Phylosymbiosis can emerge as a consequence of multiple
mechanisms, including codiversification of many lineages,
microbial habitat filtering by host traits, or the interaction of host
and microbial biogeography12. We tested whether the most pre-
valent coral-associated bacteria demonstrated cophylogenetic
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Fig. 3 Effects of host identity, phylogeny, and cophylogeny on bacterial families. Results are derived from co-phylogenetic GLMM analysis within prevalent
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NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-07275-x ARTICLE

NATURE COMMUNICATIONS |          (2018) 9:4921 | DOI: 10.1038/s41467-018-07275-x | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


patterns with their hosts. We used pGLMMs to compare the
prevalence of individual sequence variants within particular
bacterial families among diverse coral hosts. This approach
allowed us to disentangle the effects of geographic area, cophy-
logeny, and distinct associations between individual hosts and
microbes. Of the 25 bacterial families tested, cophylogentic

interactions significantly influenced the abundance of only 4.
Thus, although many coral-associated bacteria are host-specific,
and the overall composition of coral microbiomes tracks phylo-
geny (i.e., phylosymbiosis), only a select minority of coral-
associated bacterial families show cophylogenetic signals con-
sistent with long-term host-microbe codiversification. This result
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emphasizes that while host-microbe cophylogeny likely con-
tributes to phylosymbiosis, other factors, such as biogeographic
effects and phylogenetically patterned host traits are likely very
important in producing this pattern.

That coral microbes differ in their extent of cophylogeny with
their host also emphasizes that the microbiome is not a single unit
of selection, but instead contains diverse players that vary greatly
in the extent of their history of association with the host and one
another12. Host specificity of certain microbes with extant coral
species, community-level phylosymbiosis across the coral
microbiome, and cophylogeny of certain microbial lineages with
their host are all distinct concepts that should be distinguished.
We recommend that observations of phylosymbiosis be accom-
panied by finer-scale tests of host-microbe cophylogeny in order
to identify specific microbial lineages that may have coevolved or
codiversified with their hosts. These may warrant additional
investigation as potential ‘key players’ in the microbiome, but a
time-calibrated microbial phylogeny would be necessary to test
for it.

The microbial families that show signs of cophylogeny may be
associated with important host functions that have led to stable
symbiotic relationships across extended evolutionary time. The
pGLMM methods used here allow identification of such taxa
from a broader symbiotic community, even in the absence of
strict one-to-one associations between hosts and symbionts, and
will be relevant to other study systems. We identified four bac-
terial lineages displaying signs of cophylogeny with their coral
hosts, all of which represent important targets for future study.
One lineage, the Endozoicomonas-like bacteria, has previously
been hypothesized to have codiversified with their coral hosts
throughout the evolution of Scleractinia37. These results are
relatively consistent with this hypothesis for one subclade of
Endozoicomonas, but suggest that the abundant variants found in
well-studied Porites corals are more cosmopolitan in their dis-
tribution. A greater geographic breadth of samples and repre-
sentatives of the many azooxanthellate scleractinians will help
inform this notion further, and a test of codiversification speci-
fically will require a better-resolved and time-calibrated Endo-
zoicomonas phylogeny.

In addition to the Endozoicomonas, three other groups of
functionally distinct bacteria showed significant patterns of
cophylogeny: the proposed mutualist Kilioniellales38, the pre-
datory ‘wolf pack’ bacteria Myxococcales, and a group of
organisms generally hypothesized to be pathogens of corals, the
Clostridiaceae4,38–40. Future work on these taxa may provide
insight into their broader roles in coral evolution and health.

Our survey of Australian coral microbial diversity provides the
most conclusive evidence to date that phylosymbiosis has
occurred between corals and their microbiomes. Despite this,
cophylogeny between scleractinian corals and their microbial
symbionts is likely restricted to a small subset of bacterial
families. The results of this survey further quantify the relative
influence of host and environmental drivers on the microbial
diversity of coral mucus, tissue and skeleton. A still more com-
prehensive picture of coral microbiology will be gained with
future efforts that expand analyses to global sample datasets
(including potentially informative samples from deep-water or
Caribbean corals), development of improved statistical models
(e.g., by relying less on arbitrary taxonomic thresholds; see for
instance the emerging ‘ClaaTU’ method41), and connection of
these patterns of microbial diversity to other members of the
coral microbiome such as Symbiodinium. In particular, the
addition of deep-water, azooxanthellate corals could fill in
important gaps in the phylogeny and help test the generality of
phylosymbiosis in coral microbiomes.

Methods
Selection of target sites. We aimed to collect coral specimens spanning coral
phylogenetic diversity from a variety of Australian reefs. We targeted collection
based on the 21 major coral clades defined in one of the most recent molecular
phylogenies available at the start of the project33. Many of these monophyletic
groups have since been defined as family-level taxa. Corals were collected at several
sites on the east and west coast of Australia. These included Ningaloo Reef
(Western Australia), Lizard Island, multiple reefs along the northern Great Barrier
Reef, and Lorde Howe Island. Samples at Lizard Island were collected in both
Summer and Winter, allowing for comparison of seasonal effects at one site across
diverse corals.

Collection of metadata. During sampling, each coral, outgroup species, water, and
sediment sample was associated with MIxS metadata42. This was accomplished by
recording standardized metadata about each site prior to dives, and using an
underwater metadata sheet (available at https://doi.org/10.6084/m9.
figshare.5326870.v1). These metadata included basic features of coral species (as
identified in the field), location, depth, water temperature, but also diver annotation
of contact with macroalgae, turf algae or cyanobacteria (and the percent of the
coral in contact); the presence of any visible tissue loss or disease signs; and coral
color (using the Coral Reef Watch color charts43. Additionally, photographs of
each coral were taken and released via openly accessible third party websites. They
are easy to browse and thoroughly keyworded with taxonomy, location, and sample
ID metadata on Flickr: https://flic.kr/s/aHsk9mjb54, and permanently archived in
raw camera format with a spreadsheet linking filenames to colony names on
FigShare at https://doi.org/10.6084/m9.figshare.5318236.v2.

Coral sampling. All coral samples were collected by AAUS-certified scientific
divers, in accordance with local regulations. Relevant permit numbers are: CITES
(PWS2014-AU-002155, 12US784243/9), Great Barrier Reef Marine Park Authority
(G12/35236.1, G14/36788.1), Lord Howe Island Marine Park (LHIMP/R/2015/
005), New South Wales Department of Primary Industries (P15/0072–1.0, OUT
15/11450), US Fish and Wildlife Service (2015LA1632527, 2015LA1703560), and
Western Australia Department of Parks and Wildlife (SF010348, CE004874,
ES002315). Only healthy corals were collected.

One goal of the project was to compare microbial diversity associated with the
coral mucus, tissues and skeletons across many coral colonies. Each of these
compartments represents a simplification of more complex structure, and much
work remains to be done on the finer-scale distribution and dynamics of
microorganisms across coral anatomy. For this project, we felt that a consistent
reporting of these compartments across diverse corals represented a tractable step
forward, given the scale of the project. Mucus was collected by gently agitating the
surface of corals for ~30 s with a blunt 10 mL syringe. Exuded mucus or surface
water (if no visible mucus was exuded) was then collected by suction. On the
surface, settled mucus typically formed a distinct visible layer within the syringe.
This was expelled into a cryogenic vial and stored in a dry shipper charged with
liquid nitrogen for subsequent processing.

Tissue and skeletal samples were collected from each colony by hammer and
chisel, or (for branching corals) by bone shears. These fragments were placed in
sterile WhirlPaks and returned to the surface where they were snap frozen in a
liquid nitrogen dry shipper until processing. In the laboratory, tissue was washed
with sterile seawater (which removed visible mucus and detritus), then separated
from skeleton using pressurized air of between approximately 800 and 2000 PSI (an
‘air gun’). Skeleton was sampled using a sterile chisel to isolate a ~1 cm3 region of
skeleton that was not in direct contact with coral tissue. Skeleton samples were
collected without regard to endolithic algae presence or absence (i.e., endolithic
algae were neither specifically targeted nor excluded). Tissue slurries and skeleton
samples were added directly to a MoBio PowerSoil Kit (MoBio Laboratories,
Carlsbad, California) bead tube (which contains, among other things, a solution of
guanidinium preservative) and stored at −80 °C until DNA extraction.

Sampling of reference samples. Because reef water and adjacent sediment might
have an effect on the microbiota of corals from the same reef (especially in coral
mucus), reef water and sediment were sampled at multiple sites. Surface seawater
samples (1 L) were filtered through 0.22 μm Millipore Sterivex filters (Sigma-
Aldrich, St. Louis, MO, USA) and reef sediment samples (2 mL) were collected in
sterile cryogenic vials. Samples were snap frozen in a liquid nitrogen dry shipper,
and subsequently stored at −80 °C until DNA extraction.

For comparison with corals from the same reef, we also opportunistically
sampled non-scleractinian cnidarians from the genera Millepora (fire corals),
Palythoa (zoanthids), Heliopora (blue corals), and Lobophytum (soft corals).

16S library preparation, sequencing, and initial quality control. DNA was
extracted from skeleton, tissue, mucus, and environmental samples using the
MoBio Powersoil DNA Isolation Kit. Two-stage amplicon PCR was performed on
the V4 region of the 16S rRNA gene using the 515 F/806 R primer pair that targets
bacterial and archaeal communities23. Extraction blank controls were also included
in amplification and sequencing for quality assurance. The average concentration
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of extracted DNA used for PCR was 10.8 with a standard error of 1.2. First, 30 PCR
cycles were performed using 515 F and 806 R primers (underlined) with linker
sequences at the 5′ ends: 515F_link (5′-ACA CTG ACG ACA TGG TTC TAC
AGT GCC AGC MGC CGC GGT AA−3′) and 806R_link (5′-TAC GGT AGC
AGA GAC TTG GTC TGG ACT ACH VGG GTW TCT AAT−3′). Each 20 µL
PCR reaction was prepared with 9 µL 5Prime HotMaster Mix (VWR Interna-
tional), 1 µL forward primer (10 µM), 1 µL reverse primer (10 µM), 1 µL template
DNA, and 8 µL PCR-grade water. PCR amplifications consisted of a 3 min dena-
turation at 94 °C; 30 cycles of 45 s at 94 °C, 60 s at 50 °C and 90 s at 72 °C; and 10
min at 72 °C. Next, amplicons were barcoded with Fluidigm barcoded Illumina
primers (8 cycles) and pooled in equal concentrations for sequencing. The
amplicon pool was purified with AMPure XP beads and sequenced on the Illumina
MiSeq sequencing platform (using V3 chemistry) at the DNA Services Facility at
the University of Illinois at Chicago.

QIIME (v1.9)44 was used to process all 16S sequence libraries. Primer sequences
were trimmed, paired-end reads merged, and QIIME’s default quality-control
parameters used when splitting libraries. Chimeras were removed and 97%-
similarity OTUs picked using USEARCH 7.045, QIIME’s subsampled open-
reference OTU-picking protocol46, and the 97% Greengenes 13_8 reference
database26. Taxonomy was assigned using UCLUST, and reads were aligned
against the Greengenes database using PyNAST47. FastTreeMP48 was used to
create a bacterial phylogeny with constraints defined by the Greengenes reference
phylogeny. Following quality control, 9,441,738 usable reads remained. The
number of per sample reads ranged from 2 to 38,523 with a median of 14,010,
mean of 13,644, and standard deviation of 7565. Reads were partitioned across
129,305 unique OTUs (97% similarity cutoff). Sequencing success did not show any
obvious trends with regards to host taxonomy or geographic location.

A ‘canonical’ rarefied OTU table was created and used for all downstream
analyses except the linear model analyses. To create this table, OTUs were filtered
out of the starting table if their representative sequences failed to align with
PyNAST to the Greengenes database or if they were annotated as mitochondrial or
chloroplast sequences. The beta_diversity_through_plots.py script was then used to
rarefy the resulting table to exactly 1000 sequences per sample, and to calculate
from this rarefied table multivariate dissimilarity measures including Bray-Curtis,
Binary Jaccard, Weighted UniFrac, and Unweighted UniFrac. Also from this table,
α-diversity statistics were calculated using alpha_rarefaction.py, including the
number of OTUs observed, evenness, and Faith’s Phylogenetic Diversity.

Mitochondrial annotation and quality control. The primers used in this study
were designed to selectively amplify the V4 region of bacterial and archaeal 16S
rRNA gene, but we have noticed in many of our studies that they (and other
standard primer sets) tend to strongly amplify corals’ mitochondrial 12S rRNA
gene, which is the homolog of the bacterial 16S rRNA gene. Because our samples
included species that were not used in the Huang and Roy 201520 phylogeny
(including, critically, all outgroup taxa), these ‘off-target’ host mitochondrial reads
were used to inform phylogenetic analyses and for an additional layer of quality-
control. First, split_libraries_fastq.py was run on the raw forward reads without
any quality trimming. Then, primers and adaptor sequences were removed, and
USEARCH used to de-replicate 100% identical sequences. A frequency table was
created and the data were filtered to contain only sequence variants with a total
count of at least 100. Greengenes taxonomy was assigned to the remaining
sequence variants with UCLUST as before, and sequence variants that had no
match in the Greengenes database (e.g., putative non-bacterial or archaeal
sequences) were isolated. For each host species, sequence variants were manually
submitted to NCBI’s BLASTn web interface in order of their total abundance,
comparing against the entire nr database. If a variant’s top 20 hits were annotated
as coral mitochondria of any species, the sequence was copied to a FASTA file of
host sequences. If all three compartments of a single coral individual of the same
putative species still had unclassified variants that were more abundant, then
manual annotation of those variants continued until either another coral mito-
chondrial sequence variant was found or there were no more variants in those
samples that were more abundant than the previously annotated mitochondria.
Using this method, no host sequences were found for some species of coral. The
process was repeated for these species individually, without first discarding
sequences that had counts of less than 100. In this way, mitochondrial sequences
were eventually identified for every sample in the study.

Once all host species mitochondrial sequences were identified, the original
frequency table of all unique sequence variants was filtered to contain only the
identified host sequences. For each individual sample, the most abundant
mitochondrial type was determined, and this information was then added to the
sample’s metadata as its ‘12S genotype’. Then, all selected host sequences were
aligned using MAFFT49 and de novo phylogenies were constructed in BEAST
2.4.250, with a chain length of 10 million, thinning interval of 1000, a log-normal
relaxed clock model, and the site model selected using bModelTest51. The
maximum clade credibility tree was selected using TreeAnnotator with a burn-in of
25% and common ancestor heights. This tree was compared to the expected
topology (monophyletic Anthozoa, Hexacorallia, and Scleractinia, and otherwise
matching the Huang and Roy 201520 molecular tree) to identify potential
mismatches among the observed sequences and the field species identification.

Regions of the tree with topology that differed from expectation were manually
inspected.

Using this strategy, two coral individuals were noted whose field identifications
placed them in the family Merulinidae, but whose sequence variants were strongly
indicative of a relationship with the family Lobophylliidae. In these instances,
further analyses verified that the same mitotype was detected in all three
compartments of the same individual. Photos from collections in the field were
consulted, and both were ultimately determined to have been misidentified in the
field and in fact belonged to the genus Echinophyllia. Their metadata and
annotations were updated to reflect this.

Aside from these two taxa, it was determined that unexpected topology in the de
novo phylogeny was a result of imprecise resolution of the 12S V4 marker. For
example, sequences from Millepora, Palythoa, and both octocoral species were
placed in a monophyletic clade including the Complex corals, though they properly
belong as outgroups to all Scleractinia. These errors emphasized the limitations of
our opportunistic host sequence data to build a de novo phylogeny. Thus, having
confirmed identifications of host species to within the resolution of the 12S marker,
a new phylogeny was constructed with the topology constrained to exactly match
the Huang and Roy 201520 molecular phylogeny and the known relationships of
outgroup taxa. In cases where a single 12S genotype belonged to members of a
polyphyletic group of taxa, we created separate tips for each monophyletic group.
The mitochondrial sequence alignment and BEAST 2.4.2 were used to estimate
relative branch lengths on this tree by supplying the starting tree and turning off all
topology operators. The resulting tree was used for all phylogenetic analyses. As the
branch lengths in this tree are derived from a relaxed clock model and limited
sequence data, they are likely to represent some average between divergence times
and degree of molecular evolution. Thus, analysis using these branch lengths
represents a compromise between assuming correlation of traits is proportional to
time since divergence and assuming that correlation of traits is proportional to
overall evolutionary change since divergence.

Annotation of coral life history strategy. To assess connections between coral
traits and microbiome structure, coral species sampled in this study were mapped
to functional traits. These host features were added to the microbial mapping file,
and used for tests of microbiome structure vs. host traits.

Coral life history strategies from Darling et al52. (‘weedy’, ‘competitive’, ‘stress-
tolerant’, and ‘generalist’) were digitized and associated with coral species. Some
species have recently been moved between genera based on updated phylogenetic
evidence53. In these cases, both the original species name and the revised name are
noted in the metadata. In some cases, species sampled were not annotated in
Darling et al52. These were not assigned an annotation if annotated members of the
same genus had mixed life-histories, or if only a single species of the same genus
had been annotated. In cases where at least two members of the genus had been
annotated and all annotated members shared the same life-history strategy, the
same annotation was assigned to other members sampled from the genus.

Annotation of coral functional traits. Metadata associated with each species
sampled was annotated with 28 reproductive, biogeographic, and morphological
traits from the Coral Trait Database (CTDB) v. 1.1.123. These traits included basic
details on coral distribution (abundance worldwide and on the Great Barrier Reef,
range size, northerly and southerly limits, upper and lower depth limits), repro-
duction (sexual system, mode of larval development, propagule size, presence of
Symbiodinium in propagules), phylogeny (genus and species ages), morphology
(growth form, skeletal density, corallite maximum width, maximum growth rate)
and conservation (IUCN Red List Category).

Adonis analysis of factors affecting microbial composition. We tested the
influence of multiple host and environmental factors on the microbial community
of each compartment. These results are presented in Fig. 1c and Supplementary
Fig. 2, while the raw underlying data is presented in Supplementary Data S3.
Throughout the analysis care was taken to account for the effects of rarefaction
depth (we tested the robustness of the results at rarefaction depths of 1000 or
10,000 sequences/sample), β-diversity distance measure (we tested three distance
measures), the degrees of freedom in each parameter (we used adjusted R2 values to
account for differences in degrees of freedom), and to stringently control for the
number of comparisons performed (using Bonferroni correction).

β-diversity distance matrices were calculated from separate OTU tables for coral
mucus, tissue, and skeleton (outgroups and environmental samples were not
included in this analysis). We calculated distance matrices using Weighted UniFrac
distances, Unweighted UniFrac distances or Bray-Curtis dissimilarities. Then, for
each host or environmental factor, the distance matrix was filtered to just those
samples for which metadata were available (i.e., excluding ‘Unknown’ values). This
prevented ‘Unknown’ values from being treated as a bona fide category in
downstream statistical tests. The filtered distance matrix was then tested for
clustering by factor using permutational tests (as implemented in Adonis in QIIME
1.9.1; 999 permutations per test). Because categories that can take on more values
(e.g., species) are biased upwards in raw R2 values, we calculated adjusted R2 values
for each category. These adjusted R2 values are primarily useful in that they allow
for fair comparison between factors with differing degrees of freedom. Therefore,
we present adjusted R2 values when comparing factors, but raw R2 values when

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-07275-x

10 NATURE COMMUNICATIONS |          (2018) 9:4921 | DOI: 10.1038/s41467-018-07275-x | www.nature.com/naturecommunications

www.nature.com/naturecommunications


discussing the percentage of variance explained (adjusted R2 values can no longer
be interpreted as percent of variance explained). Importantly, we took care to
separately filter the QIIME mapping file to exclude ‘Unknown’ values for each
parameter under consideration. Failure to do so can lead to continuous variables
(columns containing only numbers) being treated as categorical in QIIME, due to
the presence of text values. This in turn can strongly influence inferred R2 values.

Summary of Adonis analysis of microbial beta-diversity. To present a sum-
marized view of the Adonis analysis of microbial community beta-diversity, we
compiled the R2 and p value obtained from each individual Adonis analysis. In
Supplementary Fig. 1 the compiled adjusted R2 are presented in a heatmap. In
Fig. 1c, we compared the relative influence of each host or environmental para-
meter on different host compartments by Z-score normalizing Adonis R2 values
within columns. This has the effect of showing which compartments are most
strongly influenced by a particular factor, independent of how influential that
factor was overall. We present both views into the data because the unnormalized
Adonis R2 values better emphasize the absolute magnitude of the microbiome
response to each factor, whereas the Z-score normalized values better illustrate
common patterns across compartments in host vs. environmental parameters. We
emphasize that in both Fig. 1c. and Supplementary Fig. 2, clustering of rows and
columns was performed without any prior specification of which factors were host
vs. environmental. Thus, observed clustering of host vs. environmental factors
emerges from features of the microbial communities themselves.

Machine learning analyses. All machine learning analyses were conducted
through the supervised_classification.py script in QIIME (v1.9)44. This script
implements random forest classification, which is a machine learning method for
supervised classification. We used default parameters, which classify samples using
inferred forests of 500 decision trees. We applied random forest classifiers to two
tasks: 1) testing whether we can predict if a DNA sample came from coral mucus,
tissue, or skeleton using microbial 16S rRNA data alone and 2) predicting whether
within each coral compartment we can predict certain categorical features of a
sampled coral using its microbiome (contact with turf algae, reef name, complex vs.
robust clade membership, etc.). The results from random forest analysis of coral
compartments are presented in the main text. The results for random forest
analysis of host and environmental parameters are presented in Supplementary
Data S6. Because error rates typically scale with both the number of categories—it
is easier to predict the correct category for a binary category than one with 100
possibilities for example—we took care to consider the proportional increase in
random classification relative to a baseline formed by random guessing. For both
the compartment classification task and the trait classification task, we tested
random forest classification on microbial phyla, orders or genera. For the com-
partment classification task we also tested random forest classification with 97%
OTUs directly or predicted functional repertoires of coral microbiomes as inferred
using the PICRUSt software. However, this was computationally expensive and
yielded<0.1% improvement in classification error rates over classification based on
microbial genera, and was therefore not pursued further.

Statistical analyses on the effect of phylogeny on the microbiome. Phyloge-
netic analyses were conducted in R v3.3.154. The packages ape (v3.5)55 and
paleotree (v2.7)56 were used to manipulate trees and to calculate cophenetic dis-
tances. Univariate phylogenetic correlograms of α-diversity and distance-to-
centroid measures were implemented using the package phylosignal (v1.1)57.
Mantel tests and mantel correlograms of multivariate dissimilarities vs. phyloge-
netic distances were implemented using vegan (v2.5–2)58. Size classes for the
mantel correlograms were defined manually. Following Sturge’s rule, we created 11
distance classes. Due to the structure of the host phylogeny and the sampled
species, four discrete phylogenetic distances greater than ~0.3 existed, corre-
sponding to (1) all comparisons between the two major coral clades, (2) all
comparisons between scleractinians and Palythoa (Zoantharia), (3) all comparisons
between hexacorals and octocorals, and (4) all comparisons between anthozoans
and Millepora (Hydrozoa). We first created distance classes that corresponded to
each of these four discrete comparisons, then created the remaining seven distance
classes by spacing them evenly across the smaller phylogenetic distances.

Phylogenetic Generalized Linear Mixed Models (pGLMMs) for analysis of the
entire community were implemented using the package MCMC.OTU (1.0.10)59.
MCMC.OTU wraps the package MCMCglmm (v2.24)60 to fit a model whereby
sequencing depth is accounted for by using a sample’s total read count as the base
level of a fixed per-OTU effect. Compositionality is accounted for by the inclusion
of a per-sample random effect, and a number of other parameters and priors are set
with defaults that are sensible for microbiome studies, such as ‘global effects’ of
each specified factor (which control for and test effects on α-diversity) and
independent error variance for each OTU. Analysis of the entire set of 97% OTUs
was computationally impractical, so OTUs were first collapsed from the pre-
rarefaction OTU table into their annotated genera using QIIME’s
summarize_taxonomy.py. The package phyloseq (1.18.1)61 was then used to import
and manipulate this table and its associated metadata. Samples with total counts
less than 1000 or that were lacking relevant metadata were removed. The
purgeOutliers command was applied to the data with an otu.cut value of 0.0001.
For the first, more comprehensive GLMM, the command mcmc.otu was run

with maximum corallite width, disease prevalence, and binary turf contact as
fixed effects; geographic area, host phylogeny, and host identity as random
effects; a chain length of 1,25,000, thinning interval of 5, and burn-in of 25,000;
and with the inverse of the host phylogenetic covariance matrix supplied with
the ginverse option. Subsequently, the command was run again with latitude
and then coral colony size as the sole fixed effect, and with only host phylogeny
as a random effect. Significance for each term was determined by calculating
95% credible intervals with HPDinterval and isolating those that did not include
zero.

Cophylogenetic analyses. We reasoned that microbial groups that are most
intimately associated with corals (whether commensal, mutualistic, or parasitic)
are likely to have evolved in ways that led to patterns of cophylogeny with their
hosts. A preliminary pipeline was developed to screen the microbiome for such
groups. First, joined sequences were re-processed with the Minimum Entropy
Decomposition (MED) pipeline34, discarding MED nodes with substantive
abundances less than 100. Taxonomy was assigned to the resulting MED
representative sequences as before with OTUs. Family-level groups of microbes
were analyzed independently because higher taxonomic levels would be unlikely
to have evolved within the same timescale as scleractinians, and lower taxonomic
levels were more likely to contain misannotations. It was computationally
impractical to analyze all microbial families, so only the most prevalent in each
compartment were tested. An arbitrary threshold of 50% prevalence was chosen.
For each family in each compartment, all MED nodes were isolated that were the
most abundant representative in at least one sample. This conservative approach
was done partly out of concern that spurious sequences generated by sequencing
error could influence the downstream phylogenetic analyses, and partly to reduce
each dataset to a size that was practical for phylogenetic inference and GLMMs.
The representative sequences were then combined from these nodes with reference
sequences for each family. Reference sequences were randomly subsampled from
the Greengenes 13_8 99% OTU database such that each dataset contained the
MED nodes of interest, 75 random full-length 16Ssequences belonging to the
family of interest, plus 10 random ‘outgroup’ sequences belonging to any other
family from the same order.

Each collection of sequences was then aligned using MAFFT in QIIME.
Phylogenetic trees were built using BEAST 2.4.2 with a chain length of 100 million,
thinning interval of 1000, a log-normal relaxed clock model, and the site
model selected using bModelTest. The maximum clade credibility tree for each
group was selected using TreeAnnotator with a burn-in of 25% and common
ancestor heights.

A separate pGLMM was then fit for each microbial family in each tissue
compartment. The raw MED table was imported into R using phyloseq and filtered
to contain only samples with counts greater than 1000. The resulting table was
merged with each microbial family’s phylogenetic tree using phyloseq, a process
that automatically filters all sequences from the table that are not represented on
the tree. Samples were further filtered from this table if they did not retain a count
of least 10. Phylogenetic covariance matrices based on the bacterial and host
phylogenies were then generated62. Phylogenetic covariance matrices based on the
bacterial and host phylogenies were generated using the function inverseA on each
host tree. The Kronecker product of the resulting matrices was then computed for
use as the ‘coevolutionary’ covariance matrix. The Kronecker product of each
phylogenetic covariance matrix and an identity matrix was computed for use as
microbial identity x host phylogeny and microbial phylogeny × host identity
interaction effects62

Binary models were fit with MCMCglmm using a single fixed effect of the log of
the sequencing depth, ‘global’ random effects of host phylogeny, host identity,
microbial phylogeny, and microbial identity, all combinations of host-by-microbe
phylogenetic and identity random interaction effects, and a geographic area-by-
microbial identity random interaction effect. Altogether this approach is similar to
the models described in reference62. Our models were fit with a chain length of
1,250,000, thinning interval of 50, and burn-in of 250,000. After the model was fit,
convergence was assessed by verifying that the Effective Sample Sizes (ESS) of all
covariance terms were greater than 200. Intraclass correlation coefficients (ICCs)
were calculated for each iteration, with 95% credible intervals calculated with
HPDinterval. Factors with ICC lower credible bounds greater than 0.01 were
considered significant.

To independently analyze subclades of Endozoicomonas-like bacteria, a custom
QIIME-formatted taxonomy database was created with sequence annotations
corresponding to clades C, HS, HS-R, and HS-C from the initial analysis.
Taxonomy was then assigned to all MED nodes and Endozoicimonaceae
Greengenes reference sequences using UCLUST with max-accepts set to 1. The
above procedure of filtering, selecting reference sequences, building a phylogeny,
and fitting pGLMMs, was then repeated based on each annotated subclade instead
of each family. HS-R within only Robust clade corals was also analyzed by first
filtering other samples from the dataset.

Code availability. Analysis code is available on GitHub: https://github.com/
zaneveld/GCMP_Australia_Coevolution
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Data availability
Raw sequence data, metadata, OTU and MED representative sequences are pub-
licly available at https://doi.org/10.6084/m9.figshare.c.3855466.v2. Raw sequence
data are also deposited at the European Nucleotide Archive under accession
number PRJEB28183.
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