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Summary 
Marine aquaculture, or mariculture, is one of the fastest growing food-

producing sectors. By 2020, 32.3% of aquatic food will come from 

mariculture (FAO 2011). This strong expansion of mariculture industry 

has brought significant environmental impacts to coastal ecosystems 

(Silva et al., 2012), such as sediment organic enrichment and 

eutrophication (Holmer et al., 2005; Kalantzi and Karakassis, 2006), 

chemical pollution from pharmaceuticals, organics, bactericides and 

metals (Antunes and Gil, 2004; Cabello, 2006; Sapkota et al., 2008), and 

changes in the biodiversity and community structure of benthic fauna 

(Tomassetti et al., 2009; Vezzulli et al., 2008). Culturing non-

indigenous species (NIS) is an important sector of aquaculture industry 

but also includes ecological risks. Though many studies focused on the 

environmental impact of those invasive NIS, the NIS for aquaculture use 

(including mariculture) is often neglected and specific effects of NIS on 

the ecosystem functioning remain underdocumented. Moreover, it is 

important for sustainable mariculture application to identify indicators 

for any change in the ecosystem (i.e. at abiotic, biotic and functional 

levels).  

Given this context, the general aim of this PhD study is to assess the 

impact of the mariculture on the recipient ecosystems in the context of 

using NIS as cultured species. The outcome of this research will provide 

scientific information for the decision makers to apply for a better 

management of mariculture. This PhD study targets the environmental 

variables, the meiobenthos community, and benthic trophic interactions. 

It focusses on the group of meiobenthos because of their crucial roles in 
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connecting primary producers and higher level of consumers in the 

marine food web. Also, meiobenthos are good candidates to assess the 

status of ecosystem under stress due to their small sizes, short generation 

times and closer associations with sediments (Kennedy and Jacoby, 

1999). 

The objectives of this thesis were triple: (1) to unravel the response of 

environmental variables, meiobenthic communities and their trophic 

ecology towards mariculture activities, (2) to investigate the specific 

effect of different mariculture installations/techniques on the benthic 

environment, and 3) to evaluate the measured variables as contribution 

to an early warning system of NIS mariculture. As China plays an 

important role in the world mariculture production, we selected two 

typical mariculture cases in the Bohai Sea, China, i.e. open-water 

suspension farming of Argopecten irradians (non-indigenous) (Chapter 

2, 3, 4) as well as coastal shrimp farming of Litopenaeus vannamei (non-

indigenous) and Marsupenaeus japonicus (native) (Chapter 2, 5). We 

analyze the potential effects on the sediments and benthic community, 

discuss the feasibility to apply indicators for the impact assessment and 

also to unravel the implications of the use of NIS in mariculture. 

We first target the benthic environmental variables in an open-water 

culture area of scallop A. irradians and the pond-culture systems of M. 

japonicus and L. vannamei (Chapter 2). The mariculture effects were 

studied in terms of sediment properties. The sensitivities of 

physiochemical variables (redox potential - Eh, bulk organic matter, 

chlorophyll a, biochemical composition, and single indices like protein 

to carbohydrate ratio – PRO: CHO) were examined and compared with 
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each other. We found that, in the case of scallop farms, the bulk organic 

matter concentrations were not affected under the scallop farms, while 

sedimentary Eh showed a slightly but significantly decrease under the 

scallop farming in sandy shallow (7 m water-depth) station. 

Biopolymeric carbon (BPC), which indicated the benthic trophic status, 

significantly increased under the two farms where the farming activities 

were more intense. In the case of the shrimp farm, bulk organic matter, 

Chl a and BPC showed the temporal pattern that accumulated from May 

to August during the shrimp farming period, and the patterns were 

different between M. japonicus and L. vannamei ponds as well as the 

early and the late rearing stages. As the Eh values and biochemical 

organic concentrations all fell within a meso-oligotrophic status, open-

water scallop farming has in general no negative effect on the benthic 

environment. However, during the shrimp rearing stages, the benthic 

environment of two types of ponds were highly reduced, anoxic and 

highly eutrophic (even reach hypertrophic). We also found BPC to be a 

more suitable indicator for mariculture assessment than the other 

variables measured due to its sensitivity and closer linkage with the food 

availability to the benthos. The PRO: CHO ratio should be used with 

care as microbial activity could mask the initial concentrations of 

proteins and carbohydrates. 

    Then we turned to focus on benthic organisms. Chapter 3 and 

Chapter 4 deal with a case-study of open-water farming scallop A. 

irradians in Laizhou Bay. In Chapter 3, we observed a small effect of 

scallop farming on the structure and diversity of meiobenthos at the 

higher-taxon level and for copepod assemblages at the species level in 
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the two stations with high scallop production density. Only under the 

farm in the sandy bottom sediment, meiobenthic community differed 

from the control site as there was a larger proportion of nematodes. The 

harpacticoid copepod community structure changed at the scallop farms 

in the station with the muddy bottom, where its density and number of 

species were enhanced. This structural change can relate to the enhanced 

labile organic matter (i.e. BPC). We suggest that the responses of entire 

meiofauna community and harpacticoid copepod assemblages to scallop 

farming is location specific and need to be interpreted with other 

evidence (e.g. environmental variables) when using them to assess the 

potential environmental impact of scallop farming or any other similar 

bivalve farming. Then we further investigated the resource use of 

harpacticoid copepods and nematodes (the abundant groups of 

meiobenthos) inside and outside those scallop farms, by means of 

natural abundance of stable carbon and nitrogen isotopes (Chapter 4). 

The biodeposits of scallop were found to be the most enriched in δ15N 

compared to other food sources which made it traceable. The enriched 

δ15N in several meiobenthos at the farms together with the mixing model 

results indicated that biodeposits could be a new food source for most 

of the harpacticoid copepods and some nematodes. The quantities and 

the pathways of assimilation differed between the copepod families 

depending on their feeding behaviour and the receiving environment. 

Furthermore, with higher levels of polyunsaturated fatty acids (PUFA), 

in particular docosahexaenoic acid (DHA), the dominant copepod 

family Canuellidae that abundantly consumed scallop faeces had a 

higher nutritious quality compared with those in the control sites, 
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indicating a potential positive effect on the local marine food web.  

Chapter 5 addresses temporal changes in the meiobenthic community 

structure and food sources utilization during the shrimp farming stages 

as well as depicted the trophic relationships among shrimp feeds, 

meiobenthos and shrimps by stable isotopes analysis and fatty acids 

profiling. We found that nematode densities were largely associated 

with benthic eutrophication during L. vannamei culture and led to 

different meiobenthos assemblages through time. At the end of the 

rearing season, L. vannamei ponds showed a high-abundance but low-

diversity meiofauna community dominated by nematodes and indicates 

a disturbed state. M. japonicus ponds had higher diversity of 

meiobenthos over L. vannamei ponds, the meiobenthic community 

structure only changed in the early stage that attribute to the 

enhancement of nematodes. We also found that natural productivity 

contributed abundantly to both M. japonicus and L. vannamei in 

different forms between stages. Meiobenthos in the early stage, sharing 

similar diets with shrimps (both fed on primary organic sources), 

potentially competed with shrimps in terms of resource utilization. Due 

to the ontogenetic shifts in diet of shrimps, at the late stage, meiobenthos 

rather became a functional link between primary producers and shrimps 

as it serves as nutritional food source with high PUFAs to shrimps. 

Supplementary feed was less consumed by M. japonicus and L. 

vannamei but may fuel the benthic food web through other pathways 

such as promoting secondary production. 

Overall, by using in situ sampling, abiotic and biotic approaches, 

biomarkers and stable isotopes mixing models, this PhD research 
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concludes that the mariculture NIS effects on benthic environment are 

system-specific and depend on several localized factors, e.g. 

hydrodynamics, the types of sediments, the background organic 

concentrations. More specifically, open-water scallop A. irradians 

farming seems to be less environmental risky in terms of generating no 

negative impacts on the benthic ecosystem, while the coastal shrimp 

ponds farming M. japonicus and L. vannamei had polluted benthic 

environment within ponds which is likely due to the overfeeding. The 

strength of physico-chemical, bio- and functional indicators to assess 

mariculture effects is also system-specific and lacks generality. 

However, functional measurement for mariculture assessment is 

recommended since it can provide a more integrated understanding of 

ecosystem changes..
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Samenvatting 

Mariene aquacultuur of maricultuur is één van de snelstgroeiende 

voedselproducerende sectoren. Tegen 2020 zal 32,3% van het aquatisch 

voedsel afkomstig zijn van mariculture (FAO 2011). Deze sterke 

uitbreiding van de maricultuurindustrie heeft aanzienlijke gevolgen voor 

het milieu, in het bijzonder  voor kustecosystemen (Silva et al., 2012). 

Belangrijke effecten zoals sediment organische aanrijking en 

eutrofiëring (Holmer et al., 2005; Kalantzi en Karakassis, 2006), 

chemische vervuiling door geneesmiddelen, organische stoffen, 

bactericiden en metalen (Antunes en Gil, 2004; Cabello, 2006; Sapkota 

et al., 2008) en veranderingen in de biodiversiteit en de 

gemeenschapsstructuur van benthische fauna (Tomassetti et al., 2009; 

Vezzulli et al., 2008) kunnen verwacht worden. Het kweken van niet-

inheemse soorten (NIS) is een belangrijke aandeel van de 

aquacultuursector maar omvat ook ecologische risico's. Hoewel veel 

studies gericht zijn op de milieueffecten van invasieve NIS, wordt het 

gebruik van NIS in aquacultuurtoepassingen (inclusief maricultuur) 

vaak verwaarloosd en zijn specifieke effecten van NIS op het 

functioneren van ecosystemen nog steeds niet gedocumenteerd. 

Bovendien is het belangrijk voor duurzame maricultuurtoepassingen om 

indicatoren te identificeren voor elke verandering in het ecosysteem 

(zowel voor abiotische, biotische en functionele factoren). 

De algemene doelstelling van dit doctoraatsonderzoek is het 

onderzoek van de impact van de maricultuur op het ecosysteem waar 
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NIS gekweekt worden. De resultaten van dit onderzoek zal 

wetenschappelijke informatie opleveren voor beleidvoerders en de 

managers van de aquacultuurinstallaties om zich in te zetten voor een 

beter beheer van de maricultuur. Dit doctoraatsonderzoek richt zich op 

de omgevingsvariabelen, de meiobenthos-gemeenschap en benthische 

trofische interacties. Het onderzoek spitst zich toe op het meiobenthos 

vanwege hun cruciale rol bij het verbinden van primaire producenten en 

hoger trofische niveaus van consumenten in het mariene voedselweb. 

Daarenboven is meiobenthos ook een goede indicator om de algemene 

status van ecosystemen onder stress te beoordelen omdat ze klein zijn, 

korte generatietijden hebben en in nauwe associatie met het sediment 

voorkomen (Kennedy en Jacoby, 1999). 

De doelstellingen van dit proefschrift zijn drieledig: (1) ontrafelen 

van de respons van omgevingsvariabelen, meiobenthische 

gemeenschappen en hun trofische ecologie op maricultuuractiviteiten, 

(2) om het specifieke effect van verschillende maricultuurinstallaties / -

technieken op de benthische omgeving te onderzoeken, en 3 ) om de 

gemeten variabelen te evalueren als bijdrage aan een vroegtijdig 

waarschuwingssysteem voor de impact van NIS-maricultuur. 

Omdat China een belangrijke rol speelt in de wereldwijde productie 

van maricultuur, werden twee typische maricultuur installaties 

geselecteerd in de Bohai Zee, China, waar een open-water suspensieteelt 

van Argopecten irradians (niet-inheemse soort) (hoofdstuk 2, 3, 4) en 

een kustgarnaalkwekerij van Litopenaeus vannamei (niet-inheemse 

soort) en Marsupenaeus japonicus (inheems) (hoofdstuk 2, 5) 

plaatsvindt. De mogelijke effecten op de sedimenten en op de benthische 
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gemeenschap, de haalbaarheid om indicatoren toe te passen voor de 

effectbeoordeling en ook om de implicaties van het gebruik van NIS in 

de maricultuur te ontrafelen, werden onderzocht. 

In eerste instantie werden de bentische milieuvariabelen in een open 

cultuurgebied van Sint-jakobsschelp A. irradians en de 

vijvercultuursystemen van M. japonicus en L. vannamei (hoofdstuk 2) 

onderzocht. De maricultuureffecten werden bestudeerd in termen van 

sedimenteigenschappen. De gevoeligheden van fysicochemische 

variabelen (redoxpotentiaal - Eh, bulk organisch materiaal, chlorofyl a, 

biochemische samenstelling en enkele indices zoals 

eiwit:koolhydraatratio - PRO: CHO) werden onderzocht en met elkaar 

vergeleken. Bij de kweek van de Sint-Jacobsschelp werden de totale 

organische stofconcentraties niet beïnvloed terwijl sedimentair Eh een 

lichte maar significante afname vertoonde onder de 

aquacultuurinstallaties in zandige en ondiepe (7 m waterdiepte) stations. 

Biopolymere koolstof (BPC), als indicatie van de benthische trofische 

status, nam aanzienlijk toe onder de twee aquacultuurinstallaties waar 

de kweekactiviteiten intenser waren. In het geval van de 

garnalenkwekerij, vertoonden bulk organisch materiaal, Chl a en BPC 

een temporeel patroon met een toename van mei tot augustus tijdens de 

garnalenkweekperiode. De patronen verschilden tussen de kweek van M. 

japonicus en L. vannamei en er waren tevens verschillen tussen de 

vroege en de late kweekfasen. Omdat de Eh-waarden en biochemische 

organische concentraties allemaal binnen een meso-oligotrofe status 

vielen, heeft de kweek van Sint-jakobsschelp in open water over het 

algemeen geen negatief effect op de benthische omgeving. Tijdens de 
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opkweekperiode voor garnalen was de benthische omgeving van beide 

types kweekinstallaties echter sterk gereduceerd, zuurstofloos en zeer 

eutroof (bereikte zelfs een hypertrofische toestand). We vonden ook dat 

BPC een meer geschikte indicator is voor de beoordeling van de impact 

van maricultuur dan de andere gemeten variabelen vanwege de 

gevoeligheid en nauwere koppeling met de voedselbeschikbaarheid 

voor het benthos. De PRO:CHO-ratio moet met zorg worden gebruikt, 

omdat microbiële activiteit de initiële concentraties van eiwitten en 

koolhydraten kan maskeren. 

In de volgende hoofdstukken ligt de nadruk op de bentische 

organismen. Hoofdstuk 3 en Hoofdstuk 4 behandelen een case-study 

van de Sint-jakobsschelpkweek in open water (A. irradians in Laizhou 

Bay). In Hoofdstuk 3 hebben we een klein effect van de Sint-

jakobsschelpkweek waargenomen op de structuur en diversiteit van het 

meiobenthos op hoger taxonniveau en op de 

copepodengemeenschappen op soortsniveau in de twee stations met een 

hoge productiedichtheid van de Sint-jakobsschelp. Enkel voor de kweek 

boven de zandbodem verschilde de meiobenthische gemeenschap van 

de controle omdat er meer nematoden aanwezig waren. De 

gemeenschapsstructuur van de harpacticoïde copepoden veranderde bij 

de Sint-jakobsschelpen in het station met het fijne sediment (slibbodem), 

waar de dichtheid en het aantal soorten werden verbeterd. Deze 

structurele verandering kan mogelijks verklaard worden door het 

verbeterde labiele organische materiaal (BPC). Op basis van deze 

resultaten wordt besloten dat de respons van de gehele 

meiofaunagemeenschap en harpacticoïde copepodengemeenschappen 
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op de kweek van Sint-jakobsschelpen lokatiegebonden is en moet 

geïnterpreteerd worden aan de hand van andere omgevingsvariabelen 

wanneer ze worden gebruikt om de mogelijke milieueffecten van de 

Sint-jakobsschelp of andere soortgelijke schaaldierenteelt te beoordelen. 

Vervolgens werd het gebruik van voedselbronnen door harpacticoïde 

copepoden en nematoden (de meest abundante meiobenthostaxa) binnen 

en buiten de kweekzones van Sint-jakobsschelp verder onderzocht, door 

middel van de natuurlijke abundantie van stabiele koolstof- en 

stikstofisotopen (hoofdstuk 4). De biodeposits van Sint-jakobsschelp 

bleken het meest verrijkt te zijn in δ15N vergeleken met andere 

voedselbronnen waardoor het traceerbaar was. De verrijkte δ15N in 

verschillende meiobenthos organismen in de kweekopstellingen samen 

met de resultaten van het mixed model gaven aan dat biodeposits een 

nieuwe voedingsbron kunnen zijn voor de meeste van de harpacticoïde 

copepodensoorten en sommige nematodensoorten. De hoeveelheden en 

de pathways van assimilatie verschilden tussen de copepodenfamilies, 

afhankelijk van hun voedingsgedrag en de ‘ontvangende omgeving’. 

Bovendien, met hogere niveaus van meervoudig onverzadigde vetzuren 

(PUFA), in het bijzonder docosahexaeenzuur (DHA), verkreeg de 

dominante copepodfamilie Canuellidae, die overvloedig faeces van de 

Sint-jakobsschelp consumeerde, een hogere voedzame kwaliteit 

vergeleken met de individuen in de controlelokaties. Dit geeft een 

mogelijk positief effect op het lokale mariene voedselweb. 

Hoofdstuk 5 gaat in op de temporele veranderingen in de 

meiobenthische gemeenschapsstructuur en het gebruik van 

voedselbronnen tijdens de garnalenkweekstadia, evenals de trofische 
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relaties tussen garnalenvoeders, meiobenthos en garnalen door gebruik 

te maken van stabiele isotopenanalyse en vetzurenprofilering. De 

dichtheden van nematoden waren in sterke mate geassocieerd met 

benthische eutrofiëring tijdens de L. vannamei-cultuur en leidden tot 

verschillende meiobenthosgemeenschappen na verloop van tijd. Aan het 

einde van het kweekseizoen vertoonden L. vannamei-vijvers een hoge 

densiteit maar lage diversiteit van de meiofauna-gemeenschap die werd 

gedomineerd door nematoden en in een verstoorde staat verkeert. M. 

japonicus-vijvers hadden een hogere diversiteit van meiobenthos dan L. 

vannamei-kweekvijvers, de meiobenthische gemeenschapsstructuur 

veranderde alleen in het vroege stadium wat vooral te wijten is aan een 

toename van nematoden. De natuurlijke productiviteit droeg in grote 

mate bij aan zowel M. japonicus en L. vannamei in verschillende 

vormen en tussen de kweekfasen. Meiobenthos in het vroege stadium, 

met een gelijkaardig dieet als de garnalenkweek (beiden gevoed met 

primaire organische bronnen), kan potentieel concurreren met garnalen 

in termen van het gebruik van voedselbronnen. Als gevolg van de 

ontogenetische verschuivingen in het dieet van garnalen, werd 

meiobenthos in de late fase eerder een functionele link tussen primaire 

producenten en garnalen omdat het dient als voedingsbron met hoge 

PUFAconcentratie voor garnalen. Aanvullend voer werd minder 

geconsumeerd door M. japonicus en L. vannamei maar kan het 

benthische voedselweb voeden via andere wegen zoals het bevorderen 

van de secundaire productie. 

Op basis van de in situ bemonstering, abiotische en biotische 

benaderingen, biomerkers en stabiele isotopen in mixing modellen, kan 
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uit dit onderzoek geconcludeerd worden dat de maricultuur NIS-

effecten op de bentische omgeving systeemspecifiek zijn en afhankelijk 

zijn van verschillende lokale factoren, b.v. hydrodynamica, het 

sedimenttype en de achtergrondconcentratie van organische 

componenten. Meer in het bijzonder lijkt de open-water kweek van Sint-

jakobsschelp A. irradians minder risicovol te zijn door het niet 

genereren van negatieve effecten op het benthische ecosysteem. Dit is 

in tegenstelling met de kustgarnaalvijvers die M. japonicus en L. 

vannamei kweken en hierdoor de benthische omgeving in de 

kweekvijvers hebben vervuild, waarschijnlijk vanwege de overvloed 

aan voederen. De kracht van fysisch-chemische, bio- en functionele 

indicatoren om de maricultuureffecten te beoordelen, is ook 

systeemspecifiek en kan niet veralgemeend worden. Functionele 

metingen voor maricultuurbeoordeling worden echter aanbevolen, 

omdat dit een meer geïntegreerd inzicht van ecosysteemveranderingen 

kan bieden. 
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Santrauka 

Jūrų akvakultūra yra viena iš sparčiausiai besivystančių maisto 

pramonės šakų. 2020 metais apie 32 % maisto produktų, išgaunamų iš 

jūrinių bei kitų vandenų, bus užauginta akvakultūriniu būdu (FAO 2011). 

Ženklus šio sektoriaus augimas daro pakankamai reikšmingą poveikį 

pakrančių ekosistemoms (Silva ir kt., 2012). Šio poveikio rezultatas – 

nuosėdų organinis sodrinimas bei eutrofikacija (Holmer ir kt., 2005, 

Kalantzi ir Karakassis, 2006), cheminė tarša vaistais, organinių junginių, 

bakteoricidų ir metalų patekimas į jūrinę aplinką (Antunes ir Gil, 2004, 

Cabello, 2006; Sapkota ir kt., 2008), pokyčiai bentoso faunos 

biologinėje įvairovėje ir bendrijų struktūrose (Tomassetti et al., 2009, 

Vezzulli et al., 2008). Nevietinių rūšių kultūra yra svarbus akvakultūros 

sektorius, tačiau tam tikrais atvejais sukelia ir ekologinę riziką. Nors 

daugelis tyrimų vertina invazinių rūšių poveikius aplinkai, nevietinių 

rūšių eksploatavimas akvakultūros reikmėms dažnai yra ignoruojamas 

ir specifinis šių rūšių poveikis ekosistemų funkcionavimui lieka 

nepakankamai ištirtas. Taip pat, siekiant tvaraus akvakultūros plėtojimo, 

svarbu yra nustatyti kiekvieno ekosistemos pokyčio rodiklius 

(abiotiniame, biotiniame ir funkciniame lygmenyse). 

Atsižvelgiant į šias aplinkybes, šio mokslinio tyrimo tikslas yra 

įvertinti jūrinės akvakultūros poveikį vietinėms ekosistemoms ūkiuose, 

kuriuose yra auginamos svetimkraštes rūšys. Šio tyrimo rezultatai 

suteiks mokslinių žinių tiriamojoje srityje, taip pat pagelbės priimant 

sprendimus jūrinės akvakultūros valdymo klausimais. Šiame darbe 
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nagrinėjami aplinkos kintamieji, meiobentoso bendrijos bei jų trofinės 

sąveikos. Tyrime daugiausia dėmesio yra skiriama meiobentosui, nes ši 

grupė atlieka svarbų vaidmenį sujungiant pirminius maisto šaltinius ir 

aukštesnius vartojimo lygmenis trofiniame tinkle. Taipogi meiobentoso 

vertinimas yra tinkamas rodiklis, kuriuo galima apibūdinti ekosistemos 

būklę stresinėje bendrijų būklėje dėl jų nedidelio dydžio, trumpo 

pasikartojimo laiko ir glaudesnių ryšių su nuosėdomis (Kennedy ir 

Jacoby, 1999).  

Šiame darbe keliami trys pagrindiniai tikslai: 1) nustatyti aplinkos 

kintamųjų, meiobentinių bendrijų ir jų trofinių ryšių reakciją į jūrinės 

akvakultūros veiklą; 2) ištirti specifinį skirtingų jūrinės akvakultūros 

įrenginių bei metodų poveikį jūros dugno aplinkai; 3) įvertinti tiriamųjų 

kintamųjų indėlį į svetimkraščių rūšių akvakultūros ankstyvojo įspėjimo 

sistemą. Kadangi Kinija vaidina svarbų vaidmenį pasaulinėje jūrinės 

akvakultūros gamyboje, buvo parinkti du tipiški jūrinės akvakultūros 

auginimo atvejai Bohajų jūroje (Kinija). Tiriamos rūšys – jūrų šukutės 

Argopecten irradians (svetimkraštė rūšis) (2, 3, 4 skyriai), krevetės 

Litopenaeus vannamei (svetimkraštė rūšis) ir Marsupenaeus japonicus 

(vietinė rūšis) (2, 5 skyriai). Buvo išanalizuotas galimas poveikis 

nuosėdoms ir dugno bendrijoms, aptartos galimybės taikyti poveikio 

vertinimo rodiklius ir įvertinti svetimkraščių rūšių naudojimo jūrinėje 

akvakultūroje pasekmes.  

Pirmiausia buvo ištirta jūrų šukučių A. irradians, krevečių M. 

japonicus ir L. vannamei aplinka (2 skyrius). Jūrinės akvakultūros 

veiklų poveikis buvo tiriamas pagal nuosėdų savybes. Buvo išnagrinėtas 

ir palygintas fizikocheminių kintamųjų jautrumas (redokso potencialas 
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– Eh, bendrosios organines medžiagos, chlorofilas a, biocheminė 

sudėtis ir atskiri indeksai, tokie kaip baltymų ir angliavandenių santykis 

– PRO:CHO). Tyrimo metu nustatyta, kad eksploatuojant jūrines 

šukutes, organinių medžiagų koncentracija nekito tiriamuosiuose 

ūkiuose, o nuosėdinis Eh mažėjo nesmarkiai, tačiau reikšmingai, 

smėlėtoje seklioje tyrimų stotyje (7 m gylyje). Biopolimerinės anglies 

(BPC) koncentracija, kuri nurodo dugno bendrijų trofinę būklę, padidėjo 

abiejuose stebėtuose ūkiuose. Krevečių ūkyje organinių junginių Chl a 

ir BPC koncentracija parodė, kad krevečių auginimo laikotarpiu nuo 

gegužės iki rugpjūčio mėn. buvo stebima organinių junginių laikina 

kaupimosi tendencija, o rūšių M. japonicus ir L. vannamei baseinuose 

buvo stebimos skirtingos medžiagų kaupimo tendencijos ankstyvojo ir 

vėlyvojo rūšių auginimo etapuose. Kadangi Eh reikšmės ir biocheminių 

organinių medžiagų koncentracijos svyravo meso-oligotrofinės būklės 

ribose, galima teigti, kad jūros šukučių auginimas neturėjo neigiamos 

įtakos dugno bendrijų aplinkai. Tačiau krevečių auginimo metu dviejų 

tipų tvenkinių dugno bendrijų aplinka buvo labai susilpnėjusi, t. y. 

anoksinė ir labai eutrofinė (net pasiekė hipertrofinę). Taip pat buvo 

nustatyta, kad BPC yra tinkamesnis jūrinės kultūros vertinimo rodiklis, 

kuris yra jautresnis ir turi artimesnį ryšį su maisto patekimu į dugno 

bendrijų aplinką, palyginti su kitais kintamaisiais. Atkreiptinas dėmesys 

į tai, kad PRO:CHO santykis turėtų būti vertinamas atsargiai, nes 

mikrobinis aktyvumas gali užmaskuoti pradines baltymų ir 

angliavandenių koncentracijas.  

Kitame etape dėmesys buvo nukreiptas į dugno organizmus. 3 ir 4 

darbo skyriuose aptariamas atvirame vandenyje auginamų jūros šukučių 
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A. irradians atvejis Laizhou įlankoje. 3 skyriuje pateikiami pastebėjimai 

apie nedidelį jūros šukučių auginimo poveikį meiobentoso struktūrai bei 

įvairovei aukštesnio taksono lygmeniu. Taip pat pateikiami pastebėjimai 

apie jūros šukučių auginimo poveikį irklakojų vėžiagyvių santalkoms 

rūšių lygmenyje abiejose stotyse, kuriose buvo didelis jūros šukučių 

auginimo tankis. Šiame skyriuje taip pat yra pateikiama informacija apie 

aptiktus meiobentoso skaičiaus skirtumus tarp kontrolinių vietovių ir 

tirtų baseinų su smiltingomis dugno nuosėdomis, kuriose aptiktas 

didesnis apvaliųjų kirmelių skaičius. Baseinuose su dumblinu dugnu, 

kuriuose buvo auginamos jūros šukutės bei kuriuose jūros šukučių 

skaičius buvo ženkliai padidintas, buvo stebimi irklakojų vėžiagyvių 

bendrijų struktūriniai pokyčiai. Šie pokyčiai gali būti siejami su 

padidėjusia lengvos organinės medžiagos, t. y. BPC, koncentracija. 

Remiantis gautais rezultatais darytina prielaida, jog meiofaunos 

bendruomenių ir irklakojų vėžiagyvių santalkų atsakas į jūros šukučių 

auginimą yra priklausomas nuo vietovės. Todėl vertinat jūros šukučių 

auginimo poveikį aplinkai turi būti stebimi papildomi faktoriai – 

aplinkos kintamieji. Papildomai buvo ištirta, kaip yra vartojami maisto 

ištekliai irklakojų vėžiagyvių ir apvaliųjų kirmelių bendrijose jūros 

šukučių fermų viduje bei išorėje panaudojant natūralios stabilios anglies 

ir azoto izotopus (4 skyrius). Buvo nustatyta, kad jūros šukučių 

bionuosėdų komponentai, palyginti su kitais maisto šaltiniais, yra 

labiausiai praturtinti δ15N izotopu, kurio padidinta koncentracija padarė 

jį matomą. Tyrimų duomenys surinkti keliose fermose. δ15N izotopu 

praturtintas meiobentosas bei izotopų mišrių modelių modeliavimo 

rezultatai parodė, kad bionuosėdos gali būti naujas maisto šaltinis 
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daugumai irklakojų vėžiagyvių ir kai kurių apvaliųjų kirmelių 

bendrijoms. Buvo nustatyta, kad maisto medžiagų asimiliacijos kiekiai 

ir būdai skyrėsi tarp vėžiagyvių šeimų priklausomai nuo jų mitybos 

elgsenos ir juos supančios aplinkos. Dominuojančios vėžiagyvių rūšies 

Canuellidae gyviuose, kurie gausiai vartojo jūros šukučių fekalijas, 

buvo aptikta gausesnė polinesočiųjų riebiųjų rūgščių (PUFA), ypač 

dokozaheksaeno rūgšties (DHA) koncentracija. Galima daryti išvadą, 

kad tirti vėžiagyviai yra didesnės maistinės vertės palyginti su tirtais 

individais išorinėse kontrolinėse vietovėse. Šie rezultatai rodo galimą 

teigiamą jūros šukučių auginimo poveikį vietiniams jūrų maisto 

tinklams. 5 skyriuje aptariami meiobentinių bendrijų maisto medžiagų 

vartojimo bei bendrijų struktūros laikini pokyčiai krevečių auginimo 

etapuose. Taip pat grafiškai atvaizduoti trofiniai ryšiai tarp krevečių 

maisto medžiagų, meiobentoso ir krevečių panaudojant stabiliųjų 

izotopų analizę ir riebiųjų rūgščių profiliavimą. Buvo nustatyta, kad 

apvaliųjų kirmelių bendrijų tankiai yra labiausiai susiję su dugnine 

eutrofikacija L. vannamei krevečių auginimo metu, dėl ko buvo 

stebimos skirtingos meiobentoso santalkos laike. Pasibaigus auginimo 

sezonui L. vannamei krevečių auginimo vietose buvo nustatyta didelė 

meiofaunos gausa, kurios įvairovė buvo skurdi su dominuojančiu 

apvaliųjų kirmelių paplitimu, kuris atspindi sutrikusią būklę. Telkiniai 

su M. japonicus rūšimis turėjo didesnę meiobentoso įvairovę palyginti 

su telkiniais, kuriuose auginamos L. vannamei, tačiau meiobentoso 

bendrijos kito tik ankstyvojoje stadijoje ir yra sietinos su apvaliųjų 

kirmelių gausos didėjimu.  

Taip pat buvo nustatyta, kad natūralus produktyvumas buveinėse 
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gausiai prisidėjo prie M. japonicus ir L. vannamei įvairiomis formomis 

skirtinguose jų gyvavimo etapuose. Ankstyvojoje stadijoje 

meiobentosas minta tokiomis pat maisto medžiagomis kaip ir krevetės 

(pirminiais organiniais šaltiniais) ir potencialiai konkuruoja su 

krevetėmis išteklių naudojimo požiūriu. Dėl ontogenetinių krevečių 

mitybos pokyčių vėlyvoje vystymosi stadijoje meiobentosas tampa 

funkcine jungtimi tarp pirminių maisto medžiagų generuotojų ir 

krevečių, nes meobentosas yra maistinis šaltinis, aprūpinantis krevetes 

didelėmis PUFA koncentracijomis. M. japonicus ir L. vannamei mažiau 

suvartoja papildomų maisto medžiagų, tačiau gali aprūpinti bentoso 

mitybos tinklą kitais būdais, pvz., skatinant antrinę maisto medžiagų 

gamybą.  

Pritaikius in-situ mėginių ėmimo metodus, abiotinius ir biotinius 

metodus, biologinius žymenis ir stabilius izotopų mišriuosius modelius, 

šiame moksliniame tyrime prieita išvada, kad nevietinės rūšys, 

eksploatuojamos jūrinėje akvakultūroje, daro sistemiškai specifinį 

poveikį aplinkai ir priklauso nuo kelių lokalių veiksnių, tokių kaip 

hidrodinamika, nuosėdų tipai, organinių medžiagų foninės 

koncentracijos. Atvirųjų vandenų moliusko A. irradians auginimas yra 

mažiau neigiamai veikiantis aplinką, t. y. nepaveikia neigiamai bentoso 

ekosistemos, kai tuo metu pakrančių krevečių telkiniuose, kuriuose 

aptinkamos M. japonicus ir L. vannamei rūšys, buvo stebima užteršta 

dugno aplinka greičiausiai dėl maisto medžiagų pertekliaus. Fizikinių-

cheminių, biologinių ir funkcinių rodiklių, skirtų jūrinės akvakultūros 

poveikiui įvertinti, patikimumas yra sistemiškai specifinis bei 

neapibendrintas. Tačiau funkcinis jūros akvakultūros vertinimas yra 
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rekomenduotinas, nes jis gali padėti geriau suprasti ekosistemų pokyčius. 
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摘要 

海水养殖是近些年来发展最为迅速的产业之一。预计到 2020 年，全球约

32.3%的水产品来自海水养殖（FAO，2011）。然而，该产业的发展给沿海生

态系统带来重大的环境影响（Silva et al., 2012），包括沉积物和水体富营养化

（Holmer et al., 2005; Kalantzi and Karakassis, 2006），化学药物、有机物、杀菌

剂和重金属污染（Antunes and Gil, 2004; Cabello, 2006; Sapkota et al., 2008），

底栖动物生物多样性与群落结构的变化（Tomassetti et al., 2009; Vezzulli et al., 

2008）。养殖外来种是水产养殖业的重要组成，占水产养殖总产量 25%，在水

产品供应提供重要作用；但存在着生态风险。目前关于外来物种的研究多集中

于入侵物种对本土物种的竞争及其对环境的影响，而水产养殖产业（包括海水

养殖）中引入的外来种的生态影响常常被忽视，尤其是外来种对生态系统功能

的影响仍然缺乏足够的研究数据。因此，建立环境评价指标（包括环境因子、

生物群落和生态系统功能水平层面的指标）对于可持续发展的海水养殖环境监

测很重要。 

本博士论文研究通过评估外来种海水养殖对生态系统（环境因子、小型底

栖生物群落和底栖食物网）的影响，期望为决策者提供海水养殖管理相关的科

学依据。小型底栖生物群落连接初级生产者和更高层次的消费者，在底栖食物

网中有着重要位置。此外，小型底栖生物由于体积小、生命周期短、与沉积物

的联系密切，是评估生态系统受胁迫状况的良好指标（Kennedy and Jacoby, 

1999）。 

本论文基于以下三个目的展开：（1）揭示海水养殖对环境因子、小型底

栖生物群落及底栖食物关系的影响；（2）研究不同海水养殖模式对底栖环境

（环境因子、小型底栖生物群落和食物关系）的影响；（3）评估所选的研究

指标预警外来种海水养殖影响的指示效能。中国在世界海水养殖生产中的有不
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可取代的地位，而中国海水养殖种引入的外来种种类多，分布广，但相关研究

却相对缺乏。因此，我们选取了中国渤海两个典型的海水养殖案例——海湾扇

贝 Argopecten irradians（外来种）的筏式养殖（于第 2，3，4 章讨论）以及凡

纳滨对虾 Litopenaeus vannamei（外来种）和日本对虾 Marsupenaeus japonicus

（本地种）的虾塘养殖（于第 2，5章讨论）。论文结果分析了海水养殖对沉积

物和底栖生物群落的影响，探讨了不同层面的指标应用于生态系统功能监测的

可行性，并讨论这些指标对外来物种海水养殖进行环境监测的可能性。 

我们首先分别分析了海湾扇贝筏式养殖以及日本对虾和凡纳滨对虾的池塘

养殖对环境因子的影响，以及不同环境因子对海湾扇贝筏式养殖和虾塘养殖活

动响应的敏感性（第 2 章）。环境因子包括理化指标（氧化还原电位、颗粒有

机质、叶绿素 a、生化组成、蛋白质与碳水化合物比值PRO：CHO）。（1）在

海湾扇贝养殖的案例中，首先我们发现，海湾扇贝养殖不影响沉积物总有机碳

氮含量。氧化还原电位则只在沙质浅水站位（水深 7 米）的扇贝筏架下受到影

响——沉积物氧化还原电位呈现轻微但显著降低。生物可利用碳

（Biopolymeric carbon，BPC）反映了底栖营养状况。在养殖密度较大的两个海

湾扇贝养殖区中，沉积物 BPC 显著增加。（2）在对虾养殖池中，沉积物总有

机碳氮、叶绿素 a、BPC 呈现出随养殖时间积累趋势。日本对虾虾池和凡纳滨

对虾虾池的积累趋势不同。两种虾池相比，养殖前期和养殖后期这些指标也显

著差异。（3）氧化还原电位值和生物可利用碳浓度显示，扇贝养殖水域的底

栖环境处于寡营养状态，说明海湾扇贝筏架养殖并未对底栖环境造成显著的负

面影响。而两种虾塘底栖环境严重恶化，最终呈现缺氧和高度富营养化。（4）

由于 BPC对环境变化响应快以及与底栖生物食物来源的密切联系，该指标相比

其他指标更适合作为海水养殖评估。PRO：CHO 比值在环境监测中应谨慎使用，

因为微生物活动可能会降低该指标敏感度。 

进而我们关注于海水养殖对小型底栖生物群落的影响。第 3 章和第 4 章为

海湾扇贝筏架养殖区的案例。在第 3 章中，海湾扇贝养殖对小型底栖动物（高

分类阶元水平）和底栖桡足类（物种水平）的群落结构和多样性的影响不大，
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只在沙质底的站位中，扇贝养殖导致线虫的丰都和比例显著增加。在泥质底站

位，我们观察到扇贝养殖致使底栖桡足类密度和物种数量显著增加，群落结构

发生变化。这种结构变化与生物可利用碳（如 BPC）含量的积累趋同。我们建

议，小型底栖生物群落和桡足类群落对扇贝养殖的响应因底栖环境的本底而异，

不具有普适性，若使用这两个生物指标评估扇贝或其他贝类海水养殖对环境的

潜在影响时，需要使用其他参数（例如环境因子）补充解释。 

然后，我们利用碳氮稳定同位素技术，进一步分析了三个扇贝养殖场内外

的主要小型底栖动物桡足类和线虫的食物来源（第 4 章）。我们发现，扇贝的

粪便中 δ15N 值显著高于其他食物来源的 δ15N 值。而扇贝养殖场中几种小型底

栖动物的 δ15N 显著高于对照站位。同位素混合模型的结果表明，扇贝的粪便可

能成为大部分底栖桡足类和某些线虫的食物来源。不同科的桡足类之间摄入扇

贝粪便的数量和途径，因其各自的摄食行为和生存环境而异。此外，我们还测

定优势类群 Canuellidae 科桡足类的脂肪酸含量，发现养殖站位的多不饱和脂肪

酸（PUFAs），特别是二十二碳六烯酸（DHA）含量比对照站位显著增高，这

由于其对扇贝粪便的摄食。由于底栖桡足类是鱼类的重要食物来源，其高质量

脂肪酸含量的提高，对当地水域食物网有积极影响。 

在第 5 章里，我们通过稳定同位素和脂肪酸技术，探究了不同对虾养殖阶

段的底栖生物群落结构和食物来源，并描述了虾类饲料、底栖生物群落和对虾

之间的营养关系。我们发现在凡纳滨对虾养殖过程中，由于线虫丰度与底栖富

营养化密切相关，致使小型底栖生物群落产生变化。在养殖季节结束时，凡纳

滨虾塘呈现出以线虫为主的高丰度、低多样性的小型动物群落，并呈现为受扰

动状态。与凡纳滨对虾池塘相比，日本对虾塘中底栖生物的多样性较高，养殖

早期线虫数量增加。在底栖食物网的研究中，天然食物源（底栖微藻、浮游植

物和小型底栖生物）在养殖早期和晚期对日本对虾和凡纳滨对虾均有不同程度

的贡献。在早期阶段，小型底栖生物与对虾（均为初级消费者）具有相似的食

性，可能与对虾形成竞争食物的关系。由于对虾的食性随生长发生变化，在对

虾养殖的后期，小型底栖生物被对虾大量摄食。我们还发现小型底栖生物含有
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丰富的 PUFAs，是高营养饲料。相比之下，日本对虾和凡纳滨对虾较少消耗人

为投入的饲料（日本对虾：杂鱼；凡纳滨对虾：豆粕、卤虫；商业饲料）。这

些饲料可能通过其他途径进入底栖食物网，如细菌代谢。 

本论文采用环境因子、小型底栖生物群落和稳定同位素混合模型，首先发

现海水养殖外来种对底栖环境的影响具有系统特异性，并且取决于若干生境特

征，例如水动力学、沉积物类型和背景有机物含量。海湾扇贝筏式养殖没有对

底栖生态系统产生负面影响，而养殖日本对虾和凡纳滨对虾的滨海虾塘则呈现

有机物积累的底栖环境。然后，理化指标、生物指标和生态系统功能作为环境

评价的指标，也不具有通用性。最后，研究生态系统功能（例如能量流动）能

够为海水养殖评估提供更全面的认识。 
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1.1 Aquaculture and mariculture 

1.1.1 Aquaculture worldwide 
Aquatic food provides animal proteins and is increasingly consumed 

in human diets in the past decades (Tacon and Metian, 2013). The world 

per capita fish consumption has been estimated to increase beyond 20 

kg/year in recent years (FAO, 2016). However, the traditional supplies 

of aquatic food products, i.e. capture fishery, appear to have levelled off 

around 90 million tonnes/year over the last two decades (FAO (2016); 

Fig 1.1). Thus, the reliance on aquaculture has become stronger and the 

industry has expanded continuously (Fig 1.1). In 2015, the global 

aquaculture production reached 76.6 million tonnes, contributing 45.8% 

of the total aquatic production, which is 5.8 times more than 25 years 

ago (FAO, 2017). Until 2020, 50% of the global aquatic food will derive 

from aquaculture; 32.3% of which will come from marine aquaculture, 

or mariculture (FAO, 2011).  

 

Figure 1.1 Trends of world capture fisheries and aquaculture production 

(Modified from FAO, 2017; APFC, 2014) 
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The Asia-Pacific region, in particular Asia (representing 88.9% of the 

global aquaculture production), remains the major aquaculture global 

producer, with production from mariculture increasing from 7.6 million 

tonnes in 1994 to 21.9 million tonnes in 2014 (Subasinghe, 2017). More 

than 200 species of aquatic animals are cultured with diverse farming 

forms (APFC, 2014). Among those cupped oysters, Japanese carpet 

shell, whiteleg shrimp, scallops, and other marine molluscs are the top 

five cultured organisms in the marine environment by quantity 

(Subasinghe, 2017). 

1.1.2 Mariculture in China 
China has a long history of mariculture that can be traced back 2000 

years ago (Li et al., 2011). China also dominates the global mariculture 

production since the late 1980s. The marine production largely 

increased after 1985 (production: 1.42 million tonnes; area: 0.27 million 

hectares) and reached 19.63 million tonnes of production in an area of 

2.16 million hectares in 2016. The forms of mariculture are diverse, with 

mariculture industries being present in both open-water (e.g. suspended 

culture which include long-line and cage culture; see Box 1.1) as well 

as based in coastal land (e.g. ponds). Suspended cultures produce the 

largest yield, accounting for 37.6% of the total production in 2016, 

followed by bottom sowing (see Box 1.1) (35.3%) and pond culture 

(15.2%) (MOA, 2017). 

    Mariculture areas are unevenly distributed along the 18593 km long 

Chinese coastline. Shandong province, located along the Yellow Sea 

and Bohai Sea, is the most important mariculture province, featuring the 

highest mariculture production among nine other coastal provinces in 
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the last 5 years (Wartenberg et al., 2017), and producing more than 25% 

of marine aquatic products in 2016 (MOA, 2017).  

There are 36 marine and brackish water species categories recorded in 

MOA 2003-2014 (Tang et al., 2016). The predominate mariculture 

production focuses on the low trophic-level species: mollusks, 

macroalgae and crustaceans (Fig 1.2). In 2016, the annual production of 

mollusks (i.e., any of the phylum Mollusca of invertebrate animals with 

a soft unsegmented body usually enclosed in a calcareous shell; of which 

bivalves - oyster, clam, scallop, or mussel are the main) increased to 

14.21 million tonnes (72% of total mariculture output), followed by 

macroalgae (2.17 million tonnes); crustaceans ranked the third with 1.56 

million tonnes production (Fig 1.2; MOA, 2017). 

 
Figure 1.2 Mariculture species in Chinese marine coastal waters during 2012-

2016. Data from MOA (2012-2016)  
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Among cultivated mollusks, scallop is one of the most popularly 

cultured one that occupied 0.47 million hectares (34.9% of total 

mollusks mariculture area) with a production of 1.86 million tonnes in 

2016. The northern Yellow Sea and the Bohai Sea contributed more 

than 90% of the total production in China (MOA, 2017). Scallop 

farming has expanded rapidly since 1980s and increased by 320-fold 

during 1984-2016, accounting for 87% of world scallop production in 

2016 (FAO, 2017; MOA, 2017). High demand of scallop is expected 

to further accelerate the expansion of this mariculture in the current 

production areas (Han et al., 2013). 
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Box 1.1 Main types of mariculture system 

• Pond culture is land-based and built in 
tidal and intertidal mudflats near estuaries, bays, 
creeks, lagoons and salt marshes. Ponds are mostly 
used for farming shrimp and crab, but also produces 
mollusk, finfish, and macroalgae. Coastal ponds 
contain brackish or salt water and are usually 
constructed of soil (the so-called earthen pond) (Jia 
and Chen, 2001). The major pond culture 
management includes the water exchange with 
natural environment and addition of fertilizers and 
feeds.  

• Suspension longline culture is conducted 
in open-waters (open sea or coastal embayment and 
estuaries). This system requires moorings and 
rigging; The cultured organisms are placed in trays 
or nets hanging in long-lines or floats, so that they 
can suspend below the water surface. The cultured 
species include filter-feeding organisms (scallop, 
oyster, mussel) and algae (kelp and laver) (Jia and 
Chen, 2001). No feeding costs arise during the 
grow-out phase.  

• Bottom sowing or bottom culture can be 
conducted in open-water or in coastal ecosystems 
(e.g. mudflat). The cultured species are usually 
deposit feeders (e.g. sea cucumber, abalone, 
cockle, Japanese scallop). The hatchery-reared 
juveniles are released and grow up on the bottom of 
the natural environment. Neither physical 
structures nor feed are involved (Wartenberg et al., 
2017).  

• Cage culture is similar to suspended 
longline culture in the sense that structures are also 
moored in the open water, but with a different 
structure. The cultured organisms (mostly finfish) 
are enclosed in a cage or basket where water can 
pass freely (Masser, 1988). Feeds are periodically 
applied in the system. Cage cultures are commonly 
positioned in the inshore coastal areas. However, 
there is a recent trend to move the cage in off-shore 
waters in order to take advantage of enhanced water 
exchange (Holmer, 2009).  



————————————< CHAPTER 1 >———————————— 

<6> 
 

Another noteworthy mariculture sector in China is the shrimp 

farming in the land-based coastal ponds. Chinese shrimp farming was 

initiated in the 1970s and experienced a rapid increase during the 1980s 

(total shrimp production increased by beyond 400 times during 1978-

1991). In the early 1990s, shrimp pond mariculture underwent a 

recession due to the outbreak of shrimp diseases in Penaeus chinensis, 

but the industry largely expanded again since 1998 (growing from 0.14 

to 1.27 million tonnes during 1998-2016) (Cai and Wang, 1999; Miao, 

2005; MOA, 2017). The introduction and widely applied culturing of 

Litopenaeus vannamei is one of the important reasons for this expansion 

(Miao, 2005). Land-based pond is the most important culture method of 

shrimp production in coastal areas (FAO, 2010). There are three 

categories for marine shrimp farming in terms of cultured area and 

stocking density, as practiced in China: extensive (traditional), semi-

intensive, and intensive (Table 1.1). Although the government is 

focusing on developing techniques for intensive shrimp farming, small 

scale semi-intensive farming is currently still the mostly practiced form 

of shrimp mariculture in China (Wu, 2012).  
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Table 1.1 Shrimp farming strategies. Modified from Tacon and Metian (2013) 

  Extensive  Semi-intensive  Intensive  

Rearing units 
Large earthen ponds 
or enclosures up to 
100 ha 

Earthen ponds of 1-
20 ha 

Earthen ponds/plastic or 
concrete tanks (1-20 
ha/100-1500 m3) 

Water 
exchange < 5% 5-20% 5-40% (outdoor)/< 5% 

(indoor) 

Stocking rate  < 5 ind. m-2 12-25 ind. m-2 40-2000 ind. m-2 

Labor input < 0.1 person/ha 0.1-0.5 person/ha 0.4-3 person/ha 

Feeding 
regime none or fertilization Fertilization and feed Fertilization and feed 

Feed 
conversion 
ratio 

0.9-1.3 1.2-1.75 1.4-3.0 

Shrimp 
production  500-1000 kg/ha/year 1000-3000 kg/ha/year 10000-340000 kg/ha/year 

1.2 Potential effect of mariculture on coastal marine 

ecosystem 
Mariculture, like any other human activity, affects the environment, 

due to its reliance and links to natural waters, sediments and food webs. 

The degree of concern about impairing the natural resources is in 

proportion to the extent of resource exploitation and development of the 

industry (Pillay, 2008). In this context, the increasing emphasis on 

mariculture has been questioned on environmental grounds and 

accompanied by potential problems (Silva et al., 2009); many of these 

are associated with habitat destruction (Naylor et al., 2000), loading of 

organic waste and eutrophication (Holmer et al., 2005), transferring of 
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diseases (Meyer, 1991) and biological invasions (Arismendi et al., 2009). 

Although such irreversible changes in coastal marine environments 

were caused by the lack of management of mariculture activities, we 

should also realize that not all environmental consequences of 

mariculture are negative, for instance, cultured bivalves can be 

extractive and improve water quality in nutrient enriched areas 

(Shumway et al., 2003). It is also known that the influence of 

mariculture largely depends on the characteristics of the selected 

location, e.g. hydrodynamics, physical and chemical features (Giles et 

al., 2006; Sarà, 2007), as well as the culturing condition, e.g., reared 

species and their densities (Callier et al., 2007; Sarà, 2007).  

1.2.1 How mariculture causes environmental stress: two 

case studies  
Mariculture comes in multiple versions; two of which, water-based 

farms and land-based ponds, are well-recognized polluters worldwide, 

causing different types of environmental stress (Pillay, 2008). To 

illustrate that, the present PhD research will analyze two cases: bivalve 

mariculture (water-based) and coastal shrimp ponds (land-based), which 

are both widely applied worldwide, and especially in China.  

Case 1: Bivalve mariculture  

Suspended cultured bivalves, including mussels, scallops and oysters, 

generally change the environment in two ways: 1. material processing - 

feeding, excretion and defecation; 2. physical alteration - structures 

introduced by mariculture, such as anchoring facilities. The material 

processing procedure makes bivalve species "keystone" species in the 

ecosystem (Fig 1.3): they filter the particles (e.g. phytoplankton and 
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detritus) from the water column and then produce dissolved ammonium 

and biodeposits (i.e. faeces and pseudofeaces). When bivalve 

populations are abundant, such activities exert "top-down" control of 

phytoplankton and also "bottom-up" effects through biodeposition on 

the sea bottom (i.e. benthic environment) (Dame, 1996; Sousa et al., 

2009). Although bivalve mariculture does not require any external feed 

inputs that cause additional nutrient loadings, their capacity to largely 

relocate particulate organic matters from the water column to benthic 

sediments (so-called biodeposition) has raised a lot of concerns, 

especially when bivalve species are present at high densities (Dumbauld 

et al., 2009; McKindsey et al., 2011). 

Biodeposits of bivalve species can be rich in labile organic contents 

and of good nutrient value with low C:N ratios (Kautsky and Evans, 

1987; Miller et al., 2002). With a fast sinking velocity, bivalve farming 

areas usually have enhanced organic flux to the benthic environment 

(Dame, 1996; Newell, 2004). Studies found that mussel farms increased 

sedimentation by a factor of 3 to 12 (Dahlbäck and Gunnarsson, 1981; 

Grenz et al., 1990; Hartstein and Stevens, 2005). Dahlbäck and 

Gunnarsson (1981) reported that mussels in mariculture areas deposited 

more than 1000 g organic carbon m-2 per year. This is also the case in 

the scallop farms in China (Wang et al., 2018; Zhou et al., 2006). 

There is a paradox that bivalve farming is facing: bivalve may help 

with the assimilation of nutrients in the water due to their large filtration 

of water. On the other hand, the extensive production of biodeposits can 

cause an organic enrichment in the sea floor and affect benthic 

communities (including macrobenthos, meiobenthos, 

microphytobenthos, macrophyte and bacteria) by modifying: (1) the 
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physicochemical characteristics in the water or sediment, e.g. lower the 

oxygen concentrations, change the sulfide pathway that lead to sulphate 

reduction, change in nutrient ratio (Fig 1.3) (Hargrave et al., 2008) and 

(2) the quantity and quality of the food sources for benthic organisms 

(Callier et al., 2013; Dubois et al., 2007).This has potential to further 

deteriorate the ecological status of benthic environment (Holmer et al., 

2005). In order to ensure the sustainability of this industry, more 

information about the relationship between biodeposits production and 

its influence on the benthic environment is needed (Callier et al., 2006).  

 

Figure 1.3 Scheme of the biological processes of scallops and their potential 

ecological impacts. DNRA = Dissimilatory nitrate reduction to ammonium (DNRA). 

DIN = dissolved inorganic nitrogen; Particulate matter includes phytoplankton and 

detritus. Note: denitrification and annamox may be inhibited due to a lack of 

available NO3
- (Castine et al., 2012). 
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Case 2: Coastal shrimp ponds 

Coastal shrimp ponds are built at the expense of destroying natural 

habitats (such as wetlands) (Ha et al., 2014; Polidoro et al., 2010; 

Senarath and Visvanathan, 2001), as well as their associated ecosystem 

services, e.g. carbon sequestration, elimination of greenhouse gas 

(Chmura et al., 2003; Mcleod et al., 2011). 

Other than that, the accumulation of nutrients (both organic and 

inorganic) is also a key environmental concern in the majority of coastal 

shrimp ponds (Funge-Smith and Briggs, 1998; Vismann, 1996; Yang et 

al., 2017). Most shrimp ponds are maintained through the external 

supply of feed and fertilizer. Fertilizer is used to stimulate the natural 

productivity of phytoplankton and microphytobenthos in the ponds, 

while feed provides extra food sources for the shrimps in case the natural 

primary production is not sufficient. There are various feed types that 

range from farm-made (e.g., soymeal and fishmeal) to commercially 

formulated feed (Gamboa-Delgado, 2014). However, only a small 

proportion of these nutrients are assimilated by shrimps (New, 1987). 

As the efficiency of feed utilization is only 4-27.4% (Chen et al., 2016; 

Su et al., 2009), more than 70% of nutrients in the unconsumed feed 

together with the shrimps’ faecal materials become waste products. 

These products contain high concentrations of organic carbon and 

nitrogen, ammonium, urea, bicarbonate and phosphate (Pillay, 2008). 

The fate of these substances depends on whether the leftover feed and 

faeces gets buried in the sediment or is transformed into dissolved 

inorganic nutrients or gas after reworking by different groups of 

microbes in the pond bottom (Fig 1.4). In either way, the nutrients 

accumulate in the pond; once they reach the tolerance thresholds, 
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adverse effects on water and sediments appear in the form of harmful 

algae blooms and deterioration of pond quality, that further cause the 

shrimp disease and reduce production (Hu et al., 2014). Moreover, the 

discharge of the untreated pond effluents further pollutes the adjacent 

coastal habitats, causing eutrophication and posing threats to other 

marine organisms (Boyd, 2003; Feng et al., 2004). However, in well-

managed ponds, waste of feed can be minimized (Boyd, 1995). One of 

the most important ways to minimize waste discharge is the proper 

estimation of feed input based on the feeding behavior of cultured 

shrimps and the pond food web (Martinez-Cordova et al., 1998).  

 

 

Figure 1.4 Scheme of biochemical processes in shrimp ponds. Modified from 

Funge-Smith and Briggs (1998). The dashlines indicate reations occuring under oxic 

condition or oxic layer. When the organic loading is high and the oxygen supply is 

lower than the compustion, the sediment became anoxic. Nitrification stops due to an 

oxygen deficiency. During the hydrosulfide production, free sulfides inhibit 

nitrification and therefore, the N2 production - denitrification and annammox may be 

inhibited due to a lack of available NO3
- (Castine et al., 2012). Dissimilatory nitrate 
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reduction to ammonium (DNRA) and ammonification is increased, stimulating 

primary production on one hand, and being toxic to shrimps on the other hand.  

1.2.2 Potential impacts of mariculture on the benthic 

environment  
Stressors (or causes) from the two above cases are different but the 

effects are both directed towards the benthic ecosystem. As organic 

enrichment of aquatic ecosystems increases, the balance between 

pelagic and benthic metabolism appears to shift to become dominated 

by benthic processes (Holmer et al., 2005). 

 

 
 

The accumulation of organic enriched mariculture waste can affect 

the benthic environment at three levels: sediment physiochemical 

properties (abiotic), organisms’ characteristics (biotic), and ecosystem 

functioning.  

Box 1.2 Benthic environment 

The benthic environment is defined as "physically distinct areas of the seabed that 
are associated with the occurrence of particular species" (Harris and Baker, 2012). 
This definition refers to both abiotic (i.e. physical substrates) and biotic elements 
(i.e. benthic communities including primary producers and consumers). The 
benthic environment is an important location of various biogeochemistry cycles 
(Levinton and Levinton, 1995). It serves crucial functions such as space for shelter, 
feeding, and breeding for benthic communities and fishes (Kritzer et al., 2016). 
The benthic environment is currently under stress and risks due to human activities 
(Diaz and Rosenberg, 2008). It is urged to protect benthic communities and 
habitats so that biological diversity and ecological functioning and the associated 
services can be maintained (Giere, 2013).  
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1.2.2.1 Potential benthic effect of mariculture at the abiotic level  

Organic waste from mariculture degrades more easily than the natural 

particulate matter in coastal areas since it contains a large proportion of 

labile organic matter and stimulates the microbial activity when settling 

on the sediments (Holmer et al., 2005; Kausty and Evens, 1987). This 

causes changes in sedimentary geochemical cycles and thus affects the 

physio-chemical properties of sediments (Holmer et al., 2005). The 

texture of sediments may be altered. For instance, the intensive organic 

loading can turn fine sand bottoms to muddy deposits (Kaspar et al., 

1985; Netto and Valgas, 2010).  

Due to the development of microbial activities, a direct consequence 

of organic enrichment is oxygen consumption, which was found to be 

higher under finfish and bivalve farms and in the bottom of culture 

ponds (Burford and Longmore, 2001; Christensen et al., 2003; Giles et 

al., 2006; Papageorgiou et al., 2010). In areas experiencing low 

turbulence and high organic input, the oxygen consumption rate may 

become greater than that of renewal by water exchange and thus the 

sediment can become anoxic (Pillay 2008).  When the oxygen is limited, 

other terminal acceptors will be used for organic decomposition, 

generating reduced sediments with low redox potential and producing 

associated reduced products, e.g. H2S, ketones, aldehydes, amines and 

mercaptans (Avnimelech and Ritvo, 2003). Other than that, nitrogen and 

phosphorus are also commonly abundant in both open-water farms and 

coastal ponds (Boyd, 1995; Martin et al., 1998).  

1.2.2.2 Potential benthic effect of mariculture at the biotic level  

Organic enrichment can primarily affect the microscopic biota such 

as microphytobenthos, bacteria, protozoa, metazoa, etc. For instance, 
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the abundance and biomass of bacteria and heterotrophic protists was 

found to increase significantly by the feed pellets from fish farms 

(Bongiorni 2005). Primary production by microphytobenthos was 

stimulated under some fish and mussel farms (Franzo et al., 2014; La 

Rosa et al., 2001), while others found reduced production of 

microphytobenthos under mussels farms (Christensen et al., 2003; 

Sdrigotti and Umani, 2002).  

Organic loading can affect the benthic infaunal communities (i.e. 

benthos) in their number of species – S, abundance – A, and biomass – 

B (SAB). This was first described in Pearson and Rosenberg (1978) by 

studying the temporal and spatial changes of macrobenthic communities 

along an organic gradient (Fig 1.5). It is further concluded that the 

negative effects on macrobenthos is rather caused by the formation of 

hypoxic and anoxic conditions and the toxic effects of hydrogen sulfide 

as the organic matter increased (Gray et al., 2002; Hargrave et al., 2008). 

As the organic matter accumulates from natural to moderate levels, the 

small opportunistic species (e.g. polychaetes such as Capitella capitata) 

present and enhanced with the organic gradient (Pearson and Rosenberg, 

1978). Once the organic matter increased to a higher level, the sediment 

becomes anoxic and even the tolerant taxa cannot survive, and at the end, 

only single cell organisms such as microbes are able to present (Fenchel 

and Riedl, 1970; Hamoutene, 2014). Studies on macrofauna from 

aquaculture sites often found the changes of macrobenthic communities 

associated with the organic loading and oxygen supply (Brook et al., 

2003; Chamberlain et al., 2001; Keeley et al., 2012; Mangion et al., 2017; 

Wildish et al., 2001). As with the general model, moderate organic 

enrichment leads to density enhancement of total meiobenthos (Castel 
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et al., 1988), nematodes (Lambshead, 1986; Moore and Bett, 1989) and 

epi- and endobenthic copepods (Shiell and Anderson, 1985). As oxygen 

concentrations decrease, most of the species will disappear (harpacticoid 

copepods usually disappear before nematodes), except few tolerate 

species (e.g. some sulfide tolerant nematodes) that live in anoxic 

environment and feed on decaying materials and bacteria (Giere, 2009). 

The mariculture impact studies on meiobenthos usually reported a large 

reduction in meiobenthos density and diversity under the fish farms 

which generate reduced and anoxic conditions (Grego et al., 2009; 

Mazzola et al., 1999, 2000; Mirto et al, 2000; La Rosa et al., 2001). 

Other study found no effect of mussel farming on either the density nor 

diversity of meiobenthos which they attribute to high hydrodynamics 

that alleviate the organic accumulation (Danovaro et al., 2004).  

Food availability is also an important driver of benthic community. 

Rosenberg (1987) and Rosenberg (2001) further suggested that the SAB 

of benthic communities is enhanced by the food availability. In 

mariculture sites, the downward organic flux potentially increases the 

food loading on the benthic environment, which may facilitate some 

trophic group of benthos (e.g. deposit feeding benthos) (Callier et al., 

2013).  
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Figure 1.5 The Benthic Habitat Quality (BHQ) index (Nilsson and Rosenberg, 

1997) (a) and the general model of predicted response of benthic communities 

along a gradient of organic enrichment (SAB curve; S- number of species, A – 

abundance; B – biomass; after Pearson and Rosenberg, 1978) (b). Diagram 

adapted from Rosenberg (2001). PO: peak of opportunistic species; E: ecotone point 

- An ecotone point is a transition region between two or more diverse communities 

(Odum and Odum, 1959). In this case, the community in the ecotone point consists of 

species from both polluted side and unpolluted side of communities (Pearson and 

Rosenberg, 1978). As the organic matter increased, the oxygen concentrations 

decrease that changes the oxidation-reduction state of the sediment as well as the 

habitat quality (upper graph), and the benthic communities in terms of species, biomass 

and abundance (bottom graph). 

1.2.2.3 Potential benthic effect of mariculture at the ecosystem 
functioning level   

Environmental effects of mariculture can also occur cumulatively on 

a systematic level and affect ecosystem functioning. The notion of 

ecosystem functioning integrates changes in energy and matter over 



————————————< CHAPTER 1 >———————————— 

<18> 
 

time and space through biological activity, e.g. food-web 

characterization (Power, 1992).  

    There is a broad range of potential effects of mariculture at the 

functional level. The potential to change the aquatic food web is the 

most fundamental one. Introducing cultured animals into ecosystems 

may influence trophic interactions since the natural food sources have 

been modified (Lefebvre et al., 2009). Faeces and uneaten feed settle on 

the benthic environment where they may enter different ecosystem 

levels. The large particles can be consumed by detritus-feeding 

organisms (Callier et al., 2013; Redmond et al., 2010), while the small 

particles remain suspended and are assimilated by consumers in the 

water column such as zooplankton or fish (Vizzini and Mazzola, 2012). 

Such processes change the energy pathways of ecosystems and 

potentially shift a system from top-down- to a bottom-up driven.  

In addition, parts of nitrogen and phosphorus from mariculture wastes 

underwent significant transformation by different groups of microbial 

communities and thus resulting in increased nutrient fluxes. This may 

induce further cascading effects that are greater than simple shifts in 

nutrient levels, e.g. release of nitrogen stimulation of primary 

production (Hatcher et al., 1994), production of reduced materials that 

are toxic to consumers (e.g., H2S, ammonia) and cause lethal or 

sublethal effects on fish and shrimp (Funge-Smith and Briggs, 1998; 

Vismann, 1996). 

1.3 Environmental assessment for mariculture 
    The environmental threats related to mariculture as stated in section 

2 have raised awareness to stimulate the development and 
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implementation of environmental policies to protect and manage coastal 

marine ecosystems (Borja et al., 2008). With varying monitoring 

strategies among countries, aquaculture policies focus on environmental 

legislation and monitoring (Wang, 2001). Therefore, it is necessary to 

improve the understanding of ecosystem functioning and provide 

effective methods to decision-makers and the public regarding 

monitoring organic waste discharge from mariculture (Hooper et al., 

2005; Kalantzi and Karakassis, 2006; Lubchenco, 1998).  

    To determine the impact of mariculture in quantitative terms, many 

indicators have been proposed, ranging from abiotic monitoring 

approaches, e.g. physicochemical parameters, to more recently applied 

bioindicators (i.e. the biological processes, species, or communities 

which used to assess the environmental quality and how it changes over 

time) (Anderson et al., 2005; Callier et al., 2008; Hargrave et al., 2008; 

Holt and Miller, 2011; Wildish et al., 2001). In addition, new techniques 

such as stable isotopes and fatty acids have been introduced to reveal 

information on mariculture impacts at the functional level, e.g. 

identifying the origin and dispersal of farm-derived wastes (Vizzini and 

Mazzola, 2012; White et al., 2017). 

1.3.1 Classic physicochemical approaches 
Based on the geochemical cycle of sulfur that drives anoxic condition, 

redox potential and total sulfide are commonly used as basic monitoring 

methods for organic enrichment (Hargrave et al., 2008). Studies 

conducted on mariculture areas classified organic enrichment on 

sediments into five categories from oxic to anoxic (Figure 1.6). Wildish 

et al. (2001) developed an empirical regression equation to predict the 
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relationship between total sulfides and redox potential. However, 

monitoring organic enrichment through redox potential and total sulfide 

is not always efficient, for instance, these methods failed to detect the 

organic enrichment in mussel farms (Callier et al., 2007). Anderson et 

al. (2005) found that the wide variability in sediment characteristics, 

such as organic matter concentrations, may mask any general trends 

between farm sites and reference sites, and suggested to consider the 

natural level of organic matter when developing methodologies to assess 

and monitor for mariculture sites.  

 

 

Figure 1.6 Benthic enrichment zonation based on redox potentials and sulfides 

Modified from Hargrave et al. (2008). 

1.3.2 Benthic trophic status as an indicator 
Sedimentary organic matter is the main energy source for benthic 

communities. The information on the organic matter input to the benthos 
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(i.e. trophic status) has been proposed to evaluate benthic eutrophication 

resulting from mariculture (Pusceddu et al., 2009; Pusceddu et al., 2011). 

Measuring the quantity of bulk organic matter (e.g. total organic carbon) 

is one of the most direct approaches to reflect the benthic trophic status 

as well as assess organic enrichment (Nixon, 1995). However, due to its 

conservative nature, changes in bulk concentration is not always 

detectable when the organic loading is low (Callier et al., 2008; Fabiano 

et al., 1995). In fact, the benthic trophic status is also a function of 

organic quality. One approach to measure benthic trophic status is to use 

of abundance of photosynthetic primary producers, e.g. 

microphytobenthos (Franzo et al., 2014; Kelly, 1998). Another approach 

consists of measuring changes in the biopolymeric fraction of organic 

matter in the sediments, which seems to be more sensitive to the 

presence of mariculture waste and can reflect the modification of trophic 

status by mariculture (Mirto et al., 2000; Pusceddu et al., 2009; 

Pusceddu et al., 2011; Vezzulli et al., 2002). 
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1.3.3 Meiobenthic research as mariculture assessment 
    Measuring only abiotic variables to identify changes can be somehow 

problematic (Goodsell et al., 2009; Suter, 2001). Living organisms are 

considered more appropriate indicators since they integrate abiotic and 

biotic elements of an ecosystem through their adaptive responses 

(Casazza et al., 2002). Choosing the right target faunal group is a crucial 

factor to successfully detect the biological impacts of mariculture 

(Schratzberger et al., 2000). Compared with macrofauna (i.e. benthos 

which is retained on a 500 µm mesh sieve), meiofauna (see 3.3.1) is a 

more accurate target faunal group, because of its  higher sensitivity to 

environmental  changes and faster generation turnover (Giere, 2009). 

Consequently, it has recently been developed as an environmental 

Box 1.3 Use biopolymeric carbon to indicate benthic trophic status 

Biopolymeric carbon (BPC) is the fraction of total organic carbon that 
potentially available to benthos (Fabiano et al., 1995). It is calculated as 
the sum of carbon equivalents in proteins, carbohydrates and lipids by 
using the following conversion factors: 0.49, 0.40, and 0.75 mg C mg-1, 
respectively (Fabiano et al., 1995). BPC includes the heterotrophic 
nutrition and is important to benthic environment where large proportions 
of food for benthos are deposited or detrital organic materials (Pusceddu 
et al., 2009). BPC can represent the total organic carbon pool, on the other 
hand responds promptly to the changes in productivity of benthic 
environment (Fabiano et al. 1995; Pusceddu et al. 2009). The accumulation 
of BPC increases the oxygen consumption and may be responsible for the 
hypoxic or anoxic condition in sediment (Pusceddu et al., 2009). 
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assessment tool (Kennedy and Jacoby, 1999; Mirto et al., 2012; Mu et 

al., 2002).  

1.3.3.1 Meiobenthos, harpacticoid copepods: the definition 

    The term of "meiobenthos" (also known as "meiofauna") was 

introduced by Mare (1942) in order to define a group of benthic 

metazoans that are smaller than "macrobenthos" but larger than 

"microbenthos" (Giere, 2009). Their size range varies: from 

500μm/1000μm as an upper limit of sieve size and 38 µm/44 µm/63 µm 

as a lower limit of the sieve (Giere, 2009; Higgins and Thiel, 1988; Mare, 

1942; Swedmark, 1964). Some organisms are "permanent" meiobenthos, 

while others are only members of the meiobenthos during their early 

stages and later become macrobenthos. Meiobenthos are abundant (on 

average 106 ind m-2) in all marine ecosystems (Higgins and Thiel, 1988). 

They also show a high diversity in morphology and taxonomy. The most 

dominate taxa include nematodes, copepods, ostracods, kinorhynchs, 

tardigrades, gastrotrichs, turbellarians, oligochaetes, polychaetes and 

rotifers. Gastropods and bivalves are also important groups of the 

meiobenthos (Gee, 1989).  

    Harpacticoid copepods are small crustaceans belonging to the order 

Harpacticoida of the subclass Copepoda and are recognized as the 

second most abundant meiobenthos taxon in marine sediments after 

nematodes (McIntyre, 1969). In general, harpacticoid copepods have a 

linear shape with a wider cephalosome than the urosome. The 

morphology can however vary in function of the environment (Fig 1.7). 

Harpacticoid copepods are usually classified into interstitial, burrowing, 

and epibenthic groups (Hicks, 1983). 
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Figure 1.7 Basic body plan of harpacticoid copepods (Huys, 1996) and the 

morphological adaptions of Copepoda to habitats (Noodt, 1971) 

    All meiobenthos lives in or on sediments, and sediment granulometry 

characteristics are thus one of the most important factors driving their 

distribution patterns (Coull, 1988). For instance, interstitial harpacticoid 

copepods are abundantly present in sandy bottom, while shallow muddy 

substrates are dominated by burrowing harpacticoids. Other than 

granulometry, other abiotic factors, e.g. oxygen level, redox potential, 

total sulfide and biotic factors, e.g. food availability, also largely affect 

assemblage of harpacticoid copepods (Giere, 2009).  

1.3.3.2 Their roles in marine food web 

    The energy flow in the marine food web can generally be attributed 

to three pathways: herbivorous (primary producers - lower consumers - 

higher consumers), detrital (detritus – decomposers/detritivores), and 

microbial (microbes - microbivores) (Landry, 2002; Moore et al., 2004). 

Meiobenthos consumes a wide spectrum of food sources and is involved 



————————————< CHAPTER 1 >———————————— 

<25> 
 

in all these pathways (Giere, 2009). It is well recognized that detritus is 

vital for the meiobenthos’ nutrients in shallow coastal environments 

(Schlechtriem et al., 2004). This particularly holds for nematodes; some 

groups of which can directly consume deposited phytodetritus (Moens 

et al., 2002; Ólafsson et al., 1999), as well as detritus derived from plants 

e.g. Spartina, seagrass (Carman and Fry, 2002; Lebreton et al., 2012; 

Vafeiadou et al., 2014). 

The herbivorous pathway is strongly linking primary producers and 

meiobenthos. Many harpacticoid copepod and nematode species 

strongly rely on microphytobenthos (Buffan-Dubau and Carman, 2000; 

Cnudde et al., 2015; Montagna et al., 1995). Some can selectively feed 

on diatoms of a particular size (De Troch et al., 2006). Herbivorous and 

detrital pathways sometimes crossover with microbial pathway in small 

food web (Van Oevelen et al., 2006). For instance, microphytobenthos 

can excrete mucus-enriched extracellular polymeric substances (EPS) 

(Orvain et al., 2003). This EPS serves as substrate for bacteria which are 

consumed by copepods and nematodes (De Troch et al., 2006; Rzeznik-

Orignac et al., 2008). 

The grazing behavior of meiobenthos is a regulator of the ecosystem 

process e.g. mineralization. Grazing by meiobenthos, the bacteria 

communities can be enhanced, since their population has been kept in 

an active growth phase (Nascimento et al., 2013). The mucus excreted 

by meiobenthos can also attract bacteria to colonize (Moens et al., 2005). 

Furthermore, the enhanced bacteria together with the bioturbation of 

meiobenthos speed up mineralization of labile organic matter 

(Alkemade et al., 1992; De Mesel et al., 2004; Kristensen, 2000). As 

such, the meiobenthic grazing behavior is crucial to the ecosystem 
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process in the mariculture benthic environment, since mariculture sites 

are usually characterized by an enhanced bacteria community and 

microbial loops (La Rosa et al., 2001; McKindsey et al., 2011; Nevejan 

et al., 2018). 

Meiobenthos is also an important food item for macrofauna (e.g. 

shrimps and crabs) and fish (Gee, 1989). Fish were found to 

preferentially feed on harpacticoid copepods because of the lower cost 

of capturing them and their high nutrient levels e.g. calories and fatty 

acids (See BOX 1.4) (Bell and Tocher, 2009; Gee, 1987; Volk et al., 

1984). Harpacticoid copepods thus become important nutrient 

conveyors to higher trophic levels in aquatic food webs (Iverson, 2009). 

In this sense, meiobenthos is encouraged to be widely used as 

mariculture feed (Gee, 1989). Harpacticoid copepods are considered as 

good candidates but are so far limited because of difficult mass rearing 

(Chandler, 1986; Nanton and Castell, 1999). More recently, nematodes 

have been proposed to be applied in the mariculture industry as well (Da 

Silva et al., 2008; Schlechtriem et al., 2004).  

As such, meiobenthos play an important role of connecting the lower 

and higher levels of aquatic food webs. Consequently, any 

environmental impact on the assemblages of this group (e.g. abundance, 

diversity) can cause a cascading effect on ecosystem functioning. 
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1.3.3.3 Meiobenthos as bioindicators  

    Mariculture can stimulate (Castel et al., 1989) or not affect total 

meiobenthos densities (Danovaro et al., 2004), but most commonly 

reduces the abundance of meiobenthos (Grego, 2010; Mirto et al., 2012). 

These changes are driven not only by an increased food supply 

(eutrophication due to leftover feeds), but also by the alteration of the 

sediment characteristics (see 1.2.2.1).  

    Harpacticoid copepods and nematodes are suitable to assess 

Box 1.4 Fatty acids and essential fatty acids 

Fatty acids (FA) are the important unit of lipids, which consist of a carbon 
and hydrogen chain terminated respectively with a carboxylic acid (COOH) 
and a methyl group (CH3) at two ends (Iverson, 2009). There are various 
forms of FA with different length (14-24 carbons), saturation (0-6 double 
bonds), and shape. During recent years, the role of FA in aquatic ecosystems 
has gained growing interest (Brett and Muller-Navarra, 1997). Long-chain 
(≥20 carbons) polyunsaturated FA (PUFA) with the linolenic (3) and 
linoleic (6) groups, particularly 20:53 (eicosapentaenoic acid, EPA) and 
22:63 (docosahexaenoic acid, DHA), are well-recognized to regulate the 
survival, growth, and reproduction of zooplankton (Brett and Muller-
Navarra, 1997), harpacticoid copepods (Ederington et al., 1995), benthic 
macrofauna (Vanderploeg et al., 1996), and fish (Watanabe et al., 1982); 
i.e. the so-called essential fatty acids (EFA). Those EFA affect the dynamics 
of phospholipids structure that influence membrane protein functioning 
(Iverson, 2009; Li et al., 2009). Unfortunately, EFA can only be synthesized 
by primary producers, heterotrophic protists, and some lower animals (e.g. 
harpacticoid copepods) (Monroig et al., 2013). Consumers from higher 
trophic levels have to gain EFA from their food sources. Thus, EPA and 
DHA have been proposed as important indicators of high-quality food 
source (Støttrup and Jensen, 1990), especially in mariculture industry 
(Nanton and Castell, 1999).  
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disturbance on the marine environment because they are dominant and 

have a high species richness (Sandulli and De Nicola, 1991; 

Schratzberger et al., 2000). Some genera/species are proposed as 

putative bioindicators due to their sensitive or tolerant nature. For 

example, the nematode genera Richtersia, Desmoscolex and Halalaimus 

are highly sensitive to biodeposition, while Terschellingia, Sabatieria 

and Daptonema can be favored by organic loading (Mirto et al., 2014; 

Mirto et al., 2002; Netto and Valgas, 2010; Vezzulli et al., 2008). 

Similarly, harpacticoid copepod genera with slender shape like 

Enhydrosoma and Acrenhydrosoma can survive under hypoxic or 

anoxic conditions (De Troch et al., 2013; Grego et al., 2014), whereas 

there are species (e.g. Amphiascus tenuiremis, Microarthridion littorale, 

Tisbe sp., Tigriopus japonicus) showing a lower tolerance to 

environmental stressors (Giere, 2009). 

    Identifying indicator species/genera can provide information on the 

overall health of marine habitats. However, the identification to a lower 

taxonomic level can be time-consuming and requires special knowledge 

and experience, especially for nematodes (Kennedy and Jacoby, 1999). 

In this sense, a more rapid method that only identifies higher 

meiobenthos taxa (i.e. taxonomic minimalism) has been developed 

(Kennedy and Jacoby, 1999; Warwick, 1988). This method is based on 

the recognition that, even at higher taxonomic levels, the sensitivity to 

stressors (more specifically organic enrichment) varies among taxa 

(Giere, 2009). For instance, nematodes are more adaptive to pollution 

(Peterson and Fry, 1987), while the population of sensitive taxa, e.g., 

harpacticoid copepods and kinorhynchs, can be suppressed under high 

organic loading (Grego, 2010; Mirto et al., 2012). So far, multivariate 
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analyses based on meiobenthos assemblages at higher taxonomic levels 

are the most widely used approach linking meiobenthic community 

composition to environmental impacts including mariculture (Kennedy 

and Jacoby, 1999; McKindsey et al., 2011). However, it is also debated 

whether higher taxa are a sufficient proxy to show species/genera-level 

patterns especially at a regional scale (Hawkins and Norris, 2000; Heino 

and Soininen, 2007). 

In addition, a simpler method, based on the more robust nature of 

nematode compared to harpacticoid copepods, is to calculate the ratio of 

nematode and copepod densities (Ne/Co) (Raffaelli and Mason, 1981). 

This index has been tested and criticized for the indication of benthic 

pollution (Coull, 1988; Raffaelli and Mason, 1981; Sandulli and De 

Nicola, 1991), yet its application in assessing mariculture activities is 

rather new and feasible (Sutherland et al., 2007). 

1.3.4 Applying trophic analysis in mariculture  

Understanding the mariculture food web is useful to address resource 

management in an ecosystem context (Ferriss et al., 2015). Depicting 

trophic relationships within culture systems, in particular, between 

nutrient sources (e.g., supplementary feed, waste) and consumers 

(reared or natural presented), is applicable in assessing the impacts of 

mariculture ventures (Schroeder, 1983). For instance, determining the 

utilization and fate of different food sources in shrimp ponds can provide 

a solution to the issue of overfeeding (Burford et al., 2004). Also, how 

the benthic food webs respond to bottom-up disturbances, such as 

biodeposition from marine farms, provides evidence to evaluate such 

mariculture activity (Callier et al., 2013; Yokoyama et al., 2006).  

Stable isotopes as a biomarker (Box 1.5) have been recently used to 
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trace the waste products from finfish mariculture and showed that the 

waste might enter the macrobenthic trophic route (Callier et al., 2013; 

Redmond et al., 2010; Vizzini and Mazzola, 2012). However, there is 

little information either about tracing the wastes from bivalve farms or 

targeting on the meiobenthic trophic route. 
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Box 1.5 Stable isotope analysis (SIA) in food web studies 

Stable isotopes are atoms that have the same number of protons and 
electrons but with different numbers of neutrons, and at the same time 
energetically stable, e.g. 2H/1H (Fry 2006). Carbon (13C/12C) and nitrogen 
(15N/14N) are two of the most widely used stable isotopes in food web 
analysis (Boecklen et al., 2011). Isotopic signature is expressed as δ, which 
is the deviation between the isotopic ratio of a sample and an international 
standard and reported in per mille (‰).  There are basically two themes 
when using stable isotopes to trace the trophic process: 1. Mixing, i.e. the 
isotopic signature of a consumer is the weighted mix of isotopic signatures 
of its food sources. 2. Fractionation, i.e. the changes of isotopic signatures 
from any physiochemical reaction, for instance, a relatively constant 
increase of heavier isotope abundance is observed in a consumer compared 
with its food source. Such arithmetic difference of isotopic signature 
between consumer and diet has been termed ‘trophic enrichment factor’ 
(TEF) (Newton, 2010). TEFs has been investigated for many taxa and often 
assumed averagely ca. 0.5‰ for δ13C and 3.4‰ for δ15N (McCutchan et al., 
2003; Minagawa and Wada, 1984). However, the value varies and depends 
on many factors, e.g. taxon, habitat, type of food, length of food chain (Post, 
2002; Zanden and Rasmussen, 2001). The best option would be to set up an 
isotopic food tracer experiment to measure the species/system-specific TEF 
in each case, but it requires great efforts and time (Caut et al., 2008). The 
alternative option is to use the TEF from the close taxon/system that has 
been determined. To calculate the relative contributions of food sources to 
a consumer, mixing models have been developed which can cope with more 
than n+1 food sources from n stable isotopes and estimate the range of 
feasible contributions of sources (Phillips and Gregg, 2003; Yu, 2014). 
Also, models based on Bayesian theory, such as MixSIR (Moore and 
Semmens, 2008), SIAR (Parnell et al., 2010), MixSIAR (Stock and 
Semmens, 2013), FRUITS (Fernandes et al., 2014), have been applied to 
incorporate the uncertainty of TEF and to deal with the variability of 
isotopic values of sources and consumers (Phillips et al., 2014). Based on 
that, stable isotopes analysis (SIA) has been widely used in trophic ecology. 
Compared with the conventional methods (e.g. direct observation and gut 
content analysis), SIA integrated the information of diets over a longer 
period (Fry, 2006). To date, SIA is a powerful tool to determine marine and 
estuarine food web structure (Peterson & Fry 1987; Michener & Kaufman 
2007).  
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Stable isotopes are also commonly applied to determine the relative 

contributions of food sources to reared animals as well as trophic 

interactions between organisms in culture ponds (Feng et al., 2004; 

Nunes et al., 1997; Yokoyama et al., 2002). However, the trophic 

interactions in culture ponds can be complex (Moriarty, 1997), for 

instance, feed can be transformed by autotrophic and heterotrophic 

activities into microbes and their exudates rather than directly fueling 

consumers from higher trophic level (Moriarty, 1997; Schroeder, 1983), 

which bulk stable isotope technique is not adequate to measure 

(Gamboa-Delgado, 2014). The application of fatty acids as biomarker 

(Box 1.6) is capable to provide information on these pathways, yet it is 

still a new tool for mariculture food web analysis.       

 

 

Box 1.6 Fatty acids in food web analysis 

FAs (See BOX 1.4) are widely used as biomarker in trophic relationships 
study because of the specificity of the source and the strong conservatism 
through the trophic transfer (Napolitano, 1999). The FA profiling technique 
that assigns specific food sources to consumers is to identify certain FA in 
consumers which cannot synthesized by themselves (a.k.a. fatty acids 
trophic markers - FATM) (Smith et al., 1996). Table 1.2 lists the commonly 
used FATMs in marine resources to indicate the consumers' diet. Compared 
with SIA, FA analysis can trace some of the pathways in organic flow with 
a higher resolution, for instance, providing biomarkers for different groups 
of bacteria, flagellates and dinoflagellates (Dalsgaard et al., 2003; Kelly 
and Scheibling, 2012; Nelson et al., 2001). This is useful in meiobenthic 
trophic studies where the microbial pathway is important. Thus, FA 
profiling have complemented SIA as a second biomarker in meiobenthic 
ecology research (Cnudde et al., 2015; Leduc et al., 2009; Mascart et al., 
2018).  
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Table 1.2 Commonly used fatty acids trophic markers (FATMs) as tracers of 

marine food sources to meiobenthos 

Source FATMs References 

Bacteria Σ 15, 17, Σi-FA+ai-FA, 
18:1ω7 

(Budge and Parrish, 1998; Stevens 
et al., 2004; Viso and Marty, 1993) 

Diatoms 16:1ω7, EPA (Dalsgaard et al., 2003; Reuss and 
Poulsen, 2002) 

Dinoflagelletes 
DHA, DHA/EPA, 18 PUCA, 
18 PUFA+DHA, 18:4ω3, 
18:1ω9 

(Dalsgaard et al., 2003; Kelly and 
Scheibling, 2012; Mansour et al., 
1999) 

Chlorophyta 18.2ω6, 18.3ω3 (Graeve et al., 2002; Kelly and 
Scheibling, 2012) 

Carnivorous 
feeding 18:1ω9/18:1ω7 (Nelson et al., 2001; Nyssen et al., 

2005) 
 

1.4 Non-indigenous species in mariculture 
The potential environmental and economic damage caused by NIS 

(see BOX 1.7) have been well documented worldwide especially in 

aquatic systems (Olenin and Minchin, 2011). These species were 

introduced to a new range and established themselves (see Box 1.7). 

Some of the established species may spread and become invasive 

(Richardson et al., 2000). This can result in negative ecological impacts 

at variable levels, including polluting the local gene pool (Olenin et al., 

2010), transferring diseases (Burreson et al., 2004), changing the 

physical habitat (Rodríguez et al., 2005), threatening the biodiversity 

(e.g. shifts in community and loss of keystone species) (Britton-

Simmons, 2004; Gophen et al., 1995), altering the energy flow in the 

local food web (Feng et al., 2018; Marić et al., 2016); and therefore 

affect the ecosystem services and economics e.g. local native fisheries 
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(McArdle et al., 1991; Ruiz et al., 1997). Marine coastal ecosystems 

provide important services to humans while at the same time being 

highly vulnerable to biological invasions and are therefore receiving 

increasing concern about the NIS issues (Garcia et al. 2017; Rilov & 

Crooks, 2009). 

 
  

Box 1.7 Non-indigenous species (NIS) 

Biological introduction, i.e. introducing a species into a new environment, has 
existed for a long time in coastal and marine ecosystems (Elton, 1958). However, 
under the context of trading expansion and globalization, geographic barriers 
preventing the dispersal of species have weakened, which largely facilitates 
biological introduction (Carlton, 1989; Olenin and Minchin, 2011). There are 
several terms to describe such species as alien, exotic, introduced, non-native, 
non-indigenous, and invasive alien. Here we refer to ‘non-indigenous species 
(NIS)’, which are defined as ‘species, subspecies, or lower taxa that are outside 
their natural range (past or present) and outside their natural dispersal potential’ 
(Olenin et al., 2010). These species have been introduced to a given region by 
intentional/unintentional human activities rather than natural dispersal, except 
the secondary introduction*(1) of NIS that could occur without humans involved 
(Olenin et al., 2010). Invasive non-indigenous species, or invasive alien 
species/alien invasive species/invasive species, are a subset of established*(2) NIS 
which have spread, are spreading or have demonstrated their potential to spread 
elsewhere, and have an adverse effect on biological diversity, ecosystem 
functioning, socio-economic values and/or human health in invaded regions 
(Olenin et al., 2010). 

*(1): A NIS directly arriving to a new location from its native region is considered as 
“primary introduction”, while its subsequent spread from the founding site is called 
“secondary introduction” (Olenin et al., 2010). 

*(2): Established - with a self-perpetuating population, naturalized, feral and breeding 
successfully or released and breeding successfully (Williamson, 1996). 
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Aquaculture is an important pathway for the introduction of NIS (Ruiz 

et al., 1997), since the use of NIS plays a crucial role in the growing 

aquaculture industry (De Silva et al., 2009; Lin et al., 2015). This applies 

to mariculture industry (Shelton and Rothbard, 2006). However, 

accelerating the introduction of cultured NIS has faced a paradox. On 

one hand, cultured NIS are usually selected based on traits such as high 

growth rate, wide ranges of diets, high reproduction ability and larger 

tolerance to the environment (Yakupitiyage and Bhujel, 2005). Those 

traits compensate to some extent the decline of the production associated 

with local species (e.g. diseases; See Box 1.9) (Lee, 2010). On the other 

hand, the introduction of a species into a new environment is supposed 

to influence the local ecosystem processes, with some of the traits of 

NIS accelerating such impacts on ecosystem processes, ultimately 

altering the functioning of the whole ecosystem (Newell, 2004). 

Although not all the introduced species have obvious impact for the 

moment, or can manage to escape, establish and cause serious problems, 

it is difficult to predict the future problematic species (Hill, 2009). To 

date, most NIS impacts studies focus on the successful invaders which 

have caused more obvious effects, but the NIS introduced by 

aquaculture are often neglected (Padilla et al., 2011). 

Here we describe two of the most popular NIS cultured in China: the 

bay scallop Argopecten irradians in open-water mariculture and the 

whiteleg shrimp Litopenaeus vannamei in coastal ponds. Although there 

is no established population (i.e. self- perpetuating population that 

naturalized, feral and breeding successfully) for these two species in 

China as far as we know, the environment assessment and monitoring 

are still necessary (see the Box 1.8 and Box 1.9). 
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Box 1.8 Bay scallop (A. irradians) mariculture in China 

Scallop farming in China started in the late 1960s. The native species Chinese scallop, 
Chlamys farreri Jones & Preston was the major cultured scallop back then. However, C. 

farreri underwent massive summer mortalities in 1998, and the bay scallop A. irradians (See 
BOX 1.13) gradually became the dominating cultivated species in China (Fig1.8). To date, A. 

irradians has largely supported the Chinese scallop industry by accounting for 58% of total 
scallop production in 2012 (Guo and Luo, 2016). Culturing bay scallops has some advantages 
over the native C. farreri, for instance, the shorter turn-around time due to faster growth rate 
(Wang et al., 2013). The open-water mariculture cycle usually starts in May and bay scallops 
can reach market size (50-60 mm) around November, which saves almost half of the time 
compared with culturing C. farreri. However, a high biodeposition was found in areas with 
A. irradians mariculture, inducing mass downward fluxes (ca. 1140 tonnes per day) from the 
water column to the benthic environment (Wang et al., 2018). This deposition rate is higher 
compared with those reported bivalves, e.g. Mytilus edulis (Kautsky and Evans 1987; Jansen 
et al. 2012), Choromytilus chorus (Jaramillo et al. 1992) and almost 10 times higher than the 
values for the C. farreri (Li et al., 2009; Wang et al., 2018; Zhou et al., 2006). 

 

Figure 1.8 Mariculture production of scallops in China during the period 1980-2012 and the 
production of each species (Chlamys farreri, Argopecten irradians, Patinopecten yessoensis, 
Mimachlamys nobilis) in 1996 and 2011.  The sharp decrease in 1998 is caused by massive mortality 
of Chlamys farreri. Adapted from Yu (2014) and Guo and Luo (2016) 
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Box 1.9 Whiteleg shrimp L. vannamei coastal ponds in China 

The Pacific white shrimp (Litopenaeus vannamei) (See Box 1.10) is the most famous NIS 
cultured in China. Chinese shrimp farming largely relies on L. vannamei, which accounts for 
74.3% (grown in brackish water) and 43.6% (grown in freshwater) of the total shrimp 
production in China in 2011 ((Lin et al., 2015); Fig 1.9). Due to their less aggressive behavior, 
high tolerance to environment (e.g. temperature, salinity), L. vannamei is easy to culture in 
very high densities (Briggs et al., 2004). Disease problem is a major issue to collape the shrimp 
farming industry (Kautsky et al., 2000). L. vannamei is considered to be more disease resistant 
than the indigenous species (Fenneropenaeus chinensis) and also any other white shrimp 
(Wyban and Sweeny, 1991; Briggs et al., 2004). One of the main advantages of culturing L. 

vannamei is the commercial availabity of specific pathogen free (SPF) stocks (Briggs et al., 
2004). This group has passed through a disease screening process and is free for pathogens 
(such as white spot syndrome virus (WSSV), yellow head virus (YHV), Taura syndrome virus 
(TSV)) that cause the common shrimp diseases (Funge-Smith and Briggs, 2005). Also, many 
works have been done on selecting the Specific Pathogen Resistant (SPR) strains for L. 

vannamei and applied for the practical use (Funge-Smith and Briggs, 2005). However, L. 

vannamei are commonly cultured with maximal feed addition, which leads to serious 
environmental problems because of an overload of food and its leftovers (See 2.1). Also, L. 

vannamei has been demonstrated as one of the most voracious species in terms of food 
consumption among marine shrimp (Chavanich et al., 2016). Thus, it can pose a threat to 
marine areas if it manages to escape and establish reproductive populations (Lin et al., 2015).  
 

 
 

Figure 1.9 Mariculture production of shrimp in China during 2003-2011 (line), and production 
proportion of each species per year. Modified from Lin et al., (2015) 
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1.5 Study areas 
    This thesis focusses on two locations with different mariculture 

systems located along the Bohai Sea, China (Fig 1.10). The Bohai Sea 

is a part of the West Pacific and situated in the north-east of China. It is 

a semi-closed sea covering an area of 77,000 km2 and only opens into 

the Yellow Sea through the Bohai Strait (Pan and Wang, 2012). As it is 

surrounded by highly industrialized regions and suffering from low 

water exchange, the Bohai Sea is threatened by human activities (Cao et 

al., 2007), especially in the south and the west of the Bohai Coast region, 

including Laizhou Bay and Bohai Bay (Gao and Li, 2012; Zhuang et al., 

2014). 

 

Figure 1.10 Two study sites, a: scallop open-water mariculture area; b: shrimp 

farming ponds, are located in Laizhou Bay and the coast of Bohai Bay, 

respectively, along the north of the Chinese coastline. Adapted from Hu et al. (2013) 

and Wartenberg et al. (2017) 
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1.5.1 Laizhou Bay 
Laizhou Bay (area: c.a. 7000 km2, coastline length: c.a. 320 km, mean 

depth <10 m, max. depth: c.a. 18 m) is located in the southeast of the 

Bohai Sea, northwest of Shandong Penisula (Huang et al., 2003). There 

are several rivers flowing into the bay. Except for the Yellow River, 

most of the other rivers are small and seasonal (Liu et al., 2004). The 

bottom of the bay is relatively flat and characterized by fine sediments 

(clay + silt) (Zhuang et al., 2014). Laizhou Bay is an important spawning, 

breeding and feeding ground for many species, e.g. flatfish, but it is 

currently under the pressure of intense human activities (Jin et al., 2013). 

The nutrient levels in the water column have changed dramatically in 

the past 30 years, with a ten-fold increase in dissolved inorganic nitrogen 

(DIN) but a ten-fold decline in dissolved inorganic phosphorus 

concentrations (Li et al., 2013; Liu et al., 2004; Liu et al., 2011). The 

main component of DIN changed from ammonium to nitrate due to 

anthropogenic pollution (Shan et al., 2000). The suspended non-

indigenous scallop A. irradians mariculture is one of the key industries 

in the region, started in 1986 and has lasted for c.a. 30 years. Until 2011, 

Laizhou bay had a total culture area of c.a. 28 thousand ha, concentrated 

in the south bay, with a production of 144470 tonnes (Li et al., 2013). 

The location of this study was specifically focused on the A. irradians 

mariculture area (Fig 1.10). This area has high quality of seston for 

zooplankton and scallops as diatoms dominate the phytoplankton during 

the summer and autumn (Liu et al., 2004).  
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1.5.2 The coast of Bohai Bay 
Bohai bay, the second largest bay in the Bohai Sea, is situated along 

the western region of Bohai Sea, covering a total area of 15914 km2 with 

an average depth of 12.5 m, and has a soft muddy bottom (Zou et al., 

1985). It extends over one of the most densely populated zones, i.e. 

Hebei, west of Shandong, and the two megacities Beijing and Tianjin 

(Gao and Li, 2012). Because of the rapid port expansion, 

industrialization, urbanization, and development of mariculture along 

the coast, Bohai Bay receives extensive sewage and faces serious 

BOX 1.10 Bay scallop farming method in Laizhou Bay 

Bay scallops are typically cultivated with the suspended long-line method (Fig. 
1.11). About 100 to 400 individuals of scallops are placed on a lantern net 
divided into around 10-20 equally spaced cells by round plastic disks. 70-80 
lantern nets are hung vertically on a suspended horizontal long-line, 5 to 15 m 
above the bottom and about 2 m under the seawater surface. For one scallop 
farm, there are 30-150 lines parallel to and about 3-10 m apart from each other, 
forming an area of c.a. 5-7 ha. Scallop farming activities are conducted from 
May to November each year without any provision of additional feed. Scallops 
are harvested when they reach a commercial size of 6 cm. One lantern net can 
produce c.a. 20 kg scallop. 

 

Figure 1.11 The long-line suspended method culturing bay in Laizhou Bay, China 
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environmental problems such as algae blooms (Cao et al., 2007; Mao et 

al., 2009). The coastal ponds are distributed along the whole coast and 

are especially condensed in the southern part (Cao et al., 2007). In an 

area of shrimp farming, the Chemical Oxygen Demand (COD) level was 

found to be more than 200 times higher than in the adjacent area (Feng, 

1996; Xie and Yu, 2007). Both the NIS L. vannamei and the native 

shrimp Marsupenaeus japonicus (BOX 1.13) are extensively cultured in 

the semi-intensive ponds. 
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BOX 1.12 Penaeid shrimp farming along Bohai Bay 

    Penaeid shrimp farming is commonly practiced in Shandong province, especially along 
the Bohai Bay (Zhao et al., 2016). Litopenaeus vannamei and Marsupenaeus japonicus 

are two popular cultured penaeid shrimp in this area. Penaeus. manodon and 
Fenneropenaeus chinensis are also being farmed occasionally. The farming methods vary 
according to shrimp species. L. vannamei is reared in three types of systems, semi-
intensive/intensively managed earthen ponds (stocking density: between 15 and 30 post 
larvae (PL) m-2) and super-intensive indoor farms (stocking density: > 500 PL m-2). 
Among them, the earthen ponds were the most widely practiced method. M. japonicus 

only reared in the extensive managed earthen pond. Thus, the study in this thesis focuses 
on the earthen pond method rearing L. vannamei and M. japonicus. Farming M. japonicus 
is relatively new to this area (c.a. 5-10 years), while earthen pond rearing L. vannamei has 
been practiced for at least 10 years (Zhao et al., 2016).  
    Prior to the rearing activity in April, ponds were prepared by several cycles of draining 
and drying. Between the cycles, the sludge from the pond bottom is manually removed 
and the bottom soil is ploughed to oxidize the remains of organic matter and other reduced 
substances. 4-5% rotenone is used to kill the predators of shrimps and then ponds undergo 
a sterilization by treated with the calcium oxide. After the above steps, the ponds were 
filled with water from the adjacent canal that connect to Bohai Bay. The water pass 
through a 2 mm mesh bag to prevent the entry of predators and competitors. Usually the 
inorganic fertilizers (triple super-phosphate or ammonium phosphate) are applied at 20 to 
100 kg ha-1 to improve the natural productivity of the ponds. After the preparation 
processes, two types of ponds are stocked with hatchery reared shrimps to post-larvae 
stage (mean total length 10-18 mm), with densities of 3-5 M. japonicus m-2 and 15-30 L. 

vannamei m-2, respectively. Both species are reared from May to August for 12-14 weeks. 
Usually another culture crop is applied after August until November. After that, the ponds 
stay empty until next April.  
    M. japonicus and L. vannamei are fed differently. In the early stage (first 30 days), no 
external feed was added for juvenile M. japonicus. Commercial raised amphipods 
(Corophium) are introduced to the ponds at a rate of 10-30 kg ha-1, which are expected to 
establish and populated in the shrimp ponds (i.e. transplanted Corophium), serving as a 
food source to adult M. japonicus later on. The addition of small fishes and mollusks (the 
so-called trash fish) occurs when the shrimps reach a size of 40-50 mm (i.e. late stage), at 
a rate of 75-150 kg/ha/day. For L. vannamei ponds, juvenile shrimps are fed with smashed 
soybeans daily at about 2 kg/ha/day and wet feed of processed frozen Artemia at about 7 
kg/ha/day, and then later on the diet is shifted to formulated pellet feed at 20-30 kg/ha/day.  

Water exchange for both types of ponds was ensured through the tidal dynamics by 
canals connected to the Bohai Bay. For M. japonicus, the water was exchange is up to 
20% once in the early stage and 10-20% 2-4 times per month in the late stage. For L. 

vannamei, there is nearly no exchange of water in the early stage, while in the late stage, 
the water was changed up to 30% once a month. Other than the above principal, water 
renewal can also occur whenever the farmers consider it as necessary, for example, the 
water should be changed when its color turns to be blue-green or grey-dark green with 
less transparency, indicating a bloom of cyanobacteria or green algae. 

Note: Pellet feed contains only 10% moisture and the trash fish more than 75% (Haan, 
2012) and the frozen Artemia more than 90% (Lavens and Sorgeloos, 1996). 
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Box 1.13 Cultured species in this thesis 

• Argopecten irradians (Lamarck, 1819) or bay 
scallop is an edible saltwater bivalve species, which 
belong to the family Pectinidae.  It is originated from 
the shallow coastal marine habitats along the east coast 
of United states of America (USA), from Massachusetts 
to Florida (Clarke, 1965). It was an important economic 
bivalve species species in USA that largely supported 
commercial fisheries during 1870’s-1980’s 
(MacKenzie Jr, 2008). However, the production of bay 
scallop dropped by 85% since 1985 in the USA (Yu 
2014). Nowadays, the center of global bay scallop 
production has been transferred to China (Yu, 2014).  
• Litopenaeus vannamei (Boone, 1931) or 
whiteleg shrimp, a marine shrimp belonging to family 
Penaeidae. Its original distribution is eastern Pacific 
Ocean, from northern Peru to the Mexican state of 
Sonora (Wyban and Sweeney, 1991). Now it is the most 
popular commercial shrimp cultured worldwide, 
including Brazil, USA, Pacific islands, and Asia 
(Briggs et al., 2004). This species has yielded 3 million 
tonnes in 2014, 78% of which were in Asia (Fernández 
de Alaiza García Madrigal et al., 2017; Saumena, 
2015). It is recognized as "the biggest relocation of a 
single species in the history of the planet" (Walker and 
Mohan, 2009). 
• Marsupenaeus japonicus (Spence Bate, 1888) 
(or kuruma shrimp) is another member of family of 
Penaeidae. It has a wide native range encompassing the 
Indo-West Pacific Ocean  (Hayashi, 1996; Liu, 2008; 
Quigley et al., 2013). It is one of the most valuable 
mariculture species in many Asian countries (Chen, 
1990). China started to farm M. japonicus in the late 
1980s, and it has become one of the main cultured 
penaeid shrimp species since then (Li et al., 2014). 
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1.6 Objectives and thesis outlines 
The general aim of this PhD study is to assess the impact of the 

mariculture on the recipient ecosystems in the context of using NIS as 

cultured species. The outcome of this research will provide scientific 

information for the decision makers to apply for a better management of 

mariculture. We were targeting the environmental variables, the 

meiobenthos community, and benthic trophic interactions.  

Three specific objectives are put forward: 

1. to unravel the response of environmental variables, meiobenthic 

communities and their trophic ecology towards mariculture activities.  

2. to investigate the specific effect of different mariculture 

installations/techniques on benthic environment.  

3. to apply the indication and implication of the measured variables to 

contribute to an early warning system.  

To accomplish these objectives, specific topics were addressed in 

four chapters that composing the core structure of this thesis.  

Chapter 2 targets the benthic environmental variables in an open-

water culture area of scallop A. irradians (NIS) and the pond-culture 

systems of L. vannamei (NIS) and M. japonicus (native species). The 

sensitivities of traditional variables such as physiochemical 

characteristics and bulk organic matter were examined and compared 

with the indicators of the benthic trophic status such as sedimentary 

biochemical composition.  

After that, the chapter focuses on benthic organisms. Chapter 3 and 

Chapter 4 deal with a case-study of farming scallop A. irradians in a 

semi-closed bay. In Chapter 3, we focused on the response at biotic 

level (i.e. meiobenthos community structure and harpacticoid copepod 
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assemblages). The responses of meiobenthos to the biodeposition of 

scallops were identified on two taxonomy levels: meiobenthic 

community at the higher taxon level and harpacticoid copepod 

assemblages at family level. We also used the data of BPC and its 

composition (i.e. proteins, carbohydrates and lipids) from Chapter 2. 

We tried to interpret the responses of the meiobenthos with the sediment 

characteristics. In Chapter 4, stable isotopes analysis was used to trace 

the fate of biodeposits from scallop farms and to quantify the trophic 

interactions between biodeposits and two meiobenthic groups: 

harpacticoid copepods and nematodes. Furthermore, fatty acids 

provided insight in possible changes in quality of the harpacticoid 

copepods (as a food source) in such mariculture area. Chapter 5 

addressed the case of coastal pond farming of L. vannamei and M. 

japonicus. The responses of meiobenthic communities were 

documented and related to different farming practices. Stable isotopes 

and fatty acids were also used to investigate the trophic interactions 

among primary producers, bacteria, different supplementary shrimp 

feeds, meiobenthos and shrimps. 

To conclude, an overall discussion (Chapter 6) is presented, 

summarizing the relevant results of this thesis and discussing their 

contributions to the mariculture assessment. The main conclusions were 

used to discuss further questions that were raised and need to be further 

explore. It should be noted that a comparison of the biological traits of 

native and non-indigenous species is not included in this thesis. Also, 

the biological traits of the cultured species cannot be differentiated from 

the mariculture effects. 
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Chapter 2: Effects of mariculture on 

sedimentary characteristics and trophic 

status: two case studies of open-water 

scallop farms and coastal shrimp ponds 

in the Bohai Sea region, China 
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Abstract 
Two mariculture systems in the Bohai Sea, China were used as study 

cases, the open-water scallop farms (suspended-longline method 

farming Argopecten irradians) and the land-based coastal shrimp ponds 

rearing Penaeus japonicus and Litopenaeus vannamei. In this study, the 

variability in sedimentary pH, redox potential (Eh), chlorophyll a 

contents (Chl a), and the quantity and biochemical composition of 

organic matter by the scallop and shrimp culture activities were 

investigated. In the case of scallop farms, bulk organic matter (total 

organic carbon and total nitrogen) and Chl a were not affected by scallop 

farming. Eh was slightly reduced in the sandy shallow farm. The 

response of the biopolymeric carbon (BPC) was in line with the scallop 

farming intensity, showing a significant accumulation under two scallop 

farms with larger production density. In the shrimp ponds, Eh showed a 

more reduced status at the end of rearing cycle. The bulk organic matter, 

Chl a and BPC all accumulated during the rearing periods with different 

extent in terms of types of shrimp ponds as well as the early and late 

rearing stages. Eh and biochemical organic concentrations did not reach 

environmentally critical thresholds in scallop farms, suggesting no 

general adverse effects of scallop farming on the benthic environment. 

However, shrimp mariculture generated highly reduced-anoxic and 

highly eutrophic (even reached hypertrophic) conditions in the pond 

bottom. We also found BPC as relevant proxy to trace the change of 

trophic status induced by mariculture activities.  

2.1 Introduction 
Global marine aquaculture (hereafter mariculture) production has 
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grown considerably since the past decades, reaching a value of 26.7 

million tons in 2014 (FAO, 2016). Thus, marine coastal environments 

have developed into important mariculture grounds, from offshore 

waters to coastal lands, with a variety of cultured species and practices 

(FAO, 2017; Primavera, 2006). It has been well known that natural 

habitats are threatened by these mariculture activities in different forms. 

For instance, the rapid growing coastal/oceanic water mariculture and 

coastal land-based ponds are posing different impacts on the 

environment including water quality deterioration and contaminants, 

(Hargreaves, 1998), spread of diseases (Bondad-Reantaso et al., 2005; 

Meyer, 1991), and drug residue (Grave et al., 2008; Schnick, 2001), and 

biological invasion (Naylor et al., 2001). 

The open-water mariculture introduces large densities of bivalves in 

suspended culture; which is a common practice in marine coastal zones 

(Callier et al., 2008). There is a growing interest to evaluate potential 

environmental effects of bivalve farming as high deposition of faeces 

and pseudofaeces (i.e. biodeposits) have been observed at culture sites 

(Crawford et al., 2003; Dame, 1996; Newell, 2004). These carbon- and 

nitrogen-rich biodeposits (Kautsky and Evans, 1987) can alter the 

physical and biochemical of sediments when accumulate on the seabed 

(i.e. the so-called benthic environment) (McKindsey et al., 2011). 

However, studies investigated effects of mariculture on sediment 

characteristics reported different conclusions, ranged from minimal 

(Danovaro et al., 2004) to significant impacts that include the changes 

in nutrient levels (Callier et al., 2008) and generating anoxic sediments 

(Christensen et al., 2003). 

While the open-water mariculture takes place in the natural open water 



————————————< CHAPTER 2 >———————————— 

<48> 

environment, marine shrimp farming is conducted in land-based semi-

isolated compartments, such as earthen bottom ponds (hereafter earthen 

ponds). This earthen ponds are perceived to be less invasive to the 

marine coastal environment (Paez-Osuna, 2001). However, this practice 

was recently found to have severe negative impacts on the environment 

(e.g. Hatje et al. (2016); Ribeiro et al. (2016); Wu et al. (2014)), e.g. the 

nutrient accumulation and subsequent eutrophication within ponds, 

which caused by accumulation of uneaten feed, can further pollute the 

adjacent ecosystem such as saltmarsh and mangrove (Funge-Smith and 

Briggs, 1998; Wu et al., 2014; Yang et al., 2017). Since the pond 

sediments provide nutrients and shelter for benthic algae and organisms 

(Gamboa-Delgado, 2014; Moriarty, 1997), the health status of the pond 

bottom is vitally important for the production of shrimps (Dall et al., 

1991). Therefore, benthic environment monitoring and assessment are 

increasingly important strategies in shrimp farming management. 

A variety of indicators has been proposed to assess the benthic 

environment of mariculture ranging from the traditional 

physicochemical variables, e.g. redox potential (Eh), nitrogen and 

phosphate (Kumar et al., 2012; Nixon, 1995; Stefanou et al., 2000), to 

proxies that take into account the quality of organic matter for the 

benthic organisms (or the so-called trophic status) such as biopolymeric 

carbon (BPC) - the proportion of organic carbon potentially available to 

benthos (Bianchelli et al., 2008; Fabiano et al., 1995; Pusceddu et al., 

2009), protein to carbohydrate ratio (PRO:CHO), and the sedimentary 

bioavailable fraction of organic matter (Pusceddu et al., 2009; Silva et 

al., 2017). These proxies have been tested in several mariculture systems 

(Karakassis et al., 2000; Mirto et al., 2012; Pusceddu et al., 2011). 
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However, the extent of environmental effects is often correlated to 

various factors, e.g. the characteristics of habitats (i.e. hydrodynamics, 

water depths, and sediment characteristics such as granulometry), the 

reared species (e.g. bivalves, finfish, shrimps), and the management 

practices (i.e. intensive, semi-intensive, extensive) (Callier et al., 2008; 

Miron et al., 2005; Sarà, 2007). Therefore, it is important to assess the 

suitability and consistency of those indicators at the habitat- or system-

specific scale (Pusceddu et al., 2011) which can be used to apply across 

different ecosystem types (Borja et al., 2009; Keeley et al., 2012). 

Over the past few decades, rapid development in China has 

significantly affected its coastal habitats. The southwest Bohai coastal 

regions, including Laizhou Bay and Bohai Bay, represent such coastal 

habitats, as it features low water exchange and strong anthropogenic 

activities (Gao et al., 2012; Zhuang et al., 2014). Eutrophication in 

Laizhou Bay and Bohai Bay has been observed (Feng, 1996; SOA, 

2006-2009) and mariculture is one of the reasons for the eutrophication 

(Cao et al., 2007; Cui et al., 2005). While most of the environmental 

evaluations in this area have been focusing on the examination of the 

water column, especially in terms of trophic status (Hui et al., 2004; Kan 

et al., 2010; Wu et al., 2013), there is still a lack of study on the benthic 

system. 

By considering that management of environmental friendly 

mariculture requires scientific-based information for decision making, 

the present study aims to assess the potential effect of coastal marine 

aquaculture on the recipient environment (particularly focusing on 

sediment) as well as to test the suitability of abiotic indicators. The study 

was conducted in two different mariculture systems in the southeast of 
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Bohai Sea: open-water suspended farms, rearing scallop Argopecten 

irradians, in Laizhou Bay and two types of semi-intensive shrimp 

farming ponds, rearing shrimps Penaeus japonicus and the Litopenaeus 

vannamei, respectively, in the coast of Bohai Bay. We hypothesize that 

(1) scallop farming changes the sediment characteristics and benthic 

trophic status; (2) different patterns of temporal variability in sediment 

characteristics and benthic trophic status are presence in Marsupenaeus. 

japonicus and L. vannamei ponds; (3) the environmental variables from 

different categories (i.e. physiochemical variables, bulk organic matter, 

and biochemical concentration) show various sensitivity to detect the 

mariculture effects or temporal/ spatial variations. 

2.2 Materials and methods 

2.2.1 Study area and sampling sites 

2.2.1.1 Open-water scallop farming in Laizhou Bay 

The scallop farming area is located in Laizhou Bay (37°00’-38°30’ N, 

118°45’-120°30’ E, southern Bohai Sea, Shandong Province, northern 

coast of China; Fig. 2.1a). The mean depth of the bay is 9 m (max. depth 

about 18 m) and the total area is of approximately 700000 ha (Zhuang 

et al., 2014). A northeast oriented dominant current with a mean velocity 

of 20 cm s-1 runs perpendicularly to the shoreline (Zhao and Chen, 2001).  

The major cultured bivalve – bay scallop Argopecten irradians is non-

indigenous to this area. The species is cultivated using suspended-

longline culture method (see details in Chapter 1 Section 1.5). The 

scallop farms were deployed since 1987 at a distance of 5-20 km away 

from the shore with a total area of 500 ha. The farms yielded about 

144470 tons in 2011 (Li, 2013). Scallops are cultured during 6 months 
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period in a year starting from May to November without adding any feed.  

 

Figure 2.1 The location of the study areas in Laizhou Bay and Bohai Bay (a) with 

indication of the sampling sites in the scallop farming area (b) and the shrimp 

ponds (c) – detailed view of the Marsupenaeus japonicus ponds (d) and 

Litopenaeus vannamei ponds (e). 

 

For the scallop farming area, samples were collected at three stations 

with different characteristics: Stn SS (short for sandy shallow; 26-31% 

silt-clay, 69-73% fine sand; 7 m water depth; distance from the coast 5 

km), Stn MS (short for muddy shallow; 57-61% silt-clay, 40-43% sand; 

7 m water depth; distance from the coast 10 km), and Stn MD (short for 

muddy deep; 55-60 silt-clay, 40-45% sand; 12 m water depth; distance 

from the coast 18 km). Each station included a scallop farm site (FARM) 



————————————< CHAPTER 2 >———————————— 

<52> 

and a control site (CTRL). Each pair of farm and control sites was 

located at a similar depth and displayed a similar sediment texture 

(Appendix I Table S1). Farm sites were located in the center of the 

scallop farms directly under the culture lines. The scallop production 

densities were different among sampled farms where Farm MS had 

lower production density than those of Farm SS and Farm MD (Farm 

MS: c.a. 100 ind. m-2; Farm SS & MD: c.a. 200 ind. m-2). Each control 

site positioned about 1.5-2 km away from the farm and also at least 2 

km away from any other scallop farms. Control was exposed laterally to 

the predominant current that flowed through the farm (Fig 2.1b). Visual 

observation and preliminary analyses revealed that the control was not 

affected by the scallop biodeposition. 

2.2.1.2 Shrimp earthen ponds in Bohai Bay coast 

Cultivation of native shrimp (NAT) Marsupenaeus japonicus and non-

indigenous shrimp (NIS) Litopenaeus vannamei in the earthen ponds are 

commonly applied along the southwest coast of Bohai Sea, Dongying, 

Shandong Province, China (38°00’26.81 N, 118°33’57.61 E; Fig 2.1a). 

Farming of L. vannamei in earthen ponds has been practiced for more 

than 10 years in this area, while M. japonicus farming is relatively new 

to this district (c.a. 5-10 years). Details about the shrimp rearing cycles 

and feeding practices in this study area are described in Chapter 1 (See 

Chapter 1 Section 1.5.2). Briefly, one shrimp rearing cycle lasts around 

3.5 months, following the four stages: (1) Preparation for rearing and 

stocking: the pond sediments are ploughed and the sludges are removed. 

The ponds are prepared by adding rotenone to kill shrimp predators and 

calcium oxide to sterilize the pond. Inorganic fertilizers are applied in 

order to improve the natural primary production (at 25 to 100 kg/ha). 
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Post-larval-stages of shrimps (about 18 mm) are allocated in the ponds 

with densities of 3-5 shrimps m-2 for M. japonicus and 15-30 shrimps 

m-2 for L. vannamei. (2) The early rearing stage (from May to early June): 

in the first 30 days, commercially cultivated amphipods (Corophium) 

are added once to M. japonicus’ ponds which are expected to propagate 

in the pond sediments for the rest of the rearing time. M. japonicus is 

reared without external feeds, whereas L. vannamei is fed with 

fermented smashed soybean and processed frozen Artemia. (3) The late 

rearing stage (from middle June to August): M. japonicus is fed with 

small fishes and mollusks (i.e. trash fish) while L. vannamei is fed with 

formulated feed. (4) After harvesting: another culture cycle is usually 

applied after August until November. After that, the ponds stay empty 

until April of the following year. 

Three M. japonicus ponds (NAT P1, P2, P3) and three L. vannamei 

ponds (NIS P4, P5, P6) were randomly chosen from the M. japonicus 

farm and L. vannamei farm, which were about 2 km apart from each 

other (Fig 2.1c, d, e). The background, feeding information and pond 

sediment granulometry are listed in Table 2.1 and Appendix I Table S2. 

Water intaking and discharging of both ponds were conducted from 

canals that connect to the Bohai Bay. There are different water exchange 

strategies for M. japonicus and L. vannamei ponds. For L. vannamei 

ponds, there is no water renewal in the first 30 days (the early stage), 

while the water is exchanged at most 30% once a month in the late stage. 

For M. japonicus ponds, the water is renewed at most once for the first 

30 days and 2-4 times at a volume of 10-20% per month at the late 

rearing stage. During the first rearing cycle, the monthly precipitation 

were 35 mm, 68 mm, 189 mm and 131 mm in May, June, July and 
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August, respectively (data from http://data.cma.cn/).  

 
Table 2.1 Background information of three Marsupenaeus japonicus ponds (NAT-

P) and three Litopenaeus vannamei ponds (NIS-P) in Bohai Bay, China.  

Shrimp M. japonicus   L. vannamei 

Ponds NIS-
P4 

NIS-
P5 

NIS-
P6 

  NAT-
P1 

NAT-
P2 

NAT-
P3 

Pond size (ha) 4 4 4 
 

5 5 5 
Depths (m) 1.2-

1.6 
1.2-
1.6 

1.2-
1.6 

 
1.2-
1.6 

1.2-
1.6 

1.2-
1.6 

Age of the pond (yr) c.a. 
20 

c.a. 
20 

c.a. 
20 

 
c.a. 
10 

c.a. 
10 

c.a. 
10 

Stoking density (ind. m-2) 3-5 3-5 3-5 
 

15-30 15-30 15-30 

Grow-out period per crop 
(weeks) 

12-
14 

12-
14 

12-
14 

 
12-14 12-14 12-14 

Rearing crops 2 2 2 
 

2 2 2 
Feed* 

       

Corophium (kg) 50-
100 

50-
100 

50-
100 

 
- - - 

Wet feed – trash fish (kg) 3500
0 

3500
0 

3500
0 

 
- - - 

Wet feed - Frozen Artemia 

(kg) 
- - - 

 
1000 1000 1000 

Pellet feed – Smashed 
soybean (kg) 

- - - 
 

300 300 300 

Pellet feed - Formulated 
feed (kg) 

- - -   8400 8400 8400 

* Note: Pellet feed contains only 10% moisture and the trash fish more than 75% (Haan, 
2012) and the frozen Artemia more than 90% (Lavens and Sorgeloos, 1996). 

2.2.2 Sample collections 
For scallop farming area, two samplings were carried out in May 2016 

prior to scallop farming and October-November 2016 during heavy 

biodeposition stage (Wang et al. 2015 observed that biodeposition rates 

of bay scallops in Laizhou Bay peaked in November). For shrimp sites, 

three sampling actions were conducted at three occasions: before shrimp 

farming (January 2016), the early stage (May 2016; shrimp body length 
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between 15 and 30 mm), and the late stage (August 2016; shrimp body 

length between 70 and 80 mm), except for sedimentary pH and Eh that 

failed at T0 due to practical reasons. 

In situ measurements of temperature, salinity, dissolved oxygen (DO) 

and pH were measured in the water column (Scallop: c.a. 1 m above the 

sea bottom; Shrimp: 20 cm above the pond bottom) by a YSI 6600 

multiparameter water quality meter. Sediment samples were collected 

by SCUBA divers in scallop farming area and by a hand-operated core 

sampler for the shrimp ponds. Three sampling points (e.g. Farm SS-1, 

SS-2, SS-3; NAT P1-1, P1-2, P1-3) serving as three replicates were 

applied in each site. From each sampling point, three virtually 

undisturbed sediment cores were obtained using one large PVC core 

(inner diameter: 15 cm) and two plexiglass cores (both with 3.6 cm inner 

diameter). Each core was processed immediately after the cores were 

brought out. For sedimentary Eh and pH, electrodes were immersed in 

the top 1 cm of the sediment of a large PVC core and connected to pH 

and mV meters (Orion 230A+ Meter and Orion Star A221 pH portable 

Meter). The calibration of the redox probe was conducted prior to 

sediment core collection following the instruction of Wildish et al. 

(1999): the probe was calibrated against the reference electrode in a 

Zorbell redox buffer solution. During the sampling, redox electrode was 

periodically checked with Standard Zobell’s solutions to ensure its 

accuracy. The pH electrode was calibrated daily using three NIST scale 

pH buffers (pH 4.01, 7.00 and 10.01). For Chl a, the top 0-1 cm sediment 

layer of a plexiglass core was sliced, homogenized, stored at -20 °C and 

measured within two weeks after sampling. For the other variables (e.g. 

TOC, TN, protein, carbohydrate, and lipid), the top 0-1 cm sediment 
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from the other plexiglass core was sliced and immediately frozen at -

20 °C for further analysis (see 2.2.3). 

2.2.3 Biochemical parameters of sedimentary organic 

matter 
Chl a content was measured in 2.5 g of wet sediment using a 

fluorescence method after extraction with 90% acetone (Yentsch and 

Menzel, 1963). For the measurement of TOC and TN percentage, 

sediments were oven dried (60 °C), grounded, and treated with 1M HCl 

for 24 h to remove carbonates. TOC and TN were measured with an 

Element Analyser Flash 2000 (Thermo Fisher Scientific). The C/N ratio 

was calculated from the TOC and TN levels. Sediment granulometry 

was measured by laser diffraction with a Malvern Mastersizer 2000 

particle analyzer (Malvern Instruments, UK). 

The biochemical composition of the organic matter in the sediments 

(carbohydrate, protein, and lipid contents) was measured 

photometrically following the procedure of Fabiano and Danovaro 

(1994). About 0.2-0.3 g of dried and grounded sediment was used as a 

replicate for each type of analysis, and pre-combusted sediments 

(450 °C, 4h) were used as blanks to avoid any interference due to the 

unknown matrix of the sediment. Carbohydrate, protein and lipid 

contents were converted to the carbon equivalents by multiplying with 

the conversion factors of 0.40, 0.49, and 0.75 mg C mg-1, respectively, 

which commonly used for the estimation of coastal marine sediments 

(Fabiano et al., 1995; Mirto et al., 2010; Pusceddu et al., 2007b). Their 

sum was reported as biopolymeric carbon (BPC). Chl a content was 

converted to carbon equivalents using a mean value of 40 μg C μg-1 Chl 
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a (Pusceddu et al. 1999; Pusceddu et al. 2007b). The algal carbon 

contribution to BPC was calculated as Chl a carbon equivalents to BPC 

content.  

2.2.4 Statistical analysis 
For the scallop farming area, three factors were considered: (1) Time 

- fixed factor with two levels: before scallop farming (T0) and during 

heavy biodeposition stage (T1), (2) Station (Stn) - random factor with 

three levels: Stns SS, MS, and MD, and (3) Site - fixed factors with two 

levels: farm and control. For shrimp ponds, three factors were applied: 

(1) Stage – fixed factor with three levels: before shrimp farming (T0), 

the early and late stage, (2) Shrimp (type of shrimp pond) – fixed factor 

with two levels: M. japonicus (NAT) and L. vannamei (NIS) ponds, and 

(3) Pond – random factor nested in the type of shrimp pond: NAT P1, 

P2, P3 and NIS P4, P5, P6. 

Due to a small sample size, permutation analyses of variance 

(PERMANOVA) were used instead of ANOVA. Environmental 

variables were analyzed using PERMANOVA with the above three 

factors and the tests were based on Euclidean distance matrixes with 

4999 random permutations of the appropriate units under reduced 

models (Anderson and Braak, 2003). The homogeneity of multivariate 

dispersion was checked with a distance-based test for homogeneity of 

multivariate dispersion (PERMDISP). When significant differences 

were observed, post-hoc comparisons were performed using 

PERMANOVA pair-wise tests type III. 

Three-way PERMANOVA was conducted as multivariate analysis of 

the sediment trophic status. Highly correlated environmental variables 

(r > 0.9) were removed and the remained variables for analysis were TN, 
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TOC, Chl a, proteins, carbohydrates and lipids for scallop farming and 

TN, Chl a, proteins, carbohydrates, and lipids for shrimp rearing). A 

canonical analysis on principal coordinates (CAP) was subsequently 

performed to visualized the variations among factors. PERMANOVA 

and CAP analyses were conducted under the same setting described 

above. 

PERMANOVA, PERMDISP, and CAP were performed with Primer 

V6 (Clarke and Gorley, 2006), using the PERMANOVA+ add-on 

package (Anderson et al., 2008). 

2.3 Results 

2.3.1 Physicochemical variables in the water column 
In the scallop farming area of Laizhou Bay, the water temperature and 

the salinity were 20.47-21.70℃ and 30.66-31.05 at T0 (i.e. May) and 

were 11.40-12.21℃ and 29.70-30.07 at T1 (i.e. Oct-Nov) during our 

sampling time. DO and pH in the water column varied among stations 

and sampling times (Table 2.1; Table 2.2). DO was higher in T1 than T0 

at the three stations (Table 2.1; pairwise tests p < 0.05). Water pH was 

slightly lower in T1 compared to those in T0 e.g.in Stns SS and MS 

(Table 2.1; Table 2.2; pairwise tests p < 0.05).  

In the shrimp ponds, water temperature varied between 16.61-21.61℃ 

in the early stage (May) and increased to 27.89-31.23℃ in the late stage 

(August) during our sampling periods. Salinity was higher in L. 

vannamei ponds than in M. japonicus ponds (L. vannamei: 44.53-53.59; 

M. japonicus: 30.26-36.49) and increased throughout the rearing stages 

(Table 2.1; Table 2.2; pairwise tests p < 0.05). Water DO decreased 
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through the rearing stages in all ponds (Table 2.1; Table 2.2; pairwise 

tests p < 0.05). Water pH was slightly higher in M. japonicus ponds 

(7.84-8.99) than in L. vannamei ponds (7.28-8.22) during the rearing 

stages (Table 2.2).  
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Table 2.2 The values (Mean±SD, N = 3) of physicochemical variables of the water 

column in the scallop farming area in Laizhou Bay and in the shrimp ponds in 

Bohai Bay coast, China. Scallop farms: T0 = before scallop farming, T1 = high 

biodeposition period; SS = sandy shallow station, MS = muddy sallow station, MD = 

muddy deep station; CTRL = control site; FARM = scallop farming site; Shrimp ponds: 

T0 = before shrimp farming; Early = the early rearing stage, Late = the late rearing 

stage; NAT P = Marsupenaeus japonicus ponds; NIS P = Litopenaeus vannamei ponds.  

  Site Temperature Salinity Dissolved 
oxygen pH 

    ℃  mg L-1 - 
Scallop 
farms T0-SS-CTRL 21.69±0.00 31.00±0.00 7.21±0.09  8.22±0.02  
 T0-SS-FARM 21.73±0.04 31.04±0.01 7.16±0.19  8.23±0.03  
 T0-MS-CTRL 21.02±0.01 30.74±0.00 7.76±0.04  8.09±0.03  
 T0-MS-FARM 21.02±0.06 30.72±0.00 7.68±0.09  8.08±0.01  
 T0-MD-CTRL 20.96±0.42 30.66±0.01 7.84±0.07  8.11±0.01  
 T0-MD-FARM 20.98±0.44 30.66±0.00 7.77±0.02  8.11±0.01  
 T1-SS-CTRL 11.41±0.01 29.83±0.01 8.87±0.55  8.13±0.02  
 T1-SS-FARM 11.46±0.05 29.94±0.01 8.69±0.01  8.13±0.05  
 T1-MS-CTRL 12.06±0.06 29.99±0.06 8.32±0.28  8.03±0.03  
 T1-MS-FARM 11.93±0.01 30.04±0.02 8.41±0.01  8.00±0.01  
 T1-MD-CTRL 12.12±0.11 29.73±0.02 8.20±0.20  8.16±0.05  
  T1-MD-FARM 12.15±0.05 29.70±0.01 8.04±0.33  8.16±0.06  
Shrimp 
ponds EARLY-NAT-P1 18.50±0.02 36.38±0.04 7.42±0.17  8.20±0.12 
 EARLY-NAT-P2 18.09±0.17 35.80±0.06 6.49±0.00  8.19±0.04  
 EARLY-NAT-P3 18.35±0.81 36.30±0.16 6.66±0.18  8.47±0.49  
 LATE-NAT-P1 30.67±0.17 35.79±0.16 4.23±0.17  7.91±0.11  
 LATE-NAT-P2 28.63±0.64 31.27±0.44 6.68±0.15  7.95±0.08  
 LATE-NAT-P3 29.57±0.19 30.38±0.19 4.95±0.54  8.06±0.06  
 EARLY-NIS-P4 21.44±0.22 46.27±0.16 7.98±0.49  8.09±0.11  
 EARLY-NIS-P5 16.96±0.55 44.55±0.02 7.54±0.14  7.61±0.28  
 EARLY-NIS-P6 19.81±0.93 48.59±0.16 7.99±0.76  7.64±0.20  
 LATE-NIS-P4 29.33±0.01 47.55±0.10 0.79±0.16  7.79±0.01  
 LATE-NIS-P5 29.13±0.24 45.21±0.11 3.16±0.30  7.90±0.06 
  LATE-NIS-P6 30.59±0.92 52.44±0.99 3.50±2.84  7.85±0.12  

 



————————————< CHAPTER 2 >———————————— 

<61> 

2.3.2 Physicochemical variables in the sediment 
In scallop farming area in Laizhou Bay, sedimentary pH was 

characterized by a significant interaction effect of Time × Station (Table 

2.2). All three stations showed significant higher pH at T1 than those of 

T0 (Table 2.2; Figure 2.2) except for T0 of Stn SS which showed higher 

pH values than the other stations. For the sedimentary Eh, an interaction 

effect of Time × Station × Site was found on Eh (Table 2.2). The 

pairwise post-hoc tests showed significant lower Eh in CTRL than those 

of FARM in Stn SS (Table 2.2; Figure 2.2).  

In the shrimp ponds, an interaction effect of Stage × Pond (Shrimp) 

was found on sedimentary pH indicating that pH in NAT P3 was slightly 

higher in late stage compared with those in the early stage (Table 2.2; 

Figure 2.2). Eh of the pond sediments showed negative values 

(indicating a reduced status) during the rearing periods with even lower 

values in the late stage than those in the early stage (Table 2.2: Stage p 

< 0.01; Figure 2.2). Variation of Eh also found among ponds that NIS 

P6 had less reduced status than two other NIS ponds (Table 2.2: Pond 

(Shrimp) p < 0.01).  
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Table 2.3 Results of PERMANOVA (permutation analyses of variance) tests of 

environmental variables in top 0-1 cm sediments between factors from a scallop 

farming area in Laizhou Bay and in two types of shrimp ponds in Bohai Bay coast, 

China. Factors: Scallop – Time (T0 vs T1), Station (Stn SS, MS and MD), and Site 

(FARM vs CTRL); Shrimp – Stage (T0, early and late), Shrimp (NIS vs NAT), Pond 

(NAT P1, P2, P3, NIS P4, P5, P6). Only interaction effect is shown if there is any. 

Post-hoc comparison is conducted within the fixed factor. The significance of single 

factor and interactions are shown in Appendix I Table S3. TN = total nitrogen; TOC = 

total organic carbon; Chl a = Chlorophyll a; PRO = proteins; CHO = carbohydrates; 

LIP = lipids; BPC = biopolymeric carbon; Algae C to BPC = Chl a carbon equivalent 

to biopolymeric carbon. 

Variable df MS Pseudo-F Interaction Factor Post-hoc comparison 
Scallop             
TN 2 0.28 19.195*** Time × 

Station 
Time Stn SS: T0 < T1 

TOC 2 0.22 6.4567** Time × 
Station 

Time Stn SS: T0 > T1;  
Stn MD: T0 < T1 

Chl a 2 0.44 6.5722** Time × 
Station 

Time SS, MS, MD: T0 > T1 

PRO 2 0.04 3.3068* Time × 
Station × Site 

Site T1: Farm SS > Ctrl SS; 
Farm MD > Ctrl MD      

Time Ctrl SS: T0 > T1;  
Farm SS, Ctrl MD, 
Farm MD: T0 < T1 

CHO 2 0.19 10.852** Time × 
Station × Site 

Site T1: Farm SS > Ctrl SS; 
Farm MD > Ctrl MD      

Time Ctrl SS: T0 > T1;  
Farm SS, Ctrl MS, 
Farm MS, Farm MD: 
T0 < T1 

LIP 2 0.97 37.423*** Time × 
Station 

Time Stns SS: T0 < T1;  
Stn MS: T0 > T1 

BPC 2 0.08 6.9519** Time × 
Station × Site 

Site T1: Farm SS < Ctrl SS; 
Farm MD < Ctrl MD      

Time FARM SS, Farm MS, 
Farm MD: T0 < T1 

Algae C 
to BPC 

2 0.92 12.43*** Time × 
Station 

Time Farm SS, Farm MS, 
Farm MD: T0 > T1 

Eh 2 4875.
80 

5.7385* Time × 
Station × Site 

Site T1: Farm SS < Ctrl SS 

pH 2 3.72E-
04 

6.5576** Time × 
Station 

Time Stns SS, MS, MD: T0 < 
T1 

Shrimp  
      

TN 2 0.02 11.904** Stage x 
Shrimp 

Shrimp NAT: T0 = Early < 
Late;  
NIS: T0 < Early = Late 
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Stage Early: NAT < NIS 

TOC 2 0.07 3.8186* Stage x 
Shrimp 

Shrimp NAT: T0 = Early < 
Late;  
NIS: T0 < Early = Late      

Stage Early: NAT < NIS 
Chl a 2 0.09 4.9074* Stage x 

Shrimp 
Shrimp NAT: T0 < Early = 

Late;  
NIS: T0 < Early = Late      

Stage T0, Late: NAT < NIS 
PRO 2 0.36 4.7107* Stage x 

Shrimp 
Shrimp NAT: T0 < Early < 

Late;  
NIS: T0 < Early = Late      

Stage Early: NAT < NIS  
8 0.07 4.2022** Stage x Pond 

(Shrimp) 
Stage NAT ponds - P1, P3: T0 

< Early < Late; P2: T0 
= Early < Late;          
 NIS ponds - P4, P6: T0 
< Early < Late; P5: T0 
= Early < Late 

CHO 2 1.34 16.09** Stage x 
Shrimp 

Shrimp NIS: T0 < Early = Late 
     

Stage T0, Early, Late: NAT < 
NIS  

8 0.08 2.8476* Stage x Pond 
(Shrimp) 

Stage NAT ponds - P1, P2: T0 
= Early < Late; P3: T0 
< Early < Late;           
NIS ponds - P4, P6: T0 
< Early = Late; P5: T0 
< Late < Early  

LIP 1 33.07 74.57** none Shrimp NAT < NIS 
BPC 2 0.62 10.247** Stage x 

Shrimp 
Shrimp NAT: T0 < Early < 

Late;  
NIS: T0 < Early = Late      

Stage T0, Early, Late: NAT < 
NIS 

Algae C 
to BPC 

2 1.940
3 

34.058*** Stage x 
Shrimp 

Stage NAT: T0 < Late < 
Early; NIS: T0 = Early 
< Late 

     Shrimp Early: NAT > NIS; 
Late: NAT > NIS 

pH 4 0.18 5.034** Stage x Pond 
(Shrimp) 

Stage NAT P3: Early < Late 

Eh 1 0.53 23.036** none Stage Early < Late 
  4 0.059 6.5053** none Pond 

(Shrimp) 
NIS: P4 = P5 < P6 
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Figure 2.2 Variations of pH and redox potential (Eh) in top 0-1 cm sediment 

(mean values and standard deviations) from (a) scallop farming area, Laizhou 

Bay and (b) shrimp ponds, Bohai Bay coast, China. Scallop farms: T0 = before 

scallop farming, T1 = high biodeposition period; SS = sandy shallow station, MS = 

muddy sallow station, MD = muddy deep station; CTRL = control site; FARM = 

scallop farming site; Significant pairwise comparisons between each FARM and CTRL 

are indicated with an asterisk (* p < 0.05). Shrimp ponds: T0 = before shrimp farming; 

Early = the early rearing stage, Late = the late rearing stage; NAT = Marsupenaeus 

japonicus; NIS = Litopenaeus vannamei; P 1, 2, 3 represent M. japonicus ponds; P 4, 

5, 4 represent L. vannamei ponds. 

2.3.3 Bulk organic sedimentary variables 
In scallop farming areas, TN, TOC and C/N in the sampled sediments 

showed an interaction of Time and Station (Fig 2.3; Table 2.3). 

Compared with T0, Stn SS had significantly higher TN but significantly 

lower TOC and C/N in T1 (Fig. 2.3; Table 2.3).   
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Figure 2.3 Mean values and standard deviation (SD) of the bulk organic variables 

and biochemical variables (mean values and standard deviations) in the top 0-1 cm 

sediments from scallop farming area, Laizhou Bay, China. Significant differences 

between each pair of farm and control site (PERMANOVA pairwise test p < 0.05) are 

indicated by an asterisk. T0 = before scallop farming, T1 = high biodeposition period; 

CTRL = control site; FARM = scallop farming site; TN = total nitrogen, TOC = total 

organic carbon.  

 

In the sediment of shrimp ponds, a significant interaction effect of 

Stage × Shrimp was found on TN and TOC (Table 2.3). Specifically, in 

M. japonicus ponds, TN and TOC were significantly higher at the late 

stage than at T0 and the early stage (Table 2.3; Fig 2.4). TN and TOC in 
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the early and late stage in L. vannamei ponds had higher values than 

those at T0 (Table 2.3; Fig 2.3).  
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Figure 2.4 Mean values and standard deviations (SDs) of the bulk organic variables and biochemical variables in the top 0-1 cm 
sediments from two types of shrimp ponds, Bohai Bay coast, China. NAT = Marsupenaeus japonicus; NIS = Litopenaeus vannamei ponds; 
TN = total nitrogen; TOC = total organic carbon; BPC = biopolymeric carbon; P 1, 2, 3 represent M. japonicus ponds; P 4, 5, 6 represent L. 

vannamei ponds.
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2.3.4 Biochemical variables in the sedimentary OM 
In the scallop farming area, an interaction effect of Time × Station was 

found on sedimentary Chl a levels (Table 2.3). All stations showed a 

decrease of Chl a from T0 to T1 (Table 2.3; Fig 2.3). BPC, proteins and 

carbohydrates in the sampled sediments were affected by the interaction 

of three tested factors: Time × Station × Site (Table 2.3). Further 

pairwise comparison between each FARM and CTRL showed 

significantly higher levels of BPC, proteins, and carbohydrates under 

the FARMs in Stns SS and MD (Table 2.3; Fig 2.3). Only an interaction 

effect of Time × Station was observed on lipids (Table 2.3). Thus, the 

higher levels of BPC in the farmed sediments was due to the 

accumulation of proteins and carbohydrates.  

All above measured variables were higher in the sediment of shrimp 

ponds, especially during rearing stages (Fig 2.3). An interaction effect 

of Stage × Shrimp was observed on Sedimentary Chl a and BPC. Chl a 

level from both M. japonicus and L. vannamei pond sediments was 

initially low (Fig 2.3: T0) but increase significantly about 8.9- and 6.6-

folde in the early stage, respectively (Table 2.3; Fig 2.4). There was 

however no significant difference between the early and the late stage 

in Chl a for both types of ponds. BPC showed different patterns between 

two types of ponds. In M. japonicus ponds, BPC levels increased 

throughout the rearing stages from T0 to the early and to the late stage 

(Table 2.3; Fig 2.4), while in L. vannamei ponds, BPC only increased 

significantly from T0 to the early stage, and subsequently remained 

stable in the late stage (Table 2.3; Fig 2.4). In the early stage, the 

increasing level of BPC of M. japonicus ponds was mostly due to the 

accumulation of proteins and lipids (except for P3 showed 
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carbohydrates accumulated as well), while for L. vannamei ponds the 

accumulation of proteins, carbohydrates and lipids caused the higher 

BPC level (Table 2.3). In the late stage, the increased BPC content in M. 

japonicus pond bottom was attribute to the higher proteins and 

carbohydrates (Table 2.3).  

Furthermore, we observed significant higher algal fraction of 

biopolymeric carbon in T0 than T1 for three stations in scallop farming 

area (Table 2.3; Fig 2.5a). For shrimp farming, algal carbon contribution 

to the BPC pool largely increased in the early stage in the M. japonicus 

ponds and present a higher value than those in L. vannamei ponds. In 

the late stage this algal fraction showed a slight decrease and a slight 

increase in M. japonicus and L. vannamei ponds, respectively (Table 2.3, 

Fig 2.5a). The proteins to carbohydrates ratio (PRO:CHO) above 1 is 

the suggested threshold for the eutrophic benthic environment 

(Dell'Anno et al., 2002; Silva et al., 2017; Venturini et al., 2012). We 

found PRO:CHO was smaller than 1 in sedimentary samples of both 

scallop farms and shrimp ponds (Fig 2.5b). Moreover, we did not 

observe any pattern between BPC and PRO: CHO (Fig 2.5b).  
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Figure 2.5 Algal contribution to biopolymeric carbon (BPC) and BPC 

concentration in all sampled sediments (a) and protein to carbohydrate ratio 

(PRO/CHO) and biopolymeric carbon (BPC) concentration in all the sampled 

sediments in scallop farms from Laizhou Bay and shrimp ponds from Bohai Bay 

coast, China. 

 

2.3.5 The trophic status in the sediment 
The CAP analysis revealed a clear separation of sampling time and 

station when applied to sediment OM variables (TN, TOC, Chl a, PRO, 

CHO and LIP) for scallop farms (Table 2.4: PERMANOVA, Time × 

Station: p < 0.05). The samples at T0 grouped together based on the 

higher Chl a concentration (Fig 2.6a). At T1, samples from Stn SS 

(characterized with higher levels of TN and lipids) were separated from 

those of Stns MS & MD. No significant effect of Time ×Station × Site 

was observed (Table 2.4). 

For shrimp ponds, the CAP results showed the separation according 

to the different rearing stages and types of shrimp ponds (Table 2.4: 

Stage × Shrimp p < 0.05; Fig. 2.6b). More specifically, for M. japonicus 
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ponds, the feature of sedimentary OM significantly shifted in the late 

stage, while sediments OM fractions already underwent a significant 

change in the early stage L. vannamei ponds (See pairwise comparisons 

in Table 2.4). M. japonicus and L. vannamei ponds clustered together at 

T0, and differed from each other since the early stage (Fig. 2.6b). 
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Table 2.4 Permutational analysis of variance (PERMANOVA) testing for organic 

matter variations among factors in the multivariate environmental asset in 

sediment in scallop farming area from Laizhou Bay and in shrimp ponds from 

Bohai Bay coast, China. df = degree of freedom; MS = mean square; ns = non-

significant difference; *= p < 0.05; **= p < 0.001; ***= p < 0.001; P-F = Pseudo-F. 

Highly correlated environmental variables (r > 0.9) were removed from the analysis. 

Scallop farms: T0 = before scallop farming, T1 = high biodeposition period; SS = 

sandy shallow station, MS = muddy sallow station, MD = muddy deep station; CTRL 

= control site; FARM = scallop farming site; Shrimp ponds: T0 = before shrimp 

farming; Early = the early rearing stage, Late = the late rearing stage; NAT P = 

Marsupenaeus japonicus ponds; NIS P = Litopenaeus vannamei ponds 

Scallop farms           
Shrimp 
ponds         

Source df MS P-F P(MC)   Source df MS P-F 
P(M
C) 

Time 1 40.437 1.858 ns  Stage 2 40.098 32.641 ** 

Station 2 34.543 25.708 **  Shrimp 1 30.671 24.387 ** 

Site 1 6.9909 3.8255 *  Pond(Shrimp) 4 1.2577 0.77603 ns 

TimexStation 2 21.753 16.189 ***  StagexShrimp 2 6.4731 5.2691 ** 

TimexSite 1 10.518 5.911 *  
StagexPond 
(Shrimp) 8 1.2285 0.75799 ns 

StationxSite 2 1.8275 1.36 ns  Res 24 1.6207                

TimexStationxSite 2 1.7792 1.324 ns  Total 41                  

Res 24 1.3437                      

Total 35                                   
Pairwise  
comparisons   t   P(MC)   

Pairwise 
comparisons   t   

P(M
C) 

SS: T0 vs T1  4.161  ***  
NAT: T0 vs 
Early  2.069  ns 

MS: T0 vs T1  4.161  ***  
NAT: Early 
vs Late  4.164  ** 

MD: T0 vs T1  5.925  ***  
NIS: T0 vs 
Early  4.695  ** 

T0: SS vs MS  6.856  ***  
NIS: Early vs 
Late  1.453  ns 

T0: SS vs MD  4.426  ***  
T0: NAT vs 
NIS  1.727  ns 

T0: MS vs MD  2.471  **  
Early: NAT 
vs NIS  2.92  ** 

T1: SS vs MS  4.771  ***  
Late: NAT vs 
NIS  3.902  *** 

T1: SS vs MD  5.245  ***       

T1: MS vs MD   1.718   *             
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Figure 2.6. Bi-plot of CAP analysis based on bulk organic matter and biochemical 

parameters of the top 0-1 cm sediment in (a) scallop farming area in Laizhou Bay, 

China and (b) shrimp ponds in Bohai Bay coast, China. Vectors are proportional to 

the Pearson correlation coefficient of the identified variables with CAP axis. CTRL = 

control; NAT = Marsupenaeus japonicus ponds; NIS = Litopenaeus vannamei ponds; 

Chl a = Chlorophyll a; PRO = protein; CHO = carbohydrate; LIP = lipid; TOC = total 

organic carbon; TN = total nitrogen. Highly correlated variables (r > 0.9) were 

removed from the analysis.  
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2.4 Discussion 
The sediment redox potential reflects the degree of anaerobic 

condition and it is widely used to assess the health of aquaculture 

environments (Anderson et al., 2005; Wilding, 2012; Wiyoto et al., 

2017). In Laizhou bay, redox potential values in scallop farms during 

the high biodeposition season were positive in shallow stations (Stns SS 

and MS; 7 m of water depth) and dropped to a range of 0 to -150 mV in 

deep station (Stn MD; 12 m of water depth), indicating oxic and hypoxic 

benthic conditions respectively (Sutherland et al., 2007). For shrimp 

ponds, the average values of redox potential were always below -150 

mV during the rearing stages, especially in the late stage that even 

showed more negative values, indicating highly reduced and anoxic 

conditions (Sutherland et al., 2007). The temporal changes in 

sedimentary Eh may attributed to the organic accumulation in the 

shrimp ponds (see further). However, this abiotic indicator was not 

sensitive enough to reflect the scallop farming (e.g. the muddy deep 

station). Our findings corroborate with other studies that suggested 

redox potential could indicate high organic loading such as in fish 

farming (Anderson et al., 2005; Hargrave et al., 1997), but was less 

efficient to detect biodeposition of bivalves in muddy areas (Callier et 

al., 2007; Crawford et al., 2003). On the other hand, only the Stn SS 

showed a lower (but still oxic) value in the farm than control site. This 

location specific response of Eh can associate with the habitat 

characteristics (e.g. the intensity of farming, types of sediment, water 

depth). The lack of response in Stn MS is likely attribute to the lower 

density of farmed scallops (50% less compared with Stns SS and MD). 

For Stn MS, the naturally reduced Eh and high contents of organic 
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carbon (TOC and BPC) suggesting that the response to the relatively 

small enhancement of sedimentation can be obscured by background 

processes such as anaerobic biogeochemistry cycles of iron and sulfide 

(Hargrave et al., 2008). To further explain the mechanism, oxygen and 

sulfide concentrations are needed to unravel biogeochemistry cycles. It 

is also noteworthy that the redox potential in shrimp sediment during 

rearing stages reached a concerning threshold. It has been recommended 

to maintain the value above -206 mV in order to keep shrimp immunity 

response activated (Wiyoto et al., 2017). The highly reduced sediment 

can indicate the low oxygen concentrations and the generation of toxins 

(e.g. ammonium, sulfide hydrogen), which may inhibit the growth of 

shrimps (Avnimelech and Ritvo, 2003; Avnimelech et al., 2004). 

The bulk organic matter (i.e. TOC and TN) was not indicative of 

mariculture effect if the effect was weak, e.g. the scallop farming 

activity. Due to the conservative nature of TOC and TN (Fabiano et al., 

1995), they were less sensitive than the labile biochemical variables. It 

is possible that detritus from other sources (e.g. plankton, seagrass) may 

mask the biodeposition from cultured bivalves (Stenton-Dozey et al. 

2001). Callier et al. (2008) also found bulk organic matter is only able 

to detect the biodeposition when the organic loading was heavy and thus 

has limitation when use in mariculture assessment. In the shrimp ponds, 

the feeding practices could be linked to the temporal pattern of TOC and 

TN, because their accumulations were synchronized with the timing of 

feed addition (NAT: start feeding in the late stage; NIS: start feeding in 

the early stage).  

Chl a content relates to the abundance of microalgae 

(microphytobenthos or deposited phytoplankton) (Venturini et al., 
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2012). In the scallop farming area, Chl a in the sediment had a distinct 

temporal pattern due to seasonal variability. The observed pattern was 

consistent with Li et al. (2014) who found that the sedimentary Chl a 

was higher in spring and summer than those in the winter, which may 

be due to the lack of silicate in winter that inhibited the growth of 

diatoms (Zhao et al., 2004). Some researches on the mussel farming 

effect found a increase level of Chl a under the mussel farms (Mirto et 

al., 2000; Newell et al., 2002). They attributed this enhancement of 

microalge to either the settlement of phytopigments through the 

filtration-biodeposition of the bivalves (Navarro and Thompson, 1997) 

or an increase of the dissolved inorganic nitrogen (DIN) pool that 

stimulated the growth of microalgae (Newell et al., 2002). However, we 

did not find sedimentary Chl a indicative for the scallop farming. 

“Shading effect” (limited light penetration caused by the biodeposits and 

the shades of the raft) may be a reason that indirectly obscure the 

enhancement of Chl a (Franzo et al., 2014). In the shrimp ponds, the 

temporal pattern of Chl a content is similar for both L. vannamei and M. 

japonicus ponds. The elevated Chl a in the early stage might be due to 

the addition of Nitrogen-Phosphate-Potash (N-P-K) fertilizers right 

before the stocking that enhance the pond primary production (Rubright 

et al., 1981). After the early stage, Chl a content did not increase further. 

This was likely link to a less extent of light penetration in the late stage 

because of a heavier input of feeds that generate high turbidity (Alonso-

Rodriguez and Páez-Osuna, 2003). 

The biopolymeric fraction of sediment organic carbon (i.e. BPC) is 

the proportion of organic carbon potentially available to benthos 

(Bianchelli et al., 2008; Fabiano et al., 1995; Pusceddu et al., 2009). Due 
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to the rapid changes in composition and quantity in early diagenesis, 

BPC responds more promptly to mariculture activities than bulk organic 

concentrations (Fabiano et al., 1995; Pusceddu et al., 2009). In this study, 

BPC managed to detect scallop biodeposition effect as well as the 

temporal changes of shrimp pond sediments during the rearing stages. 

We found higher BPC accumulation with higher production densities 

(FARM SS and MD) under scallop farms. This agrees with previous 

findings in mussel farms where high biodeposition caused a BPC 

enrichment on the farm sediments (Mirto et al., 2000). However, the 

response of BPC to farming bivalves is not entire universal. Another 

study in a high hydrodynamics regime reported no impact of mussel 

farming on sediment BPC, which attribute to the continuous 

resuspension and/or export of the biodeposits (Danovaro et al., 2004). 

Higher BPC levels commonly occur in sediments beneath fish cages, 

with a pronounced accumulation of proteins and lipids since the food 

pellets used in fish farming contain high proportions of proteins and 

lipids (Mazzola et al., 1999; Mirto et al., 2012; Pusceddu et al., 2007a). 

In our study, carbohydrates and proteins were preferentially 

accumulated under the scallop farms. This can be due to the biochemical 

composition of biodeposits with more abundant carbohydrates and 

proteins than lipids (Slater et al., 2009; Yuan et al., 2006). Even though 

the sedimentary biochemical fractions accumulated, according to 

thresholds for BPC concentrations as well as protein and carbohydrate 

concentrations, the scallop farming area still reflected a meso-

oligotrophic condition, i.e., proteins < 1.5 mg g-1, carbohydrates < 5 mg 

g-1 (Dell'Anno et al., 2002); BPC = 1-5 mg g-1 (Pusceddu et al., 2007b). 

This indicates a minimal impact of scallop farming on the benthic 
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environment. In fact, in a meso-oligotrophic environment where the 

primary production is relatively low, the top-down control (food supply) 

is important to drive the benthic communities (Smetacek, 1984; Sanders 

et al., 1992; Vanreusel et al., 1995). Especially in the winter, the algae 

fractions to the BPC is relatively low than those in the summer, 

indicating a low level of food availability. With the enhancement of 

bioavailable organic carbon (BPC) may facilitate the benthos by 

providing extra food (Dell'Anno et al., 2002). 

In the sediments of the tested shrimp ponds (especially in the L. 

vannamei ponds), the concentrations of biochemical variables were 

higher than those reported for other eutrophic coastal sediments 

(Dell'Anno et al., 2002; Pusceddu et al., 2009; Venturini et al., 2012). 

Moreover, in the early stage, the accumulation of proteins and lipids was 

noticeable for both types of ponds. This may be attributed to the growth 

of microphytobenthos or the deposition of phytoplankton, since several 

microalgae (e.g. diatoms) are important carriers of proteins and lipids to 

marine sediments (Danovaro et al., 1993; Baldi et al., 2001; Venturini 

et al. 2012). High BPC level but low algal fraction of BPC was observed 

in L. vannamei ponds in comparison to that of P. japonicas, suggesting 

that other than microalgae, additional organic sources (e.g. external 

shrimp feed: smashed soybean and frozen Artemia) also contribute to 

the BPC pool. In the late stage, M. japonicus pond continue to 

accumulate BPC which is likely due to the addition of trash fish, while 

BPC content in L. vannamei ponds remain unchanged, indicating a 

steady state in those ponds.  

Interestingly, in the late stage when both types of pond faced heavy 

feed inputs, a lesser extent of labile organic accumulation (BPC and Chl 
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a) was observed in the M. japonicus ponds than those in the L. vannamei 

ponds. This can be primarily attributed to the substantial difference in 

stocking density (L. vannamei density being 5-10 times higher than M. 

japonicus), since the quantity of generated wastes was found to be 

proportional to the stocking density (Martin et al., 1998). Water renewal 

strategy is also a factor affecting the pond environment (Pusceddu et al., 

2011; Mohanty et al., 2015), because water exchange reduces turbidity, 

organic and nutrient loading and toxic metabolites, increases dissolved 

oxygen levels and promotes the growth of shrimps (Hopkins et al., 1993; 

Mohanty 2000). However, it should also be noticed that the discharge of 

waste pond water that contains high nutrient levels can pollute the 

adjacent estuarine (Hatje et al., 2016; Marins et al., 2011; Yang et al., 

2017). The pond water may also include pathogens that cause shrimp 

diseases (Kausty et al., 2000). The pathogens may affect the wild 

shrimps when emitting them to the natural environment, and also spread 

among farms during intake of waters from adjacent estuarine/sea (Belak 

et al., 1999; Kausty et al., 2000; Smith, 1998). In addition, different 

bioturbation mechanisms of the L. vannamei and M. japonicus ponds 

might also contribute to the different extent of organic accumulation. As 

adult L. vannamei spends more time in the water column and does not 

create burrow (Briggs et al. 2004). Studies found that L. vannamei did 

not promote nitrogen dynamics at the sediment-water interface, but their 

faeces together with shrimp feed increased the rate of organic 

enrichment (Boyd 1995; Zhong et al., 2010). M. japonicus adults tend 

to be benthic oriented and has burrowing activity (Abe et al., 2007). Also, 

Corophium that transplanted in the M. japonicus ponds were also known 

as U-shaped structure burrowers that are important for the sediment 
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reworking in the intertidal ecosystems (Mermillod-Blondin and 

Rosenberg, 2006; De Backer et al., 2011). Burrowing activity can 

increase the oxygen penetration which may lead to a more efficient 

sediment mineralization (Andersson et al. 1988, Kristensen, 2001). Thus, 

we hypothesize that the bioturbation effects are stronger in M. japonicus 

ponds than in L. vannamei ponds Further studies on the sediment oxygen 

profile and nutrient fluxes at water-sediment interface are required to 

verify the hypothesis.  

Studies showed that several Penaeus species prefer to feed on natural 

productivity grown in the ponds than on the feed pellets (Burford et al., 

2004; Nunes et al., 1997). Thus, the underestimation of natural 

productivity commonly leads to overfeeding issues especially for 

rearing L. vannamei which has relatively high tolerance to 

environmental changes (Briggs et al., 2004; Martinez-Cordova et al., 

1998). In this study, the high BPC concentrations suggest that the 

sediments in both M. japonicus and L. vannamei ponds are had 

pronounced eutrophic sediments (especially in the late stage that both 

ponds were hypertrophic). Especially in L. vannamei ponds, the BPC 

concentrations were much higher than the threshold: 5 mg C g-1 

(Pusceddu et al., 2007b). The concentrations of proteins and 

carbohydrates suggest that towards the end of the rearing season, both 

ponds were hypertrophic (Dell'Anno et al., 2002). This can be an 

indication of overfeeding. Moreover, the disposal of pond sediment is 

becoming a concern for the environmental management (Wu et al., 

2014). As a matter of fact, those biopolymeric and organic enriched 

sediments can pollute the surrounding environment if they are disposed 

without any proper treatment. Further continuous monitoring should 
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also emphasize the consequences of the biochemical characteristics for 

the adjacent costal ecosystem.  

Sedimentary organic variables were analyzed in a multivariate 

approach in order to estimate the change of the sedimentary trophic state 

of the impacted sites (Fig.2.6). For the scallop farming case, the 

temporal and spatial variations were well-shown but the scallop farming 

effect cannot be distinguished. In the shrimp ponds, the sedimentary 

trophic status of both types of ponds changed significantly during the 

rearing stages. Although we cannot rule out the seasonal variability to 

this change, the high level of biochemical fractions, which were out of 

the natural ranges of coastal marine sediments (Pusceddu et al. 2007b), 

suggesting that shrimp farming may have played an important role in 

this alteration.  

The protein to carbohydrate ratio (PRO: CHO) is recently used to 

indicate the benthic eutrophication status. The protein dominates over 

the other biopolymers and leads to PRO:CHO >1 in eutrophic ecosystem, 

including open-water fish farming areas (Dell'Anno et al., 2002; 

Pusceddu et al., 2009; Silva et al., 2017; Venturini et al., 2012). In our 

study, neither scallop farms nor shrimp ponds induced this condition, 

though the reasons were different. PRO:CHO < 1 obtained in the 

sediments of scallop farms actually indicates a meso-oligotrophic status 

that is supported by the protein, carbohydrate and BPC concentrations. 

However, low PRT: CHO values in the shrimp pond sediments is likely 

related to the activities of microbes. The microbial loop was found to be 

important in shrimp ponds (Moriarty, 1997). These microbes utilize 

proteins faster than carbohydrates (Joseph et al., 2008), and thus cause 

preferentially accumulation of carbohydrates. Our results agree with the 
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finding of Pusceddu et al. (2011) and confirm that the use of the PRO: 

CHO ratio is less applicable in an artificial ecosystem like shrimp ponds 

with limited water exchange and intensive anthropogenic activities. 

Thus, shrimp farming activity, which face more serious benthic 

eutrophication than bivalve farming, does not share the same monitoring 

criteria with other open-water aquaculture such as bivalve or fish 

aquaculture.  

2.5 Conclusions 

    Our study demonstrates that scallop farming in open water has 

generally no advance effect on the benthic environment in terms of 

physicochemical, bulk organic, and biochemical variables. On the other 

hand, the benthic environments of two different shrimp ponds were 

highly reduced, and switched to eutrophic/hypertrophic conditions. 

Furthermore, we found that the extent of benthic eutrophication was 

correlated to the farming practices used (e.g. feed inputs, water renewal, 

and stocking density) in shrimp ponds. Sediment biochemical analysis 

can reflect the trophic status in the scallop farms and shrimp ponds, and 

was capable to detect the scallop farming effect as well as the temporal 

changes throughout the shrimp rearing stages on the benthic 

environment. In comparison, bulk organic contents were less sensitive 

and thus less capable to indicate the scallop farming activity. The 

PRO:CHO ratio should be used with care as microbial activity can mask 

the initial concentrations of proteins and carbohydrates. 
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Abstract  
This study aims to identify the effect of biodeposition from a non-

indigenous scallop (bay scallop Argopecten irradians) farm on 

meiobenthos in a semi-closed bay in the Bohai Sea, China. Sediment 

characteristics, the meiobenthic community and harpacticoid copepod 

assemblages were investigated before aquaculture and during the high 

biodeposition period at three scallop farms located in sandy-shallow 

(SS), muddy shallow (MS), and muddy deep (MD) areas, and their 

correspondent control sites. The accumulation of biopolymeric carbon 

(BPC) was enhanced by scallop farming activities, but such 

accumulation did not result in eutrophication. The meiobenthos and 

harpacticoid copepods as bioindicators responded location-specifically 

to scallop farming. Only in Farm SS the community of meiobenthos at 

higher-taxon level differed from the control site as there was a larger 

proportion of nematodes. The harpacticoid copepod assemblage was 

altered by scallop farming only in station MD, which had a higher 

diversity and number of copepod species. The overall results suggested 

that this non-indigenous scallop farming had minimal effect on the 

benthic environment in Laizhou Bay. Also, the BPC, the entire 

meiobenthic community and harpacticoid copepod assemblages can 

serve together as tools for assessing of the potential environmental 

impact of bivalve farming. 

3.1 Introduction 
The rapid expansion of marine aquaculture (a.k.a. mariculture) 

diminishes the tension between the demand and supply of seafood but 

also generates many environmental issues (FAO, 2016; Naylor et al., 
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2000). One of the most serious problems is the bottom-up effect on the 

surrounding ecosystem due to the release of abundant particulate or 

soluble organic materials to the sediment below (the so-called benthic 

environment). This can lead to organic accumulation on the sea bottom 

(Hargrave et al., 1997; Pearson and Black, 2000), affecting the cycles of 

sediment biogeochemistry (Chamberlain et al., 2001; Holmer et al., 

2005), altering the diversity and structure of benthic communities (Mirto 

et al., 2000; Netto and Valgas, 2010), and eventually impacting the 

overall ecosystem functioning (Callier et al., 2013; Dubois et al., 2007). 

Although bivalve mariculture is considered to cause less environmental 

damage due to lack of feed loading, the high density of bivalve in 

mariculture farms can enhance the downward flow of organic matter 

(Crawford et al., 2003). Many studies have reported negative effects of 

bivalve farming on the benthic environment (Chamberlain et al., 2001; 

Mirto et al., 2000; Stenton-Dozey et al., 2001), while others found no 

detectable effects (Danovaro et al., 2004; Fabi et al., 2009; Han et al., 

2013). So far, no general conclusion can be made and a better 

understanding of the environmental effects of bivalve farming is needed 

for its sustainable management. 

China has the largest bivalve production worldwide (FAO 2016). 

Compared with other forms of bivalve mariculture, longline-suspended 

culture of scallops is relatively new and rapidly growing (Guo and Luo, 

2016). The bay scallop (Argopecten irradians Lamarck) is a non-

indigenous species (NIS) that was introduced from North America in the 

1980s. Since then, scallop farming has been dominated by bay scallops, 

with a production of 0.817 million tonnes in 2012, which is still 

continuously expanding (Guo and Luo, 2016; MAC 2013). NIS are 
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popular in aquaculture, generating high economic output because of 

their fast growth rates, wide range of diets, large environmental 

tolerance etc. (Ruesink et al., 2005; Silva et al., 2009). For example, bay 

scallop has a fast growth rate and reaches market size already within a 

year, which is twice as fast as native scallop species (Chinese scallop 

Chlamys farreri, Guo and Luo, 2016; Xiao et al., 2005). However, NIS 

aquaculture involves ecological risks as species growing outside their 

native ranges can potentially cause ecological and economic harm to the 

environment (Olenin et al., 2007). In particular, introduced ecosystem 

engineer like bivalves could have more dramatic impacts because their 

filter feeding and biodeposition activity can largely affect ecosystem 

structure and functioning (e.g. the biochemical fluxes and related 

organism communities, Sousa et al., 2009; Zaiko et al., 2009). Higher 

biodeposition rates of bay scallop were reported in comparison to the 

Chinese scallop (Li et al., 2009; Wang, 2015; Zhou et al., 2006), but 

little is known about its impacts on the native communities, particularly 

the ones occurring in the sediment. 

In view of the contrast between the economical benefit provided by 

bivalve mariculture and its potential environmental impact, systematic 

monitoring of the receiving ecosystem is urgently needed (Fabi et al., 

2009), especially for the cases of cultured non-indigenous bivalve 

species. Accordingly, identifying appropriate indicators of potential 

impact is one of the major tasks for monitoring bivalve mariculture 

(Cranford et al., 2006). Traditional parameters like sediment 

characteristics are sometimes not sensitive enough to identify the 

biodeposition effect (Callier et al., 2008). Meiobenthos is proposed as 

an integrative tool to monitor organic pollution and recognized as an 
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informative bioindicator (Grego et al., 2009; Mazzola et al., 2000; Mirto 

et al., 2012) due to its fast response to environmental stressors, with 

meiobenthic community structure providing information that cannot be 

detected with macrobenthos (Giere, 2009; Kennedy and Jacoby, 1999; 

Semprucci et al., 2016). However, the sensitivity to environmental 

disturbance varies among meiobenthos taxa (Raffaelli and Mason, 1981; 

Warwick, 1988). Harpacticoid copepods (Crustacea, Copepoda), the 

second most abundant taxon within the meiobenthos, are sensitive to 

changing environmental conditions (De Troch et al., 2013; Giere, 2009; 

Wetzel et al., 2001). Also, they fulfill an important function in the 

energy transfer from primary producers to higher trophic levels (Cnudde 

et al., 2015; Hicks and Coull, 1983; Leduc et al., 2009). Consequently, 

a possible community alteration of harpacticoid copepods could have a 

cascading effect on the food web. 

The aims of this study are to evaluate possible effects of non-

indigenous scallop (A. irradians) mariculture on the meiobenthic 

community as well as to assess the sensitivity and efficiency of 

bioindicators responding to biodeposition in the receiving benthic 

environment. We hypothesize that: (1) the farming of A. irradians 

affects the structure of the meiobenthic community (higher-taxon level) 

and copepod assemblages (species-level); (2) meiobenthic community 

(rapid bioindicator) and copepod assemblages (lower-taxon bioindicator) 

provide different levels of information on the effect of bay scallop 

farming. 
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3.2 Material and Methods 

3.2.1 Study area and field sampling design 
The bay scallop farming area is located in Laizhou Bay (Bohai Sea, 

Shandong Province, China; Fig 3.1) and is one of the largest A. irradians 

mariculture areas in China since the 1980s, with a total area of 500 

hectares and an annual production of 144470 tonnes in 2011 (Li, 2013). 

Bay scallops are typically cultivated with the suspended long-line 

method (See Chapter 1.5.1 for more details). Scallop farming activities 

are conducted from May to November each year without any provision 

of additional feed. Scallops are harvested when they reach a commercial 

size of 6 cm. 

 

Figure 3.1 Map of the sampling area – Laizhou Bay, Bohai Sea, China 
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Three scallop farms, Farm SS (Sandy Shallow; with c.a. 100-120 lines 

c.a. 200 ind. m-2), Farm MS (Muddy Shallow; with c.a. 60-80 lines and 

c.a. 100 ind. m-2), and Farm MD (Muddy Deep; with c.a. 100-120 lines 

and c.a. 200 ind. m-2), located about 5 km, 10 km, and 20 km offshore 

the Laizhou coast, were investigated in May (i.e. before the scallop nets 

are placed in this area) and in October-November 2016 (i.e. when the 

scallops reached heavy a biodeposition rate, Wang 2015). 

Correspondingly, three control sites (Ctrl SS, Ctrl MS, and Ctrl MD) 

were selected about 1.5-2.0 km away from each scallop farm to exclude 

any direct effect of farming. Farm & Ctrl SS (i.e. Station SS) were 

located at a depth of 5 m above a sandy bottom (2% clay, 24-28% silt, 

and 69-73% sand). Farm & Ctrl MS (i.e. Station MS) and Farm & Ctrl 

MD (i.e. Station MD) were both located above a muddy bottom (4-6% 

clay, 53-55% silt and 39-42% sand) at depths of 7 m and 12 m, 

respectively. A northeast oriented dominant current with a mean 

velocity of 20 cm s-1 runs perpendicularly to the shoreline (Zhao and 

Chen, 2001). Salinity and temperature of the water ranged between 30.7-

31.1 and 20.5-21.7 °C in May 2016, and 29.8-30.1 and 11.4-12.2 °C in 

October 2016.  

The sediment samples were collected by SCUBA diving using 

plexiglass cores (3.6 cm inner diameter, 10 cm2 surface area) and PVC 

cores (15 cm inner diameter, c.a. 177 cm2 surface area). Three 

deployments in each site were randomly chosen, and in each deployment 

three independent plexiglass cores were obtained for meiofauna analysis, 

chlorophyll a (Chl a) contents, and other environmental variables 

including total organic carbon (TOC), total nitrogen (TN), biochemical 

composition of organic matter (i.e. carbohydrates, proteins and lipids). 
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For Chl a and other biochemical variables, the top layer (0-1 cm) of the 

cores was sliced, homogenized and stored at -20 °C. For the meiofauna 

samples, the top layer (0-1 cm) was sliced and preserved in a 4% 

formaldehyde - filtered seawater solution. Sedimentary pH and Eh were 

measured from the top 1 cm layer of a PVC core for each deployment 

(See 2.2.2 from Chapter 2 for more details of the in situ measurements).  

3.2.2 Sediment environmental variables 
Chl a contents were measured in 2.5 g of wet sediments by 

fluorescence method after extraction with 90% acetone (Yentsch and 

Menzel, 1963). For the levels of TOC and TN, sediments were oven 

dried (60 °C), grounded, and treated with 1N HCl for 24 h to remove 

carbonates. TOC and TN were measured with an Element Analyser 

Flash 2000 (Thermo Fisher Scientific). The C/N ratio was calculated 

from the TOC and TN levels. Sediment granulometry was measured by 

laser diffraction with a Malvern Mastersizer 2000 particle analyzer 

(Malvern Instruments, UK). 

The biochemical composition of the organic matter in the sediments 

(carbohydrates, proteins, and lipids) was measured photometrically 

following the procedure of Fabiano and Danovaro (1994). About 0.2-

0.3 g of dried and grounded sediments were used as a replicate for each 

type of analysis, and pre-combusted sediments (450 °C, 4h) were used 

as blanks. Carbohydrate, protein and lipid contents were converted to 

the carbon equivalents by multiplying with the conversion factors of 

0.40, 0.49, and 0.75 mg C mg-1, respectively (Fabiano et al., 1995). Their 

sum was reported as biopolymeric carbon (BPC).  
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3.2.3 Meiobenthic community structure and copepod 

assemblages 
Sediment samples preserved in 4% formaldehyde were rinsed with 

filtered freshwater through 500 μm and 38 μm sieves. The fractions 

retained on a 38 μm sieve were centrifuged three times with Ludox 

HS40 (density: 1.18 g cm-3) and stained with 0.5 g L-1 of Bengal Rose. 

Meiobenthos was sorted to the higher taxon level. All the adult 

harpacticoid copepods in each sample were picked with a needle, 

preserved in 75% ethanol, and identified to species level. Since the 

purpose of this study was to estimate the community structure and 

diversity, we used the morphospecies (i.e. the different morphotypes 

belonging to each genus were indicated as sp1, sp2, etc.) for the copepod 

identification.  

The ratio of nematodes to copepods (Ne/Co), total density and 

biodiversity indexes: number of species (S), Shannon-Wiener diversity 

index (H'), Peilou's evenness (J’) and dominance (λ) were calculated. 

3.2.4 Statistical data analyses 
Three factors were considered in the sampling design: (1) Time - fixed 

factor with two levels: before farming (T0) and during heavy 

biodeposition stage (T1), (2) Station (Stn) - random factor with three 

levels: SS, MS, and MD, and (3) Site - fixed factor with two levels: farm 

and control. 

Variation in sediment variables, Ne/Co and biodiversity indices were 

tested with permutational multivariate analysis of variance 

(PERMANOVA) across the three factors of Time, Station (Stn), and 
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Site, based on Euclidean distance matrices. The homogeneity of 

multivariate dispersion was checked with a distance-based test 

(PERMDISP). When significant differences were observed, post-hoc 

comparisons were performed to test for possible differences between 

farm and control at each sampling station using PERMANOVA pair-

wise tests type III.  

Differences in composition of biopolymeric carbon, meiobenthic 

community structure and harpacticoid copepod assemblages among the 

three factors were tested with a 3-way PERMANOVA (main test and 

pairwise test) based on the Bray-Curtis matrices of square-root 

transformed densities. The same matrices of PERMANOVA were used 

for principal coordinate analysis (PCO) to visualize the grouping of taxa 

or species among factors. Finally, similarity percentage (SIMPER) 

analyses were conducted to investigate which taxa or species 

contributed to the dissimilarity between groups. Links between faunal 

community structure and environmental variables were analysed using 

RELATE and BIO-ENV routine (Clarke and Ainsworth 1993). After 

removing strongly correlated environmental variables (r > 0.9), we 

included TN, TOC, Chl a, proteins, lipids, carbohydrates, pH and Eh to 

calculate the matrix and conduct the RELATE and BIO-ENV analysis.  

PERMANOVA, PERMDISP, PCO, SIMPER, RELATE and BIO-

ENV were performed with Primer V6 (Clarke and Gorley, 2006), using 

the PERMANOVA+ add-on package (Anderson et al., 2008).   
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3.3 Results 

3.3.1 Meiobenthic community structure 
In total, 11 taxa were found during the two sampling events in the 

study area. All stations were dominated by Nematoda. The second most 

abundant taxon was either Copepoda or Bivalvia, followed by Ostracoda, 

Oligochaeta, Polychaeta, and other taxa (Fig 3.2). 

 

Figure 3.2 Relative (%) meiobenthic community composition in farm and control 

sites in three stations (SS, MS and MD) 

 

The main tests of PERMANOVA showed Time × Station × Site to 

have a significant effect on the meiobenthic community structure (Table 

3.1). The pair-wise tests between each farm and control site further 

indicated that the meiobenthic community structure only differed from 

the control site at Stn SS at T1 (Table 3.1: T1-SS p < 0.05). 
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This is in accordance with PCO that showed samples separated at T1 

(Fig 3.3). The pattern indicates scallop farming had an effect on the 

meiobenthic composition at Stn SS. 

Table 3.1 Results of factorial PERMANOVAs testing variations in the 

composition of (a) entire meiobenthic community and (b) harpacticoid copepod 

assemblages among the levels of the factors: Time (T0 vs T1), Site (Farm vs 

Control), and Station (Stn SS, MS, and MD). P-F = pseudo-F value; T0 = before 

farming; T1 = during heavy biodeposition; *= p < 0.05; **= p < 0.001; ***= p < 0.001 

Source df MS P-F P (MC) 

  (a) Meiofaunal community   
Time 1 4451.4 3.6957 ns 
Site 1 324.14 1.9783 ns 
Station 2 2357.8 26.38 *** 
Time ×Site 1 150.47 0.7005 ns 
Time × Station 2 1204.5 13.476 *** 
Site × Station 2 163.85 1.8333 ns 
Time × Station × Site 2 214.8 2.4034 * 
Res 24 89.376            
pairwise test: FARM VS CTRL t P (MC) 
T0-SS   0.950 ns 
T0-MS   0.996 ns 
T0-MD   0.306 ns 
T1-SS   2.895 * 
T1-MS   1.616 ns 
T1-MD   1.584 ns 
  (b) Copepod assemblages   
Time 1 12678 1.5519 ns 
Site 1 18815 20.093 ns 
Station 2 1281.8 0.70041 *** 
Time × Site 1 1377 0.78827 ns 
Time × Station 2 8169.2 8.7244 *** 
Site × Station 2 1830 1.9544 * 
Time × Station × Site 2 1746.9 1.8656 * 
Res 24 936.36     
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pairwise test: FARM VS CTRL t P (MC) 
T0-SS   1.665 ns 
T0-MS   0.781 ns 
T0-MD   1.192 ns 
T1-SS   1.148 ns 
T1-MS   0.529 ns 
T1-MD     1.891 * 
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Figure 3.3 Principal coordinate analysis (PCO) based on (a) meiobenthos at 

higher-taxon level and (b) copepod species in the sampled sediments. The sample 

grouping was based on Bray-Curtis clustering from square-root transformed 

abundance data. T0 = before farming; T1 = during heavy biodeposition; CTRL = 

control site; FARM = farming site. 
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The main taxa responsible for this separation in Stn SS were 

Nematoda (SIMPER: 50.37% of dissimilarity; Fig 3.4) that occurred at 

higher densities under the farm. Copepoda contributed 3.7% of 

dissimilarity as the density decreased with the presence of the farm 

(Pairwise comparison: p < 0.05). Ostracoda and Bivalvia contributed to 

the dissimilarity as well and occurred in higher densities at the farm sites. 
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Figure 3.4 SIMPER analysis of meiobenthos and copepod abundance (top 4 taxa 

or species contributing to differences) between farm and control sites at Stns SS 

and MD in T1 (during heavy biodeposition). SIMPER analysis was based on the 

Bray-Curtis dissimilarity of square-root transformed data. Percentage dissimilarity 

between farm and control sites is indicated. T0 = before farming; T1 = during heavy 

biodeposition; CTRL = control site; FARM = farming site. 

The Ne/Co index did not differ at T0 between farm and control sites 

for all stations. At T1 only the farm site in Station SS showed a higher 

Ne/Co (24.4±9.6) than that of control (5.8±1.3; Pairwise comparison: p 

= 0.029; Fig 3.5; Table S2). 
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Figure 3.5 Meiobenthic diversity indices and the ratio of nematodes to copepods 

(Ne/Co) in farm and control sites in three stations (SS, MS, and MD). Error bars 

indicate standard deviations among replicates. Significant differences (pairwise 

comparison: p < 0.05) are indicated by an asterisk. T0 = before farming; T1 = during 

heavy biodeposition; CTRL = control site; FARM = farming site. 
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No significant differences were found for the biodiversity indices 

between each pair of farm and control site (pairwise comparisons: p < 

0.05). 

3.3.2 Harpacticoid copepod assemblages 
The PERMANOVA results revealed that copepod assemblages were 

affected by the interaction effect of Time × Station × Site (Table 3.1). 

Copepod assemblages only differed between farm and control at Stn 

MD (Table 3.1 Pairwise comparison: T1-MD p < 0.05). SIMPER 

analysis showed two species of Ectinosomatidae, a species of 

Miraciidae (belonging to the genus Stenhelia), and a species of 

Canuellidae to occur either exclusively or with higher density at Farm 

MD compared to its control site (Fig 3.4). 

Furthermore, in Station MD at T1, scallop farming resulted in higher 

total density and higher species richness of copepods (Fig 3.6; Appendix 

II Table S3). 
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Figure 3.6 Copepod diversity indices in farm and control sites in three stations 

(SS, MS, and MD). Error bars indicate standard deviations among replicates. 

Significant differences (pairwise comparison; p < 0.05) are indicated by an asterisk. 

T0 = before farming; T1 = during heavy biodeposition; CTRL = control site; FARM = 

farming site. 
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3.3.3 Environmental properties and the relationships with 

meiobenthos  
We analyzed several physical/chemical properties (pH, Eh, total 

organic carbon and total nitrogen, chlorophyll a, and biopolymeric 

carbon: proteins, carbohydrates, and lipids) of the top 0-1 cm sediment 

layer at farm and control sites from three stations during T0 and T1 (See 

Chapter 2 sections 2.3.1, 2.3.2 and 2.3.3). Biopolymeric carbon (BPC), 

which reflects the labile fractions of sedimentary organic matter, could 

indicate scallop farming effects on the sediment. Compared with control 

sites, the farm sites in Stns SS and MD had a higher BPC content during 

the scallop farming (Fig. 3.7). Alterations to the biochemical 

composition of the farmed sediments in Stns SS and MD were also 

observed (Table S4 and Fig 3.7).   

 

Figure 3.7 Organic matter in the top 1 cm sediment layer from scallop farm and 

control sites at three stations (Stations SS, MS, and MD) in Laizhou Bay, China. 

(a) Sediment content of biopolymeric carbon (BPC). (b) Variations in the biochemical 

composition of the sedimentary organic matter (biplot after Principal coordinate - 

PCO). Error bars indicate standard deviations among replicates. T0 = before farming; 

T1 = during heavy biodeposition; CTRL = control site; FARM = farming site. 
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To link the environmental variables and the faunal community, 

RELATE analysis showed both meiobenthos community structure and 

copepods assemblage had low correlation coefficient with the 

environmental variables (Meiobenthos: RELATE - Spearman’s rho = 

0.316; Copepods: RELATE – Spearman’s rho = 0.163; Also see Table 

S5 for univariate RELATE analysis). Sedimentary proteins and 

carbohydrates were shown optimally explain the meiobenthos structure 

(rho = 0.453), while proteins and Chl a best explained the copepod 

assemblages (rho = 0.223). 

3.4 Discussion 

3.4.1 Effects of bay scallop farming on sediment trophic 

status 
Our study found an impact of scallop farming activities on the 

sediment trophic status. In Stns SS and MD where the production 

density was c.a. twice as high as in Stn MS, the sediments under the 

farms were characterized by an increase in BPC levels, indicating an 

increase in the digestible organic carbon fraction that is available to the 

benthos (Fabiano et al., 1995). Specifically, proteins and carbohydrates 

were found to accumulate in the sediment under the scallop farms, which 

is likely related to the scallops’ nutrient-enriched biodeposits (Kautsky 

and Evans, 1987; Miller et al., 2002). However, the Chl a, protein, 

carbohydrate and BPC contents in the farming area were all within the 

range of a meso-oligotrophic status as proposed by Dell'Anno et al. 

(2002) and Pusceddu and Danovaro (2007). In such an environment with 

low primary production, the increased amount of bioavailable organic 
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matter can be a potential extra food supply to benthos (Dell'Anno et al., 

2002). 

3.4.2 Effects of bay scallop farming on the meiobenthic 

community 
Scallop farming only affected the meiobenthic community under the 

scallop farm at Stn SS (the sandy bottom station), mainly because of an 

increase in nematode density. This was not observed at the muddy 

stations. This location-specific response is mostly due to the 

granulometry, which is an important factor that governs the 

biogeochemical reactions and community structure of the benthic 

infauna (Giere, 2009; Martinez-Garcia et al., 2015). The biodeposition 

from bivalve farms can decrease the grain size of the sediments and turn 

fine sand bottoms into a muddy deposit (Netto and Valgas, 2010). This 

facilitates nematodes, which reach higher densities in sediments with 

lower grain size (Boucher and Lambshead, 1995; Heip et al., 1985). As 

for total meiobenthic densities, a negative impact of mariculture is 

commonly observed due to organic loading (Grego et al., 2009; La Rosa 

et al., 2001; Mirto et al., 2000; Mirto et al., 2012), but no such change 

was observed under the scallop farms in our study.  

The Ne/Co ratio is associated with the benthic impact of organic 

pollution, which leads to an increase of the ratio (Raffaelli, 1981; Shiells 

and Anderson, 1985). We found the Ne/Co ratio to follow a similar trend 

as the meiobenthic community structure. At the sandy bottom station, 

the Ne/Co ratio was four times higher in sediments beneath the farms, 

indicating a response to the biodeposition. However, as suggested by 

Raffaelli and Manson (1981), the sediments in our study sites had not 
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reached the threshold of organic pollution. However, the Ne/Co ratio 

should be used as an indicative proxy rather than an exact measurement 

of biodeposition, since it is affected by several environmental 

parameters, e.g. grain size, temperature (Lee et al., 2001; Giere, 2009). 

Moreover, the ratio does not differentiate between epibenthic and 

interstitial copepods, the latter being more sensitive to oxygen depletion. 

The increased nematode densities at the sandy scallop farm have been 

linked to organic matter loading (Mirto et al., 2014; Mirto et al., 2010). 

Yet many studies showed a converse pattern of nematodes densities at 

rather high OM loading in a shallow coastal environment (Duplisea and 

Hargrave, 1996; Mirto et al., 2002; Sutherland et al., 2007). 

Nevertheless, opportunistic nematode species can always benefit from 

the organic input in both scenarios (Mirto et al., 2014; Netto and Valgas, 

2010). In fact, the cryptobioturbation and bioirrigation related to 

nematodes might promote small-scale but important ecosystem 

functioning through biogeochemical interactions e.g. developing the 

bacterial population, accelerating organic matter remineralization, and 

thereby supplying the inorganic nutrient supply (Danovaro et al., 2008; 

Pike et al., 2001). 

3.4.2 Effects of bay scallop farming on copepod 

assemblages 
We found a location-specific response in the copepod assemblages. In 

the station located at the muddy deep area, the copepod community 

showed a higher density and number of species under the farm than at 

the control site. This pattern agrees with the concept of Pearson and 

Rosenberg (1987) and Rosenberg (2001) that food availability is an 
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important factor to structure benthic communities, i.e. their number of 

species, density and biomass are higher when the food is abundant. 

Along with the higher amount of bioavailable organic matter under the 

scallop farm, the increased copepod densities were likely related to 

additional food supply (i.e. the scallop biodeposits). In meso-

oligotrophic ecosystems with low-quality food sources (Venturini et al., 

2012), biodeposits with a low C/N ratio, high proportion of labile 

organic matter, rebuilt microbial protein and attached microorganisms 

(Kautsky and Evans 1987, Wotton and Malmqvist 2001, Miller et al. 

2002) can add nutritional value to the benthic environment, and also 

serve as an alternative food source to harpacticoid copepods (Huang et 

al., 2018). In addition, we found the change in copepod assemblages to 

be underpinned by Ectinosomatidae, Canuellidae, and Miraciidae 

(genus Stenhelia), whose morphology and feeding behavior are well-

adapted to biodeposition environments. The hairy antenna of the filter-

feeding Canuellidae and the sweeper-like maxilla of the scrapper 

Stenhelia can attract more particles (Boxshall and Halsey, 2004; Mu and 

Huys, 2004). The increased number of microorganisms (e.g. bacteria, 

ciliates and dinoflagellates) resulting from organic loading facilitates the 

carnivorous Ectinosomatidae (Bongiorni et al., 2005; Commito and Tita, 

2002; Coull and Dudley, 1976). However, in case of a constant 

accumulation of large amounts of organic matter (e.g., a fish farm, 

resulting in anoxic sediment), the density of copepods can ultimately be 

impaired (Grego et al., 2009). 

In the sandy station where a species of the family Canuellidae 

dominated in both farm and control site, the total copepod density was 

slightly reduced under the scallop farm, yet the copepod community 
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structure did not change. This suggests a minor effect of the scallop farm 

on the copepod community in the sandy bottom. Although the 

bioavailable carbon was observed to be higher under this farm as well, 

the decreased density of Canuellidae was likely a consequence of 

intraspecific competition which is more intense than interspecific 

competition (Westoby, 1984). 

The harpacticoid copepod community responded differently than the 

entire meiobenthic community. In contrast to some other studies (Daudi 

et al., 2012; Kennedy and Jacoby, 1999), higher-taxon surrogacy was 

not sufficient to identify the effect of organic enrichment since higher 

meiobenthos taxa did not show the same pattern as the lower taxon level 

in our study. Although higher-taxon surrogacy can be a fast and reliable 

way to evaluate eutrophic ecosystems with high organic loading such as 

fin-fish farming areas and shrimp ponds (Aryuthaka and Kito, 2002; 

Grego et al., 2009; Mirto et al., 2012), our result suggests that under 

moderate organic loading into a meso-oligotrophic system, combining 

information from the higher- and lower-taxon level (e.g. at copepod-

species level) together can provide a clearer insight of assessing 

mariculture activity.  

3.4.3 Overall effect of bay scallop farming 
Other studies focusing on the pelagic community found that the bay 

scallop farming in Laizhou Bay lowered chlorophyll a levels in the 

water column but did not have a strong effect on nutrient levels (Liu et 

al., 2004; Wang, 2015). Another research found no significant changes 

in the macrofauna community in the bay scallop farming area in Laizhou 

Bay (Zhou, pers. comm.). Together with our results, we can suggest that 
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the NIS bay scallop farming in Laizhou Bay has minimal adverse effects 

on the local ecosystem. 

Even though the biodeposition rate of NIS bay scallop is quite high 

(10 times higher than native scallop Chlamys farreri, Wang, 2015) and 

this study area supports a high density of mariculture, no negative effect 

was observed. This was attributed to the meso-oligotrophic nature of the 

recipient environment (Liu et al., 2004; Zhuang et al., 2014; this study). 

Also, the relatively high hydrological dynamic reduces the potential 

impact of organic loading (Fabi et al., 2009), because more frequent 

resuspension decreases organic matter accumulation and enhances 

oxygen penetration and biogeochemical reactions e.g. mineralization 

(Mirto et al., 2000). Here, we observed a relatively high water flow 

velocity (mean velocity 20 cm s-1), compared to bivalve farms that had 

negative impacts on the benthic fauna (2.7 cm s-1 in Netto and Valgas 

(2010); 5 cm s-1 in Callier et al. (2008); 3.16-10.21 cm s-1 in Hartstein 

and Rowden (2004)). This suggests that the high-water velocity at our 

sampling site prevents the organic matter accumulation due to either 

direct dispersal or via enhanced mineralization of biodeposits.  

It should be noticed that at Stn MS, no localized response of the 

benthic community to the scallop farm was found. This can be due to 

the lower densities of cultured scallops compared to the other stations.  

3.5. Conclusions 
The reported results can serve as a reference for a better monitoring 

of the NIS bay scallop farming in a bay with a meso-oligotrophic benthic 

environment. In general, this mariculture activity had minimal effects in 
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terms of the meiobenthic community structure and harpacticoid copepod 

assemblages. The effects of this scallop farming on local assemblages 

varied among different benthic components, depending on the sediment 

type as well as on the intensity of the mariculture (i.e. densities of 

cultivated species). Furthermore, in the condition of moderate organic 

loading in meso-oligotrophic benthic environments, sedimentary BPC 

as well as the meiobenthos and harpacticoid copepod community can be 

useful tools to assess the environmental impact of mariculture.  
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Abstract  
The farming of the non-indigenous bay scallop Argopecten irradians in 

coastal waters generates large amounts of biodeposits that potentially 

change the trophic pathways and quality of the benthic food web at 

lower trophic levels such as meiobenthos. To understand the trophic link 

between faecal pellets of bay scallop and meiobenthos in the aquaculture 

area, we investigated the resource use of harpacticoid copepods and 

nematodes inside and outside of 3 bay scallop farms in Laizhou Bay 

(Bohai Sea, China), using natural abundance of stable carbon and 

nitrogen isotopes together with fatty acid profiling. Faeces were found 

to be enriched in 15N compared to all other food sources, which made 

faecal matter traceable. The enriched 15N in several meiobenthos at the 

farms together with the mixing model results indicated that faeces could 

be a new food source for most of harpacticoid copepods and some 

nematodes. The quantities and the pathways of assimilation differed 

between the copepod families depending on their feeding behaviors and 

the receiving environment. Furthermore, due to the presence of higher 

levels of polyunsaturated fatty acids, in particular docosahexaenoic acid, 

the dominant copepod family Canuellidae that abundantly consumed 

scallop faeces showed enhanced nutritional quality compared with those 

in the control sites. Thus, aquaculture of non-indigenous bay scallops 

provided a food source that was directly and indirectly consumed by 

meiobenthos underneath the scallop farms and improved the quality of 

lower level consumers as a food item in the benthic food web. 
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4.1 Introduction 
Coastal marine aquaculture is growing steadily worldwide as a means 

of food production but has been criticized on environmental grounds 

(Pillay 2008). One of the most contentious issues is the possible impact 

of aquaculture effluents accumulating on the seabed on community 

structure and ecosystem functioning of the benthic ecosystem (Kalantzi 

and Karakassis 2006, Dubois et al., 2007). Compared to finfish farming, 

bivalve aquaculture is considered to cause less damage to the 

environment as there is no addition of feed (Crawford et al., 2003). 

However, bivalve species are recognized as keystone species that exert 

a bottom-up effect on marine ecosystems through biodeposition (i.e. the 

deposition of faeces and pseudofaeces), transferring materials and 

nutrients to the benthic environment (Newell 2004). This process can 

affect ecosystem functioning by serving as additional food sources to 

the benthos and can thus potentially change the benthic energy flow 

(Peterson and Heck 1999, Callier et al., 2008). Although many studies 

have recorded the influence of biodeposition on benthic assemblages 

(Hartstein and Rowden 2004, Callier et al., 2008), little is known about 

the fate of biodeposits and their functional effect on the benthic 

ecosystem, e. g. through the assimilation of these deposits by benthic 

organisms. While biodeposits have a good nutritional value (McKindsey 

et al., 2011), it is unclear whether the benthos can benefit from 

incorporating these deposits into their diet. 

China is the biggest bivalve aquaculture producer worldwide and 

scallop farming using longlines in coastal marine waters is a major part 

of its aquaculture industry (FAO 2016). Among the cultured scallop 

species, the non-indigenous species (NIS) Argopecten irradians (a.k.a. 
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bay scallop), introduced from North America, has dominated the 

Chinese scallop production over the past 30 yr (Guo and Luo 2016). In 

terms of economic output, A. irradians has an advantage over the native 

scallop Chlamys farreri due to the faster growth rate (Guo and Luo 

2016). However, the high biodeposition rate of A. irradians (almost 10 

times higher than C. farreri) also poses a threat to the benthic ecosystem 

(Zhou et al., 2006, Li et al., 2009, Wang 2015). However, little is known 

about whether and how the biodeposition of non-indigenous A. 

irradians can potentially affect organisms in the sediment and the 

overall functioning of the benthic ecosystem. 

Ecosystem functioning integrates the energy flux within a system 

(Power 1992). The process of resource utilization by benthic consumers, 

especially meiobenthos (the smaller fraction of metazoans passing 

through a 1 mm sieve but being retained on a 38 µm sieve), is crucial to 

understand the energy flux of an ecosystem, because: (1) meiobenthos 

are highly abundant and form a link between primary producers and 

higher trophic levels (TLs) (Leduc et al., 2009); and (2) due to their 

small size, short generation times and close associations with sediments, 

they are sensitive to stressors and respond functionally to them 

(Kennedy and Jacoby 1999). However, there is little information on 

functional responses (in particular, resource utilization) of meiobenthos 

to aquaculture biodeposition. Since the effects of aquaculture waste are 

known to differ among trophic guilds and feeding behaviors of animals 

(Wai et al., 2011), it is important to incorporate the knowledge of 

functional responses of different taxonomic groups in order to 

understand the impact on ecosystem functioning. Furthermore, 

harpacticoid copepods are important food sources and providers of fatty 
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acids (FAs), especially highly polyunsaturated fatty acids (PUFAs), to 

higher marine consumers (de Lima et al., 2013). Their FA profiles 

depend on their food sources and environmental conditions (Nanton and 

Castell 1999, De Troch et al., 2012, de Lima et al., 2013). Determining 

the presence of quality-indicator FAs, such as PUFA, 20:53 

(eicosapentaenoic acid; EPA) and 22:63 (docosahexaenoic acid; 

DHA), in harpacticoid copepods will contribute to the assessment of the 

functional impacts of biodeposition by bay scallop in aquaculture areas. 

The analysis of the natural abundance of stable isotopes together with 

FA profiles is an efficient tool to investigate the diet of meiobenthos 

(Leduc and Probert 2009, Cnudde et al., 2015). Stable carbon ratios 

reflect the food sources of consumers, and nitrogen ratios are used to 

determine their trophic positions (DeNiro and Epstein 1978, Minagawa 

and Wada 1984). Moreover, stable isotopes help to trace the fate of 

aquaculture waste in different communities (Gondwe et al., 2012, 

Vizzini and Mazzola 2012, Sanz-Lázaro and Sanchez-Jerez 2017). FA 

profiles provide information on food sources such as diatoms and 

bacteria (Kelly and Scheibling 2012). 

The aim of this study was to evaluate the impact of aquaculture of the 

NIS bay scallop A. irradians on benthic ecosystem functioning. 

Specifically, we used stable isotopes and FAs to test the following 

hypotheses: (1) the presence of a scallop farm affects the isotopic values 

of primary organic sources in the sediment; (2) scallop faeces are 

consumed by meiobenthos in the receiving sediment; (3) the quantity of 

faeces consumption differs among taxa/families of meiobenthos; and (4) 

the presence of a scallop farm changes the FA profile of the harpacticoid 

copepods occurring in the sediment. 
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4.2 Materials and Methods 

4.2.1 Study area  
Samples were collected in scallop farms located in the eastern part 

of the Laizhou Bay (37°00’-38°30’ N, 118°45’-120°30’ E). Laizhou Bay 

is located in the south Bohai Sea, Shandong Province, on the north coast 

of China. It has a mean depth of 9 m (maximum ~18 m), a coastline of 

320 km and a total area of ~700000 ha (Zhuang et al., 2014), and a mean 

water semi-exchange period of 85 days (Zhao and Chen, 2001). The area 

is an important spawning and breeding ground for many fishes but is 

currently under pressure due to human activities such as intensive 

mariculture (Jin et al., 2013). 

The bay scallop Argopecten irradians is a major mariculture 

species, which has been cultivated using the suspended-longline method 

in this area for 30 yr. Bay scallop mariculture in Laizhou Bay is one of 

the most important sources of scallop production in China, with a total 

area of 500 ha and a density of 200 ind. m–2 yielding a production of 

around 20000 t yr–1 (Liu et al., 2004). Bay scallops are cultured from 

May to November each year without adding any feed. The rest of the 

year, the area is devoid of any aquaculture activities. 

4.2.2 Sampling design 
    We selected 3 large scallop farms and 3 corresponding control sites. 

To exclude any direct effect of aquaculture on the control sediment, each 

control site was located 2 km to one side of the farm, at the same depth 

as the farm, so that it was exposed laterally to the predominant current 

that also flowed through the farm. Each pair of sites, ‘farm’ and 
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‘control’, was considered as a single station, and the 3 stations were 

characterized by sediment type as sandy-shallow (Stn SS) (2% clay, 24–

28% silt, 69–73% sand; water depth 5 m), muddy-shallow (Stn MS) and 

muddy-deep (Stn MD) (4–6% clay, 53–55% silt, 39–42% sand; water 

depth 7.5 and 12 m respectively). Previous observations in Laizhou Bay 

revealed that biodeposition rates of bay scallops peaked in November, 

and rates of larger individuals were higher than those of smaller ones 

(Wang 2015). We thus conducted sampling for stable isotopes and FA 

analysis in October−November 2015 and 2016, before the harvest of 

scallops, in order to cover the period of high biodeposition rates in this 

area. For FA samples, an additional sampling campaign was conducted 

in May 2016 before the scallop lantern nets were placed in this area. 

4.2.3 Sampling procedure 
We considered that meiobenthos from each farm and control site were 

exposed to the following common primary organic sources: (1) 

phytoplankton from the water column, (2) microphytobenthos (MPB) in 

the sediment surface, and (3) fragments of seagrass Zostera marina 

leaves in the sediment (senescent fragments of Z. marina verified by 

microscopical observation). Bay scallop faeces were only considered as 

a potential food source at the farm sites. Phytoplankton was considered 

to be the major component in the pre-filtered particulate organic matter 

(POM) because the weight-to-weight ratio of particulate organic carbon 

to chlorophyll a (POC/chl a) ranged from 19 to 37 in October-November 

in our sampling area (Wang 2015). This is within the known range of 2 

to 200 for POC/chl a in algae (Cifuentes et al., 1988). POM samples 

were obtained at each control site in order to avoid the potential addition 
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of aquaculture-derived organic matter. About 500 ml seawater was 

filtered through a 58 m net to remove zooplankton and large detritus, 

and subsequently filtered on pre-combusted (450°C, 4 h) 0.7 µm 

Whatman GF/F glass fiber filters. MPB samples were collected at each 

farm and control sites in 2016. Due to the insufficient MPB biomass for 

reliable stable isotope analysis, we pooled farm and control together for 

each station, which is justified by the similar 13C and 15N values of 

the surface sediment at each farm and control site (see below). MPB 

were separated from the sediment surface using a modified method of 

Doi et al. (2003): the top 1 cm sediment collected by a Van Veen grab 

was covered by a 2 mm layer of quartz sands (25 to 65 m diameter, 

pre-combusted at 500°C for 2 h), a nylon net (75 m), and another layer 

of 2 mm pre-combusted quartz sand. The dishes were illuminated for 24 

h, while moisture was maintained with continuous spraying of filtered 

seawater on the sand. After illumination, the upper sand layer was 

scraped off and resuspended in filtered seawater. The supernatants were 

filtered on pre-combusted Whatman GF/F filters. We also collected 

sediment surface organic matter (SSOM) to evaluate the impact on the 

organic pool of surface sediments. SSOM was collected at each farm 

and control site by scraping the top layer (0 to 1 cm) of sediment from 

the Van Veen grab. To collect the bay scallop faeces, 20 individuals of 

scallop (average body length of 5.5 cm) were placed in the containers 

with filtered seawater overnight and faeces were obtained by filtering 

the water from the containers on pre-combusted GF/F filters. Triplicate 

samples were taken for POM, MPB, SSOM and scallop faeces. 

Meiobenthos for stable isotopes and FAs were collected qualitatively 

by scraping the top 1 cm layer of the sediment from 3 randomly selected 
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patches (approx. 1 × 1 m) that were at least 1 m apart at the farm and 

control sites. 

4.2.4 Stable isotope analysis 
The POM, MPB, and faeces samples were oven-dried at 60°C to a 

constant weight and divided into 2 subsamples. One set was treated with 

hydrochloric acid (HCl) fume to remove carbonates for δ13C, and the 

other, without acid treatment, was used for δ15N analysis. All samples 

were put into tin capsules (Elemental Microanalysis, 8 × 5 mm) and 

pinched closed. 

30 to 60 mg of sediment were acidified in silver capsules (Elemental 

Microanalysis, 8 × 5 mm) with diluted HCl to remove carbonates and 

washed with distilled water. The capsules were dried and pinched closed 

afterwards. 

Sediments were sieved with filtered seawater through a 500 m and 

a 150 m sieve. The fraction retained on the 150 m sieve was frozen 

and transported to the lab. The frozen samples were thawed and 

meiobenthos were handpicked with a needle under a stereomicroscope. 

Meiobenthos were sorted into nematodes (150 to 300 ind. per sample) 

and copepods. For the samples collected in 2015, copepods were pooled 

together (80 to 100 ind. per sample) while copepod samples in 2016 

were sorted to family level (80 to 120 ind. per sample). Meiobenthos 

were rinsed with MilliQ water twice before being transferred to tin 

capsules, oven-dried overnight at 60°C and pinched closed. All samples 

were stored in a desiccator prior to further analysis. 

C and N stable isotopes were measured with an isotope ratio mass 

spectrometer (type Europa Integra) at UC Davis Stable Isotope Facility 
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(University of California). Isotope values are expressed as 13C and 15N 

(‰) determined by the following equation: 

 (1)  

    where R = 13C/12C or 15N/14N. Reference standards were PDB for 13C 

and atmospheric nitrogen for 15N. 

4.2.5 FA profiling 
FA samples included only specimens of the harpacticoid copepod 

family Canuellidae collected at Stn SS. The abundances of the other 

copepods at the other sites were too low to obtain enough biomass for a 

reliable FA analysis. Canuellidae were extracted alive from sediments 

following the method of Svensson et al. (2010) and stored at room 

temperature overnight to clear their gut content. The next day, 100 to 

150 individuals were picked, washed with filtered seawater, and 

transferred to glass tubes for storage at –80°C prior to FA extraction. 

Lipid extraction, methylation to fatty acid methyl esters (FAMEs), 

and FAME analysis followed the procedure of De Troch et al. (2012). 

FAME of 19:0 (Fluka 74208) was added as internal standard. The 

FAMEs were analyzed with a gas chromatograph (HP 6890N) coupled 

to a mass spectrometer (HP 5973). FAMEs were identified by 

comparing the retention time and mass spectra with authentic standards 

and mass spectral libraries (WILEY, NITS05) and then analyzed with 

the software MSD ChemStation (Agilent Technologies). Individual 

FAMEs were quantified by using a component FAME and BAME mix 

(Supelco #47885 and #47080 respectively, Sigma-Aldrich) and 

additional standards (Larodan). Shorthand FA notations were expressed 

sample13 15 3

standard

R
δ C or N=([ ]-1) 10

R

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as A: BX, where A gives the number of carbon atoms, B represents the 

number of double bonds and X is the position of the first double bond 

closest to the terminal methyl group. 

4.2.6 Data analysis 
Variations in 13C and 15N values of potential food sources, SSOM, 

and meiobenthos were tested using analysis of variance (ANOVA) 

followed by Student-Newman-Keuls pairwise comparisons. Prior to 

ANOVA, the assumption of homogeneity of variances were diagnosed 

with Kolmogorov-Smirnov tests and Levene’s tests, respectively. Log 

transformations were used to meet this assumption if necessary. Non-

parametric Kruskal-Wallis tests were conducted when homogeneity of 

variation could not be reached. Differences between farm and control at 

each station for 13C and 15N values of SSOM, TL, and FA indicators 

were assessed using t-tests. ANOVA and t-tests were conducted with 

the software SPSS 20.0. 

To identify the difference in isotopic values (13C and 15N) of 

meiobenthos between farm and control, the 13C and 15N ratios of taxon 

or family co-occurring in farm and control sites were plotted in the same 

biplot (i.e. 13C control/13C farm and 15N control/15N farm). Taxa or 

families were considered to have similar 13C or 15N values if the ratio 

fell within the 95% confidence interval (CI) encompassing the 1:1 

correlation between farm and control isotopic values. 

The TL of meiobenthos was estimated based on 15N values: 

TLconsumer = 2 + (δ15Nconsumer – δ15Nbase)/ 15N (2) 

where  δ 15Nbase is the δ 15N of primary consumer i.e. the family of 

harpacticoid copepods that has the lowest δ 15N in each site. The 15N 
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of 2.3‰ for marine organisms was adopted (Zanden & Rasmussen 

2001). 

A mixing model MixSIR applied Bayesian method was used to 

calculate the potential food sources of meiobenthos (Moore & Semmens 

2008). Trophic enrichment factors (TEF) of 0.3 ± 1.3‰ 13C and 2.3 ± 

1.8‰ 15N were adopted for herbivores and omnivores, i.e. individuals 

with TL <3 (Zanden & Rasmussen 2001). Trophic enrichment factors 

(TEF) of 0.3 ± 1.3‰ δ13C and 2.3 ±1.8‰ δ15N were adopted for each 

trophic step (Zanden & Rasmussen 2001). The isotopic values of the 

seagrass Z. marina were adopted from Hoshika et al. (2006). We 

calculated isotopic data only for the year 2016 because MPB was not 

collected in 2015. MPB and POM were pooled as a logical group 

representing the microalgae-derived organic matter (Phillips et al., 

2005). 

A 2-way permutational multivariate analysis of variance 

(PERMANOVA, main test and pairwise test) and analysis of similarity 

(ANOSIM) were run on the relative FA profiles of Canuellidae in Stn 

SS in 2016. Time (‘Before vs. During’, where ‘Before’ refers to the 

period prior to the start of seasonal aquaculture production) and site 

(‘Farm vs. Control’) were orthogonal and fixed factors. A distance-

based test for homogeneity of multivariate dispersions (PERMDISP) 

was used to test the homogeneity of multivariate dispersion (Anderson 

2006). To visualize the degree of dissimilarity of FA composition 

between groups, principal coordinates analysis (PCO) was conducted 

based on a Bray-Curtis resemblance matrix of untransformed relative 

FA profiles. The contribution of individual FA to these clusters was 

tested by similarity percentages (SIMPER) analysis. All multivariate 
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analyses were performed with Primer V6 (Clarke & Gorley 2006), using 

the PERMANOVA+ add-on package (Anderson et al., 2008). 

4.3 Results 

4.3.1 Stable isotopes of food sources 

    Scallop faeces showed enriched δ15N values (9.40 ± 1.03 ‰ in 2015 

and 9.44 ± 0.93‰ in 2016, Fig 4.1), which were higher than those of 

any other potential food source (ANOVA for 2016: F6,13 = 20.999, p < 

0.001; 2015: F3,11 = 8.666, p = 0.003). For the δ13C values, significant 

differences were found, with decreasing signatures from seagrass 

(Zostera marina) to scallop faeces to POM and MPB (Fig 4.1A). 

Isotopic composition of POM and MPB varied among stations in terms 

of δ15N values in 2016 (ANOVA, POM in 2016: F2, 6 = 6.806, p = 0.029; 

MPB in 2016: F2, 5 = 13.900, p = 0.009) (Fig 4.1B). Within each station, 

only Stn MD and Stn SS showed significant differences in isotopic 

signatures. At Stn MD the MPB had more depleted δ15N values 

compared with POM, while there were no differences at SS and MS (t-

test, SS: t1.074 = 6.157, p = 0.091; MS: t4 = 1.622, p = 0.180; MD: t4 = 

3.715, p = 0.021). At Stn SS δ13C values of POM were more depleted 

than those of MPB, while there were no differences at MS and MD (t-

test, SS: t3 = 9.203, p = 0.003; MS: t4 = 6.908, p = 0.415; MD: t4 = 1.050, 

p = 0.353). The δ15N values of POM at Stns SS and MS were lower in 

2015 compared with those in 2016 (Fig 4.1B), and Stns SS and MD in 
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2015 displayed more depleted δ15N than in 2016 (F5,14 = 3.477, p = 

0.030; post hoc test α = 0.014 for Stn SS and α = 0.023 for Stn MS). 

13
C (‰ )
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Figure 4.1. Average stable (A) carbon and (B) nitrogen isotope signatures (mean 

± SD for n replicates) of primary organic food sources of meiobenthos taxa 

collected from ‘farm’ and ‘control’ sites at 3 stations at scallop farms in Laizhou 

Bay, China in 2015 and 2016. Food sources analysed were scallop faeces, seagrass 

Zostera marina (isotopic values adopted from Hoshika et al., 2006), particulate organic 

matter (POM) and microphytobenthos (MPB). Stations were characterized by 

sediment type as sandy-shallow (SS), muddy-shallow (MS) and muddy-deep (MD) 

4.3.2 Stable isotopes of SSOM 
    Results of t-tests showed there was no significant difference for either 

δ13C or δ15N of SSOM between farm and control sites at each station 

(Fig 4.2; see also Table S1 in the Appendix at test: p > 0.05). The 

ANOVA test for the δ15N values of SSOM at 3 stations in 2015 showed 

a spatial variation (ANOVA: F5,12 = 33.338, p < 0.001) with Stn SS 

having slightly lower δ15N values (Fig 4.2). 

http://www.int-res.com/articles/suppl/q010p227_supp.pdf
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Figure 4.2 (A) δ13C and (B) δ15N values (mean ± SD, n = 3) of sediment surface 

organic matter collected from ‘farm’ and ‘control’ sites at 3 stations (SS, MS and 

MD) at scallop farms in Laizhou Bay, China in 2015 and 2016. See Fig 4.1 legend 

for abbreviations of stations. Significant differences (p < 0.05) among groups 

identified by Student-Newman-Keuls pairwise comparisons are indicated by different 

letters above the bars. n/d: no data (sampling failed due to practical reasons) 

4.3.3 Stable isotopes and trophic level of meiobenthos 
Copepods and nematodes were the major meiobenthos taxa in all 

stations, accounting from 8 to 15% and 45 to 92% for meiobenthos 

biomass respectively (authors’ unpubl. data). For copepods, in total 4 

families were identified: Canuellidae, Laophontidae, Ectinosomatidae, 

and Miraciidae. At Stns SS and MS, Canuellidae was the dominant 

copepod family at both control and farm sites. At Stn MD, copepods 

were more diverse at the farm site, where Laophontidae, 

Ectinosomatidae, Miraciidae, and Canuellidae were abundant; while at 

the control site only Laophontidae and Ectinosomatidae were abundant. 

C and N isotopic values varied spatially and were not always the same 

in the 2 sampling events, ranging from −23.02 ± 0.76 ‰ to −19.16 ± 
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0.20 ‰ for δ13C and 8.13 ± 0.13 ‰ to 14.37 ± 0.17 ‰ for δ15N (Table 

4.1). Carbon and nitrogen isotopic values varied among meiobenthos 

taxa (in 2015, δ13C: F12, 31 = 31.126, p < 0.001; δ15N: F12, 31 = 9.832, p < 

0.001; in 2016, δ13C: F13, 31 = 30.035, p < 0.001; δ15N: F13, 31 = 8.089, p 

< 0.001). In general, nematodes had higher δ15N values compared with 

copepods from the same site, except for the nematodes from 2015 Stn 

SS that showed a slightly lower value at the farm and a similar value at 

the control site (Table 4.1). For the common copepod family 

Canuellidae, isotopic values displayed high variation (mean values 

ranged from −21.27 to −19.16 ‰ and from 8.13 to 12.55 ‰ for δ13C and 

δ15N respectively). Family Ectinosomatidae showed the highest δ15N 

among copepods at the farm at Stn MD in 2016. 

With regard to TL, nematodes at Stns MD and MS showed higher 

values than any other meiobenthos, ranging from 2.9 to 3.7 (ANOVA: 

F19, 47 = 6.024, p < 0.001). Compared with nematodes from the same 

site, the TL values of copepods were lower and varied among families 

and sites. Canuellidae always displayed the lowest TL value at each site, 

except for Stn SS in 2015 when nematodes had the lowest TL (Table 

4.1). Laophontidae and Miraciidae showed intermediate TL 

corresponding to an omnivore signal (Post 2002, Maria et al., 2012). 

Only Ectinosomatidae from the farm site at Stn MD in 2016 showed a 

car-nivorous signal (TL = 3.2); the was significantly higher than at the 

control site at the same station (TL control = 2.4; p = 0.004; Table 4.1). 
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Table 4.1 δ13C and δ15N values (mean ± SD, with number of replicates shown in parentheses) and trophic levels (TL, mean) of 

harpacticoid copepods and nematodes from scallop farms in Laizhou Bay, China in 2015 and 2016. Samples were taken from ‘control’ 

and ‘farm’ sites at 3 stations, characterized by sediment type as sandy-shallow (SS), muddy-shallow (MS) and muddy-deep (MD). Results of 

t-tests of TL in taxa co-occurring in farm and control sites are shown. ***p < 0.001; **p < 0.01; *p < 0.05; NS = non-significant; n/a: not 

applicable 

  
 Control  Farm  t–test for TL 

Year  Station Taxon 13C 15N TL  13C 15N TL  t (df) p-

value  SS Canuellidae –20.32 ± 0.08 (3) 11.63 ± 0.08 (3) 1.9  –20.40 ± 0.01 (4) 12.55 ± 0.03 (4) 2  0.818 

(5) 

0.451NS 
2016 MS Canuellidae –19.28 ± 0.08 (3) 8.52 ± 0.05 (3) 2  –19.50 ± 0.07 (3) 8.13 ± 0.13 (3) 2  0.088 

(4) 

0.943NS 
  Nematoda –19.68 ± 0.12 (3) 12.04 ± 0.29 (3) 3.5  –20.21 ± 0.16 (3) 12.07 ± 0.20 (3) 3.7  1.922 

(4) 

0.117NS 

 MD Laophontidae –23.02 ± 0.76 (3) 8.71 ± 0.97 (3) 2  –20.98 ± 0.18 (3) 9.61 ± 0.19 (3) 2.4  1.705 

(4) 

0.163NS 

  Ectinosomatidae –20.39 ± 0.11 (3) 9.68 ± 0.19 (3) 2.4  –19.51 ± 0.26 (3) 11.41 ± 0.48 (3) 3.2  6.014 

(4) 

0.004* 

  Miraciidae n/a n/a n/a  –19.72 ± 0.31 (3) 9.67 ± 0.25 (3) 2.4  n/a n/a 

  Canuellidae n/a n/a n/a  –19.16 ± 0.20 (3) 8.63 ± 0.28 (3) 2  n/a n/a 
  Nematoda –21.36 ± 0.21 (3) 11.83 ± 0.26 (3) 3.4  –19.88 ± 0.32 (4) 12.04 ± 0.42 (4) 3.5  0.987 

(5) 

0.369NS 
 SS Canuellidaea –20.35 ± 0.42 (4) 8.98 ± 0.22 (4) 2  –20.58 ± 0.33 (4) 10.66 ± 0.11 (4) 2  1.731 

(6) 

0.134NS 
2015  Nematoda –19.54 ± 0.65 (3) 8.25 ± 0.51 (3) 1.7  –19.67 ± 0.72 (4) 10.89 ± 0.31 (4) 2.1  3.820 

(5) 

0.012* 

 MS Canuellidaea –21.27 ± 0.83 (4) 10.36 ± 0.38 (4) 2  –20.95 ± 0.07 (4) 11.55 ± 0.11 (4) 2  0.986 

(6) 

0.362NS 

 
 Nematoda –20.83 ± 0.19 (3) 13.28 ± 0.21 (3) 3.3  –20.38 ± 0.12 (3) 13.97 ± 0.09 (3) 3  3.960 

(4) 

0.017* 

 MD Bulk copepoda –21.08 (1) 11.66 (1) 2  –21.45 ± 0.04 (2) 12 ± 0.4 (2) 2  n/a n/a 
  Nematoda –20.88 ± 0.29 (2) 13.65 ± 0.01 (2) 2.9  –20.22 ± 0.07 (2) 14.37 ± 0.17 (2) 3  n/a n/a 

*Family Canuellidae represented >70% of sampled organisms per replicate
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The δ13C and δ15N ratios of co-occurring species at control and farm 

sites from each station are presented in Fig 4.3. For δ13C, most taxa 

showed similar values at farm and control sites since they fell within the 

1:1 correlation 95% CI. For δ15N, nematodes at Stns MS and MD had 

similar values between farm and control sites, but nematodes at the farm 

site at Stn SS showed a more enriched δ15N compared to the control site. 

All copepods in 2015 and all the abundant families in 2016 (except 

family Canuellidae at Stn MS) showed more enriched δ15N at farm sites 

com-pared to control sites. 

-23 -22 -21 -20 -19

1
3
C

 c
o

n
tr

o
l

-23

-22

-21

-20

-19
Cop Can.

Cop other

Nema

Nema

Cop Ect.

Nema

Nema

Cop Can.

Cop Can.

Cop Lao.

Cop Other Cop Can.

(A)

15N farm

8 10 12 14

1
5
N

 c
o

n
tr

o
l

8

10

12

14

95% CI

1:1

Station SS - 2016

Station MS - 2016

Station MD - 2016

Station SS - 2015

Station MS - 2015

Nema

Nema

Nema
Cop Can.

Cop Lao.
Cop Can.

Cop Ect.

Cop other

Cop other

Nema

Cop Can.

Cop Can.

13C farm

(B)

 

Figure 4.3 Comparison of (A) δ13C and (B) δ15N values for harpacticoid copepod 

and nematode taxa between ‘farm’ and ‘control’ sites at 3 stations (SS, MS and 

MD) at scallop farms in Laizhou Bay, China in 2015 and 2016. See Fig 4.1 legend 

for abbreviations of stations. In each panel, the solid line represents a 1:1 correlation 

between δ13C or δ15N values at farm and control sites, and the 2 dashed lines show the 

95% CI. Values outside the 95% CI are significantly different. Nema: nematodes; Cop 

Can.: cope-pod family Canuellidae; Cop Ect.: copepod family Ectinosomatidae; Cop 

Lao.: copepod family Laophontidae; Cop other: rest of the pooled copepods. In 2015, 

all copepods are pooled but still represented by the dominant family: Canuellidae, 

representing > 70% per replicate 
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4.3.4 Mixing model estimation of utilization by 

meiobenthos 
In general, faeces-derived materials were utilized by many copepods 

under the farms, contributing 12 to 61%, 13 to 60%, 44 to 83%, and 49 

to 83% to the diets of Miraciidae, Laophontidae, and Ectinosomatidae 

at Stn MD, and Canuellidae at Stn SS, respectively (Table 4.2). However, 

the quantities of faeces consumed by copepods differed among the 

stations. For Canuellidae, scallop faeces were predominantly consumed 

at the farm site at Stn SS (contributing at least almost half of their diets), 

while faeces were less important at the farm sites at Stns MS and MD 

(Table 4.2, Fig 4.4). By contrast, nematodes at Stns MS and MD 

consumed very little faeces-derived material (<1%). 

 
Figure 4.4 Proportion of mean contributions of food sources to different families 

of harpacticoid copepods collected from ‘farm’ and ‘control’ sites at 3 stations (SS, 

MS and MD) at scallop farms in Laizhou Bay, China in 2016. See Fig 4.1 legend 

for abbreviations of stations. Food sources analysed were scallop faeces, seagrass 

Zostera marina, and particulate organic matter plus microphytobenthos (POM+MPB). 

Can.: Canuellidae, Lao.: Laophontidae, Mira.: Miraciidae, Ect.: Ectinosomatidae 
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Table 4.2 Contribution (mean, with 95% CIs in parentheses) of particulate 

organic matter plus microphytobenthos (POM+MPB), seagrass and faeces in the 

diet of meiobenthos taxa collected from ‘farm’ and ‘control’ sites at 3 stations at 

scallop farms in Laizhou Bay, China in 2015 and 2016. See Table 4.1 legend for 

abbreviations of stations. The values were calculated using the Bayesian stable isotope 

mixing model (MixSIR). n/a: not applicable  

Station Site Taxon POM+MPB Seagrass Faeces 

SS Control Canuellidae 0.75 (0.68–0.82) 0.25 (0.17–0.32) n/a 

 
Control Other Copepoda 0.73 (0.64–0.81) 0.27 (0.19–0.36) n/a 

 
Farm Canuellidae 0.28 (0.14–0.42) 0.05 (0–0.12) 0.66 (0.49–0.83) 

 
Farm Other Copepoda 0.41 (0.22–0.62) 0.12 (0.02–0.22) 0.45 (0.16–0.71) 

MS Control Canuellidae 0.62 (0.57–0.67) 0.38 (0.32–0.43) n/a 

 
Control Other Copepoda 0.64 (0.59–0.70) 0.35 (0.29–0.40) n/a 

 
Control Nematoda 1 (0.99–1) 0 (0–0.01) n/a 

 
Farm Canuellidae 0.57 (0.44–0.66) 0.32 (0.24–0.39) 0.11 (0.01–0.3) 

 
Farm Other Copepoda 0.51 (0.33–0.64) 0.27 (0.16–0.36) 0.21 (0.02–0.48) 

 
Farm Nematoda 1 (0.99–1) 0 (0–0.01) 0 (0–0.01) 

MD Control Laophontidae 0.86 (0.79–0.92) 0.14 (0.07–0.20) n/a 

 
Control Ectinosomatidae 0.69 (0.62–0.75) 0.31 (0.24–0.37) n/a 

 
Control Nematoda 1 (0.98–1) 0 (0–0.01) n/a 

 
Farm Laophontidae 0.49 (0.33–0.64) 0.13 (0.03–0.23) 0.37 (0.13–0.60) 

 
Farm Ectinosomatidae 0.23 (0.09–0.36) 0.13 (0.03–0.22) 0.64 (0.44–0.83) 

 
Farm Miraciidae 0.42 (0.25–0.57) 0.22 (0.10–0.31) 0.36 (0.12–0.61) 

 
Farm Canuellidae 0.49 (0.34–0.60) 0.31 (0.21–0.39) 0.20 (0.02–0.42) 

 
Farm Nematoda 0.98 (0.95–1) 0 (0–0.01) 0.01 (0–0.04) 

 

4.3.5 Fatty acid profiles of the copepod family Canuellidae 
There was a significant difference in FA profiles over time 

(PERMANOVA, p < 0.01; ANOSIM, R > 0.75; Table 4.4), indicating 
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that the FA profile of Canuellidae changed in time. In line with this, the 

PCO showed a grouping for samples before aquaculture activity (T0) 

and the ones collected during aquaculture activity (T1) (Fig 4.5). Based 

on the results of SIMPER, DHA contributed the most to this 

dissimilarity (29.12%). Before aquaculture activity, 16:0 was the major 

component of the total FA, contributing 46.1 and 47.0% of the total FA 

of family Canuellidae at farm and control sites respectively, while DHA 

was the most important FA during farming activities, contributing 39.01 

and 29.38% at farm and control sites respectively (Table 4.3). 
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Table 4.3 Relative fatty acid composition of the harpacticoid copepod family 

Canuellidae from ‘farm’ and ‘control’ sites at Stn SS (see Table 4.1 legend for 

abbreviation) at a scallop farm in Laizhou Bay, China before and during seasonal 

aquaculture in 2016. Values for ‘during aquaculture’ are mean ± SD, with the number 

of replicates given in parentheses. ALA: alpha-linolenic acid; EPA: eicosapentaenoic 

acid; DHA: docosahexaenoic acid; -: below detection limit. 

  Before aquaculture (T0)   During aquaculture (T1) 

Fatty acid farm control   farm control 

14:0 6.61 (1) 7.52 (1) 
 

1.03±0.15 (4) 1.63±0.59 (3) 

15:0 5.95 (1) 6.67 (1) 
 

0.88±0.12 (4) 1.18±0.19 (3) 

16:0 46.1 (1) 47.0 (1) 
 

14.67±1.19 (4) 20.54±3.80 (3) 

16:1ω7 - - 
 

3.34±0.55 (4) 3.91±0.73 (3) 

17:0 7.09 (1) 7.4 (1) 
 

3.41±0.14 (4) 3.00±0.13 (3) 

17:1ω7 - - 
 

- 0.06±0.11 (3) 

18:0 27 (1) 25.6 (1) 
 

12.47±0.43 (4) 17.60±1.09 (3) 

18:1ω9t - - 
 

2.62±0.83 (4) 2.79±0.92 (3) 

18:1ω9c - - 
 

4.90±0.14 (4) 4.25±0.75 (3) 

18:2ω6c - - 
 

1.03±0.69 (4) 1.30±0.13 (3) 

20:0 1.53 (1) 1.01 (1) 
 

0.50±0.08 (4) 0.50±0.04 (3) 

18:3ω3 ALA - - 
 

0.77±0.08 (4) 0.74±0.07 (3) 

20:1ω9 - - 
 

2.05±0.19 (4) 1.30±0.02 (3) 

20:2ω6 - - 
 

0.38±0.02 (4) - 

22:0 2.01 (1) 1.49 (1) 
 

0.83±0.01 (4) 0.56±0.04 (3) 

20:3ω6 - - 
 

- 0.16±0.28 (3) 

22:1ω9 - - 
 

0.13±0.26 (4) - 

23:0 0.96 (1) 0.74 (1) 
 

0.61±0.02 (4) 0.25±0.22 (3) 

20:5ω3 EPA - 0.45 (1) 
 

9.82±0.64 (4) 9.77±1.45 (3) 

24:0 2.23 (1) 1.62 (1) 
 

0.93±0.03 (4) 0.60±0.02 (3) 

24:1ω6 - - 
 

0.51±0.03 (4) 0.38±0.36 (3) 

22:6ω3 DHA - -   39.01±1.84 (4) 29.38±3.59 (3) 
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Figure 4.5 Principal Coordinates Analysis (PCO) of the relative fatty acid 

composition of the harpacticoid copepod family Canuellidae in ‘farm’ and 

‘control’ sites at Stn SS (see Table 4.1 legend for abbreviation) at a scallop farm 

in Laizhou Bay, China before (T0) and during (T1) seasonal aquaculture in 2016.  

 

In addition, a seasonal effect contributed to this pattern: significant 

differences were found between before and during aquaculture (‘Before 

vs. During’) within control and farm sites (see pair-wise PERMANOVA 

tests in Table 4.4). 
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Table 4.4 Effect of time (‘Before vs. During’ seasonal farming production) and 

site (‘Farm vs. Control’) on fatty acid profiles of Canuellidae at scallop farms in 

Laizhou Bay, China, sampled at Stn SS (see Table 4.1 legend for abbreviation) in 

2016. ***p < 0.001; **p < 0.01; *p < 0.05; NS = not significant. –: no testing possible 

due to insufficient number of replicates 

Main test PERMANOVA     ANOSI

M source of variation d

f 

MS F(p) p 

(perm) 

  R 

Time: Before vs 

During 

1 0.365 206.9

9 

0.008** 
 

1* 

Site: Farm vs Ctrl 1 0.006 3.51 0.094NS 
 

0.926* 

Time*site 1 0.006 3.569 0.086NS 
  

Residuals 5 0.002         

       
Pairwise test   Group 

 
t   p (perm) 

Within "Ctrl" 
 

Before vs 

During 

  6.445 
 

0.018* 

Within "Farm" 
 

Before vs During 18.205 
 

<0.001*** 

Within "Before" 
 

Farm vs Ctrl - 
 

- 

Within "During"   Farm vs Ctrl 3.894   <0.001*** 

 

More importantly, the difference ‘Before vs During’ was more 

significant within ‘Control’ than within ‘Farm’ (p < 0.05 and p < 0.001 

respectively; Table 4.4), demonstrating that aquaculture made a crucial 

contribution to the FA profile of Canuellidae at Stn SS. Pairwise 

PERMANOVA also showed that farm and control sites strongly differed 

during the aquaculture stage (‘Farm vs. Control’ with ‘During’: p < 

0.001; Table 4.4), though more replicates were needed to confirm this 

pattern in a pairwise test between farm and control within ‘Before’. 

When excluding the seasonal effect, SIMPER showed that DHA 

contributed 33.71% to the difference between farm and control sites 

during farming. During aquaculture at Stn SS, Canuellidae at the farm 
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site had higher amounts of DHA and PUFAs than at the control site (Fig 

4.6, Table 4.3, Table S2 in the Appendix). 20:1ω9 and PUFA/SFA, 

considered as the indicators of carnivorous diet (Stevens et al., 2004), 

showed higher values in Canuellidae at farm sites during aquaculture at 

Stn SS. The trophic marker of diatoms/dinoflagellates, i.e. EPA/DHA 

(Cripps and Atkinson 2000), was lower at farm sites, indicating the 

different diets of Canuellidae at farm sites compared to those at control 

sites. Other trophic FA biomarkers showed no difference between farm 

and control sites (Fig 4.6; see also Table S2; p > 0.05). 
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Figure 4.6 Marker fatty acids (FA), with values shown for relative FA 

composition and FA ratios, in the harpacticoid copepod family Canuellidae at 

‘farm’ and ‘control’ sites at Stn SS (see Table 4.1 legend for abbreviation), during 

seasonal aquaculture at a scallop farm in Laizhou Bay, China in 2016. 

Eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and polyunsaturated fatty 

acids (PUFA) are indicative of food quality. Other biomarkers shown are: 16:1ω7 and 

16:1ω7/16:0 (indicative of diatoms in the diet); EPA/DHA (diatoms/dinoflagellates); 

SUM 15,17 (i.e. the sum values of 15:0, 17:0, 17:1ω7 in this study; indicating bacterial 

FAs); 18:2ω6 (terrestrial detritus or green algae); 20:1ω9 and PUFA/SFA ratio 

(indicative of carnivory). Asterisks show significant differences between values for 

‘farm’ and ‘control’ based on the results of t-tests: **p < 0.01; *p < 0.05 
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4.4 Discussion 

4.4.1 The fate of bay scallop biodeposits in aquaculture 

area 
    Stable isotopes analysis has been applied to trace the fate of 

aquaculture waste in several studies (Kon et al., 2009, Gondwe et al., 

2012, Callier et al., 2013), since the aquaculture-derived waste has 

distinctive isotopic values. In our study, the enriched 15N of bay scallop 

faeces compared to other organic sources was a prerequisite in order to 

be able to trace its fate. Contrary to some studies that demonstrate the 

accumulation of aquaculture waste in the sediment organic matter (OM) 

pool, SSOM in our study did not show the enrichment of 15N by scallop 

farming activity. This could be explained by 2 hypotheses. First, the 

aquaculture-derived OM was diluted in the water column and thus did 

not sink to the sea floor (Vizzini and Mazzola 2012). Second, the local 

consumers rapidly incorporated the aquaculture-derived matter (Kon et 

al., 2009). As we found more enriched 15N values of most copepods 

and some nematodes in the sediment under the farms (see ‘Effect of bay 

scallop aquaculture on the diets of meiobenthos’), the second 

explanation is more plausible. Callier et al. (2013) reported a similar 

outcome; i.e. isotopic values shifted in invertebrates rather than in 

SSOM. Taken together with the results of our study, this suggests that 

analyzing the response of the benthos (i.e. a biotic response) to evaluate 

the effect of aquaculture will provide a more comprehensive view than 

investigating only the response of the sediment (i.e. an abiotic response). 
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4.4.2 Biodeposits of bay scallop as food sources to 

meiobenthos 
The resource utilization of meiobenthos appears to be a promising 

tool to evaluate the effect of aquaculture effluents on ecosystem 

functioning in terms of energy flow (Kennedy and Jacoby 1999, De 

Troch et al., 2013). The incorporation of scallop faeces into the diets of 

most harpacticoid copepods at all stations and nematodes in the sandy 

station under the farms demonstrates that bay scallop farming changed 

the energy flow in the basal part of the food web. This evidence agrees 

with findings of other studies that aquaculture effluents serve as 

alternative food sources for the benthos (Dubois et al., 2007, Callier et 

al., 2013). 

The flux of OM is usually enhanced in the bivalve mariculture area 

(Newell 2004, McKindsey et al., 2011); consequently, the food 

availability for benthic organisms increases. Moreover, in terms of food 

source profitability, biodeposits are considered to be of good nutritional 

value because of their high carbon and nitrogen contents, large 

proportions of labile OM, and the low C/N ratios (Kautsky and Evans 

1987, Miller et al., 2002). Biodeposits are mucus-enriched and function 

as good substrates for bacteria (Hargrave 1976). Thus, abundant 

microorganisms colonize on the pellet particles during gut passage 

(Werry and Lee 2005, Cnudde et al., 2011) and after defecation (Fabiano 

et al., 1994), and efficiently rework the labile components within hours 

to days (Carlsson et al., 2010). They break down the refractory OM from 

the faecal pellets and also produce microbial nutrients (e.g. extracellular 

protein and exudates) that make them available to other benthic 

organisms (Kautsky and Evans 1987, Wotton and Malmqvist 2001). 
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Furthermore, increasing densities of microorganisms (e.g. bacteria, 

ciliates and dinoflagellates) themselves provide more foods for 

meiobenthos (Epstein 1997, Moens and Vincx 1997). Therefore, 

biodeposit-derived materials can easily be consumed by meiobenthos 

and enter the basal food web. 

4.4.3 Effect of bay scallop aquaculture on the diets of 

meiobenthos 
While aquaculture-derived OM is a nutritional food source 

(McKindsey et al., 2011, Callier et al., 2013), the quantities and 

pathways of consumption by benthos vary among trophic groups and 

feeding modes (Dubois et al., 2007, Wai et al., 2011). In accordance 

with the large trophic diversity of meiobenthos in coastal areas (Hicks 

and Coull 1983, Jensen 1987), we found that the quantities and pathways 

of faeces consumption differed according to the feeding behaviors of the 

meiobenthos. This was clearly illustrated by the harpacticoid copepod 

families. Substrate browsers, like Laophontidae and Miraciidae, 

possibly took faecal OM through scraping or sweeping off the attached 

bacteria (Hicks and Coull, 1983, Cnudde et al., 2013, Mascart et al., 

2013). For Canuellidae, faecal OM were presumably assimilated by 

filtering-feeding the small particles suspended in the water column 

(Cnudde et al., 2015). With the provision of bacteria and protists on the 

biodeposits (Wotton and Malmqvist 2001, Bongiorni et al., 2005), 

Ectinosomatidae showed an increased TL, suggesting that the feeding 

tendency of this taxon changed from omnivorous to carnivorous. 

Carnivory predation on protists (e.g. ciliates) has been recorded in 

family Ectinosomatidae (Coull and Dudley, 1976, Seifried and 
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Dürbaum, 2000). It is possible that the feeding behavior of 

Ectinosomatidae had been modified by scallop farming, since the 

protists could be facilitating by biodeposits (Mirto et al., 2000, La Rosa 

et al., 2001, Bongiorni et al., 2005). 

In addition, the copepod family Canuellidae demonstrated that the 

effect of bay scallop biodeposition depends on the receiving 

environment. With a broad range of niche breadth (De Troch et al., 

2003), Canuellidae could switch their diets to more nutritious organic 

sources such as scallop biodeposits if other sources were insufficient, 

for instance in a sandy bottom with low chlorophyll levels and poor 

organic resources (Cartaxana et al., 2006). At muddy stations, the small 

contributions of biodeposits to Canuellidae may be explained by the 

greater availability of autotrophic production. 

As for nematodes, their TLs indicate that the communities were 

different according to the sediment type. Nematodes at muddy stations 

were carnivores and did not incorporate faeces-derived materials into 

their diets. The data suggest that even when biodeposits were present, 

they did not modify their feeding mode i.e. they were either consuming 

bacteria derived from MPB extracellular polymeric substrate (EPS) or 

predating on small nematodes that fed on EPS of MPB (Moens et al., 

2005, Rzeznik-Orignac et al., 2008, Majdi et al., 2012). It is also 

possible that this group of nematodes resided deeper and could not 

access the biodeposits, which had either already been consumed by 

surface locating copepods or were not buried deep enough into the 

sediments. In this case, bay scallop farming has no impact on the 

resource utilization by nematodes that are trophic specialists. In contrast, 

nematodes at the sandy station incorporated biodeposits under the 
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scallop farm. Microvory of nematodes has been reported to be dominant 

below a mussel farm (Netto and Valgas 2010), where they presumably 

benefit from higher microbial densities by organic loading (Mirto et al., 

2000). In our study, the feeding group of nematodes was likely changed 

by bay scallop farming. 

4.4.4 Effect of bay scallop aquaculture on the quality of 

harpacticoid copepods for higher trophic levels 
PUFA concentrations, and especially those of DHA increased in 

Canuellidae (the most abundant harpacticoid copepods) as they 

consumed certain amounts of scallop faeces at farm sites during the high 

biodeposition stage. PUFAs are important compositions of cell 

membranes and are needed in animals at all taxonomic levels, including 

copepods (Ederington et al., 1995, Hartwich et al., 2013). Especially at 

low temperature, PUFAs promote membrane fluidity (Farkas 1979, 

Stillwell and Wassall 2003). Also, with higher levels of PUFA, 

copepods have higher reproduction ability in terms of eggs production 

(Ederington et al., 1995). In our study, as the winter had just started 

during our sampling season, we hypothesize that the higher contents of 

PUFA provided Canuellidae with better opportunities to reproduce and 

deal with the low temperature and food-stress periods. 

Furthermore, PUFAs, EPA and DHA have been recognized as good 

biomarkers to describe the quality of food (Boon and Duineveld 1996, 

Goedkoop et al., 2000). As higher-level consumers in marine 

ecosystems cannot synthesize highly unsaturated fatty acids (HUFAs) 

such as DHA, their HUFA levels are derived entirely from their food 

sources (Iverson 2009, Hartwich et al., 2013). As harpacticoid copepods 
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are important food items for epibenthic organ-isms such as shrimps and 

juvenile fishes (Coull et al., 1995), their quality in terms of PUFA or 

HUFA levels becomes an important factor influencing the quality of 

higher consumers as a food source and thus enriching the entire food 

web. Thus, the fact that Canuellidae consuming biodeposits of bay 

scallops contained more PUFAs (especially DHA) implies that they 

constituted a more nutritious food item for higher level consumers. 

However, the mechanisms behind the increasing levels of PUFA 

(especially DHA) are not clear yet because the pathways to accumulate 

DHA are complicated and depend on several factors (Bell and Tocher 

2009, Werbrouck et al., 2016). Copepods may gain DHA directly from 

the food or synthesize DHA from shorter chain of PUFAs (Schlechtriem 

et al., 2006, De Troch et al., 2012). It has been suggested that organisms 

using ‘foreign foods’ (i.e. foods not originating from their habitat) were 

not accustomed to these, and this might have stimulated the 

compensatory biochemical pathways (Iverson 2009). It is possible that 

loading of biodeposits induces the pathway to accumulate PUFAs and 

DHA in Canuellidae. To further elucidate the role of faeces in the eco 

system functioning, there are many options for future investigation for 

example to determine whether, how, and to what extent aquaculture-

derived PUFAs is transferable through the food chain. 

4.4.5 Bay scallop as a non-indigenous species for local 

environment: a positive perspective 
It is always a concern that culturing NIS, especially non-indigenous 

bivalves, in coastal marine ecosystem, includes ecological risks (Newell 

2004, Shelton and Rothbard 2006, Minchin et al., 2009). Our study 
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showed that, to some extent, farming the non-indigenous bay scallop 

provides an extra food source for the benthos and consequently 

improves the quality of the local benthic environment and the basal food 

web. This suggests that the farming bay scallop has a positive effect on 

ecosystem functioning. To make a more complete assessment of NIS 

aquaculture, further research is needed to compare the effects with those 

of culturing native species. 

Our observations may also apply to other bivalve farms, but 

additional factors should be considered, such as aquaculture 

characteristics (e.g. cultured species, stocking densities, etc.), and the 

hydrodynamics and sediment type of the receiving environment, 

because these can also affect the activities of the benthos (Chamberlain 

et al., 2001, Giles et al., 2006). 

4.5 Conclusions 
Our study showed that stable isotopes, especially δ15N, are a powerful 

tool to trace possible functional changes due to aquaculture activities. 

We also showed that the biodeposits were directly/indirectly consumed 

by meiobenthos, and accordingly, harpacticoid copepods residing under 

the scallop farms improved their quality as food items for the next 

trophic level. Therefore, we demonstrate a positive effect of intensive 

farming of bay scallop Argopecten irradians on ecosystem functioning. 
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Abstract  
Shrimp farming in earthen pond is by far one of the largest aquaculture 

industries among coastal mariculture, but has faced environmental 

issues in recent years, e.g. overloading of supplementary feed cause 

deterioration of pond environments. In order to assess the impact of 

pond shrimp farming on the benthic environment, we investigated 

meiobenthic community structure before aquaculture as well as in the 

early and late rearing stages in two types of earthen ponds - 

Marsupenaeus japonicus (native species) ponds and Litopenaeus 

vannamei ponds. We found meiobenthic community structure to change 

over the different rearing stages due to an increase in nematode densities, 

which were closely associated with shrimp farming activity in both 

types of ponds. We found nematode densities to be closely associated 

with shrimp culture in both ponds, which led to different meiobenthic 

community structure through time. We also investigated the functional 

roles of natural productivity (i.e. microalgae and meiobenthos) and 

supplementary feed by studying the benthic food webs in both types of 

shrimp ponds in the early and late rearing stages, with special emphasis 

on meiobenthos. Natural productivity contributed abundantly to M. 

japonicus and L. vannamei’ diets in different forms between stages. 

Meiobenthos in the early stage, shared similar diets with shrimps (with 

both feeding on primary organic sources), potentially competing for 

resources. Due to the ontogenetic diet shift in shrimp diet, at late rearing 

stages, meiobenthos represented however constituted a functional link 

between primary producers and shrimps, serving as nutritional food 
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source providing high amounts of polyunsaturated fatty acids (PUFA) 

to shrimps. Supplementary feed was not consumed abundantly by both 

shrimp species, but instead fueled the benthic food web through other 

pathways and consequently promoted secondary productivity. 

5.1 Introduction 
To meet the demands for shrimp consumption worldwide, farmed 

shrimp production has globally increased by 33% from 2010 to 2015 

(FAO, 2016). China is the world leader in shrimp farming industry, 

accounting for more than 40% of the world production in 2015 (FAO 

2016). In China and worldwide, shrimp farming is largely conducted 

directly on the natural basin (the so-called earthen pond), a farming 

technique which is characterized by the high abundances of natural 

established communities (i.e. natural productivity), with periodic use of 

fertilizers and various types of supplementary feed (Gamboa-Delgado, 

2014; Xie and Yu, 2007). 

The expansion of shrimp farming has been linked to considerable 

environmental concerns (Bondad-Reantaso et al., 2005; Naylor et al., 

1998; Yang et al., 2017). One of the major problems is the accumulation 

of nutrients, which derived from the high density of the farmed shrimps 

and excessive feed input (Martinez-Cordova et al., 1998; To, 2016). The 

unconsumed feed and the animal wastes with high concentrations of 

organic carbon and nitrogen remain in the pond water and sediment, 

initiating anoxic metabolic pathways that affect the reproduction, 

survival, growth and finally the production of the shrimps (Boyd, 2015; 

Boyd and Clay, 1998). 
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As the environment of the pond bottom (i.e. the benthic environment) 

is important to the benthic life habit of shrimps (Boyd and Clay, 1998; 

Pine et al., 2018), assessment of the state and changes in the benthic 

environment is crucial to shrimp farming management. The benthic 

organisms, such as meiobenthos (benthic invertebrates that pass through 

a 38 µm sieve but are retained on a 0.5 mm sieve), are efficient indicators 

of changes in the benthic environment, because of their sensitive 

response to environmental disturbance (Kennedy and Jacoby, 1999; 

Moreno et al., 2008). Meiobenthic community structure at higher taxon 

level have been widely applied in assessing the impact of open-water 

aquaculture, e.g. finfish and bivalve farming (Grego et al., 2009; 

Mazzola et al., 2000; Mirto et al., 2012), but fewer studies have 

examined the response of meiobenthos to shrimp farming (Hena et al., 

2011; Patrona et al., 2012). 

Another key issue in shrimp farming is the optimization of food and 

feeding strategies (Casillas-Hernández et al., 2007), since overfeeding 

has been demonstrated to be economically inefficient and has also been 

shown to degrade the environmental quality of shrimp ponds (Burford 

et al., 2004; De Silva and Hasan, 2007; Martinez-Cordova et al., 1998; 

Reymond and Lagardère, 1990). One way to improve the feeding 

strategy and avoid overfeeding is to take into account the feeding 

ecology of shrimps within the benthic food web (Burford et al., 2004; 

Rothlisberg, 1998). While earthen ponds largely depend on the addition 

of supplementary feed, the role of natural productivity is often 

underestimated (Martinez-Cordova et al., 1998; To, 2016). Many 

shrimp species have been reported to preferentially feed on natural food 

sources, e.g. microalgae and (meio)benthos, rather than on 
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supplementary feed (Burford et al., 2004; Rothlisberg, 1998). In 

particular, meiobenthos represents a nutritional food source for higher 

consumers, providing nutrients which are essential to the growth of 

shrimps, such as polyunsaturated fatty acids (PUFAs, Brett and Muller-

Navarra, 1997; Lavens and Sorgeloos, 2000). Conversely, shrimps may 

compete with macrobenthos that shares a similar feeding strategy, i.e. 

grazing on primary/secondary producers (Gee, 1989; Leduc and Probert, 

2009). Thus, the clarifying the functional role of meiobenthos in earthen 

pond food webs can provide crucial information to improve the feeding 

strategy in shrimp farming.    

The trophic interactions in earthen ponds are complex, relating to the 

species cultured, stocking densities, culture stage etc. (Gamboa-Delgado, 

2014; Moriarty, 1997), which represents a challenge for assessing the 

role of natural productivity and supplementary feed in shrimp farming. 

The application of up-to-date biomarkers such as stable isotopes and 

fatty acids can help to unravel complicated trophic interactions, 

especially among organisms of small size (Cnudde et al., 2015), and 

such biomarkers are being gradually incorporated into aquaculture 

studies (Gamboa-Delgado et al., 2013; Gatune et al., 2012; White et al., 

2017). 

Here, we studied the functional role of meiobenthos in two popular 

types of earthen shrimp ponds (the native shrimp M. japonicus and the 

non-indigenous shrimp L. vannamei) in Dongying, along the Bohai Bay, 

China. We aimed to: (1) evaluate the influence of shrimp farming on the 

benthic environment by analyzing the structural response of 

meiobenthos at higher taxon level, (2) investigate if the functional 
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response of meiobenthos to shrimp farming differed depending on the 

culture periods and (3) identify the trophic relationships among shrimp 

feeds, primary/secondary producers, meiobenthos and shrimp, to 

unravel the benthic food web structure in shrimp ponds. We 

hypothesized that (1) different patterns of temporal variability in 

meiobenthic community structure can be observed in the two types of 

shrimp ponds; (2) the functional role of meiobenthos depends on the 

rearing stages in the shrimp ponds; (3) natural productivity (i.e. 

microalgae and meiobenthos) plays a more important dietary role for 

shrimps than supplementary feeds. 

5.2 Materials and methods 

5.2.1 Study sites and sample collection 
The study was conducted in the Yellow River delta, at the south-west 

coast of the Bohai Sea, Dongying, Shandong Province, China 

(38°00’26.81 N, 118°33’57.61 E). Farming of Marsupenaeus japonicus 

(native species) and Litopenaeus vannamei (non-indigenous species) in 

earthen pond has been practiced in the area for at least 5-10 years and at 

least 10 years, respectively. Prior to the culture activity in April, ponds 

are dried out, sterilized with calcium oxide and prepared by rotenone to 

kill the predators of shrimps. Commercial hatcheries rear shrimps to 

post-larvae stage (mean total length 18 mm) and transfer them into 

ponds at a density of 3-5 shrimps m-2 for M. japonicus and 15-30 

shrimps m-2 for L. vannamei. Both species are cultured from May to 

August. Another culture crop is usually applied after August until 

November. After that, the ponds stay empty until next April. More 

details about the M. japonicus and L. vannamei farming can be found in 
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Chapter 1 Section 1.5.2. 

M. japonicus and L. vannamei ponds are characterized by different 

feeding practices. In M. japonicus ponds, commercially raised 

amphipods (Corophium) are added to the ponds during the first 30 days 

(i.e. the early stage). Once established (i.e. release and breeding 

successfully) in the ponds, the amphipods are expected to serve as a food 

source to adult M. japonicus. The addition of wet feed (small fishes and 

mollusks) occurs when the shrimps reach a size of 40-50 mm (i.e. late 

stage). In the early stage of L. vannamei ponds, juvenile shrimps are 

typically fed with smashed soy-bean and wet feed of frozen Artemia, 

whilst in the later rearing stages the diet is shifted to formulated pellet 

feed.  

We collected two types of samples: First, to identify the structural 

response of meiobenthos to the shrimp farming, triplicate sediment 

cores (3.6 cm inner diameter, 10 cm-2 surface area) were taken by a 

hand-operated core sampler in three M. japonicus ponds (NAT P1, NAT 

P2 and NAT P3) and three L. vannamei ponds (NIS P4, NIS P5 and NIS 

P6) at three occasions: before aquaculture - January 2016 (sampling for 

NAT P3 and NIS P6 was failed), early stage - May 2016; shrimp body 

length between 15 and 30 mm), and late stage - August 2016; shrimp 

body length between 70 and 80 mm). Second, to investigate the benthic 

food web in the two types of ponds, the following samples were 

collected for stable isotopes analysis: middle-layer pond waters for the 

particulate organic matter (POM); the top sediment layer (0-1 cm) for 

the microphytobenthos (MPB), meiobenthos, and Corophium; feeds of 

shrimps, and shrimps. Fatty acid samples (see 5.2.3) were obtained from 
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the meiofauna collected at 0-1 cm sediment depth. The samples to 

analyse the benthic food web were collected at the sampling sites NAT 

P1, NAT P2, NIS P1 and NIS P2 during the early and late stages of the 

aquaculture activity. 

The basic background information, amount of feeding input and 

environmental parameters in the water column and sediment of our 

sampled ponds are listed in Chapter 2 (Table 2.1, Table 2.2 and 

Appendix I Table S2). There was no and at most once water renewal in 

the early stage for M. japonicus and L. vannamei ponds, respectively. In 

the late stage, at most 30% of the water was exchanged once a month 

for M. japonicus ponds and 10-20% of the water was exchanged 2-4 

times per month for L. vannamei ponds. 

5.2.2 Sample treatment 
The top layer of the sediment cores (0-1 cm) from each pond was 

sliced off to study the structure of the meiobenthic community. The top 

sediments were preserved in a 4% formaldehyde – filtered tap water 

solution and washed with filtered tap water through 500 μm and 38 μm 

sieves in the lab. The fractions retained on the 38 μm sieves were 

centrifuged three times in Ludox HS40 with a density of 1.18 g cm-3 and 

stained with Bengal Rose (density: 0.5 g L-1). Meiofauna was identified 

under a binocular microscope at higher taxon level. 

About 350-500 mL pond water for POM was filtered onto pre-

combusted (450 ℃, 4h) 0.7 μm Whatman GF/F glass fiber filters. 

Microphytobenthos (MPB) samples were separated from the sediment 

surface using a modified method after Doi et al. (2003) and transferred 

onto pre-combusted Whatman GF/F filters (See Huang et al. 2018 for 
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more details). The filters were oven-dried at 60 ℃ to a constant weight 

and divided in two subsamples, one of which was treated with 

hydrochloric acid fume to remove carbonates for δ13C, the other was 

prepared without acid treatment for δ15N. Shrimp feeds were dried 

(60 ℃) and grounded. All the above samples were put into tin capsules 

(Elemental Microanalysis, 8×5 mm). To separate the meiobenthos 

(including the live feed Corophium) from the sediments, sediments were 

sieved with filtered pondwater through 500 μm and 150 μm sieves. The 

fractions retained on the 150 μm sieves were frozen and transported to 

the lab. The frozen samples were thawed and nematodes (150-300 

individuals per sample; n=2-4), copepods (80-120 individuals per 

sample; n = 2-4) and Corophium (9-12 individuals per sample; n = 3) 

were handpicked with an eye-shaped needle under a binocular 

microscope. The above organisms were rinsed with MilliQ water twice 

before transfer to the tin capsules and oven dried overnight at 60 ℃, and 

pinched closed. The samples were stored in desiccator prior to further 

stable isotope analysis.  

Meiofauna (including Corophium) for fatty acid analysis was 

extracted alive from sediments. The extraction of nematodes and 

copepods followed the method of Mangubhai and Greenwood (2004) 

and Svensson et al. (2010), respectively. Corophium were directly hand-

picked using an eye-shaped needle under a binocular microscope. The 

above organisms were stored at room temperature overnight to clear the 

gut contents. The following day, nematodes (200-300 individuals per 

replicate), copepods (100-150 individuals per replicate), and Corophium 

(30-40 individuals per replicate) were picked with an eye-shaped needle 

under a stereomicroscope, washed in filtered pondwater, and transferred 
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to glass tubes for storage at -80 ℃ until further fatty acids analysis. 

Corophium for stable isotopes and fatty acids were only extracted in the 

late stage, since Corophium were just added in the pond during our 

sampling in the early stage and were not considered as a food source to 

shrimp yet. 

5.2.3 Stable isotopes and fatty acids analysis 
C and N stable isotopes were measured with an isotope ratio mass 

spectrometer (type Europa Integra) at UC Davis Stable Isotope Facility 

(University of California, USA). Isotope values are expressed as δ13C 

and δ15N (with units of ‰) determined by the following equation: 

sample13 15 3

standard

R
δ C or N=([ ]-1) 10

R
 , where R = 13C/12C or 15N/14N. 

Reference standards are Pee Dee Belemnite and atmospheric nitrogen.  

Lipid extraction, methylation to fatty acid methyl esters (FAMEs), 

and FAME analysis followed the procedure of De Troch (2012). FAME 

composition of each sample was determined by gas chromatography 

analysis (HP 6890N) coupled to a mass spectrometer (HP 5973). 19:0 

(Fluka 74208) was added as internal standard. The FAMEs were 

identified by comparing the retention time and mass spectra with 

authentic standards and mass spectral libraries (WILEY, NITS05) and 

then analyzed with the software MSD ChemStation (Agilent 

Technologies). Individual FAMEs were quantified by using a 

component FAME and BAME mix (Supelco #47885 and #47080 

respectively, Sigma-Aldrich) and additional standards (Larodan). Each 

fatty acid was calculated as a proportion of the total identified fatty acids 

(% TFA). Shorthand FA notations were expressed as A: BωX, where A 
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gives the number of carbon atoms, B represents the number of double 

bonds and X is the position of the first double bond closest to the 

terminal methyl group. Five groups of fatty acids trophic markers 

(FATMs) were selected as dietary tracers for meiobenthos: the sum of 

FA with 15 and 17 carbons (∑15, ∑17), the sum of branched short-

chained FA (∑i-FA+ai-FA), and 18:1ω7 to indicate bacterial feeding 

(Budge and Parrish, 1998; Stevens et al., 2004; Viso and Marty, 1993), 

16:1ω7 and EPA as diatom markers (Dalsgaard et al., 2003; Meziane 

and Tsuchiya, 2000; Reuss and Poulsen, 2002), DHA, DHA/EPA, the 

sum of PUFAs with 18 carbons (18 PUFA), 18:4ω3 and 18:1ω9 as 

markers for dinoflagellates (Dalsgaard et al., 2003; Kelly and Scheibling, 

2012; Mansour et al., 1999), 18.2ω6 and 18.3ω3 for the Chlorophyta 

(Graeve et al., 2002; Kelly and Scheibling, 2012), and 18:1ω9/18:1ω7 

to point at carnivorous feeding (Nyssen et al., 2005).  

5.2.4 Data analysis 
To analyse the meiobenthos community structure, three factors were 

considered: (1) Stage – fixed factor with three levels: before aquaculture 

(T0), early stage, and late stage, (2) Shrimp – fixed factor with two levels: 

M. japonicus and L. vannamei, and (3) Pond – random factor and nested 

in shrimp species: NAT P1, NAT P2 and NAT P3; and NIS P4, NIS P5 

and NIS P6. Differences in meiobenthos community structure among 

factors were tested with PERMANOVA based on the Bray-Curtis 

similarities of square-root transformed densities. Prior to 

PERMANOVA, the homogeneity of multivariate dispersion was 

checked with homogeneity of dispersion (PERMDISP). The same 

matrices of PERMANOVA were used to conduct principal coordination 
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analysis (PCO) to observe the grouping of taxa among factors. 

Similarity percentage (SIMPER) analysis was used to investigate the 

taxa that contribute to the dissimilarity between groups.  

Variations in stable isotopes values of POM, MPB, and meiobenthos 

were tested using PERMANOVA tests followed by post-hoc pairwise 

contrasts between Stages, Shrimp  and Pond. The trophic levels (TL) of 

consumers were estimated by the equation: TLconsumer=2+(δ15Nconsumer-

δ15Nbase)/Δ15N, in which δ15Nbase is the δ15N of primary consumer i.e. the 

consumer taxon that had the lowest δ15N in each pond. The Δ15N of 2.3‰ 

for marine organisms was adopted (Zanden and Rasmussen, 2001).  

Since the biomass of MPB in NIS P4 and NIS P5 in the early stage 

was not sufficient enough for reliable stable isotope analysis, we used 

the top 0.5 cm sediments (grounded, 60 ℃ oven-dried, HCl acidified 

samples for δ13C, and non-acidified subsamples for δ15N) as 

substitutions. The isotopic values of fishmeal were adopted from 

Yokoyama et al. (2006). The enrichment factors: 0.3±1.3‰ for δ13C and 

2.3±1.8‰ for δ15N were applied for each trophic level (Zanden and 

Rasmussen, 2001). To facilitate the comparison of pattern between 

rearing stages and types of ponds, the isotopic data of the same item 

from two ponds were pooled together based on the similarity to isotopic 

values (tested by PERMANOVA: except for the M. japonicus ponds in 

the late stage, there was no significant difference in isotopic values of 

primary sources between two ponds from the same treatment, for 

instance, the early stage - NIS P4 & P5). To further interpret the pattern 

of shrimp’s diets, the POM and MPB were combined as ‘Primary 

organic source’, and copepods and nematodes were combined as 
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‘Meiobenthos’ in a posteriori approach from the mixing model outputs 

(Parnell et al., 2010).  

For the comparison of the FATMs variations in meiobenthos between 

the aquaculture stages and the meiobenthos taxa, PERMANOVAs based 

on Bray-Curtis resemblance matrix were applied for M. japonicus and 

L. vannamei ponds, separately. Principal coordination analyses (PCO) 

on the same resemblance matrices were performed with vectors showing 

FATMs correlating at least 50% with one of the first 2 PCO-axes. Non-

parametric Kruskal-Wallis tests were used to compare the relative 

contribution of selected FATM between stages in meiobenthos 

belonging to the same taxon.  

Kruskal-Wallis tests were conducted by SPSS 20.0. Multi-variate 

analyses were conducted by PRIMER V6 using the PERMANOVA+ 

add-on package (Anderson et al., 2008; Clarke and Gorley, 2006).  

5.3 Results 

5.3.1 Community structure of meiobenthos 
The L. vannamei (NAT) and L. vannamei (NIS) ponds harbored 

different meiobenthos communities (Fig 5.1; Table 5.1: Shrimp p < 0.05; 

Fig 5.2a). In the M. japonicus ponds, Nematoda were the main taxon 

(mean: 85%, range: 65-98%), followed by Copepoda (mean: 8%, range: 

0-15%).  Oligochaeta, Ostracoda, Turbellaria and Amphipoda were also 

represented with mean proportions >1%. In the L. vannamei ponds, the 

meiobenthic diversity was lower than M. japonicus ponds (See Shannon 

H’ in Appendix IV Table S1; Fig. 5.2), with Nematoda dominating the 

community, accounting always for > 98% of meiobenthic abundance at 
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all stages. 

Figure 5.1 Relative (%) meiobenthos communities in native shrimp (Marsupenaeus 

japonicus - NAT) and non-indigenous shrimp (Litopenaeus vannamei - NIS) ponds 

at T0 (before aquaculture) and in the early and late rearing stage. NAT P = M. 

japonicus pond, NIS P = L. vannamei pond, T0 = before aquaculture, Early = early 

rearing stage, Late = late rearing stage. 
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Figure 5.2 Number of taxa, total abundance, diversity (Shannon H’) and 

equitability (J’, Pielou’s evenness) of meiobenthic community in Marsupenaeus 

japonicus (native) and Litopenaeus vannamei (NIS) ponds. NAT = M. japonicus, 

NIS = L. vannamei, T0 = before aquaculture, Early = early rearing stage, Late = late 

rearing stage. 

Interaction effects of Stage × Shrimp and Stage × Pond (Shrimp) were 

found on the pond meiobenthic communities (Table 5.1), showing 

temporal variations in each types of ponds (see further). The 

PERMANOVA pairwise comparisons showed that in M. japonicus 

ponds, meiobenthic communities only differed between T0 and the early 

stage, due to the increasing density of Nematoda (SIMPER: 42% 

dissimilarity), Turbellaria (SIMPER: 19% dissimilarity) and Copepoda 

(SIMPER:18% dissimilarity). Due to the variation among ponds, the 
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PCO ordination did not show any grouping by Stage in the M. japonicus 

ponds (Fig 5.3b). The total abundance of meiobenthos showed a 

significantly increase from T0 to the early stage and then remained 

stable in the late stage (Table S1; Fig 5.2). However, in L. vannamei 

ponds, meiobenthic communities were different among T0, the early and 

the late stage (Table 5.1), with distinct grouping at the different stages 

in the PCO plot (Fig 5.3 c). SIMPER revealed that the influential taxon 

on the grouping was Nematoda, whose abundance sharply increased 

from 151-392 ind. m-2 at T0 to 5132-18640 ind. m-2 at the early stage, 

then dropped to 1147-4419 ind. m-2 in the late stage (Fig 5.2). The 

diversity of meiobenthos showed a significant decrease from the early 

to the late stage (Table S1; Fig 5.2). 
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Table 5.1 Permutational analysis of variance (PERMANOVA) tests the effect of three factors. The pairwise tests of the factors stage, type 

of ponds and ponds on meiobenthic communitie structure showed differences within the factors. The tests were based on Bray-Curtis clustering 

from fourth-root transformed abundance data. Significance level: p < 0.05; *p < 0.01; **p < 0.001. NAT = M. japonicus, NIS = L. vannamei. 

T0 = before aquaculture, Early = early rearing stage, Late = late rearing stage. -: no testing due to the the lack of T0 samples for NAT P3 and 

NIS P6.  

Source   df   SS     MS   Pseudo-
F 

 P (MC) 

Stage 
 

2 
 

12198 6098.9  7.29 0.002** 
Shrimp 

 
1 

 
12064 12064  5.41 0.0157* 

Pond (Shrimp) 
 

4 
 

9684.4 2421.1  7.15 0.0001*** 

Stage × Shrimp 
 

2 
 

6612.4 3306.2  3.95 0.0202* 

Stage × Pond (Shrimp) 
 

6 
 

5107.7 851.29  2.52 0.0043** 

Res 
 

35 
 

11844 338.39                   

Total   50   57561         

Pairwise test 
        

Stage × Shrimp NAT     NIS         

  t P (MC) 
 

t P (MC) 
   

T0 vs Early 4.37 0.018* 
 

3.48 0.048* 
   

Early vs Late 0.79 0.629NS  4.18 0.010* 
   

T0 vs Late 2.61 0.067NS  4.83 0.020*    
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Pairwise test 
        

Stage × Shrimp T0   
 

Early   
 

Late   

  t P (MC) 
 

t P (MC) 
 

t P (MC) 

NAT vs NIS 3.51 0.008** 
 

1.7 0.086NS 
 

3.34 0.009** 

Stage × Pond (Shrimp) NAT-P1   
 

NAT-P2   
 

NAT-P3   

  t P (MC) 
 

t P (MC) 
 

t P (MC) 

T0 vs Early 2.57 0.017* 
 

2.27 0.041* 
 

- - 
Early vs Late 1.43 0.147NS 

 
1 0.412NS 

 
2.77 0.021* 

T0 vs Late 2.16 0.026**  2.8 0.013** 
 

- - 

Stage ×Pond (Shrimp) NIS-P4   
 

NIS-P5   
 

NIS-P6   

  t P (MC) 
 

t P (MC) 
 

t P (MC) 

T0 vs Early 3.27 0.012* 
 

3.47 0.007** 
 

- - 
Early vs Late 4.88 0.001**  3.62 0.005**  5.01 0.001** 

T0 vs Late 2.83 0.016**   2.99 0.014**   - - 
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Figure 5.3 Principal coordinate analysis (PCO) plot based on meiofauna higher 

taxa in (a) Marsupenaeus japonicus and Litopenaeus vannamei ponds, (b) 

Marsupenaeus japonicus ponds (NAT ponds: NAT P1, P2, and P3), and (c) 

Litopenaeus vannamei ponds (NIS ponds: NIS P4, P5, and P6). T0 = before 

aquaculture, Early = early rearing stage, Late = late rearing stage. The sample grouping 

was based on Bray-Curtis clustering from fourth-root transformed abundance data.  
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5.3.2 Food source utilization of meiobenthos: fatty acids 

biomarkers 
The FATMs of copepods and nematodes in M. japonicus ponds varied 

with time (Table 5.2a: Stage × Meiobenthos taxa p < 0.05). Both 

copepods and nematodes in the early stage of M. japonicus ponds 

showed high proportions of the diatom FA 16:1ω7 (Table 5.3), which is 

5 and 14 times higher respectively than in the late stage. In the late stage, 

copepods showed a flagellates-based diet, characterized by a ratio 

DHA/EPA > 1 and high DHA (20.7±3.8%) (Fig 5.4a). Transplanted 

Corophium in the late stage clustered together with copepods (Fig 5.4a), 

indicating a similar flagellates-based diet. Nematodes showed a high 

ratio of carnivore marker 18:1ω9/18:1ω7 with the mean value above 1 

(Table 5.3).  
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Table 5.2 Permutational analysis of variance (PERMANOVA) tests of the effect 

of different sampling time and meiobenthos taxa on fatty acids trophic markers 

in (a) the Marsupenaeus japonicus and (b) Litopenaeus vannamei ponds. The tests 

were based on Bray-Curtis clustering from fatty acids trophic markers calculated by 

proportional fatty acids. Significance level: *p < 0.05; **p < 0.01; ***p < 0.001.  

(a) Main test: M. japonicus ponds       

Source df     SS     MS Pseudo-F  P(MC) 

Stage 1 7913.3 7913.3 18.36 0.0001*** 

Meiobenthos taxa 2 6182.7 3091.4 7.1725 0.0006*** 

Stage×Meiobenthos taxa 1 5487 5487 12.731 0.0002*** 

Res 18 7758 431                  

Total 22 35084   
 

        

(b) Main test: L. vannamei ponds       

Source df     SS     MS Pseudo-F  P(MC) 

Stage 1 1246.5 1246.5 7.3644 0.0174* 

Res 4 677.07 169.27                 

Total 5 1923.6 
  

       

 

For L. vannamei ponds, shrimp farming stages also affected the 

FATMs of nematodes, which dominated the meiobenthic community 

(Table 5.2b Stage < 0.05). In a PCO plot, nematodes clustered separately 

between stages, though samples showed high variability within the late 

stage (Fig 5.5b). More specifically, in the early stage, the diatom FA 

16:1ω7 in nematodes were almost 6 times higher than those of late stage 

(Table 5.3). In the late stage, nematodes rather showed a flagellate-based 

diet (DHA/EPA > 1).  

All benthos (except for nematodes in the late stage of M. japonicus 
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ponds) showed high proportions of bacterial FA (11-37%). Also, except 

nematodes in M. japonicus ponds, meiobenthos from both ponds and 

transplanted Corophium in the late stage contained higher levels of 

PUFAs (in particular, DHA, EPA, and ω3 FA) compared with those in 

the early stage (Appendix IV Table S2) and their DHA/EPA ratio were 

all increased to above 1 (Fig 5.4).  
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Table 5.3 Selected fatty acids trophic markers (FATM) (mean % ± SD in relative abundance) of meiobenthos in Marsupenaeus 

japonicus and Litopenaeus vannamei ponds in the early and late rearing stage. EPA = eicosapentaenoic acid, DHA = docosahexaenoic 

acid, COP = copepods, NEMA = nematodes, COR = transplanted Corophium. * indicates significant differences (P < 0.05) in the meiobenthos 

between early and late stage.  

FA marker FAs M. japonicus ponds 

  

  

  

  

  L. vannamei ponds 
  Early    Late      Early  Late 
    COP NEMA  COP COR NEMA  NEMA  NEMA 

Bacteria 
Σ 15, Σ 17 9.1±1.9 6.0±0.4*  6.6±4.1 3.2±0.6 2.7±1.0  24.8±4.3*  4.5±0.8 
Σi-FA+ai-FA 2.2±1.0* 2.7±0.5*  0.5±0.0 1.3±0.5 0.5±0.5  6.6±5.0  1.6±0.5 
18:1ω7 - 9.2±0.8*  3.4±0.3* 6.5±0.0 3.6±1.2  5.5±1.3  8.0±1.7 

            
Diatoms 16:1ω7 4.2±0.8* 5.8±0.8*  0.8±0.7 0.3±0.1 0.4±0.5  5.3±1.3*  0.9±0.1 

EPA 4.4±1.1 14.5±1.6*  10.2±0.8* 14.5±3.5 4.4±1.8  8.3±2.1  6.5±1.0 
            

Flagellates 

DHA/EPA 0.3±0.1 0.5±0.0  2.0±0.5 1.74±0.6 0.5±0.5  0.6±0.0  1.2±0.1 
18 PUFA 1.2±0.6 6.3±0.5*  3.4±1.6* 11.8±4.8 3.5±0.8  3.5±3.3  2.9±0.5 
18:4ω3 - 0.9±0.5  0.9±0.6 5.7±2.0 0.3±0.5  -  0.2±0.4 
18:1ω9 - 5.4±1.3  1.7±0.8 4.2±1.1 5.1±4.0  4.5±1.9  6.8±0.9 
DHA 1.3±0.7 8.4±1.0*  20.7±3.8* 24.2±2.8 2.6±2.2  5.5±1.5  8.4±1.7 

            
Chlorophyte 18.2ω6 - 2.3±0.2  1.0±0.2 2.9±1.1 2.3±1.5  2.9±3.8  1.7±0.2 

18.3ω3 1.2±0.6 3.0±0.3*  1.4±0.8 3.1±1.6 0.9±0.8  0.5±0.6  0.9±0.2 
            
Carnivore  18:1ω9/18:1ω7 - 0.5±0.0  0.5±0.2 0.6±0.1 1.2±0.9  0.9±0.6  0.8±0.0 
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Figure 5.4 selected fatty acids (FA) and DHA to EPA ratio of meiobenthos in 

Marsupenaeus japonicus (NAT) and Litopenaeus vannamei (NIS) ponds in the 

early and late rearing stages. DHA = docosahexaenoic acid, EPA = eicosapentaenoic 

acid, PUFAs = polyunsaturated fatty acids, DHA/EPA = DHA to EPA ratio. COP = 

copepods, NEMA = nematodes, COR = transplanted Corophium 

 

 

Figure 5.5. Principal coordinates plots of selected fatty acid trophic markers 

(FATMs) in meiobenthos in (a) Marsupenaeus japonicus ponds (NAT) and (b) 

Litopenaeus vannamei ponds (NIS). Vectors represent specific FATMs correlating > 
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Litopenaeus vannamei ponds (NIS). Vectors represent specific FATMs correlating > 

50% with the first 2 PCO axes. EPA = eicosapentaenoic acid; DHA = docosahexaenoic 

acid; COP = copepods; NEMA = nematodes; COR = Corophium.  

5.3.3 Stable isotopes  
The stable isotopes of the primary organic sources, i.e. POM and 

MPB, were different depending on the types of shrimp pond and the 

sampled stages (Appendix Table S3), but generally had relatively low 

δ15N values compared to consumers from the same environment (Fig 

5.6). Both the primary organic sources and the shrimp feeds can be 

distinguished from each other in the same environment in terms of stable 

isotope values (Fig 5.6).  

In M. japonicus ponds, nematodes showed the most enriched δ15N 

values among consumers except for the shrimps (Fig 5.6) and displayed 

high trophic levels with the means > 3 (carnivores). In the L. vannamei 

ponds, δ15N values and the trophic level of the nematodes were 

significantly higher at the early stage (δ15N: 6.32±0.44‰ H = 8.265, p < 

0.01; TL: 3.0 H = 3.433, p < 0.05) than those measured at the late stage 

(δ15N: 2.68±0.58‰; TL: 2.0). The δ13C values of all the nematodes 

ranged between -16.57‰ to -20.92‰ in both stages.  

Copepods, appearing only in M. japonicus ponds, showed slight 

differences between the early and the late stages, but similar δ13C values, 

ranging from -18.02‰ to -18.95‰, and displayed the lowest δ15N as 

well as the lowest trophic level among the consumers in the same 

environment (δ15N: 4.46-5.37; TL: 1.9-2.1). 

The δ15N value and the trophic level of M. japonicus were higher in 

the late stage than those of early stage (δ15N H = 3.857, p < 0.01; TL H 
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= 3.000, p = 0.056). The δ15N values of L. vannamei were rather constant, 

ranging from 4.07‰ to 4.59‰. At the late stage, both M. japonicus and 

L. vannamei had a higher δ13C content than at the early stage (M. 

japonicus H = 3.857, p < 0.05; L. vannamei H = 5.400, p < 0.05). 
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Figure 5.6 Stable isotopes (δ13C and δ15N) bi-plots of primary producers and 

consumers in Marsupenaeus japonicus ponds (NAT) in the (a) early and (b) (c) 

late rearing stage, Litopenaeus vannamei ponds (NIS) in the (d) early and (e) late 

rearing stage. Except at the late stage of NAT ponds, the isotopic data between ponds 

were pooled. POM = particulate organic matter; MPB = microphytobenthos; SSOM = 

surface sediment organic matter; NAT P = M. japonicus pond; NIS P = L. vannamei 

pond.
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5.3.4 The diets of shrimps as unraveled by a mixing model 

In the early stage, primary organic food sources were important for 

juvenile M. japonicus and L. vannamei, contributing 43.5-83.3% (mean: 

64.2%) and 68.9-91% (mean: 80.9%) to their diets, respectively. 

Meiobenthos were also consumed substantially by juvenile M. japonicus 

(16.7-56.5% of their diet).  

In the late stage, M. japonicus (adult) became more carnivorous, 

characterized by high δ15N and TL, thus POM and MPB were not 

counted as direct food sources to adult M. japonicus. Naturally 

occurring meiobenthos (copepods in particular) represented the major 

food sources for adult M. japonicus (34.8-77.2%), followed by 

transplanted Corophium, whereas trash fish contributed the least to the 

diet of M. japonicus (Table 5.4; Fig 5.7). However, adult L. vannamei, 

characterized by a constant TL compared to juvenile stages, still 

incorporated POM+MPB (17.7-76.2% of the diet). Nematodes, the 

dominant meiobenthos taxon, became a more important food item for 

adult L. vannamei (11.3-73.3% of the diet).  

Interestingly, according to the stable isotope signatures and the 

mixing model, neither the wet feed (processed Artemia and fishmeal) 

nor pellet feed (smashed soybean and formulated feed) were abundantly 

consumed by either of the two shrimp species when these feed types 

were provided.  
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Figure 5.7 Mean contribution proportions (%) of the food sources to 

Marsupenaeus japonicus (NAT) and Litopenaeus vannamei (NIS). Primary organic 

sources = POM+MPB; meiobenthos = copepods + nematodes (NAT ponds) / 

nematodes (NIS ponds).  
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Table 5.4 Mean contributions and 95% credible interval of each potential food source to the diets of Marsupenaeus japonicus and 

Litopenaeus vannamei in the early and late rearing stages, estimated by SIAR. Wet feed was trash fish and processed Artemia for late 

stages of native shrimp (NAT) ponds and early stages of non-indigenous shrimp (NIS) ponds, respectively. Pellet feed consisted of smashed 

soybeans and formulated feed for early and late stages of NIS ponds, respectively.  
 

M. japonicus (NAT) ponds    L. vannamei (NIS) ponds 
Sources Early (NAT P1 & NAT P2) Late (NAT P1) Late (NAT P2)   Early (NIS P4 & NIS P5) Late (NIS P4 & NIS P5) 
POM 33.6 (12.4-51.4) - - 

 
66.3 (47.4-82.2) 17.4 (1.1-41.5) 

MPB 30.6 (6.9-54.1) - - 
 

14.6 (1.5-31.9) 30.5 (4.4-57.9) 
Nematodes 14.2 (1.3-33.7) 14.4 (1.5-33.6) 22.2 (3.3-42.3) 

 
4.3 (0.3-10.8) 40.5 (11.3-73.3) 

Copepods 21.6 (2.8-41.8) 39.8 (21.9-55.2) 34.0 (11.1-57.6) 
 

- - 
Corophium - 30.0 (15.1-43.7) 18.7 (2.3-37.2) 

 
- - 

Wet feed - 15.8 (5.3-25.6) 25.1 (10.8-38.4)   9.2 (1.2-18.6) - 
Pellet feed - - -  5.7 (0.6-12.4) 11.60 (0.7-32.1) 
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5.4 Discussion 

5.4.1 Meiobenthos: temporal changes during the shrimp 

farming 
Our results showed the temporal changes in meiobenthic community 

structures. Specifically, in the early stage (spring), this change was 

mostly associated with increased densities of nematodes. It is known 

that nematode density commonly peaks in spring in the intertidal and 

subtidal environment because of the rising temperatures and increasing 

food availability (Harris, 1972; Scholz and Liebezeit, 2012; Smol et al., 

1994). Such increasing food availability could be enhanced by the 

addition of feeds in shrimp ponds, and also, the growth of 

microphytobenthos (De Pauw et al., 1984; Chapter 2), which leaded to 

an increase in nematode densities. In the late stage, the meiobenthos 

assemblage remained similar in M. japonicus ponds, while it shifted 

again in L. vannamei ponds as the density of nematodes decreased. We 

assume that the decline in nematodes in L. vannamei ponds could be due 

to the predation by L. vannamei (see further). Also, the organically 

enriched sediment with reduced redox potential at the shrimp pond 

bottom (Chapter 2) can generate chemical stressors such as hydrogen 

sulfide and ammonia (Holmer et al., 2005), which affect the living 

conditions for nematodes (Armenteros et al., 2010; Losi et al., 2013). 

We found meiobenthic diversity to be reduced in the late stage of L. 

vannamei ponds, which at the end of the shrimp rearing harbored a high-

density but low-diversity meiobenthic community typical of disturbed 

environments (Kennedy and Jacoby, 1999; Lee et al., 2001). The lack of 

a clear response of meiobenthos in M. japonicus ponds in the late stage 
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might due to a lesser extent of organic accumulation, as a result of the 

potentially stronger bioturbation activities as well as a larger water 

exchange frequency in M. japonicus ponds (Chapter 2).  

5.4.2 Meiobenthos: diets and functional response to 

shrimp farming 
The FATMs analysis showed that bacterial biomarkers were abundant 

in the benthos collected in the sediment of both M. japonicus and L. 

vannamei ponds. Although not many FA data of copepods and 

nematodes from the field are available for comparison, the concentration 

of bacterial FAs in the present study is higher than the ones reported for 

other intertidal areas worldwide (Cnudde et al., 2015; Huang et al., 2018; 

Leduc and Probert, 2009; Mascart et al., 2013), indicating a high 

consumption of bacteria in the two types of shrimp ponds. The addition 

of animal-origin feed (Corophium and trash fish in M. japonicus ponds, 

and frozen Artemia in L. vannamei ponds in our study) might stimulate 

bacteria growth (Høj et al., 2009; Thompson et al., 1999). Also, the 

unconsumed feed pellets can provide a base for bacteria and promote 

their growth (Moriarty, 1997). Our results highlight the importance of 

the bacterial loop in the basal energy pathway of shrimp ponds, which 

is possibly enhanced by the feed addition (Moriarty, 1986; Nevejan et 

al., 2018; Qin et al., 2016).  

Nematodes and copepods in both types of ponds also showed higher 

levels of 16:1ω7 (i.e. a diatom marker) in the early stage compared to 

the late stage, indicating a higher assimilation of diatoms at the start of 

the rearing activity. Meiobenthos in the late stage (except for nematodes 

from M. japonicus ponds), had a DHA/EPA ratio > 1, combined with a 



———————————< CHAPTER 5 >————————————— 

<173> 
 

high level of either 18 PUFA or 18:1ω9, suggesting a flagellate-based 

diet. This temporal diet shift has previously been reported for intertidal 

nematodes and copepods, and has been related to the change of food 

availability (Cnudde et al., 2015; Lebreton et al., 2012). In the shrimp 

ponds, diatoms and flagellates are important natural primary producers 

and their abundance fluctuated throughout the rearing stage (Cardozo et 

al., 2011; Porchas-Cornejo et al., 2011; Thompson et al., 2002). Diatoms 

grew more slowly after the initial stage, possibly due to a depletion of 

silicate (Burford and Pearson, 1998). The higher levels of suspended 

solids blocking the light penetration also likely reduced diatom growth 

(Alonso-Rodriguez and Páez-Osuna, 2003) In contrast, flagellates 

usually reached higher densities at the late stage (Cardozo et al., 2011; 

Fernandes Da Silva et al., 2008), because the gradually accumulated 

floc-derived matter on the pond bottom stimulates their growth (Burford 

et al., 2003). 

Only the nematodes from the M. japonicus ponds had an 

18:1ω9/18:1ω7 ratio >1 in the late stage, which is often interpreted as 

carnivorous feeding (Legeżyńska et al., 2014; Nelson et al., 2001). The 

trophic level deduced from the stable isotope results also showed 

nematodes to be omnivores/carnivores. The shift from a bacteria-

microalgae-based diet to a rather carnivorous diet might relate to the 

appearance of algivorous and omnivorous ciliates in the second half of 

the shrimp rearing period (Decamp et al., 2007). It should be noticed 

that the low 18:1ω9/18:1ω7 ratio in those nematodes from the early 

stage is in contrast with the high values of δ15N and the deduced high 

trophic level. However, their high level of bacterial FAs underpins 

bacterivory of nematodes which can lead to high δ15N values (Majdi et 
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al., 2012; Moens et al., 2005; Rzeznik-Orignac et al., 2008). Feeding 

experiments in the lab are needed to further reveal more detailed trophic 

information. It should however be considered that in the late stage of M. 

japonicus ponds, 20% of Corophium have a body length larger than 500 

μm (Zhong and Ma, 2012) and were thus not retained in our sampling 

(maximum sieve mesh size 500 μm), which could have led to an 

underestimation of the FA content of Corophium. 

We found higher PUFA levels in meiobenthos in the late stage (except 

for the predatory nematodes in M. japonicus ponds). Correspondingly, 

meiobenthos’ ω3 FAs were relatively high in the late stage. This can 

probably be explained by the high ω3-FA contents of both the 

formulated feed and marine-derived living feed (Lytle et al., 1990; 

Ouraji et al., 2011). High PUFAs, especially high ω3 levels, can 

stimulate the maturation of penaeid shrimp (Lytle et al., 1990). Also, at 

the late stage, copepods and Corophium from M. japonicus ponds and 

nematodes from L. vannamei ponds had a high DHA:EPA ratio. A high 

DHA:EPA ratio is recognized as a response to living food items in 

aquaculture (Bell et al., 2003; Nanton and Castell, 1999). Increasing the 

DHA:EPA ratio from 0.1 to 0.5 in the diet improved survival of turbot 

(Bell et al., 1985). Thus, our results support the suggestion that 

meiobenthos can serve as a nutritious prey for shrimps (Ballester et al., 

2007; Hena et al., 2011). 

5.4.3 The diets of M. japonicus and L. vannamei  
The most important food items for both M. japonicus and L. vannamei, 

estimated by the mixing model, were derived from naturally occurring 

food sources, implying the importance of promoting a pond’s natural 
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productivity in terms of the efficiency of energy flow. Also, the 

enhancement of natural productivity can improve the water quality, 

promote the nutritional condition of cultured shrimp, and reduce feeding 

costs (Porchas-Cornejo et al., 2011; Tacon et al., 2002). The drivers of 

natural productivity however changed depending on the rearing stage, 

with primary producers (i.e. POM and MPB) contributing abundantly in 

the early stage, and meiobenthos becoming more important in the late 

stage. This is in accordance with the observations of an ontogenetic shift 

in penaeid shrimps from planktonic and omnivore diets to more benthic 

and carnivorous feeding habits in natural and pond environments 

(Bojórquez-Mascareño and Soto-Jiménez, 2013; Nunes et al., 1997; 

Schwamborn and Criales, 2000). In addition, the higher trophic level of 

M. japonicus indicates a more carnivorous feeding behavior when 

compared with L. vannamei, which is supported by a pronounced 

ontogenetic shift in M. japonicus with higher assimilation of 

meiobenthos and transplanted Corophium in the late stage.  

Laboratory studies on shrimp feeding showed that L. vannamei could 

abundantly assimilate artificial pellet feeds, such as soymeal (Gamboa-

Delgado and Le Vay, 2009; Yang et al., 2015) and formulated feed 

(Bojórquez-Mascareño and Soto-Jiménez, 2013). In our study, the 

smashed soybean and formulated feed were found to contribute little to 

the diet of juvenile and adult L. vannamei, respectively. This finding can 

be due to the selective feeding behavior of shrimps (Dall et al., 1991). 

When the natural productivity was sufficient, shrimps showed a high 

preference for natural food over the formulated feed (Gamboa-Delgado 

et al., 2003; Nunes et al., 1997; Porchas-Cornejo et al., 2012). But as 

shrimps can adapt their diet to food availability (Forster, 1976), artificial 
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feeds may also be consumed largely when natural food is lacking or 

grazing pressure becomes intense (Cam et al., 1991; Porchas-Cornejo et 

al., 2012). A large portion of artificial feeds was not directly consumed 

by shrimps, but might have indirectly contribute to diverse pathways of 

the benthic food web (Anderson et al., 1987), e.g. by fueling the 

bacterial loop, thereby increasing the quality of meiobenthos, which is 

being consumed by shrimps. Also, the input of artificial feed can play 

an essential role in aquaculture by providing the nutrients, e.g. vitamins, 

minerals, pigments, that natural food cannot supply (Gamboa-Delgado, 

2014; Porchas-Cornejo et al., 2012).  

Transplanting benthos into shrimp ponds has been proposed as a 

promising method that provides extra food items to shrimps (Deng et al., 

2007; Zhou, 1994). In our study, the amphipod Corophium was 

introduced once into the M. japonicus ponds in the early stage (at 50-

100 kg per pond; c.a. 100-200 ind. m-2). We still observed their presence 

in the late stage (the density of 38-500 μm individuals in the top 1 cm 

sediment: 460±570 ind m-2), indicating the successful establishment of 

Corophium in the ponds. The mixing model showed that the 

transplanted Corophium was largely assimilated by adult M. japonicus, 

which agrees with the findings of Zhong & Ma (2012) who observed a 

significant decline in Corophium density in the late stage of M. 

japonicus ponds. Although some studies showed adult M. japonicus to 

prefer larger and elongated benthos (Reymond and Lagardère, 1990; 

Zupo et al., 1998), our study did not support this feeding preference (i.e. 

Corophium) over copepods and nematodes, probably because the 

density of Corophium was not high enough. Corophium has several 

reproduction peaks in their lifespan (Nair and Anger, 1979). It has been 
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suggested to synchronize one of those reproduction peaks of Corophium 

with the feeding behavior of M. japonicus (Zhong and Ma, 2012). The 

reproduction peaks of Corophium can vary according to species, 

temperature, etc. (Nair and Anger, 1979; Wang et al., 2009). Further 

research and field trials are needed to trace the density of male and 

female Corophium in a full sediment profile (e.g. top 0-1, 1-5, 5-10 cm) 

and at a finer time scale (e.g. weekly basis), in order to manipulate the 

time to introduce proper amounts of Corophium into the ponds.  

As for the animal-originated wet feed, i.e. frozen Artemia for juvenile 

L. vannamei and fishmeal for adult M. japonicus, we found both types 

of feeds to contribute little to the shrimps’ diet. Although the addition 

of wet feed might also enhance the microbial loop in aquaculture ponds 

(Moriarty, 1997), wet feed can easily deteriorate water quality (Cobo et 

al., 2015). In addition to the sustainability issue, Artemia and fishmeal 

are also costly from an economical point of view, and thus the 

replacement of wet feed is suggested (Bulbul et al., 2016; Bulbul et al., 

2013). 

5.4.4 Benthic food webs in M. japonicus and L. vannamei 

ponds 
The likely pathways of benthic energy flow can be summarized in a 

conceptual diagram (Fig 5.8). In M. japonicus ponds, there are complex 

trophic interactions involved with more components of primary 

consumers, e.g. copepods and transplanted Corophium. L. vannamei 

ponds have a rather simple trophic structure, mainly because the 

meiobenthic community is dominated by nematodes. In general, 

meiobenthos functioned differently between rearing stages in both 
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ponds. Since juvenile shrimps derived large proportions of their energy 

from primary organic sources (Dall et al. 1991; this study), meiobenthos 

as primary consumers can be potential competitors in the early rearing 

stage (Fig 6.5 a, c). In the late stage, meiobenthos (copepods in the M. 

japonicus ponds and nematodes in the L. vannamei ponds specifically) 

rather served as nutritious food sources to shrimps, transferring energy 

from primary producers to the higher consumers (Fig 6.5 b, d). It should 

be noticed that adult L. vannamei still derived a part of their food intake 

from herbivorous feeding on primary producers (Maldonado et al., 

2009), thus, nematodes might as well become competitive with shrimps 

if the food resource is limited (Fig 6.5 d). The supplemental foods, 

fishmeal in M. japonicus ponds, processed Artemia, soymeal and 

formulated feed in NIS ponds, did not represent a major direct 

contribution to the shrimps’ diet. However, the possibility of an indirect 

contribution, particularly through stimulating the bacterial loop, cannot 

be ruled out (Anderson et al., 1987; Burford et al., 2004). 
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Figure 5.8 Conceptual diagram of the benthic energy flow in Marsupenaeus 

japonicus and Litopenaeus vannamei ponds in the early and late stage. The size of 

the arrows indicates the proportion of contributions. The dashed lines indicate 

uncertain contributions to benthic energy flow.  

5.5 Conclusion 
Based on the above analysis of the meiobenthic communities and 

food web in M. japonicus and L. vannamei ponds, the following key 

findings were obtained:  

(1) Meiobenthos assemblages were affected by shrimp aquaculture 

activities, and responded differently in M. japonicus and L. vannamei 

ponds. Nematode density was the main driver of changes in meiobenthic 

community structure. L. vannamei ponds formed a less stable benthic 
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environment, characterized by high-density but low-diversity 

meiobenthic community structure.  

(2) Bacteria were an important food source for meiobenthos in both 

ponds. The contribution of diatoms and flagellates varied in between 

rearing stages and was related to food availability. Most naturally 

occurring meiobenthos and the transplanted Corophium contained high 

levels of PUFA in the late rearing stages.  

(3) Natural productivity played an important dietary role for shrimps 

for the entire rearing period. Due to the ontogenetic shift of shrimps, 

primary organic matter was predominantly consumed by juvenile 

shrimps, while meiobenthos was an important food source for adults. 

The supplementary feeds were only consumed at a low extent by 

shrimps in both ponds, but might fuel the benthic food web through 

secondary production (e.g. increase the quality of meiobenthos).  

(4) In terms of the entire food web, meiobenthos had the potential to 

compete for resources with juvenile shrimps, but became an important 

functional link between primary producers and shrimps in the late stage 

the of pond ecosystem. 
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Mariculture activities generate environmental issues regarding the 

health of coastal marine ecosystems that receive much concern (Black, 

2001; Pillay, 2008).  One of them is the impact of mariculture on the 

benthic ecosystem because of nutrient loading (Holmer et al., 2005). If 

not managed adequately (e.g. stocking density, proper amount of feed 

input and water exchange), such changes can be irreversible beyond the 

resilience of the recipient ecosystem (Pillay, 2008). The cultivation of 

non-indigenous species (NIS) forms a particular case that is also of high 

concern, since NIS have the potential to generate adverse impacts on 

local ecosystems (Newell, 2004). 

In this thesis, the effects of mariculture were analysed in terms of 

organic waste loading on the sedimentary characteristics, the benthic 

trophic status, meiobenthic community structure and the trophic 

interactions between mariculture-derived sources (animal faeces and/or 

feeds) and benthic organisms. Two mariculture cases in the Bohai Sea, 

China, i.e. open-water suspension farming of A. irradians (non-

indigenous) (Chapter 2, 3, 4) as well as coastal shrimp farming of L. 

vannamei (non-indigenous) and M. japonicus (native) (Chapter 2, 5), 

were used as case-studies to analyse the potential effects and also to 

unravel the implications of the use of NIS in mariculture. In this chapter, 

we integrate the most important findings from previous chapters to 

describe the effects of mariculture of NIS at the abiotic, biotic and 

ecosystem functional levels. Based on those effects, the efficiency of 

abiotic and biotic indicators as well as using biomarkers (stable isotopes 

and fatty acids) to assess the effect of mariculture activities are 

compared and discussed. This chapter is concluded by some 

recommendations for management of mariculture, especially culturing 
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NIS. 

6.1 Effects of mariculture on benthic ecosystems: an 

integrated overview 

6.1.1 Case 1: open-water farming of the bay scallop A. 

irradians  
Bivalve mariculture can potentially influence coastal marine 

ecosystems through filtering-biodeposition processes (Dame, 1996; 

Newell, 2004). In fact, the amount of farmed bay scallops (c.a. 1.07×109 

ind.) at our study area, i.e. Laizhou Bay, potentially generates 1140 

tonnes of organic particulate matter each day (Wang et al., 2018). We 

here argue that whether this downward organic flux of biodeposits 

affects the recipient benthic ecosystem in terms of the abiotic and biotic 

elements (Chapter 2, 3, 4). 

One of the major concerns for environments receiving high amounts 

of organic deposits is that the resulting large oxygen consumption 

initiates anaerobic metabolic pathways, producing reduced sediments, 

decreasing the redox potential - Eh, and consequently affects the benthos 

and benthic ecosystem functions (McKindsey et al., 2011). Our data 

showed that the bay scallop farming did not affect the Eh on the muddy 

bottom, indicating that the decaying biodeposits on oxygen consumption 

rates may be balanced with the oxygen renewal rate from water 

exchange. Sandy sediments however showed a slight decrease in the Eh 

under the scallop farms, yet it still remained under oxic conditions, 

indicating no prevalence of anaerobic pathways (Chapter 2).  

Next to these minor effects on oxygen level, the meiobenthic 
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community structures in the sediment were affected at sites with high 

scallop farming densities (Chapter 3). Those stations with a density of 

200 ind. m-2 also showed an enhanced BPC, indicating an enhanced flow 

of labile organic matters to the benthos (Chapter 2). This may affect the 

community structures and trophic groups of benthos by increasing the 

food availability to benthos (Pearson and Rosenberg, 1987; Rosenberg 

2001). More specifically, the two stations of high- scallop density 

showed a different meiobenthic community response. In the sandy 

shallow area, meiobenthic community structure was only influenced at 

higher taxa level with an increase in nematode abundance. Furthermore, 

the nematodes consumed the biodeposits and their trophic levels 

indicated a change in feeding behavior under scallop farms, which is a 

typical behavior of opportunistic species (Chapter 4). In the muddy 

sediments of the deeper area, biodeposit inputs changed the copepod 

assemblages as well as increased their total density and species richness. 

The opportunistic copepod families e.g. Ectinosomatidae, Canuellidae, 

Miraciidae (specifically genus Stenhelia) were promoted (Chapter 3). 

The enhancement of copepods’ density and species richness by scallop 

farming can be a consequence of consuming the biodeposits by those 

copepods (Chapter 3). We suggest that biodeposits alleviate the inter-

specific competition within the copepod community. The high amount 

of biodeposits produced by the densely cultured bivalve is suggested to 

affect the functioning of the benthic ecosystem, e.g. fuel the secondary 

production (Callier et al., 2013; McKindsey et al., 2011; Wang et al., 

2018). As expected, we demonstrated that biodeposits from scallops 

were consumed by harpacticoid copepods. Biodeposits were also 

incorporated into the diet of nematodes that occupy a lower trophic level 
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(TL c.a. 2). As such, the results imply that the mariculture-derived 

organic matter was incorporated into the basal food web of the benthic 

ecosystem (Chapter 4). As a matter of fact, biodeposits can be rich in 

nutrients (C:N ratio c.a. 2.5 in this study) and contain a high proportion 

of labile organic matter (McKindsey et al. 2010 and reference therein), 

making it an energy-enriched food source available for the meiobenthos.  

Furthermore, we found that the consumption of biodeposits increased 

the PUFA level (in particular, DHA, Chapter 4) in the copepod family 

Canuellidae, which represented the dominant copepods in the scallop 

farming area and the main consumers of biodeposits. This may have 

implications beyond the observed benthic basal food web: bivalve 

mariculture is commonly conducted in coastal waters that usually serve 

as nursery ground for fish (Jin 2008; Weise et al., 2009). Since copepods 

are fatty acids conveyors to fish (Iverson, 2009), the PUFAs derived 

from bay scallop mariculture may transfer to the higher level of the 

marine coastal food web.  

Above all, the effects of mariculture of bay scallop A. irradians have 

minimal effects on abiotic and biotic characteristics. In fact, the effect is 

rather positive in terms of the improved energy transfer to higher level 

of the aquatic food web. The lack of negative effects of culturing NIS A. 

irradians may be attributed to (1) the meso-oligo nature of the benthic 

environment in Laizhou Bay (Chapter 2; Wang et al. 2018), (2) the 

consumption of biodeposits by consumers from the basal food web 

(Chapter 4), and (3) the higher velocity of water flow (20 cm-1) 

compared with those of bivalve farms with negative effects (Chapter 3). 

Thus, we highlight the importance of the hydrodynamics and the 

background of organic matter for choosing the site of bivalve farms, 
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which can potentially avoid the benthic organic pollution. 
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Figure 6.1 overview of effects of bay scallop farming on the benthic ecosystem. Eh = redox potential; Chl a = chlorophyll a; PUFA = 

Polyunsaturated fatty acids; TL = trophic level 
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6.1.2 Case 2: coastal ponds farming M. japonicus and L. 

vannamei 
The state of the benthic environment in shrimp ponds is essential to 

the growth and survival of cultured shrimps (Avnimelech and Ritvo, 

2003). Here we found different temporal patterns of environmental 

variables and meiobenthic community structure during the rearing time 

in M. japonicus and L. vannamei ponds.  

First, in the early stage, there has seldom water exchange for both 

ponds. Feeding had been started in L. vannamei ponds (feed: frozen 

Artemia and smashed soybean, at 0.7 kg/ha/day and 1.8 kg/ha/day (both 

express as dry weight), respectively), while no external feed was added 

for juvenile M. japonicus. Increased feed addition in L. vannamei ponds 

went along with a rise in bulk organic contents, (TOC and TN), which 

was not observed in M. japonicus ponds, where feeding was not started 

during the early rearing stages (Chapter 2). Sedimentary Chl a largely 

increased in both ponds (Chapter 2). Application of N-P-K fertilizers 

right before the stocking may be a reason for this increase since the 

elevated nutrient levels can promote the growth of microalgae (Gamboa-

Delgado 2014). The BPC levels were consequently elevated as well 

(Chapter 2). BPC accumulated more in L. vannamei ponds, due to the 

addition of shrimp feeds (Chapter 2), resulting in a eutrophic and a 

hypertrophic benthic state in M. japonicus and L. vannamei ponds, 

respectively. The sedimentary redox potential – Eh showed anoxic 

conditions in both ponds. Next to the sediment properties, the abundance 

of meiobenthos increased in both ponds (Fig 6.2 a, b). This increase was 
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mainly due to an increased abundance of nematodes (Chapter 5), which 

are known to tolerate anoxic environments (Giere, 2009) and can be 

facilitated by the increasing food availability (Mirto et al., 2014). 

During heavy feed addition in the late rearing stage (19-38 kg/ha/day 

trash fish and 18-27 kg/ha/day commercial feeds, both expressed as dry 

weight), M. japonicus ponds also started to show bulk organic matter 

(TOC and TN) enrichment and continued to accumulate BPC, reaching 

a hypertrophic state at the end of rearing period (Fig 6.2 c). Bulk organic 

matter and BPC leveled off in M. japonicus ponds. The redox potential 

of both ponds became more reduced (Fig 6.2 c, d). Meanwhile, the 

meiobenthic community structure and diversity however remained 

unchanged in the M. japonicus ponds (Fig c), while meiobenthos in L. 

vannamei ponds decreased in terms of richness and total abundance. At 

the end of the rearing cycle, meiobenthos in L. vannamei ponds formed 

a low-diversity community that was strongly dominated by nematodes 

(Fig 6.2 d), suggesting a disturbed condition (Chapter 5).  

By comparing two types of ponds in the same stage, we observed that 

BPC levels, indicating labile organic enrichment, were significantly 

higher in L. vannamei ponds compared to M. japonicus ponds during all 

rearing stages. This may in part be attributed to the different feeding 

practices in the two pond types (see above for early stage). The lower 

stocking density (which generates less waste) and higher water renewal 

frequency especially in the late stage (which flushes out the nutrients 

and adds dissolved oxygen) in M. japonicus ponds may also affect labile 

organic enrichment. Other than those, the burrowing behavior of M. 

japonicus and transplanted Corophium (commercially raised and 

introduced to M. japonicus ponds in the early stage, expected to serve a 
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food source to adult shrimp) may increase the mineralization process in 

the sediments of M. japonicus ponds. 

The above discussion suggests that shrimp farming practices could be 

a reasonable explanation for the temporal changes of environmental 

variables and meiobenthic community structure in the pond bottoms. To 

further link those changes directly with shrimp rearing, control ponds 

without any rearing activity in the same area are needed for comparison.  

The disease problems in shrimp farming industry have escalated 

throughout the recent decades. The outbreaks of viral and bacterial 

shrimp diseases (e.g. white spot syndrome) has caused huge economic 

losses, e.g. 750 million US dollars in China in 1993 (Primavera, 1998). 

The poor pond environment (e.g. excessive stocking density and poor 

water quality) has been closely linked with the occurrence of shrimp 

diseases (Spaargaren, 1998). The low oxygen levels, acid sulfide soils, 

the release of aluminum and iron precipitation, increase the 

physiological stresses of cultured shrimps and their susceptibility to 

pathogens (Kausty et al., 2000; Stevensson, 1997). Although the 

exchange of water may improve oxygen concentrations in the pond 

(Monhanty et al., 2015), the discharge of non-treatment effluent may 

spread among farms, which consequently causes self-pollution (Kausty 

et al., 2000), and furthermore, affect the wild stocks (Belak et al., 1999). 

We also observed changes of the benthic energy flow. At the 

functional level, we demonstrated that meiobenthos represents a crucial 

component of the shrimps' diets, especially for adult shrimps. 

Interestingly, we also found that copepods and tranplanted Corophium 

in M. japonicus ponds and nematodes in L. vannamei ponds had high 

levels of PUFAs (especially high 3-fatty acids) as well as high 
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DHA/EPA ratios in the late stage of the rearing cycle (Fig 6.2 c, d), 

pointing at an enhanced quality of these food items for adult shrimps 

(Chapter 5). This may be explained by shrimp feeds that were rich in 

3-PUFAs, i.e. fishmeal for L. vannamei and commericial feeds for L. 

vannamei, that were indirectly made available to the meiobenthos 

through the bacterial loop (Lytle et al., 1990; Ouraji et al., 2011). In fact, 

penaeid shrimps may benefit from consuming the PUFA-rich organisms 

since 3 PUFAs can stimulate their maturation (Lytle et al., 1990). The 

stable isotopic modelling suggests that both M. japonicus and L. 

vannamei assimilated more meiobenthic food sources than external 

feeds. Additional analyses such as gut content analysis or fatty acids 

profiling are required to confirm this result and to further optimize 

shrimp feeding. Since our sampling design did not consider Corophium 

larger than 500 μm (ca. 20% of Corophium in M. japonicus ponds), 

future studies could be improved by using sieve mesh sizes larger than 

500 μm, to estimate the full amount of food made available to shrimps 

by the transplantation of Corophium. 

Above all, we draw conclusions that may apply for the extenstive 

farming of M. japonicus and L. vannamei: 1. Maintaining the pond 

environment at a less organic/nutrient enriched environment requires 

optimised rearing practices, e.g. a proper water exchange strategy and 

an appropriate provision of food sources (depend on the feeding 

preference of the shrimps). However, it should also be noticed that the 

large amount of organic and inorganic nutrients flushed out from the 

pond may cause self-pollution among ponds and furthermore deteriorate 

the receiving coastal marine areas (Holmer et al. 2008; Kausty et al., 

2000; Yang et al. 2017). Thus, highly biotechnical approach (e.g. 
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bioflocs; see 6.4) can be a solution for the waste treatment 

(Balasubramanian et al., 2004). 2. Meiobenthos is a good food item for 

shrimps, being largely consumed by shrimps and representing a food 

soruce of high nutritional value (in terms of FA). 3. Transplanting 

benthos (such as Corophium) to shrimp ponds provide a nutritious food 

item for shrimps. Also, their bioturbation activity may lead to a lower 

extent of organic accumulation at the pond bottom.  
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Figure 6.2 Overview of effects of farming Penaeus japonicus and 

Penaeus vannamei on the benthic environment and the benthic food 

web in each type of pond from the early and late rearing stages. Eh 

= redox potential; Chl a = chlorophyll a; PUFA = Polyunsaturated fatty 

acids; TL = trophic level; the size of the arrows indicates the proportions 

of contributions. The dashed line indicates uncertain roles of items or 

their contributions. The intensity of green color indicates the extent of 
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increase.  

6.2 Evaluation of approaches for testing the 

environmental effects of mariculture 
Due to the wide range of environmental effects of mariculture, there 

are also many methods to quantify those effects and assess the status of 

environment, including physio-chemical and ecological indicators (e.g. 

community structure and diversity of benthos) (Domínguez and Martín, 

2004). We used physico-chemical and biochemical indicators 

(sedimentary redox potential, bulk organic concentration, biochemical 

composition, protein to carbohydrate ratio, chlorophyll a) as well as 

bioindicators (meiobenthic community structure and diversity and 

copepod to nematode ratio) to test in two mariculture systems, i.e.  open-

water scallop farms and coastal shrimp ponds. We also included 

biomarkers (stable isotopes and fatty acids) to assess the functional 

changes in the recipient ecosystems. We found that the assessment of 

both abiotic, biotic and functional effects are rather system-specific and 

lacked generality. Also, within a system, several indicators were not able 

to produce consistent conclusions in terms of organic enrichment (see 

further). Nevertheless, within these limitations, we were able to produce 

an evaluation and recommendation of the indicators based on the two 

referred cases.  

6.2.1 Physio-chemical indicators 
As expected, redox potential  is indicative of the temporal changes that 

consistent with the heavy organic loading of shrimp ponds (Chapter 2). 

However, the relevance of redox potential as an indicator of mariculture 
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effects is reduced when the organic enrichment is relatively low. For 

instance, redox potential did not respond to the scallop biodeposition in 

a muddy bottom environment (Chapter 2). Thus, when applying redox 

potential as an indicator in low organic accumulation systems, results 

must be interpreted with caution. We also found bulk organic contents 

(e.g. TN and TOC) is not able to detect the weak organic enrichment, 

which agrees with the finding when testing the benthic eutrophication 

of coastal ecosystems (Dell'Anno et al., 2002).  

The lack of robustness of redox potential and the conservative nature 

of bulk organic matter make BPC the most suitable indicator to test the 

ecological status of mariculture ecosystems. In this research, the 

application of BPC proved to be reliable in both cases, in the sense that 

BPC not only promptly reacted to the mariculture activities but also 

managed to detect the modest organic accumulation in scallop farms 

(Chapter 2). In fact, BPC also provided indication that mariculture 

effects link to consumers, e.g., trophic status and food availability to the 

benthos (Chapter 3, 4, 5). The threshold of protein to carbohydrate ratio 

(PRO: CHO) to classify the level of eutrophication did not provide 

accurate information in the case of the shrimp ponds, since the 

PRO:CHO ratio was possibly biased by strong microbial activities 

during shrimp farming (Chapter 2, 5). Although not as sensitive as BPC, 

chlorophyll a can also provide information on photosynthetic primary 

production of a system. However, determining whether the source of 

Chl a is from allochthonous or autochthonous sources is impossible 

when using this indicator in a high organic deposition environment 

(Chapter 2).  
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We did not observe that sedimentary pH had clear pattern to indicate 

the mariculture effect. Since pH from sediment surface is very sensitive 

and can vary largely even within 0.5 cm (Brackmen et al., 2014; 

Mevemkamp et al., 2017). It is possible that the size of pH probe we 

used is too large that mixed the top 1 cm sediment layer and biased the 

result. Thus, a micro-sensor (tip size 500 μm) is needed for the accurate 

pH measurement for the top layer of sediment (Braeckman et al., 2014). 

Also, a pH profile can be helpful to interpret the result.  

6.2.2 Bioindicators 
Multivariate approaches provided a comprehensive view of 

community changes in relation to mariculture activities. Conversely, 

single indices (e.g. abundance, richness and evenness) are only able to 

reflect specific aspects of the community composition and can be 

masked by various factors, e.g. a small sample size can reduce the 

accuracy of richness index (Sofia, 2010), and the total abundance of the 

meiobenthic community remained unchanged despite changes in 

community structure (see sandy bottom in scallop farms in Chapter 3). 

However, the single community indices can complement the 

multivariate approaches for an interpretation of changes in community 

composition (See 6.1) 

As for what taxonomic level of meiobenthic bioindicators should be 

applied, many studies suggested higher taxon levels as a powerful and 

rapid biomonitoring approach for fish farms (Grego, 2010; Mirto et al., 

2012). We showed that analyzing meiobenthic community structure at 

higher-taxon level was able to indicate the temporal changes that likely 

link to shrimp farming practices (Chapter 5). Also, the meiobenthic 
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community structure may fail to detect the modest effect of organic 

accumulation (Chapter 3). In addition, we found that both the 

community structure and diversity of meiobenthos did not show a 

consistent response at two taxonomic levels: higher-taxon- and of 

copepods at species-level (Chapter 3). This is in contrast to some impact 

studies (Daudi et al. 2012; Kennedy and Jacoby, 1999 and reference 

therein), which may due to the different types of pollution and the 

intensity of organic loading. However, assessment at copepod species 

level only showed higher resolution on muddy benthic environment than 

at meiobenthic higher-taxa level (Chapter 3), which reason is uncertain 

yet and need to be proved in further mesocosm experiments.   

The Nematode/Copepod ratio (Ne/Co) showed a similar pattern as the 

meiobenthic community changes in the case of scallop farms. Thus, the 

sensitivity of the Ne/Co ratio is also limited in the sense that it only 

responds to biodeposition in sandy bottoms (Chapter 3). In the shrimp 

farming case, many samples did not allow to calculate Ne/Co ratios due 

to the absence of copepods. In such case, the Ne/Co ratio would reflect 

an extremely polluted condition, which make little sense for those 

sampled before shrimp farming. These results indicate that Ne/Co may 

be oversimplified and it should not be applied as a stand-alone indicator 

for monitoring environmental quality as many studies suggested (Lee et 

al., 2001; Sutherland et al., 2007). 

Pearson and Rosenberg (1978) showed that the response of marine 

macrobenthic communities (in terms of their number of species – S, 

abundance – A and biomass – B; See SAB curve in Fig 1.5) along an 

organic input gradient is predictable, which was mainly attributed to the 

changes of oxygen (see Chapter 1 Section 1.2.2.2). We also plotted the 
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abundance (a.k.a. density) and number of taxa/species of meiobenthos 

and copepods in response to the total organic carbon and biopolymeric 

carbon content across all sites in two sampling events (Appendix V Fig 

S1 and S2), to test if the response of meiobenthos and copepods 

corresponded to the SAB curve by Pearson and Rosenberg (1978). We 

did not observe any correlation between the abundance and number of 

taxa or species and the total organic carbon (TOC) or biopolymeric 

carbon (BPC) content (Fig S1 and S2). Only the abundance of 

meiobenthos seemed to increase with TOC initially when the TOC 

content ranged between 0.04% and 1.2% and then showed a decreasing 

trend with TOC contents above 1.2% (Fig. 6.3). However, due to a high 

variance among samples within the same TOC range and the short TOC 

gradient, we are not able to draw a response curve based on that. It would 

be interesting for future studies to obtain samples from a full spectrum 

of organic enrichment and oxygen gradient and compare the 

meiobenthos’ response curve with that expected from the SAB model 

 
Figure 6.3 The response of meiobenthos density (a.k.a. abundance) total organic 

matter content in a scallop farming area in Laizhou Bay, China. T0 = before 

farming; T1 = during heavy biodeposition; CTRL = Control site; FARM = scallop 
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farming site. SS = sandy shallow station, MS = muddy sallow station, MD = muddy 

deep station. 

6.2.3 Trophic analysis 
While the above indicators mostly focus on describing an 

environmental state (for instance, whether the environment is eutrophic), 

we showed applying trophic analysis in mariculture assessment can 

further explain the state of environment, e.g. sediment properties and 

meiobenthic communities. More specifically, by using C and N stable 

isotopes to trace the fate of biodeposits from scallop farms, we could 

relate changes in the meiobenthic community to the increased food 

provision. Also, applying stable isotopes and fatty acids to depict the 

benthic energy flow in shrimps ponds helped us to unravel overfeeding 

as the driver of benthic eutrophication. Thus, trophic analyses may 

provide a better understanding of a system under stress that not only 

targets the effects of mariculture, but also depicts the broader impacts of 

mariculture activities on the ecosystem. Moreover, fatty acids profiles 

(in particular, concentrations of PUFAs, EPA, and DHA) directly 

quantified the quality of meiobenthos as food items for higher 

consumers. Incorporating trophic analyses is therefore recommended as 

an indicator to test mariculture effects on the functioning of ecosystems.  

 

Above all, we agree with Keeley et al. (2012) that environmental 

assessment should focus on regionally validated measures, since the 

indicators provide different indications across ecosystems. We suggest 

that the environmental assessment of mariculture activities should have 

system-specific criteria. For instance, the shrimp farming activities, 

which are conducted in a semi-closed and artificial space with heavy 
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feeding, do not require the same monitoring approaches as open-water 

mariculture systems. In addition, we suggest to interpret information 

from indicators at abiotic, biotic and functional levels that complement 

each other, especially at the initial phase of monitoring that the clear 

pattern are more difficult to detect. We also stress the importance of 

functional measurements, which provide a more integrated 

understanding of ecosystem changes.   

6.3 NIS Mariculture  
Next to the risk of biological invasion (mariculture escapees, see 

Miller et al. (2002)), culturing NIS can generate adverse effect on the 

local ecosystem due to their potential aggressive biological traits (See 

Chapter 1 Section 4). Although the NIS A. irradians has a relatively high 

biodeposition among those of the reported bivalves, including the native 

scallop C. farreri (Wang et al. 2018 and the reference there in), we did 

not find them to pose any ecological threat to the local benthic 

environment. Moreover, the biodeposits may potentially improve the 

local food web in terms of enhancing PUFA levels of copepods (see 6.1). 

However, this does not mean that we should encourage the wide-scale 

of culturing A. irradians to other marine coastal zones in China. After 

all, the effects of mariculture on recipient ecosystem can also depend on 

the localized factors, e.g. hydrodynamics, the types of sediments, the 

background organic concentrations and the benthic communities (See 

6.1 case 1).  

For the shrimp ponds, we found the L. vannamei ponds to be more 

polluted than the M. japonicus ponds in terms of heavier organic 

accumulation, which can be attributed to different breeding practice, e.g. 
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higher stocking density and lower frequency of water exchange in L. 

vannamei ponds (Chapter 2). L. vannamei is introduced to mariculture 

because of its high environmental tolerance which allows to rear very 

high densities (up to 400 shrimps m-2), and also the high resistance to 

shrimp diseases (See Box 1.9). The densities of L. vannamei in our 

sampling ponds was 15-30 shrimps m-2, which was 3-10 times higher 

than those of M. japonicus. Higher density of reared species generates 

more waste and consequently leads to a more polluted environment. 

Also, higher quantity of feeds input for L. vannamei was another reason 

that leads to heavier organic accumulation. It is noteworthy that in the 

early phase, L. vannamei ponds were already hypertrophic, which may 

be due to the deterioration of processed Artemia as a feed (Chapter 5). 

Moreover, the heavier benthic organic accumulation implies higher risk 

to pollute the adjacent ecosystem when disposing the pond sediments 

(Wu et al., 2014). However, the issues above are more relevant for the 

pond management rather than whether a species is non-indigenous or 

not, and can be solved by optimization of the feeds, applying new shrimp 

farming techniques (e.g. bioflocs, see further in 6.4). Thus, we cannot 

use the above issues as a reason to block farmers to culture NIS L. 

vannamei.  

Another important issue of culturing NIS is that the escaping of 

broodstocks, in some cases, could manage to establish and become 

invasive to the local ecosystem, adversely affect aquatic biodiversity, 

ranging from polluting native wild genetic resources to reducing the 

resilience of local communities (Miller et al., 2002; Pillay, 2008).  To 

the best of our knowledge, there is no record to show that A. irradians 

has an established population (i.e. naturalized, feral and breeding 
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successfully; or released and breeding successfully) in the local 

ecosystems yet. In fact, Zhang et al. (2000) suggested that A. irradians 

is unlikely to establish a natural population in its major culture region in 

China (i.e. Yellow-Bohai Sea), because several local macrobenthos, e.g. 

Asterias amurensis, Portunus trituberculatus, could predate on A. 

irradians and control the population. For L. vannamei, its presence has 

been recorded in Yellow-Bohai Sea in the recent decade (Wu et al., 

2016). However, there is no evidence that L. vannamei population in the 

wild is established from repeated releases from shrimp farms or from 

the successful natural reproduction. There is also a lack of research to 

evaluate its potential of invasiveness in the local environment. Further 

research should focus on tracing where those L. vannamei originate from, 

e.g. if L. vannamei in the wild could reach sexual maturation and 

manage to reproduce (Senanan et al., 2010). Also, the abundance of the 

L. vannamei in Yellow-Bohai Sea should be monitored regularly. NIS 

can potentially compete with local species though food consumption 

(Orlova et al., 2005) and may cause long-term consequences on the 

structure and function of aquatic ecosystems (Gallardo et al., 2016). In 

our study, the major food sources of L. vannamei from the shrimp ponds 

were particulate organic matter and meiobenthos. This diet has overlap 

compared with some of the native shrimps in Yellow-Bohai Sea, 

Palaemon serrifer, Exopalaemon carinicauda, and Trachysalambria 

curvirostris that were observed to largely ingest small crustaceans and 

phytoplankton (Yang, 2001). Also, other studies found L. vannamei was 

a voracious species that adaptable to any organic food items present in 

the environment (Bojórquez-Mascareño and Soto-Jiménez, 2013; 

Briggs et al., 2004; Dittel et al., 1997), as well as having a high food 
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consumption rate (Chavanich et al., 2016). These evidences may suggest 

that L. vannamei could pose a threat to Yelow-Bohai Sea if it manages 

to establish reproductive populations in the wild. However, in order to 

draw further conclusions, laboratory experiments evaluating the feeding 

interactions between L. vannamei and other local shrimps should be 

established. So far, there is no direct data on the impact of escaped L. 

vannamei in China. Actually, many NIS cultures in China are similar as 

no negative effect has been found yet, but this does not mean that 

management actions can be postponed, because the risks may still 

remain due to a lag phase of bioinvasion (Lin et al., 2015). However, no 

policy or standardized risk assessment is available to manage and 

regulate these NIS (Zhan et al., 2017). Risk assessment and regular 

monitoring are necessary and of high priority for the early detection of 

bioinvasion when NIS has not established yet (Lin et al., 2015; Lodge 

et al., 2006). So far, the methodology developed for the Weed Risk 

Assessment (WRA) serves as a good example to follow up the risk 

assessment after introducing NIS (Lin et al., 2015; Pheloung et al., 1999). 

Models and tools such as Fresh-water Fish Invasiveness Scoring Kit 

(FISK) have been developed based on WRA (Lin et al., 2015). Such 

methodologies need to be modified, adjusted, and adopted to apply for 

different species and different condition of water (Lin et al., 2015; Zhan 

et al., 2017). 

As for the question whether China should continue to import NIS for 

future mariculture, the outcome of this research is not in favor of a wide-

scale introduction since the regulation and legislation associated with 

screening and monitoring of NIS are not developed enough (Lin et al., 

2015). However, a wider debate should be encouraged to judge culturing 
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NIS in order to evaluate the risks and benefits from the socio-economic 

perspective, e.g. what are the market characteristics, what is the 

preference of consumers, how much profits can it bring to the 

stakeholders. Taking those cautious estimations into account, careful 

risk assessment should be applied before the introduction, including 

assessing the probability of establishment, environmental and economic 

consequences of a possible establishment (Hill, 2009). Since high 

variations of effects are observed across species and ecosystems due to 

the complex interactions between the functional traits of NIS and the 

local ecosystem (Liao et al., 2008; Vilà et al., 2011), we should also 

incorporate the functional diversity metrics and ecosystem processes 

into the assessment framework (Kuebbing et al., 2018). After the 

introduction, a rigid monitoring program should be applied to detect the 

mariculture effects on the local ecosystem as well as to record the 

escapees from farms. Nevertheless, more funding should be distributed 

on developing techniques for culturing native species (Pérez et al., 2003). 

In conclusion, assessment of mariculture of NIS should include the 

risk assessment in the environmental and socio-economic context before 

the introduction. After the introduction, NIS culturing should be 

monitoring frequently and evaluated in terms of impacts on physio-

chemical environment, structural composition of native benthic/pelagic 

organisms, marine food web (functional impact), and effect of the 

establishment of an escapee community.  

6.4 Limitations and future perspectives 
The outcome of this PhD research allowed to move a step forward in 

understanding the effects of mariculture NIS on benthic environment, 
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using open-water and coastal ponds systems as two case-studies. 

However, this research also included some limitations and highlighted 

new perspectives for the future studies:   

• Improving the field sampling design – temporal scale 

Our sampling collection followed the planning of mariculture, i.e., 

scallop farming: before culture (May) vs. during heavy biodeposition 

phase (October-November), and shrimp farming: before culture 

(January), the early (May) and the late rearing stage (August). However, 

seasonal changes can also play a role for the abiotic and biotic 

components of the recipient ecosystem (Dell'Anno et al., 2002; Giere, 

2009). This aspect was not covered in the case of scallop farming which 

culture activity includes summer, autumn, and early winter. We 

therefore recommend for future studies to take into account seasonal 

patterns in order to understand whether the impact of mariculture differs 

according to the season.  

In Bohai Sea, algal blooms and sometimes even harmful algal bloom 

(HAB) occasionally happen in spring and autumn (Tang et al., 2006; 

Wei et al., 2004). Algae blooms will not only influence the behavior, 

health, and survival of cultured bivalves (Shumway, 1990), but also 

change the biochemical cycles in the benthic environment (Rozan et al., 

2002). As far as we know, there is not such event in our studied regions 

during the time of sampling. However, it may be interesting to extend 

the mariculture-impact study to a longer term in order to incorporate the 

algal bloom.  

• Improving the field sampling design - spatial scale 

Another interesting research question for mariculture impact 
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assessment is identifying weather the effect is localized or has been 

extended to a broader spatial scale. For instance, for the open-water 

mariculture, it is important to know whether and how far the farm-

derived effluents can disperse. Also, it may be interesting to involve the 

organisms from the water column (plankton, nekton) to assess a more 

overall mariculture effect on benthic-pelagic coupling. For the coastal 

ponds system, we found that the shrimp ponds abundantly accumulated 

organic matter during the rearing season. This sediment usually disposes 

to the adjacent wetland or bay without any treatment, which might 

become a pollution source. To date, many studies about pond effluent 

affecting nearby coastal zones focus more on the water column (Wu et 

al., 2014; Yang et al., 2017), yet further studies should also include the 

benthic assessment (e.g. community and functional changes of 

(meio)benthos). 

In addition, the sampling conducted in this research was applied at 

local and regional scales. Therefore, the effects can be idiosyncratic, for 

instance, our scallop farming region is characterized by meso-

oligotrophic benthic environment. To generate more general 

conclusions, comparison studies should conduct in multiple regions and 

ecosystems for the similar type of mariculture installation. Such studies 

can apply in China that similar mariculture method is conducted on a 

long coastal line covered nine provinces with various hydrological and 

benthic characteristics (Wartenberg et al., 2017).   

• Applying lab experiments to unravel the underlying 

mechanisms  

Since this research is based on field sampling, the results and 
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conclusions are highly ecological relevant but have low interpretability 

at the individual or species level (Höss and Williams, 2009). For 

instance, we found that copepods may accumulated PUFAs from the 

mariculture source, e.g. biodeposits and feeds. Future feeding 

experiments on single or multiple species may give insight on how these 

mariculture-derived PUFAs could be transferred to higher levels of 

consumers (e.g. fishes and shrimps). As such, feeding experiments can 

allow to further unravel the functional impact of mariculture. Yet, these 

experiments will be limited to include the overall setting from the field. 

Further, better functional insight can provide more information on how 

we can use copepods as mariculture feed at a commercial scale of 

production. The use of natural feed can lead towards a more sustainable 

mariculture with limited to no eutrophication effects. 

• Incorporating modeling studies to predict the mariculture 

effects 

The ultimate goal to support sustainable mariculture is to have good 

tools to predict any effects of mariculture on the environment. Therefore, 

monitoring the environmental effects from mariculture will allow to 

develop models in order to predict the relationship between culture 

activities and the environment. This information can be used by both 

farmers and public authorities (Domínguez and Martín, 2004). To date, 

several models can be applied or potentially applied for the assessment 

of mariculture effect, coupling the compartments of abiotic and biotic 

variables and ecosystem functioning (Piroddi et al., 2015 and the 

references therein). Future studies should be devoting to improve the 

robustness of these models so that they can be applied to different 
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mariculture systems. Besides, using artificial intelligence for ecosystem 

services (ARIES) may also be applied for the future mariculture-derived 

impact assessment (Bagstad et al., 2013).  

• Promoting integrated multitrophic aquaculture (IMTA) 

Although this thesis focused on the mono-culture method, we 

highlighted that the consumers from the basal food web utilized the 

mariculture waste. This actually agrees with a recently popular concept 

of aquaculture - integrated multitrophic aquaculture (IMTA), as a 

means of practicing sustainable aquaculture by reducing nutrients 

though co-cultured species from different trophic levels (Chopin et al., 

2008). IMTA has been practiced in China for a long time and there are 

many successful cases especially along the Yellow Sea coast in 

Shandong province (Fang et al., 2016; Mao et al, 2009; Yang et al., 

2000; Zhou et al. 2006;). It would be interesting to compare the 

mariculture effects between mono-culture and IMTA systems, 

especially from the perspective of energy flow. Biomarkers (stable 

isotopes and fatty acids) proved to be a useful tool to study the trophic 

interactions (as in Irisarri et al., 2014; Sanz-Lazaro and Sanchez-Jerez, 

2017), which can further be applied to assess the efficiency of IMTA.  

• Applying bioflocs technique in the shrimp farming industry 

Although water exchange may alleviate the organic accumulation in 

the shrimp ponds, the discharge of high nutrients pond water poses a 

threat to the receiving environment (Yang et al., 2017). One technique 

that has been developed to mitigate the negative effects of discharging 

shrimp farming effluents to the adjacent environment is the use of 

bioflocs technology, especially for the semi-intensive and intensive 
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farming (Crab et al., 2012). This system produces microbial cells that 

aggregate into flocs (Avnimelech, 2009). Microbial biomass rapidly 

takes up the ammonium and this promotes the water quality in the 

shrimp pond (Burford, 2003; Hargreaves, 2006). The bioflocs also 

serve as a feed for reared shrimps since bioflocs have high nutritional 

values in terms of protein, lipid, and PUFA content, which on the other 

hand lower the feed input, especially fishmeal input (Crab et al., 2010; 

De Schryver et al., 2008). The short-chain fatty acids produced by 

bioflocs that protects against pathogenic disease is another advantage 

to use this technology (De Schryver et al., 2008). As the nutrients are 

well balanced in the system, water exchange reduces to a minimal level. 

Studies have found that in comparison to conventional ponds, bioflocs 

are a low-cost sustainable method (Avnimelch, 2009; De Schryver et 

al., 2008). Thus, this technique can apply to our study area as well as it 

will be widely used in future aquaculture. 

• Incorporating socio-economic context for the mariculture 

assessment 

Mariculture activities not only depend and impact on the environment, 

but also interact with socio-economic factors, since most of the farmers 

choose the culture method based on the financial costs and benefits. To 

date, aquaculture management (including mariculture) often focuses to 

maximize the output of targets (e.g. the production) instead of profits 

maximization, which is rather economically inefficient and include 

economic and ecological risks (Tsani and Koundouri, 2018). Therefore, 

it is necessary to combine environmental and socio-economic effects 

into mariculture assessment. Although the information of mariculture 
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based in socio-economic context is relatively undeveloped compared 

with biological and technical aspect, there are a few frameworks taking 

both environmental and socio-economic parameters into account, for 

instance, “Emergy” from Odum (1996), that may apply in the future 

assessment. However, the methodologies are still needed for 

improvement especially when tackling with various small-scale 

mariculture activities in China. 

• Comparing the environmental effects of culturing native species 

and non-indigenous species 

    In this thesis, in the scallop farming case, we aimed to study the 

benthic effects of culturing non-indigenous scallop A. irradians. It 

would be interesting to conduct the similar study in native scallop farms 

(e.g. C. farreri) for comparison. This may help the decision maker to 

choose one species over another for sustainable mariculture. In the 

shrimp farming case, we acknowledge that the factor of farming 

practices (e.g. stocking density of shrimps, water renewal, feeding 

addition) is crucial to determine the pond environment. Due to different 

farming practices of M. japonicus and L. vannamei in this study, the 

factor of biological traits of shrimp cannot be separated and discussed 

alone regarding whether the native M. japonicus is better than non-

indigenous L. vannamei or not. Future mesocosm experiment for the two 

species with the same rearing practice is needed in order to further 

compare biological traits (e.g. bioturbation, food preference) and link 

these traits to the changes of pond environment. 
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Appendix I – supporting material Chapter 2 

Table S1 The sediment composition and the mass median diameter (D50) 
(mean±SD) in the sampled area in T1 (October-November, 2016) in Laizhou Bay, 
China. Values represent average of 3 replicates. The sand fractions in this study are all 
within a range of 63-250 μm (i.e., fine sand). Farm = farm site, Ctrl = control site.; SS 
= sandy shallow station, MS = muddy sallow station, MD = muddy deep station 

Site Clay (%) Silt (%) Fine sand (%) D50 (μm) 
Farm SS 2.0±0.1 26.9±0.9 71±1.0 76.2±0.7 
Ctrl SS 1.8±0.1 24.4±0.9 73.6±0.8 77.6±0.5 
Farm MS 4.4±0.5 54.6±1.5 40.8±1.8 56.1±1.8 
Ctrl MS 4.7±0.4 54.2±0.4 41.0±0.8 57.8±1.2 
Farm MD 4.4±0.6 52.4±0.3 43.0±0.8 58.9±1.0 
Ctrl MD 4.3±0.4 52.7±1.5 42.8±1.6 58.7±1.1 
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Table S2 The sediment composition and the mass median diameter (D50) 
(mean±SD, with n replicates) in the sampled Marsupenaeus japonicus and 
Litopenaeus vannamei ponds in Bohai Bay coast, China. Values represent average 
of sediments sampled in the early (May, 2016) and the late rearing stages (August, 
2016). The sand fractions in this study are all within a range of 63-500 μm. NAT P = 
M. japonicus pond, NIS P = L. vannamei pond. 
Pond Clay (%) Silt (%) Fine sand (%) Medium sand (%) D50 (μm) 

NAT P1 81.9±3.1 (5) 13.4±1.5 (5) 3.73±2.48 (5) 0.82±0.21 (5) 25.6±2.0 (5) 

NAT P2 82.2±4.3 (6) 11.1±1.8 (6) 6.21±2.42 (6) 0.34±0.27 (6) 28.4±1.2 (6) 

NAT P3 87.8±2.2 (6) 10.4±2.0 (6) 1.50±1.24 (6) 0.15±1.00 (6) 25.8±1.9 (6) 
      

NIS P4 95.7±0.8 (3) 4.27±0.8 (3) 0.02±0.01 (3) 0 16.9±2.5 (3) 

NIS P5 93.1±1.8 (5) 5.72±1.3 (5) 1.17±1.72 (5) 0 19.5±2.6 (5) 

NIS P6 90.6±1.7 (6) 7.96±1.7 (6) 1.40±0.92 (6) 0 24.7±6.9 (6) 
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Table S3 Results of PERMANOVA tests for the differences in measured variables 

in the water column and in the sediments, from a scallop farming area of Laizhou 

Bay and in two types of shrimp ponds from Bohai Bay coast, China. Factors and/or 

interactions significantly (at *= p < 0.05; **= p < 0.001; ***= p < 0.001) distinguishing 

groups are displayed. df = degree of freedom; MS = mean square; P-F = Pseudo-F. 

Scallop farms: T0 = before scallop farming, T1 = high biodeposition period; SS = 

sandy shallow station, MS = muddy sallow station, MD = muddy deep station; Shrimp 

ponds: T0 = before shrimp farming; Early = the early rearing stage, Late = the late 

rearing stage; NAT P = Marsupenaeus japonicus ponds; NIS P = Litopenaeus 

vannamei ponds. 

Compartmen
t Parameter Factor df MS P-F 

P 
(MC
) 

Scallop farms: 
water column 

Temperature Time 1 2.7 396.33 ** 
 Station 2 0 4.43 * 
 Time×Station 2 0.01 85.85 *** 

Salinity Time 1 7.77 58.62 * 
 Station 2 0.23 463.93 *** 
 Time×Station 2 0.13 272.85 *** 
 Site×Station 2 0.01 12.55 *** 
 Time×Site×Station 2 0 5.16 * 

DO Time×Station 2 1.28 25.35 *** 

pH Station 2 0.05 41.55 *** 
 Time×Station 2 0.02 14.36 *** 

Scallop farms: 
sediment 

pH Time 1 0.14 28.478 * 
 Station 2 0.01 12.378 *** 
 Time×Station 2 0.01 6.25 ** 

Eh Station 2 124870 146.97 *** 
 Time×Station 2 16517 19.439 ** 
 Time×Site×Station 2 3465.7 4.0789 * 
Total 
nitrogen Station 2 0.43 7.3 ** 

 Time×Station 2 1.14 19.2 *** 

Total organic 
carbon Time×Station 2 0.22 101.98 * 

Carbon to 
nitrogen ratio Station 2 1.12 33.28 *** 
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 Time×Station 2 0.22 6.46 ** 

Parameter Factor df MS P-F 
P 
(MC
) 

Chlorophyll 
a  Time 1 18.06 40.95 * 

 Station 2 0.76 11.37 *** 
 Site 1 1.21 850.67 ** 
 Time×Station 2 0.44 6.57 ** 

Protein Station 2 1.8276 148.95 *** 

 Time×Station 2 0.17792 14.5 *** 

 Site×Station 2 0.052289 4.2616 * 

 Time×Site×Station 2 0.04 3.31 * 
Carbohydrate Site 2 4.41 66.53 *** 
 Time×Site 2 1.05 15.85 *** 
 Site×Station 2 0.39 5.85 ** 
 Time×Site×Station 2 0.44 6.59 ** 

Lipid Time×Site 2 0.08 35.5 *** 

Biopolymeri
c carbon Station 

2 1.48 136.10 *** 

 Time×Station 2 0.09 7.93 ** 

 Site×Station 2 0.07 6.41 ** 
 Time×Site×Station 2 0.08 6.95 ** 
Algae C to 
BPC Time 1 25.48 27.79 * 
 Station 2 0.27 3.66 * 
 Time×Station 2 0.92 12.43 *** 

Shrimp ponds: 
water column 

Temperature Stage 1 11 220.07 *** 

 Pond(Shrimp) 4 0.07 23.46 *** 

 Stage×Pond(Shrimp
) 4 0.05 16.04 *** 

Salinity Shrimp 1 0.38 54.84 ** 
 Pond(Shrimp) 4 0.01 295.15 *** 
 Stage×Shrimp 1 0.02 8.5 * 

 Stage×Pond(Shrimp
) 4 0 96.71 *** 

DO Stage 1 107.8 26.55 ** 
 Stage×Shrimp 1 32.27 7.95 * 

 Stage×Pond(Shrimp
) 4 4.06 5.13 ** 
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pH Shrimp 1 0.9 11.75 * 

Compartmen
t Parameter Factor df MS P-F 

P 
(MC
) 

Shrimp ponds: 
sediment 

pH Pond(Shrimp) 4 0.29 8.1902 *** 

 Stage×Pond(Shrimp
) 4 0.18 5.034 ** 

Eh Stage 1 113220 37.2 ** 
 Pond(Shrimp) 4 12183 10.001 *** 
Total 
nitrogen Stage 2 0.09 35.17 *** 

 Stage×Shrimp 2 0.01 4.84 * 

Total organic 
carbon Stage 2 3.47 33.04 *** 

Chlorophyll 
a Stage 2 1143.3 18.88 *** 

 Shrimp 1 1511.8 13.65 * 
 Stage×Shrimp 2 406.86 6.72 * 

Protein Stage 2 3.89 58.56 *** 
 Shrimp 1 1.04 8.41 * 
 Pond(Shrimp) 4 0.12 7.66 *** 
 StagexPond(Shrimp) 8 0.07 4.12 ** 

Carbohydrate Stage 2 582.06 21.22 *** 
 Shrimp 1 1468.5 24.06 ** 
 Pond(Shrimp) 4 61.04 3.74 * 
 StagexShrimp 2 387.83 14.14 ** 

Lipid Stage 2 0.28 13.96 ** 
 Shrimp 1 0.69 31.65 ** 

Biopolymeri
c carbon Stage 2 272.03 22.04 *** 

 Shrimp 1 528.4 22.72 ** 
 Pond(Shrimp) 4 23.26 3.41 * 
 StagexShrimp 2 89.97 7.29 * 
Algae C to 
BPC Stage 2 1.69 29.62 *** 

 Pond(Shrimp) 4 0.25 5.15 ** 

  StagexShrimp 2 1.94 34.06 *** 
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Appendix II – supporting material Chapter 3 

Table S1. Sediment characteristics at each farm and control site in three stations (SS, MS, MD) before aquaculture (T0) and during 

heavy biodeposition (T1). CTRL = control; TN = total nitrogen; TOC = total organic carbon; C/N = carbon and nitrogen ration; Chl a = 

chlorophyll a; BPC = biopolymeric carbon. CTRL = control site; FARM = scallop farming site. 

 

    

TN  

(%) 

TOC  

(%) C/N 
 

Chl a 

(μg g-1) 

Protein 

(mg C g-1) 

Carbohydrate 

(mg C g-1) 

Lipid 

(mg C g-1) 

BPC 

(mg C g-1) 

T0 SS-CTRL 0.03±0.004 0.09±0.011 3.66±0.22 0.75±0.364 0.41±0.022 0.81±0.069 0.21±0.026 0.72±0.042 

 
SS-FARM 0.03±0.001 0.1±0.010 3.66±0.368 1.01±0.257 0.4±0.043 0.78±0.087 0.19±0.018 0.68±0.073 

 
MS-CTRL 0.03±0.007 0.15±0.013 4.92±0.744 1.49±0.102 0.78±0.065 1.54±0.134 0.31±0.041 1.3±0.100 

 
MS-FARM 0.03±0.008 0.14±0.012 4.53±0.758 1.71±0.216 0.72±0.052 1.44±0.077 0.32±0.039 1.23±0.061 

 
MD-CTRL 0.03±0.003 0.13±0.016 3.96±0.509 1.45±0.412 0.66±0.062 1.21±0.124 0.27±0.022 1.06±0.098 

 
MD-FARM 0.03±0.005 0.11±0.006 3.45±0.379 1.7±0.299 0.62±0.049 1.07±0.050 0.27±0.034 0.98±0.044 

T1 SS-CTRL 0.07±0.02 0.06±0.017 0.86±0.071 0.24±0.062 0.27±0.030 0.40±0.005 0.35±0.126 0.57±0.087 

 
SS-FARM 0.11±0.055 0.09±0.013 0.94±0.458 0.36±0.117 0.53±0.016 1.06±0.030 0.46±0.045 1.08±0.055 

 
MS-CTRL 0.03±0.009 0.12±0.045 3.84±0.509 0.31±0.016 0.65±0.126 2.37±0.525 0.19±0.005 1.56±0.211 

 
MS-FARM 0.04±0.006 0.16±0.016 4.14±0.586 0.54±0.118 0.9±0.147 2.32±0.343 0.21±0.004 1.65±0.181 

 
MD-CTRL 0.03±0.007 0.15±0.008 4.61±0.897 0.19±0.023 0.85±0.063 1.48±0.358 0.23±0.038 1.24±0.175 

  MD-FARM 0.04±0.003 0.15±0.019 4.34±0.208 0.34±0.09 1.05±0.118 2.91±0.464 0.3±0.034 2.07±0.269 
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Table S2 Univariate of PERMANOVA to analyze variations in total density of meiobenthos, biodiversity indexes of meiobenthos: 

number of species (S), Shannon-Wiener diversity index (H'), Peilou's evenness (J’) and dominance (λ), and the ratio of nematodes to 

copepods (Ne/Co) among the levels of the three factors: Time (T0 vs T1), Site (Farm vs Control), and Station (SS, MS, and MD). T0 = 

before aquaculture; T1 = during heavy biodeposition. df = degree of freedom; MS = mean square; P-F = Pseudo-F. 

S (Number of ta×a)           N (total density)           λ (dominance)         
Source df MS  P-F P(MC)   Source df     MS P-F P(MC)   Source df  MS  P-F P(MC) 
Time 1 77.21 0.07 ns  Time 1 12843.00 10.43 *  Time 1 959.83 6.38 ns 
Station 2 454.35 3.12 ns  Station 2 3780.10 28.87 **  Station 2 31.01 1.35 ns 
Site 1 85.60 0.69 ns  Site 1 846.16 13.02 *  Site 1 3.95 0.06 ns 
Time×Station 2 1173.20 8.05 **  Time×Station 2 1231.80 9.41 **  Time×Station 2 150.44 6.53 ** 
Time×Site 1 416.36 6.00 ns  Time×Site 1 288.22 1.02 ns  Time×Site 1 7.53 0.22 ns 
Station×Site 2 124.77 0.86 ns  Station×Site 2 64.97 0.50 ns  Station×Site 2 63.38 2.75 ns 
Time×Station×Site 2 69.37 0.48 ns  Time×Station×Site 2 283.68 2.17 ns  Time×Station×Site 2 33.82 1.47 ns 
Res 24 145.76                  Res 24 130.96                 Res 24 23.04                 
Total 35                          Total 35                         Total 35                        
H' (Shanon-Wiener diversity)       J' (Peilou's eveness)           Ne/Co (Nematode to copepod ratio)   
Source df     MS P-F P(MC)   Source df     MS P-F P(MC)   Source df     MS P-F P(MC) 
Time 1 9803.30 3.50 ns  Time 1 9796.60 5.98 ns  Time 1 7701.30 1.82 ns  
Station 2 1228.30 4.33 *  Station 2 1424.30 6.85 **  Station 2 5459.10 13.23 ** 
Site 1 176.37 0.34 ns  Site 1 324.63 0.66 ns  Site 1 554.15 0.51 ns 
Time×Station 2 2797.50 9.87 **  Time×Station 2 1637.90 7.88 **  Time×Station 2 4228.10 10.25 ** 
Time×Site 1 55.72 0.41 ns  Time×Site 1 434.12 2.10 ns  Time×Site 1 420.80 0.26 ns 
Station×Site 2 522.60 1.84 ns  Station×Site 2 492.82 2.37 ns  Station×Site 2 1094.80 2.65 * 
Time×Station×Site 2 134.83 0.48 ns  Time×Station×Site 2 207.03 1.00 ns  Time×Station×Site 2 1604.20 3.89 ** 
Res 24 283.45                 Res 24 207.89                 Res 24 412.57                
Total 35                         Total 35                         Total 35                       
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Table S3 Univariate of PERMANOVA to analyze variations in total density of harpacticoid copepods and the biodiversity indexes of 

harpacticoid copepods: number of species (S), Shannon-Wiener diversity index (H'), Peilou's evenness (J’) and dominance (λ) among 

the levels of the three factors: Time (T0 vs T1), Site (Farm vs Control), and Station (SS, MS, and MD). T0 = before aquaculture; T1 = 

during heavy biodeposition. df = degree of freedom; MS = mean square; P-F = Pseudo-F. 
S (Number of species) 
  

   N (total density) 
 
  
  
  

 λ (dominance) 
 
  
  

Source df MS P-F P(MC
) 

  Source df MS P-F P(MC
) 

  Source df MS P-F P(MC
) Time 1 40.11 0.30 ns  Time 1 657.70 0.17 ns  Time 1 8033.2

0 
3.25 ns 

Station 2 252.3
3 

62.6
5 

**  Station 2 11731.0
0 

34.1
2 

**  Station 2 9664.1
0 

43.7
0 

** 
Site 1 21.78 1.80 ns  Site 1 172.43 0.21 ns  Site 1 38.44 0.14 ns 
Time×Station 2 133.4

4 
33.1

3 
**  Time×Station 2 3893.60 11.3

2 
**  Time×Station 2 2468.2

0 
11.1

6 
** 

Time×Site 1 25.00 0.99 ns  Time×Site 1 238.93 0.17 ns  Time×Site 1 811.72 2.49 ns 
Station×Site 2 12.11 3.01 ns  Station×Site 2 808.77 2.35 ns  Station×Site 2 270.11 1.22 ns 
Time×Station×Si
te 

2 25.33 6.29 **  Time×Station×Si
te 

2 1366.10 3.97 **  Time×Station×Si
te 

2 326.03 1.47 ns 
Res 2

4 
4.03                 Res 2

4 
343.87                 Res 2

4 
221.15                

Total 3
5 

                        Total 3
5 

                        Total 3
5 

                      
H' (Shanon-Wiener diversity)     J' (Peilou's eveness) 

  
  
  

    
Source df MS  P-F P(MC

) 
  Source df MS  P-F P(MC

) 
      

Time 1 1.33 2.57 ns  Time 1 340.29 4.65 ns       
Station 2 1.27 30.6

4 
**  Station 2 146.53 3.90 *       

Site 1 0.01 0.57 ns  Site 1 0.43 1.12 ns       
Time×Station 2 0.52 12.4

7 
**  Time×Station 2 73.24 1.95 ns       

Time×Site 1 0.07 22.8
7 

ns  Time×Site 1 4.89 1.74 ns       
Station×Site 2 0.01 0.35 ns  Station×Site 2 0.38 0.01 ns       
Time×Station×Si
te 

2 0.00 0.07 ns  Time×Station×Si
te 

2 2.81 0.07 ns       
Res 2

4 
0.04                  Res 2

4 
37.62                       

Total 3
5 

                            Total 3
5 
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Table S4 Main tests and pairwise tests of PERMANOVA to analyze variations in 

the composition of biopolymeric carbon (BPC): proteins, carbohydrates, lipids, 

among the levels of the three factors: Time (T0 vs T1), Site (Farm vs Control), 

and Station (SS, MS, and MD). T0 = before aquaculture; T1 = during heavy 

biodeposition, df = degree of freedom; MS = mean square; P-F = Pseudo-F. 

Source df      MS P-F P (MC) 
Time 1 3.671 0.258 ns 
Station 2 22.535 50.925 ** 
Site 1 4.601 4.431 ns 
TimexStation 2 14.228 32.151 ** 
TimexSite 1 8.029 6.484 * 
StationxSite 2 1.038 2.346 ns 
TimexStationxSite 2 1.238 2.798 * 
Res 24 0.443                
Total 35                        
pairwise test: FARM VS CTRL   t P (MC) 
T0-SS   1.111 ns 
T0-MS   0.585 ns 
T0-MD   0.706 ns 
T1-SS   3.171 ** 
T1-MS   1.826 ns 
T1-MD     3.013 * 
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Table S5 Correlation coefficients and percent significance level (%) associated 

with meiobenthic community structure and harpacticoid copepod assemblage 

(RELATE test for seriation). TN = total nitrogen; TOC = total organic carbon; Chl 

a = Chlorophyll a; PRO = proteins; CHO = carbohydrates; LIP = lipids; BPC = 

biopolymeric carbon; Eh = redox potential. 

 Variable Meiobenthos community Harpacticoid copepod assemblage 

  Rho Sig. level % Rho Sig. level % 

TN 0.067 17.1 0.022 33.2 

TOC 0.231 0.2 0.059 12.5 

Chl a 0.159 0.5 0.155 1.4 

BPC 0.327 0.1 0.120 3.2 

PRO 0.255 0.1 0.129 1.9 

CHO 0.356 0.1 0.119 1.9 

LIP 0.050 19.5 0.151 0.7 

pH 0.273 0.1 0.096 5.6 

Eh 0.171 0.3 -0.018 59.1 
  



————————————< Appendix >————————————— 

<220> 
 

Table S6. Summary of results from the BIO-ENV analysis showing best 10 

combinations of environmental variables associated with the highest correlation 

between meiobenthos (a)/copepods (b) and environmental matrices. Correlation 

values correspond to Spearman’s rank correlation coefficient (ρ). TOC = total organic 

carbon; Chl a = Chlorophyll a; PRO = proteins; CHO = carbohydrates; LIP = lipids; 

Eh = redox potential. 

No. of variables Correlation Environmental variables 
(a) Meiobenthos   
2 0.453 PRO, CHO, 
2 0.452 CHO, pH 
2 0.445 TOC, CHO 
4 0.437 TOC, PRO, CHO, pH 
4 0.42 Chl a-CHO, pH 

5 0.415 TOC-CHO, pH 
4 0.413 TOC, Chl a, CHO, pH 

1 0.409 CHO 
3 0.408 Chl a, CHO, pH 

4 0.407 PRO, CHO, Eh, pH 
(b) Copepods   
2 0.223 Chl a, PRO 
3 0.222 Chl a, Eh, pH 
3 0.218 Chl a, PRO, pH 
2 0.217 Chl a, Eh 
3 0.217 Chl a-CHO 
4 0.214 Chl a, PRO, Eh, pH 
4 0.211 Chl a-CHO, Eh 
3 0.21 Chl a, PRO, Eh 
4 0.209 Chl a-CHO, pH 
5 0.202 Chl a-CHO, Eh, pH 
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Appendix III – supporting material Chapter 4 

Table S1. T-test for the carbon (δ13C) and nitrogen (δ15N) stable isotope values of the organic matter of sediment surface (SSOM) 

between each pair of farm and control site in Station SS, MS and MD. Significance level: NS=not significant, *p < 0.05; **p < 0.01; ***p 

< 0.001, was applied for t-test. 

Year   SS     MS     MD     

    df F p df F p df F p 

2015 δ13C 4 0.565 0.602NS 2 0.317 0.781NS 4 0.044 0.967NS 

 
δ15N 4 6.262 0.067NS 4 0.521 0.630NS 4 2.226 0.690NS 

2016 δ13C n/a n/a n/a 4 1.126 0.323NS 4 0.798 0.422NS 

 
δ15N n/a n/a n/a 4 0.039 0.971NS 4 0.718 0.445NS 
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Table S2 T-test comparison between farm and control site for the fatty acid (FA) 

markers in relative FA composition or FA ratios in harpacticoid copepod family 

Canuellidae in Station SS in 2016 during aquaculture activities. EPA: 

eicosapentaenoic acid; DHA: docosahexaenoic acid; PUFA: polyunsaturated fatty 

acids. EPA, DHA, and PUFA are indicative for quality of food. Other biomarkers 

relevant for meiobenthos diet are 16:1ω7 and 16:1ω7/16:0: diatoms; EPA/DHA: 

diatom/dinoflagellate; SUM 15:0, 17:0: bacteria; 18: 2ω6: terrestrial detritus or green 

algae; 20:1ω9 and PUFA/SFA ratio: carnivory. Significance level: NS=not significant, 

*p < 0.05; **p < 0.01; ***p < 0.001, was applied for t-test. 

Marker FA t df p 

EPA 0.061 5 0.954NS 

DHA 4.701 5 0.005** 

PUFA 4.236 5 0.008** 

16:17 1.176 5 0.292NS 

SUM 15,17 0.188 5 0.858NS 

20:19 4.858 5 0.004** 

18:2w6  0.633 5 0.554NS 

16:17/16:0 1.654 5 0.158NS 

EPA/DHA 3.100 5 0.026* 

PUFA/SFA 4.523 5 0.006** 
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Appendix IV – supporting material Chapter 5 

Table S1 Permutational analysis of variance (PERMANOVA) results testing the 

variations of meiobenthic number of taxa, total abundance, and diversity indices 

(Shannon H’) and equitability (J’, Pielou’s evenness) among rearing stages 

(Stage), types of shrimp ponds (Shrimp), and pond (nested in Shrimp). 

Significance level: p < 0.05; *p < 0.01; **p < 0.001 and are given in bold.  

Source df MS P-F P(perm)  perms  P(MC) 
Number of taxa       
Stage 2 2355.7 2.1 0.183 9959.000 0.156 
Shrimp 1 1931.3 2.2 0.335 720.000 0.173 
Pond (Shrimp) 4 914.6 2.6 0.024 9943.000 0.025 
Stage×Shrimp 2 5272.6 4.8 0.050 9960.000 0.031 
Stage×Pond(Shrimp)** 6 1121.3 3.2 0.004 9940.000 0.004 
Res 35 346.2                                
Total 50                                       
Total abundance       
Stage 2 21489.0 15.2 0.000 9960.000 0.000 
Shrimp 1 21757.0 3.1 0.015 719.000 0.081 
Pond (Shrimp) 4 7595.7 15.8 0.000 9933.000 0.000 
Stage×Shrimp 2 9881.1 7.0 0.004 9954.000 0.001 
Stage×Pond(Shrimp)** 6 1437.6 3.0 0.000 9897.000 0.000 
Res 35 479.4                                
Total 50                                       
Shannon H'       
Stage 2 3586.3 6.1 0.028 9946.000 0.018 
Shrimp 1 321.6 0.3 0.873 720.000 0.699 
Pond (Shrimp) 4 1114.1 3.5 0.008 9949.000 0.008 
Stage×Shrimp 2 3792.4 6.5 0.030 9964.000 0.015 
Stage×Pond(Shrimp)** 6 593.5 1.8 0.090 9940.000 0.084 
Res 35 322.6                                
Total 50              
Equitability (J’))       
Stage 2 1435.1 0.5 0.865 9936.000 0.858 
Shrimp 1 26748.0 29.4 0.004 718.000 0.000 
Pond (Shrimp) 4 865.7 0.7 0.703 9917.000 0.713 
Stage×Shrimp 2 1849.2 0.6 0.732 9954.000 0.738 
Stage×Pond(Shrimp)** 5 3249.4 2.8 0.001 9907.000 0.001 
Res 25 1162.2                                
Total 39                                       
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Table S2 Non-parametric Kruskal-Wallis tests to compare the relative 
contribution of selected fatty acids between stages in meiobenthos belong to the 
same taxon. EPA = eicosapentaenoic acid, DHA = docosahexaenoic acid, PUFA = 
polyunsaturated fatty acids, FA = fatty acids, NAT = Penaeus japonicus, NIS = 

Penaeus vannamei. The significant level is p < 0.05 and the significant p is given in 
bold. The H and p values are adjusted for ties.  

  Copepods_NAT 
ponds   Nematodes_NAT 

ponds   Nematodes_NIS  
ponds 

  df H p   df H p   df H p 

Σ 15, Σ 17 1 0.381 0.537  1 5.00 0.025  1 3.86 0.05 

Σi-FA+ai-FA 1 7.714 0.005  1 5.00 0.025  1 0.43 0.531 

18:1ω7 1 11.508 0.001  1 5.00 0.025  1 1.19 0.275 

16:1ω7 1 7.714 0.005  1 5.00 0.025  1 3.86 0.05 

EPA 1 7.714 0.005  1 5.00 0.025  1 1.19 0.275 

DHA/EPA 1 7.714 0.005  1 0.20 0.655  1 3.86 0.05 

18 PUFA 1 5.357 0.021  1 5.00 0.025  1 0.43 0.513 

18:4ω3 1 11.508 0.001  1 1.14 0.285  1 1.00 0.317 

18:1ω9 1 11.508 0.001  1 0.02 0.881  1 2.33 0.127 

DHA 1 7.714 0.005  1 5.00 0.025  1 2.33 0.127 

18.2ω6 1 11.508 0.001  1 0.56 0.456  1 0.43 0.513 

18.3ω3 1 0.095 0.758  1 5.00 0.025  1 0.43 0.513 
18:1ω9/18:1ω
7 1 11.508 0.001  1 0.56 0.456  1 0.43 0.513 

PUFA 1 7.714 0.005  1 5.00 0.025  1 3.86 0.05 

ω3 FAs 1 7.977 0.005  1 5.00 0.025  1 2.33 0.127 

ω6 FAs 1 1.789 0.181   1 5.60 0.018   1 0.43 0.513 
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Table S3 Permutational analysis of variance (PERMANOVA) results testing the 

variations of stable isotopic values in primary organic matter (i.e. particulate 

organic matters: POM and microphytobenthos: MPB) among rearing stages 

(Stage), types of shrimp ponds (Shrimp), and pond (nested in Shrimp). 

Significance level: *p < 0.05; **p < 0.01; ***p < 0.001. OM = organic matters.  

Main test of δ13C                                   
Source df     SS     MS  Pseudo-F  P(MC) 
Stage 1 435.59 435.59 1.2115 0.383 
Shrimp 1 2520.7 2520.7 18.387 0.021* 
Primary OM 1 2.8578 2.8578 7.92E-03 0.993 
Pond 2 274.33 137.16 2.517 0.080 
Stage*Shrimp 1 3007.4 3007.4 8.3644 0.078 
Stage*Primary OM 1 1068.9 1068.9 9.3066 0.051 
Shrimp*Primary OM 1 862.13 862.13 2.39 0.240 
Stage*Pond (Shrimp) 2 719.67 359.84 6.6032 0.003** 
Primary OM*Pond (Shrimp) 2 722 361 6.6246 0.002** 
Stage*Shrimp*Primary OM 1 989.15 989.15 8.6119 0.051 
Stage*Primary OM*Pond (Shrimp) 2 229.83 114.91 2.1087 0.117 
Res 31 1689.3 54.494                  
Total 46 12740        
Main test of δ15N                                    
Source df      SS      MS Pseudo-F  P(MC) 
Stage 1 3.7007 3.7007 1.9446 0.303 
Shrimp 1 31.409 31.409 214.27 0.005** 
Primary OM 1 3.8903 3.8903 4.3654 0.172 
Pond 2 0.29292 0.14646 0.51429 0.605 
Stage*Shrimp 1 3.2761 3.2761 1.7215 0.319 
Stage*Primary OM 1 2.4515 2.4515 19.647 0.046* 
Shrimp*Primary OM 1 29.438 29.438 33.033 0.030* 
Stage*Pond (Shrimp) 2 3.809 1.9045 6.6876 0.004** 
Primary OM*Pond (Shrimp) 2 1.7834 0.89172 3.1312 0.058 
Stage*Shrimp*Primary OM 1 2.4946 2.4946 19.992 0.048* 
Stage*Primary OM*Pond (Shrimp) 2 0.24926 0.12463 0.43764 0.659 
Res 31 8.8283 0.28478                 
Total 46 93.64          
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Appendix V – supporting material Chapter 6 

 

Figure S1 The response and the Pearson correlation analysis of abundance of 

meiobenthos and number of meiobenthos’ taxa (N of taxa) to the total organic 

matter and biopolymeric carbon in scallop farming area in Laizhou Bay, China. 

T0 = before farming; T1 = during heavy biodeposition; CTRL = Control site; FARM 

= scallop farming site. SS = sandy shallow station, MS = muddy sallow station, MD = 

muddy deep station. 
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Figure S2 The response and the Pearson correlation analysis of abundance of 

copepod and number of copepod species to the total organic matter and 

biopolymeric carbon in scallop farming area in Laizhou Bay, China. T0 = before 

farming; T1 = during heavy biodeposition; CTRL = Control site; FARM = scallop 

farming site. SS = sandy shallow station, MS = muddy sallow station, MD = muddy 

deep station
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