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Glossary 

 

 

Ax Antheraxanthin, a xanthophyll pigment 

Chl a Chlorophyll a, a green pigment 

Ddx Diadinoxanthin, a xanthophyll pigment 

Ddx + Dtx Total Ddx and Dtx xanthophyll cycle pool 

DES De-epoxidation state, the amount of de-epoxidized xanthophyll cycle pigments 

divided by the total xanthophyll cycle pigment pool size multiplied by 100 

Dtx Diatoxanthin, a xanthophyll pigment 

ECS ElectroChromic Shift, an electric field induced absorption change of pigments 

Epipelon Microalgae living in loose association with the sediments 

Epipsammon Microalgae living in close association with individual sand particles 

De-epoxidation Removal of an epoxide group, a three-atom ring containing oxygen (a cyclic 

ether) 

FCP Fucoxanthin Chlorophyll a/c binding Protein 

LHCR Light-Harvesting Complex Red lineage protein 

LHCX Light-Harvesting Complex X protein 

NPQ Non-Photochemical Quenching of chlorophyll fluorescence 

NPQs Sustained quenching NPQ component 

Phytoplankton Microalgae that live suspended in the water column 

PMF Proton Motive Force, a gradient that drives ATP synthesis, comprising an 

electric (ΔΨ) and an osmotic (ΔpH) component  

PSI and PSII Photosystem I and II, functional and structural units of protein 

complexes involved in photosynthesis 

qE Energy dependent quenching NPQ component 

qI ‘Photoinhibitory’ quenching, slowly relaxing NPQ component 

Tychoplankton Microalgae occurring both in or on the sediments as suspended in the water 

column 

Vx Violaxanthin, a xanthophyll pigment 

Vx + Ax + Zx Total Vx, Ax, and Zx xanthophyll cycle pool 

Xanthophylls Pigments that play an important role in photoprotection 

XC Xanthophyll cycle, alternation of epoxidized and de-epoxidized xanthophylls 

Zx Zeaxanthin, a xanthophyll pigment 

ΔF/Fm’  Effective quantum efficiency of PSII photochemistry 

ΔΨ A gradient of electric potential (in this context across the thylakoid membrane) 

ΔpH Proton gradient across the thylakoid membrane 

https://en.wikipedia.org/wiki/Protein_complex
https://en.wikipedia.org/wiki/Protein_complex
https://en.wikipedia.org/wiki/Photosynthesis
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Chapter 1: General introduction and 
outline 

 

This introduction provides the reader with information about the intertidal sediment 

habitat and their main primary producers: intertidal benthic diatoms. In addition, it 

introduces the main mechanisms by which these organisms protect themselves against 

oversaturating light conditions at low tide and more specifically excess light energy 

dissipation as heat, or non-photochemical quenching (NPQ), involving the xanthophyll 

cycle (XC), Light-harvesting complex X (LHCX) proteins and the build-up of a proton 

gradient across the thylakoid membrane. Finally, it provides background information on 

optical techniques which allow the probing of photosynthesis in vivo: chlorophyll 

fluorescence monitoring and electrochromism. 

Intertidal sediments 

 
Estuaries and coastal zones, which form the interface between the terrestrial and 

marine environment, are ecologically and economically valuable environments. They are 

highly productive ecosystems, partly due to the contribution of microphytobenthic 

(MPB) biofilms thriving on intertidal sediments (Underwood and Kromkamp 1999) and 

macroalgae on rocky shores (Migné et al. 2015). Especially in turbid systems, primary 

production in sediments may equal or even surpass the primary production of algae 

suspended in the water column (phytoplankton), (Underwood and Kromkamp 1999). 

Microphytobenthic organisms, are a major food source for grazing meiofauna (Pinckney 

et al. 2003). In addition MPB may also be a food source for benthic suspension feeders 

such as commercially cultivated bivalves (oysters, mussels) when resuspended in the 

water column (Riera 1998). Moreover, in both nutrient replete and nutrient limited 

conditions, a considerable fraction of the photosynthetically assimilated carbon is 

released (Cook et al. 2007) and incorporated in higher trophic levels. As such, the MPB 

plays a central role in the food web of intertidal sediments (Middelburg et al. 2000). 

Exudated polymeric substances of these organisms, in addition, contribute to the 

stability and increase the erosion thresholds of intertidal sediments which may serve as 

a natural coastal defense (Stal 2010; Gerbersdorf and Wieprecht 2015). Sediment 

stabilization by diatoms also allows new species to colonize the sediments. As such, they 

can be regarded as ecosystem engineers (Boogert et al. 2006; Gerbersdorf et al. 2009; 

Passarelli et al. 2014). Finally, MPB plays an important role in lowering dissolved 

inorganic nitrogen in estuarine waters (Cabrita and Brotas 2000), a process which is 

dependent on MPB photosynthesis (Thornton et al. 2007). 
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Intertidal sediments consist of muddy, sandy sediments and mixed sediment types, 

which all differ in sediment grain size composition. In sandy sediments, grain size is 

generally larger than 62.5 µm and sediment particles are spherical (Paterson and 

Hagerthey 2001). As such there is not much attraction between particles, which act as 

individual units. When sediment particles become smaller, the surface to volume ratio 

increases, together with the Van der Waals attraction forces between them. As a result 

muddy sediments are more cohesive than sandy sediments (Paterson and Hagerthey 

2001). Large sediment particles can settle in highly hydrodynamic conditions whereas 

smaller particles are swept away and mainly accumulate in less dynamic conditions. As 

hydrodynamic conditions are not constant, most natural intertidal sediments are poorly 

sorted and comprise a mix of particles of different sizes (Yallop et al. 1994). Grain size 

also changes the optical properties of intertidal sediments, which influences the 

experienced light climate for primary producers. Light attenuation, for instance is much 

stronger in muddy sediments, resulting in a very thin photic zone, whereas it can 

penetrate deeper (a couple of mm) in coarse sandy sediments (Kühl et al. 1994; 

Cartaxana et al. 2016b). Another important difference between muddy and sandy 

sediments is nutrient availability: whereas nutrients are sequestered onto fine 

sediments and are available for the MPB, sandy sediments are generally low in nutrients 

(Paterson and Hagerthey 2001). 

Microphytobenthic communities 
 

The microphytobenthos from intertidal sediments in temperate zones is usually 

dominated by diatoms, even though cyanobacteria and euglenophytes can also be 

common (Underwood and Barnett 2006). Microphytobenthic diatom communities differ 

according to sediment type (mud or sand) (Sabbe and Vyverman 1991; Hamels et al. 

1998; Méléder et al. 2007; Ribeiro et al. 2013). Three major growth forms of sediment 

inhabiting diatoms can be distinguished (Fig. 1): (1) The tychoplankton comprises both 

centric and pennate diatom species, which live on intertidal sediments, but also thrive 

suspended in the water column; (2) epipelic (literally ‘living on mud’) species live in loose 

association with the sediment matrix and are mostly biraphid pennate diatoms. Raphid 

diatoms possess a raphe structure through which mucilage is secreted. As such they are 

able to move (Round et al. 1990; Aumeier and Menzel 2012) and position themselves in 

the sediment light gradient (Cartaxana et al. 2016a). (3) the epipsammon (literally ‘living 

on sand’) comprises mostly araphid and small monoraphid diatoms which are largely 

immotile and live in close association with single sand grains (free-living or attached, 

Sabbe 1997). Therefore, they are subject to the mixing and transport of their substratum 

(Admiraal 1984). The names epipelon and epipsammon are often used to describe the 

whole communities living on muddy or sandy sediments, respectively. Indeed, epipelic 

species tend to dominate sheltered muddy areas whereas epipsammic species prevail in 
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more dynamic sandy sediments (Sabbe and Vyverman 1991). There are, however, many 

exceptions. Several large motile species, for instance, thrive on unstable sandy 

sediments (Admiraal 1984). 

Diatom communities on muddy and sandy sediments differ in species diversity, seasonal 

variability and vertical distribution. Whereas muddy sediments are dominated by 

communities of epipelic diatoms which show lower diversity and display seasonal 

blooms, communities on sandy sediments are often more diverse and show less 

seasonal variation (Sabbe 1993; Hamels et al. 1998; Ribeiro et al. 2013). As in muddy 

sediments diatoms are generally motile and light penetration into the sediment is 

limited to the uppermost 200 µm, dense photosynthetic biofilms mainly occur near the 

sediment surface (Cartaxana et al. 2016b). In sandy sediments, diatoms are much more 

sparse and distributed over a greater depth (viable diatoms are found up to 0.5 m deep) 

(Yallop et al. 1994; Jewson et al. 2006). Diatoms in these habitats show adaptations 

against strong hydrodynamic conditions. They are generally smaller to avoid being 

crushed by collisions between sand grains (Delgado et al. 1991) and live adnate to or 

stalked on sand grains (Paterson and Hagerthey 2001) (Fig. 1). As the sediment is 

constantly reworked in these dynamic conditions, Miller et al. (1987) hypothesized that 

these communities are retained in a pioneer state and no species have the ability to gain 

dominance, as such decreasing interspecific competition. In addition, niche 

differentiation (adnate, small motile, stalked) also reduces strong interspecific species 

competition (Miller et al. 1987; Jewson et al. 2006). In very high disturbance conditions, 

only a low number of highly adapted diatoms can survive, usually showing strong 

attachment and or hiding in crevices on sand grains such as small motile diatoms 

(Paterson and Hagerthey 2001; Ribeiro et al. 2013).  

Due to the different light gradients in sandy vs. muddy sediments and the different 

capabilities of motility in epipsammic vs. epipelic diatoms, it can be expected that these 

different growth forms possess contrasting strategies to cope with excess light energy. 

 

 



 

10 
 

 

Figure 1: Diatom growth forms in intertidal sediments (Sabbe 1997), see text for details. 

Photosynthesis  
 

General model of oxygenic photosynthesis 

 

During oxygenic photosynthesis, light energy is captured by light harvesting complexes 

(Fig. 2) (LHC), which funnel the energy (called exitons) to the reaction centers of 

photosystem I (PSI) and photosystem II (PSII) (Lyu and Lazár 2017). Here, special subsets 

of chlorophyll molecules in PSI (P700) and PSII (P680) become exited and donate an 

electron to a nearby electron acceptor in a process called charge separation. In the case 

of P700, the electron is transported through PSI to ferredoxin (Fd). Fd is again oxidized 

by the ferredoxin-NADP+-oxidoreductase (FNR) complex, with NADP+ being reduced to 

NADPH. In P680, the separated electron is transported through PSII, via the first (QA) and 

second (QB) electron acceptor, the plastoquinone pool (PQ), the cytochrome b6f 

complex (cytb6f) and plastocyanin (PC) to reduce the oxidized P700. The electron 

separated from P680 is replaced by an electron coming from H2O, which is split into 

protons and oxygen in the oxygen evolving complex (OEC). During this linear electron 

transport (LET) protons are translocated across the thylakoid membrane (TM) from the 

stroma to the thylakoid lumen. In addition, protons are consumed in the chloroplast 

stroma during the Calvin-Benson cycle (CBC) which assimilates CO2 into glucose. As a 

result of the above processes, light establishes an electrochemical gradient of protons 

across the thylakoidal membrane (Bailleul et al. 2010a; Lyu and Lazár 2017). This 

gradient is called the proton motive force (PMF), comprising both an electric field (ΔΨ) 

and a proton concentration gradient (ΔpH). The PMF drives ATP synthesis (Mitchell 

1961) which together with NADPH is essential for carbon fixation. Besides LET, cyclic 
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electron transport (CET) around PSI is contributes to the PMF (Kramer et al. 2003), see 

further.  

 

Figure 2: A model of oxygenic photosynthesis(Lyu and Lazár 2017), see text for details. 

Monitoring photosynthesis in vivo 

 
Chlorophyll fluorescence 

Light energy that is absorbed by PSII or its light harvesting complexes ends up in one of 

three competing pathways which sum up to 100% (Fig. 3): (1) photochemistry, 

comprising a charge separation and the transfer of an electron from the reaction center 

to the primary electron acceptor QA, (2) dissipation as heat and (3) re-emission of a 

photon with a longer wavelength (fluorescence). In case of Chlorophyll a molecules, a 

fluorescence peak can be observed in the red region (~685 nm). At ambient 

temperatures, most chlorophyll fluorescence is considered to originate from PSII (Krause 

and Weis 1991). As the three pathways by which the absorbed photon is used/dissipated 

are considered to sum up to 100%, changes in fluorescence yield reflect changes in the 

complementary pathways which decrease fluorescence. A commonly used method to 

discriminate between photochemistry (photochemical quenching) and energy 

dissipation as heat (non-photochemical quenching) is the saturation pulse method which 

uses a short (< 1s) light pulse of high intensity (= a saturating pulse) to fully reduce the 

primary electron acceptor of P680, QA (Fig. 4).  
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Figure 3: The possible fate of absorbed photons at PSII, after Baker (2008). 

When a leaf (or algal sample) is kept in darkness, QA becomes fully oxidized. As such the 

PSII reaction centers are capable of photochemistry (using light energy to reduce QA) 

and are referred to as being ‘open’. When weak measuring light pulses are applied 

(which keep the QA pool maximally oxidized), the fluorescence yield of this measuring 

light will be minimal and called F0. When the sample is exposed to a saturating pulse, QA 

will become fully reduced and PSII reaction centers will not be able to perform 

additional charge separations (i.e. they are ‘closed’). As a result, the fluorescence yield 

will now reach a maximal level, Fm. When the difference between both minimal (all PSII 

reaction centers open) and maximal fluorescence (all PSII reaction centers closed) yields 

is calculated (i.e. the variable fluorescence, Fm- F0 or Fv) and is divided by Fm, the 

maximal quantum yield of PSII can be estimated as (Fv/Fm). This value reflects the 

relative amount of fluorescence that is quenched photochemically due to the reaction 

centers. 

When samples are light adapted, a similar set of parameters can be determined, now 

denoted with prime (‘). The basal fluorescence yield in the light adapted state is called F’ 

(or sometimes as Fs). This is usually higher than F0 due to a significant reduction of the 

QA pool upon light exposure. When the actinic light (driving photosynthesis) is 

sufficiently high, a lowering in the maximum fluorescence (now called Fm’) is also 

observed. As during saturating pulses photochemistry is saturated, the observed decline 

in maximum fluorescence, which is related to heat dissipation, is called non-

photochemical quenching of chlorophyll fluorescence (NPQ). It is calculated as (Fm-

Fm’)/Fm’ (Krause and Weis 1991).  

In land plants, three NPQ components have been distinguished, based on the relaxation 

kinetics after high light exposure: the rapidly relaxing component qE (seconds to 

minutes), the slower state transitions qT (tens of minutes), and the so-called 

‘photoinhibitory’ quenching qI, which relaxes in the range of hours (Horton and Hague 
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1988). qE is the major NPQ component and its mechanism is well-studied in plants 

(Demmig-adams et al. 2014; Ruban 2016), see further.  

 

 

Figure 4: A PAM fluorescence trace of an A. thaliana leaf showing induction and relaxation of 
NPQ during actinic illumination with 1000 µmol photons m-2s-1. Fm and F0 are the maximum 
and minimum fluorescence levels before actinic illumination, whereas Fs is the steady-state 
fluorescence level (denoted as F’ in the rest of this thesis) and Fm’ the maximum fluorescence 
during actinic illumination. qE and qI are the quickly and slowly reversible components of NPQ 
(Ruban 2016). 

 

Electrochromic shift (ECS) 

During oxygenic photosynthesis, electrons obtained from H2O are transferred through 

photosystem II (PSII), the cytochrome b6f complex, PSI and ferrodoxin to NADPH. During 

this linear electron flow (LEF) protons are translocated to the thylakoid lumen (see 

above). As such light establishes an electrochemical gradient of protons across the 

thylakoid membrane (TM). This gradient is called the proton motive force (PMF), and it 

comprises both an electric field (ΔΨ) and a proton concentration gradient (ΔpH), which 

drives ATP synthesis (Mitchell 1961) (Fig. 2). The light-generated electric field across the 

thylakoid membrane shifts the absorption spectrum of pigments imbedded in this lipid 

membrane (Fig. 5a). This effect is called the ElectroChromic Shift (Bailleul et al. 2010a). A 

linear relationship between the ECS signal and the trans-thylakoidal electric field is 

usually observed in plants (Joliot and Joliot 1989). In addition, a linear as well as a 

quadratic ECS response have been observed in diatoms (Bailleul et al. 2015) (Fig. 5a). 
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this technique has multiple applications to monitor photosynthesis in vivo. Below, we 

briefly describe the ECS applications used in Chapter 6 of this dissertation.  

Although mostly a linear response between the ECS signal and ΔΨ are observed (blue), 

pigments which become polarized as a result of the electric field across the TM will show 

an ECS signal with a quadratic response to ΔΨ. A major advantage of the presence of 

both a linear and quadratic ECS signal is that the transthykoidal electric field, present in 

the dark (ΔΨd), can now be quantified (Bailleul et al. 2015). A linear ECS signal will 

respond linearly to a given light stimulus, independent from an electric field before this 

stimulus. A quadratic ECS signal, however, is dependent on the pre-existing ΔΨd. As a 

consequence, by plotting the quadratic signal in function the linear ECS signal, we can 

determine ΔΨd (Fig. 5b). 

 

 
Figure 5: (a) Schematic representation of polar (blue) and polarizable (red) pigments and their 
respective linear and quadratic ECS response in diatoms. (b) The relationship between linear 
and quadratic ECS components during the decay of a light pulse induced electric field in 
Phaeodactylum tricornutum. The measured ECS signals do not reach the minimum of the 
parabola but rather remain positive, indicating the presence of a dark electric field ΔΨd. 
(Bailleul et al. 2015). 

  

The activity of the different components contributing to the ΔΨ and as such to the ECS 

signal can be discriminated by kinetic analysis of the ECS signal after a single turnover 

(inducing only one charge separation in both PSI and PSII) xenon or laser flash (Joliot and 

Delosme 1974; Bailleul et al. 2010a) (Fig. 6). Three different phases are observed. A first 

phase (red) corresponds to an electric field change, related to a charge separation in PSI 

and PSII, whereas the following slower phase (blue) corresponds to the activity of 

cytochrome b6f. The decay phase (green) represents the breakdown of the electric field 

by ion fluxes and is related to the proton efflux through the ATP-synthase complex. In 

chapter 6, we used this technique to normalize ECS signals to one charge separation of 

PSII and PSI (red).  
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Figure 6: The different components contributing to ΔΨ (y-axis): PSI and PSII (red), 
cytochrome b6f (blue) and the ATP synthase complex (green) (Bailleul et al. 2010a). 

In steady state conditions (Fig. 7), the rate at which ions leak (Rleak) across the thylakoid 

membrane, mainly by the ATP synthase complex and by which membrane potential is 

formed by PSII and PSI (Rph, the rate of photochemistry) and the cytochrome b6f 

complex (Rb6f) are balanced and as such, the slope of the ECS signal in the light equals 

zero (Sl). When the light is switched off, charge separation of PSII and PSI immediately 

stops, whereas both ion leakage and cytochrome b6f still occur at the same rate, 

resulting in a slope Sd. Therefore, the contribution of photochemistry Rph during light can 

be estimated as Sl - Sd (Joliot and Joliot 2002). In chapter 6, we used this approach to 

observe changes in the PSII and PSI photochemistry upon addition of the uncoupler 

nigericin.  

 

Figure 7: estimating the rate of photochemistry of PSI and PSII (Rph) in steady-state conditions 
(Bailleul et al. 2010a). 

The ECS signal, moreover, can be used to estimate the relative contributions of ΔpH and 

ΔΨ to the PMF in steady-state photosynthesis conditions (Fig. 8). The relaxation of both 

components upon an abrupt light-dark transition is thought to differ, which allows 

discrimination between both. The ΔΨ component relaxes more rapidly than the ΔpH 

component, due to a low electric capacitance of the thylakoid membrane, the high H+ 

buffering capacity of the thylakoid lumen (Fig. 2) and the slow movement of counter 

ions (see Cruz et al. 2001). After the light-dark transition, fast proton efflux allows the 
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PMF to reach its dark-adapted state. As proton efflux continues when the PMF > 0, or 

comes into equilibrium with the ATP/(ADP + P) couple, the observed ECS signal 

representing ΔΨ, would be inverted (more positive charges on the stromal side) as 

proton efflux continues driven by ΔpH, resulting in an (inverted) ECS signal, below the 

dark baseline, which is indicative of the ΔpH contribution. In a second phase when 

protons are freed from the “buffering network”, ΔpH decreases and the ΔΨ increases 

concomitantly (the PMF being constant). Since what ECS follows is ΔΨ, these two phases 

translate into an ECS inversion.  

 

 

Figure 8: Using the ECS signal (y-axis) to parse PMF into ΔpH and ΔΨ after turning off light. 
During light onset the ECS signal rises rapidly, after which it decays partly by counter-ion fluxes 
to reach a steady state. When light is switched off, the ECS signal decays rapidly and even 
drops below the dark baseline, causing an inversion of the ECS signal after which the signal 
relaxes slowly to the dark adapted baseline (Bailleul et al. 2010a). 
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Photoprotection 

 
In conditions of low photosynthetically available radiation (PAR), photosynthesis is light-

limited and increases linearly with light absorption (Fig. 9). At increasing levels of PAR, 

however, the photosynthetic capacity becomes saturated (at Pmax). As light absorption 

keeps increasing linearly with PAR, this results in an excess of light energy (Erickson et al. 

2015). As the absorption of excess light energy can result in oxidative damage to, in 

particular, the PSII core, photosynthetic organisms possess various photoprotection 

mechanisms to cope with excess light (Fig. 10). 

 

Figure 9: The rate of photosynthesis in function of light intensity (PAR) (Erickson et al. 2015). 

Besides avoiding excess light absorption by movement of leaves, cells (see further), or 

chloroplasts, a decrease in light absorption can be accomplished by adjusting the light-

harvesting antenna size. This process, however, is rather a long-term acclimation 

strategy to excess light. One of the fastest responses that photosynthetic organisms 

possess to cope with excess light, nonetheless, is excess light energy dissipation as heat 

(Demmig-adams et al. 2014) and is observed as Non-photochemical quenching of 

chlorophyll fluorescence (NPQ). The name ‘Non-photochemical quenching’ literally 

means that it is a process apart from photochemistry (non-photochemical) that 

consumes light energy (quenching) that would otherwise be emitted as fluorescence. A 

detailed description of how it is measured can be found above. Excess absorbed light 

energy, furthermore, can be removed by alternative electron transport pathways (See 

Fig. 2). These comprise cyclic electron transport around PSI (CET), which dissipates 

excess energy absorbed by PSI, by re-donating electrons to the acceptor site of PSI, 

instead of using it to reduce NADP+. At PSI, oxygen can also be reduced to form 

superoxide radicals during the Mehler reaction (Claquin et al. 2004). Superoxide radicals 

are converted to hydrogen peroxide by superoxide dismutase (SOD). As the latter is then 

detoxified to H2O by ascorbate peroxidase (APX), a water-to-water cycle is formed (as 

the electrons brought into the electron transport chain at the oxygen evolving complex 
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initially originate from H2O). During photorespiration, oxygen rather than CO2 is fixed by 

RUBISCO in a light-dependent manner. This leads to the production of phosphoglycolate 

which is either released in the form of glycolate or recycled in a wasteful process, 

releasing both CO2 and NH3. Photorespiration could maintain a high electron flow during 

high light conditions (Wingler et al. 2000). Under conditions of excess light, the 

production of reactive oxygen species (ROS) is inevitable (Takahashi and Badger 2011). 

At PSI, electron transfer to oxygen produces hydrogen peroxide (H2O2) via superoxide 

radicals (see above), whereas in PSII, singlet oxygen (1O2) is produced (Asada 2006). ROS 

can be scavenged by different enzymes or antioxidants such as ascorbate and 

carotenoids such as zeaxanthin (see further) (Takahashi and Badger 2011). Despite the 

above photoprotective defenses, damage to the photosynthetic machinery can still 

occur, mainly to the core of the PSII (D1 protein). This protein then has to be replaced to 

prevent a net loss of PSII reaction centers. If the D1 protein is not replaced, net 

photodamage will lead to a decrease in the efficiency and/or maximum rate of 

photosynthesis, termed photoinhibition (Niyogi 1999).  

 

 

 

Figure 10: Schematic diagram of photoprotective processes in plants, after Niyogi (1999). 
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Photoprotection in diatoms 

In diatoms, excess light energy absorption can be avoided by decreasing the cellular 

pigment content (MacIntyre et al. 2002). As a minor reduction in pigment content also 

decreases the ‘packaging effect’ (where densely packed pigments shade each other), 

only a drastic decrease in cell pigment content is effective (Wilhelm et al. 2014). A 

decrease in cell pigment content in concert with a decrease in LHC proteins, moreover, is 

considered to be a long-term acclimation process, instead of a mechanism to cope with 

a rapidly fluctuating light climate (Nymark et al. 2009). Raphid benthic diatoms, 

however, can reduce the amount of absorbed light energy more rapidly by migrating 

vertically into the sediment (in bulk or via microcycling) (Kromkamp et al. 1998; Serôdio 

2004; Laviale et al. 2016). This ‘behavioural’ mechanism is considered to be a major 

photoprotection strategy (Perkins et al. 2010) and will be addressed in a separate 

section (see below and Chapter 4). Also NPQ and the associated xanthophyll cycle are 

major fast photoprotection mechanisms in diatoms (Lavaud and Goss 2014; Goss and 

Lepetit 2015) and hence, are explained in detail in its own section, see further.  

Cyclic electron transport (CET) around PSI in occurs in diatoms (Grouneva et al. 2009). 

This process, however, was found to be rather insensitive to light intensity, thus 

questioning its potential as a photoprotection mechanism (Bailleul et al. 2015). Also a 

CET around PSII has been observed in diatoms (Lavaud et al. 2002, 2007): During cyclic 

electron transport around PSII, water is not split to produce oxygen, but electrons are 

re-donated to the PSII reaction centre. As such an oxygen deficit is observed during a 

sequence of single-turnover flashes (Lavaud et al. 2002). PSII CET functions as an energy-

dissipating leak in PSII (Onno Feikema et al. 2006) which is activated during high light 

conditions and could prevent photoinhibition (Lavaud 2007). Planktonic as well as 

benthic diatoms photoreduce oxygen in the Mehler reaction (Waring et al. 2010). 

However, in the tychoplanktonic Phaeodactylum tricornutum the portion of the 

photosynthetic electron flow that is re-routed to an oxygen consuming pathway, is 

constant regardless of the light intensity (Bailleul et al. 2015).  

Besides cyclic electron flows, photorespiration and nitrate reduction could also function 

as an alternative electron sink (instead of NADPH) in diatoms (Allen et al. 2005), and as 

such dissipate excess energy (Parker and Armbrust 2005). The release of glycolate (as a 

by-product of oxygen fixation, instead of CO2 fixation by RUBISCO, see above) has 

indeed been observed when planktonic diatoms are shifted from low to oversaturating 

light conditions which might be due to a lag in upregulation of photorespiration enzymes 

(Parker et al. 2004). Glycolate release, additionally, is promoted in low temperature 

environments and low presence of nitrate, whereas nitrate reduction as an alternative 

electron sink is used in the presence of nitrate.  
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Scavenging of reactive oxygen species (ROS) (Janknegt et al. 2008, 2009a; b; Waring et 

al. 2010), which are produced as by-products of photosynthetic electron transport, 

especially occurs when the electron transport chain is over-reduced and electrons leak 

onto O2. Scavenging can occur as in plants enzymatically by SOD and APX or by non-

enzymatic scavengers such as glutathione. Janknegt et al. (2009b), nonetheless, 

concluded that in planktonic diatoms xanthophyll cycle related quenching is more 

important than scavenging by antioxidants. Waring et al. (2010), however, showed 

higher SOD and APX activity in a planktonic than in a benthic diatom, as the former 

photo-reduced more oxygen than the latter at saturating light intensities. In the case of 

microphytobenthic communities, the action of the xanthophyll cycle/NPQ is crucial to 

protect the D1 protein from damage, whereas addition of exogenous ROS scavengers 

can provide additional protection. The ROS scavenging mechanisms in MPB, 

nonetheless, seem sufficient to prevent lipid peroxidation after strong light exposure 

(Laviale et al. 2015). 

 

If the above mechanisms are insufficient to protect the PSII core, it can be repaired, 

mainly by replacing the D1 protein (Lavaud et al. 2016). In MPB communities, total D1 

protein content decreases when D1 synthesis is halted by addition of chloroplast protein 

synthesis inhibitors. However, blocking the xanthophyll cycle leads to a more severe 

reduction in D1 content (Cartaxana et al. 2013), indicating the xanthophyll cycle is more 

important than D1 replacement to avoid a net loss of functional D1 proteins. 

 

Non-photochemical quenching  

The NPQ scenario 

The qE mechanism in plants is located in the antenna of PSII that undergoes a 

conformational change upon acidification of the thylakoid lumen (ΔpH). Due to this 

change, the quencher pigment(s) begin(s) receiving the harvested light energy from the 

light-harvesting complex (LHCII) antenna start dissipating the excess energy as heat (see 

the ‘NPQ scenario’ in Figure 11 (Ruban 2016). The trigger for qE is the transthylakoidal 

proton gradient ΔpH, which is built up during electron transport (ET) and consumed by 

the ATPase. It acts by activating the xanthophyll cycle, in which violaxanthin (Vx) is de-

epoxidized (removal of an epoxide group, which is an oxygen atom cyclically bound to 

two carbon atoms) to zeaxanthin (Zx) via the intermediate antheraxanthin (Ax). At the 

same time, the pH sensor Photosystem II subunit S (PsbS) is activated through 

protonation (Ruban 2016). The protonated PsbS protein undergoes a conformational 

change, promoting dissociation of a Light-harvesting complex (LHC) subset from the PSII 

core, which leads to the formation of the qE quenching site (Demmig-adams et al. 2014). 

Even though in plants qE was found to correlate well with Zx content, it has also been 

observed in the absence of it. It is therefore suggested that Zx functions more as an 

allosteric regulator of the qE process than as a direct quencher (Horton 2012). 
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Figure 11: the NPQ scenario model proposed by Ruban (2016), see text for details. 

 

As diatoms belong to a lineage that acquired photosynthesis by incorporating a plastid 

of red algal origin, while their genomes also contain traces of a possible earlier green 

endosymbiont, cf. Archibald (2009), the NPQ regulatory components differ from the 

green lineage (reviewed by Goss & Lepetit, 2015), see also Fig. 14 below for an overview. 

Diatoms lack the PsbS protein in their genomes (Armbrust et al. 2004), and the 

diadinoxanthin/diatoxanthin (Ddx/Dtx) cycle replaces the Vx cycle as major xanthophyll 

cycle (Lohr and Wilhelm 1999) (Fig. 11). Below we discuss the xanthophyll cycles (XC) 

and possible NPQ regulators (LHCX proteins) and the role of a proton gradient as trigger 

in diatoms in comparison with plants. 

The xanthophyll cycle 

Even though both the Ddx/Dtx as the Vx/Ax/Zx cycle are present in diatoms (Fig. 12), 

only the Ddx/Dtx cycle is considered to be important in the NPQ mechanism, whereas 

Vx/Ax/Zx cycle pigments are considered to be precursors which only become prominent 

after prolonged high light treatment when the total XC pool starts to increase (de novo 

synthesis) (Lohr and Wilhelm 1999, 2001; Dambek et al. 2012). A major difference 

between both XC is that the Ddx cycle requires only one de-epoxidation step (Fig. 12). 

The reverse reaction from Dtx to Ddx is an epoxidation step which occurs in low light 

conditions and is up to 20-fold faster in diatoms than in plants and chlorophytes (Goss et 

al. 2006b). The large differences in epoxidation rate between the major XC in diatoms 

and plants must be viewed in conjunction with the roles of Dtx and Zx in the respective 

NPQ mechanisms (Lavaud and Goss 2014). In contrast to higher plants, NPQ can be 

maintained when Dtx is present, even in the absence of ΔpH (Lepetit et al. 2013; Lavaud 

and Lepetit 2013), with the exception of a Zx-dependent quenching mechanism 

observed in evergreen plants during winter (Demmig-Adams and Adams 2006). As in 

diatoms the epoxidation reaction is nearly as fast as the de-epoxidation reaction, the 
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epoxidation is suppressed by a light-driven ΔpH, preventing a futile cycle (Mewes and 

Richter 2002; Goss et al. 2006b).  

Even though generally a tight correlation between Dtx and NPQ is found, the quenching 

ability of Dtx decreases at high concentrations (Schumann et al. 2007). While Dtx is 

supposed to be protein-bound to participate in the NPQ mechanism, a portion of the Dtx 

pool is found to be lipid-dissolved and might function as an anti-oxidant.  

 

 

Figure 12: Xanthophyll cycles in diatoms, after Lohr and Wilhelm (1999). 
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LHCX proteins  

In vascular plants both sensing excess light energy and quenching are exerted by 

different proteins: PsbS (absent from diatom genomes) as a sensor and LHC proteins as 

quenchers (Niyogi and Truong 2013). In algae, however, energy dissipating instead of 

light harvesting proteins diversified within the LHC proteins: Light-Harvesting Complex 

Stress-Related (LHCSR) proteins, called LHCX proteins in diatoms, which are absent in 

vascular plants (Niyogi et al. 2013), see Fig. 14. LHCSR proteins appear to function both 

as sensors of excess light and sites of quenching (Ballottari et al. 2016). 

The function of LHCSR proteins is particularly well studied in the green alga 

Chlamydomonas reinhardtii. The LHCSR3 protein for instance is essential for NPQ (Peers 

et al. 2009). The exact mechanism by which it dissipates excess energy, however, is still 

under debate (Ballottari et al. 2016). Sensing of ΔpH is exerted by three thylakoid lumen-

exposed acidic residues in the same protein molecule which are closely located to each 

other. Protonation of these residues might induce changes in the protein structure, as 

such influencing Chl-Chl and Chl a-carotenoid interactions necessary for fluorescence 

quenching (Ballottari et al. 2016). 

 

In diatom genomes, several LHCX homologs can be found. Ranging from four (in 

Phaeodactylum tricornutum) or five (in Thalassiosira pseudonana, Thalassiosira oceanica 

and Pseudo-nitzschia multiseries) to 11 in Fragilariopsis cylindrus, (Taddei et al. 2016). 

High light induces changes in the LHCX content on both mRNA as well as protein level in 

both centric and pennate diatoms (Oeltjen et al. 2002; Nymark et al. 2009; Bailleul et al. 

2010b; Park et al. 2010; Zhu and Green 2010; Lepetit et al. 2013; Taddei et al. 2016), 

suggesting a similar role for LHCX proteins in NPQ as LHCSR proteins in green algae. High 

light induced proteins might either confer higher NPQ capacity by binding newly 

synthetized Dtx molecules and/or are involved in sustained NPQ after prolonged high 

light exposure (Zhu and Green 2010; Lepetit et al. 2013).  

 

The current ΔpH/qE paradigm  

Lavaud and Goss (2014) proposed the following paradigm for NPQ regulation in pennate 

diatoms: (1) A certain magnitude of ΔpH is needed for NPQ induction; (2) When NPQ is 

established, the presence of Dtx alone is sufficient for maintaining a quenching state; (3) 

Dtx is mandatory: NPQ is always accompanied by Dtx, however a XC-independent NPQ 

component has been observed in P. tricornutum upon addition of substances that 

abolish ΔpH (Eisenstadt et al. 2008).  

A molecular mechanism of NPQ in diatoms has been recently proposed (Lavaud and 

Goss 2014; Goss and Lepetit 2015) (Fig. 13). NPQ (qE) is believed to be based on two 

quenching sites (Q1&2) within the LHC antenna of PSII: (1) Q2, which is localized in the 
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part of the LHC that remains attached to the PSII and which directly depends on the 

synthesis and activation of Dtx, and (2) Q1, which is localized in the part of the LHC that 

detaches from PSII upon Dtx activation at Q2 and which forms an energy sink that 

amplifies Q2 quenching. It is believed that the persistence of Dtx, even in the dark, is 

responsible for keeping both quenching sites active and especially Q1. In other words, as 

long as Dtx is present at the Q2 site, Fucoxanthin Chlorophyll a/c binding Protein FCP 

oligomers cannot reconnect to PSII, generating sustained qI/NPQs (Lavaud and Goss 

2014). The function of Dtx as an NPQ regulator is not entirely clear. Two mutually but 

not exclusive alternatives have been proposed (see Lavaud and Goss 2014 for more 

details): Dtx could directly quench excited Chl a molecules at the Q2 site, and/or 

together with proton binding it could support a conformational change of LHCF (Light-

Harvesting Complex containing Fucoxanthin) and/or LHCX proteins, leading to their the 

disconnection of FCP oligomers and formation of the Q1 site.  

 

Figure 13: A working hypothesis for Dtx-dependent energy dissipation (resulting in NPQ) in 
pennate diatoms (mostly based on observations in P. tricornutum) depicting the organization 
of the PSII LHC antenna system in “low NPQ” and “high NPQ” cells dark acclimated and 
exposed to excess light conditions, respectively (Lavaud and Goss 2014). Light and dark-grey 
circles are FCP polypeptides forming trimers and higher FCP oligomeric complexes, 
respectively; the latter are loosely bound to the PSII LHC antenna system and can disconnect 
under excess light exposure. Ddx diadinoxanthin, Dtx diatoxanthin, H+ protons, PSII RC 
photosystem II reaction center, Q1/Q2 quenching sites 1 and 2, ΔpH trans-thylakoid proton 
gradient, The model depicted here aims to illustrate the effective involvement of Dtx as an 
allosteric regulator of a conformational change in the LHC antenna. The conformational 
change is believed to be an aggregation of part of the LHC antenna generated by the 
pronotation of FCP-binding sites (Goss et al. 2006a; Lavaud and Kroth 2006).  
 

Even though the above model incorporates a similar function of a ΔpH in NPQ, its exact 

role is far from clear (see also Fig. 15): (1) LHCX proteins in diatoms only have two out of 

the three protonable residues that essential for ΔpH sensing in C. reinhardtii (LHCX4 in 
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Phaeodactylum tricornutum, even only has one residue, Ballottari et al. 2016; Taddei et 

al. 2016); (2) the Ddx epoxidase enzyme has a pH optimum which is shifted up in 

comparison with the optimum of the violaxanthin de-epoxidase (VDE) in plants and 

shows activity at a pH of 6.5 and higher (Jakob et al. 2001). De-epoxidation, moreover, 

has been observed around a neutral pH at high concentrations of the cofactor ascorbate 

(Grouneva et al. 2006); and (3) as a considerable PMF is present in darkness in diatoms 

(Bailleul et al. 2015), the thylakoid lumen might already be acidic in dark conditions. 

Therefore, the DDE enzyme might already be active in darkness and could thus need an 

alternative regulator to become active in high light conditions. 

For the above reasons, measuring the ΔpH in diatoms in vivo would be a major step 

forward in understanding the NPQ mechanism and has not been done before. 

Diversity and evolution of NPQ 

 

 

Figure 14: Schematic overview of the relationship between major groups of oxygenic 
photosynthetic organisms and the possible evolutionary steps towards flexible NPQ (Niyogi 
and Truong 2013). See text for details. 

All oxygenic photosynthetic organisms exhibit NPQ capacity (Morosinotto and Bassi 

2014). While the molecular mechanisms behind the observed NPQ differ between 
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groups of organisms, NPQ in all cases comprises a structural reorganization of antenna 

complexes (which differ strongly between clades, Fig. 14) and may involve different 

xanthophyll cycles (Goss and Lepetit 2015). Three different types of NPQ have been 

described in oxygenic photosynthetic organisms (Niyogi and Truong 2013). NPQ 

involving the orange carotenoid protein (OCP) is probably the oldest (Wilson et al. 2006) 

and arose in Cyanobacteria, which use phycobilisomes (PB) as their major light-

harvesting antennae (Fig. 14). These proteins bind the xanthophyll 3’-

hydroxyechinenone, which absorbs blue-green light. Upon blue-green light absorption, 

the OCP is activated and interacts with the PB to induce excitation-energy quenching, 

whereas the Fluorescence Recovery Protein is needed to relax the quenching 

mechanism (Kirilovsky and Kerfeld 2016), see Fig. 15.  

The PB light-harvesting antennae were lost in the green lineage and the lineage which 

obtained a red plastid by secondary (and/or tertiary) endosymbiosis and replaced by 

three-helix Light-Harvesting Complex (LHC) antenna proteins, comprising LHCSR/LHCX 

proteins (Niyogi and Truong 2013). The phylogenetic distribution of LHCSR and LHCX 

proteins, as seen on Fig. 14, is still unclear and may be due to an ancient origin and 

subsequent loss in red algae, transfer from the green lineage to the lineage possessing a 

secondary red plastid or horizontal gene transfer (HGT) in the opposite direction (see 

Niyogi and Truong 2013 for more details). For a description of the function of 

LHCSR/LHCX proteins in NPQ in green algae and diatoms, respectively, see the section 

“LHCX proteins”. The PsbS proteins likely evolved in the common ancestor of higher 

plants and green algae (Koziol et al. 2007). Whereas the PsbS gene is present in the 

genomes of green algae, the PsbS proteins do not seem to be involved in flexible NPQ of 

unicellular green algae (Bonente et al. 2008; Peers et al. 2009). The PsbS protein, 

however, been shown to accumulate in C. reinhardtii only under prolonged (several 

hours) periods of high light in combination with low CO2 availability (Correa-Galvis et al. 

2016). Interestingly, in mosses, LHCSR as well as PsbS seem to be involved in NPQ 

(Gerotto et al. 2011), whereas in flowering plants only the PsbS-dependent mechanism 

is retained (Morosinotto and Bassi 2014).  

Besides specific proteins, see above, major differences in xanthophyll cycles are found in 

photosynthetic organisms (Goss and Jakob 2010; Lavaud and Goss 2014; Goss and 

Lepetit 2015). There is, for instance, no evidence for a functional xanthophyll cycle in 

cyanobacteria and red algae (Goss and Jakob 2010). Whereas the Vx cycle is the main XC 

in both the green lineage and brown algae, the Dtx cycle is the main cycle in diatoms, 

Xanthophyceae, Haptophyceae and Dinophyceae. 
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Figure 15: A schematic overview of the flexible NPQ mechanisms in major photosynthetic 
groups, modified after Niyogi and Truong (2013). See the sections ‘The NPQ scenario’, ‘The 
xanthophyll cycle’ and ‘LHCX proteins’ for details. Question marks express uncertainty.  
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Migration in epipelic diatoms 

 
The migration of raphid diatoms in the uppermost sediment layers has been known for a 

long time (Fauvel and Bohn 1907; Perkins 1960; Round and Palmer 1966; Barranguet et 

al. 1998). In intertidal sediments, epipelic diatoms migrate to the surface during daytime 

low tide and migrate downwards during nighttime and immersion (Palmer and Round 

1967). As these migratory patterns are maintained for a couple of days in vitro (i.e. in 

absence of actual environmental cues), it is hypothesized that epipelic diatoms have an 

internal clock, which is entrained by the day/night as well as by the tidal cycle (Palmer 

and Round 1967; Serôdio et al. 1997). Diatom emergence at the sediment surface seems 

to be species-specific, as a sequential species turnover was observed in laboratory 

mesocosms (Paterson 1986) and during an emersion period in the field (Underwood et 

al. 2005). 

Besides following the tidal and diurnal cycles, epipelic diatoms can migrate within the 

light gradient of the surface sediments to avoid overexposure (Admiraal 1984). As such 

this ‘behavioural photoprotection’ mechanism could represent a rapid, flexible and 

energetically cheap way to optimize photosynthesis (Serôdio et al. 2001). Indeed, 

epipelic diatoms position themselves within sediment light gradients in order to 

maximize photosynthesis and/or avoid overexposure (Admiraal 1984; Serôdio et al. 

2006; Cartaxana et al. 2016a). Besides bulk downward vertical migration, a continuous 

cycling of motile diatoms (microcycling) within the top layers of the sediments was 

proposed where cells migrating downwards in order to avoid photoinhibition are 

replaced by others (Kromkamp et al. 1998).  

While in situ epipelic diatom communities also activate the XC as a response to high light 

(Chevalier et al. 2010), they use vertical migration and/or microcycling as their primary 

photoprotection mechanism when motility is allowed (Kromkamp et al. 1998; Serôdio 

2004; Perkins et al. 2010; Cartaxana et al. 2011; Serôdio et al. 2012; Laviale et al. 2015). 

The total contribution of both vertical migration and xanthophyll-cycle based 

photoprotection, however, was estimated to be relatively low (~20%) in epipelic 

communities from the Tagus estuary (Serôdio et al. 2012; Laviale et al. 2015).  

As vertical migration is fast enough to reduce the amount of absorbed photons and can 

operate simultaneously with NPQ induction (Laviale et al. 2016), a behavioural response 

could alleviate the need for physiological photoprotection (Serôdio et al. 2001; Raven 

2011). Therefore, we suspected differences in physiological photoprotection (mainly in 

NPQ) between different MPB growth forms. 
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NPQ capacity differences between diatoms 

 
Marked differences in NPQ capacity and kinetics were discovered between planktonic 

diatom species and even between ecotypes isolated from habitats experiencing 

different degrees of light fluctuations. These differences have been attributed either to 

variation in XC kinetics and/or the amount of LHCX proteins (Dimier and Corato 2007; 

Lavaud et al. 2007; Bailleul et al. 2010b; Petrou et al. 2011; Lavaud and Lepetit 2013). 

The picture emerging from these reports is a higher/faster Dtx synthesis supporting a 

faster NPQ induction and a higher level of NPQ activity in species/ecotypes adapted to 

habitats characterized by strong light fluctuations and/or on average higher irradiance 

(Lavaud and Goss 2014).  

 

Species thriving in fluctuating light conditions, for instance, exhibit high de novo 

synthesis of Dtx molecules (accumulation of Dtx independently from Ddx de-

epoxidation) which correlates well with NPQ development during strong light conditions, 

whereas species experiencing a more stable light climate in their natural habitat, 

synthetize additional Dtx which is not involved in NPQ but may rather have an 

antioxidant function (Lavaud and Lepetit 2013). To better cope with fluctuating light 

conditions need not only to exhibit high NPQ at high light levels, but also to carry out 

quick NPQ relaxation at low light (Lavaud et al. 2007). Finally, as Dtx molecules have to 

be epoxidized back to Ddx to switch the antenna system from an energy dissipating to a 

light harvesting mode, diatoms with a high Dtx epoxidation rate dissipate NPQ faster 

compared to diatoms with a lower epoxidation rate (Goss et al. 2006; Goss and Jakob 

2010). Besides XC characteristics, NPQ capacity can also be attributed to differences in 

LHCX protein content. The low amount of LHCX1 protein, for instance, explains the 

limited NPQ capacity in a high latitude Phaeodactylum tricornutum ecotype isolated 

from a habitat which experiences lower average light intensity and less drastically 

fluctuating light conditions compared to other ecotypes (Bailleul et al. 2010b).  
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Aims 
 

While our knowledge of NPQ regulation by the XC and LHCX proteins and possibly ΔpH is 

mostly based on studies in planktonic diatoms, whose light climate is mostly governed 

by water column turbulence, far less attention has been paid to NPQ regulation of truly 

benthic diatoms thriving in and on the sediments of intertidal flats (but see Jesus et al. 

2009; Perkins et al. 2010; Cartaxana et al. 2011, 2016a; b; Serôdio et al. 2012; Lavaud 

and Goss 2014; Ezequiel et al. 2015; Pniewski et al. 2015; Laviale et al. 2015). As 

communities living on sandy sediments show no endogenous migration rhythms in situ 

and exhibited higher diatoxanthin/diadinoxanthin ratios than communities living on fine 

substrates a trade-off between behavioral photoprotection (vertical migration) and 

physiological photoprotection, conferred by the XC, was proposed (van Leeuwe et al. 

2008; Jesus et al. 2009). However, at least the sandy sediments contain a mix of both 

epipsammic and epipelic forms (Jesus et al. 2009; Cartaxana et al. 2011), and even when 

the latter are not numerically dominant, they can still make a substantial contribution to 

biomass because of their much larger biovolumes (see for example, Hamels et al. 1998), 

which obscures differences between growth forms. Measurements of NPQ and vertical 

migration (VM) furthermore are rare and limited to natural communities (Perkins et al. 

2010; Serôdio et al. 2012; Laviale et al. 2015, 2016). While LHCX proteins play a crucial 

role in the NPQ mechanism of diatoms (Bailleul et al. 2010b), they have rarely been 

investigated in benthic diatoms, with the exception of natural epipelic communities and 

the epipelic diatom Navicula phyllepta (Laviale et al. 2015). This study showed an 

increase in LHCX protein isoforms upon high light exposure and an even higher induction 

in combination with high temperature and inhibition of diatom motility. Information on 

LHCX identity and sequence characteristics, however, is largely lacking. Finally, the role 

of ΔpH in the regulation of NPQ is far from clear in diatoms and in vivo ΔpH 

measurements have not been conducted. 

The general aim of this study is to provide a detailed comparative analysis of 

physiological (mainly NPQ) and behavioral photoprotective mechanisms in the major 

intertidal benthic diatom growth forms, with emphasis on epipelic and (non-motile) 

epipsammic forms, based on laboratory analyses of isolates. In addition this study aims 

to provide a comprehensive analysis of NPQ regulation (XC, LHCX and ΔpH) in intertidal 

benthic diatoms. 
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 More specifically, we aim to: 

 

 

1. Characterize NPQ capacity in a set of unialgal isolates of the major intertidal 

benthic growth forms, viz. epipelon, motile and non-motile epipsammon, and 

tychoplankton. 

 

2. Determine the xanthophyll cycle kinetics in an epipelic and a non-motile 

epipsammic diatom. 

 

3. Quantify both vertical migration and NPQ for a set of epipelic as well as motile 

and non-motile epipsammic species. 

 

4. Detect LHCX isoforms in an epipelic and an non-motile epipsammic diatom in 

low and high light conditions.  

 

5. Identify LHCX genes present in the genome of a non-motile epipelic diatom and 

study their expression in relation to (high) light exposure.  

 

6. Establish and apply a method to measure ΔpH in diatoms and study its relation 

to NPQ and the XC. 
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Outline 
 

Chapter 2 

By comparing photophysiological traits in 15 microphytobenthic diatoms species 

belonging to the four main morphological growth forms we revealed a clear relationship 

between growth form and photoprotective capacity. Both NPQ and associated XC traits 

were stronger developed in less motile growth forms and indicate a trade-off between 

behavioral and physiological photoprotection.  

Chapter 3 

Here we studied the effect of 1 h high light exposure on the kinetics of the xanthophyll 

cycle and NPQ in both an epipelic (motile) diatom (Seminavis robusta) and an 

epipsammic (non-motile) diatom (Opephora guenter-grassii). This revealed that O. 

guenter-grassii could rapidly switch on and off NPQ by relying on fast XC kinetics. This 

species also demonstrated a high de novo synthesis of xanthophylls within a relatively 

short time period. In contrast, S. robusta showed slower NPQ and associated 

xanthophyll cycle kinetics, partly relying on additional NPQ conferred by de novo 

synthetized diatoxanthin molecules and synthesis of LHCX isoforms.  

Chapter 4 

We tested both the behavioral response (vertical migration, VM) and non-

phototochemical quenching in epipsammic and epipelic strains acclimated to the same 

light climate. Our results revealed the clustering of both growth forms around a 

NPQ/VM trade-off curve and confirm that they can be seen as functional groups 

exhibiting different photoprotection strategies. 

Chapter 5 

The availability of the draft genome of S. robusta allowed us to identify 14 LHCX genes in 

the epipelic diatom S. robusta. Remarkably, all of the studied LHCX genes showed a clear 

response to a shift from low to high light and a transient induction during a dark to low 

light switch. Our data implicates the involvement of multiple fast-regulated LHCX genes 

during variable light conditions, allowing epipelic species to respond and/or acclimate to 

prolonged high light conditions 

Chapter 6 

In this study we attempted to investigate the relationship between NPQ and the trans-

thylakoidal proton gradient by making use of the electro-chromatic shift (ECS) and 

tested the validity of this technique. 
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Abstract 
 

In intertidal marine sediments, characterized by rapidly fluctuating and often extreme 

light conditions, primary production is frequently dominated by diatoms. We performed 

a comparative analysis of photophysiological traits in 15 marine benthic diatom species 

belonging to the four major morphological growth forms (epipelon (EPL), motile 

epipsammon (EPM-M) and non-motile epipsammon (EPM-NM) and tychoplankton 

(TYCHO)) found in these sediments. Our analyses revealed a clear relationship between 

growth form and photoprotective capacity, and identified fast regulatory physiological 

photoprotective traits (that is, non-photochemical quenching (NPQ) and the xanthophyll 

cycle (XC)) as key traits defining the functional light response of these diatoms. EPM-NM 

and motile EPL showed the highest and lowest NPQ, respectively, with EPM-M showing 

intermediate values. Like EPL, TYCHO had low NPQ, irrespective of whether they were 

grown in benthic or planktonic conditions, reflecting an adaptation to a low light 

environment. Our results thus provide the first experimental evidence for the existence 

of a trade-off between behavioural (motility) and physiological photoprotective 

mechanisms (NPQ and the XC) in the four major intertidal benthic diatoms growth forms 

using unialgal cultures. Remarkably, although motility is restricted to the raphid pennate 

diatom clade, raphid pennate species, which have adopted a non-motile epipsammic or 

a tychoplanktonic life style, display the physiological photoprotective response typical of 

these growth forms. This observation underscores the importance of growth form and 

not phylogenetic relatedness as the prime determinant shaping the physiological 

photoprotective capacity of benthic diatoms. 
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Introduction 

 
Functional trait-based approaches are increasingly adopted to explain and understand 

the distribution and diversity of phytoplankton communities (Litchman and Klausmeier, 

2008; Barton et al. 2013; Edwards et al. 2013). Various morphological and physiological 

traits have been shown to define the ecological niches of phytoplankton species, 

including size, temperature response and resource acquisition and utilization traits. For 

example, in planktonic diatoms, which play a key role in marine primary production and 

biogeochemical cycling (Armbrust, 2009), pronounced species-specific differences in 

photosynthetic architecture and photophysiological strategies have been documented 

(e.g. Dimier et al. 2007; Key et al. 2010; Schwaderer et al. 2011; Wu et al. 2012) and 

related to their in situ light environment (Strzepek and Harrison, 2004; Lavaud et al. 

2007; Dimier et al. 2009; Petrou et al. 2011). A high capacity for physiological 

photoprotection is generally observed in highly fluctuating light climates and/or under 

on average high irradiances. This suggests that photoprotective capacity is an adaptive 

trait that shapes the distribution of planktonic diatoms in the environment (Lavaud et al. 

2007; Dimier et al. 2009; Bailleul et al. 2010; Petrou et al. 2011; Lavaud and Lepetit, 

2013).  

 

Benthic marine environments, and especially intertidal environments, are characterized 

by even more changeable and extreme light climates resulting from the interplay of 

weather conditions, tides, water column turbidity and sediment composition (and hence 

light penetration) (Admiraal, 1984; Underwood and Kromkamp, 1999; Paterson and 

Hagerthey, 2001). Nevertheless, intertidal sediments rank amongst the most productive 

ecosystems on Earth, largely owing to the primary production of highly diverse 

assemblages of benthic diatoms (Underwood and Kromkamp, 1999). To date however, 

little is known about the role of functional traits, and especially photophysiological 

traits, in shaping the structure, dynamics and function of benthic diatom assemblages. In 

most studies, diatom functional groups are defined on the basis of morphological 

growth form (e.g. Gottschalk and Kahlert, 2012; Larson and Passy, 2012) and not 

physiological traits. In addition, photoprotective ability (limited to the measurement of 

the ‘xanthophyll cycle’, XC) and its relationship with ecology has only been studied in 

natural communities with mixed assemblages of functional groups (e.g. Jesus et al. 2009; 

van Leeuwe et al. 2009; Cartaxana et al. 2011). 

 

 In temperate seas, intertidal benthic communities are largely dominated by diatoms 

(Méléder et al. 2007; Ribeiro et al. 2013), which display a high degree of taxonomic, 

phylogenetic and functional diversity (Kooistra et al. 2007). Several growth forms can be 

distinguished, which mainly differ in their attachment mode and degree of motility (see 

Ribeiro et al. (2013) for a detailed description): (1) the epipelon (EPL) comprises larger 

(usually > 10 μm) motile diatoms which can move freely in between sediment particles 
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and typically form biofilms (cf. (Herlory et al. 2004); (2) the epipsammon (EPM) groups 

smaller (usually < 10 μm) diatoms which live in close association with individual sand 

grains; and (3) the tychoplankton (TYCHO), which is an ill-defined and rather enigmatic 

group of largely non-motile diatoms which presumably have an amphibious life style 

(both sediment and water column) (e.g. Sabbe et al. (2010)). Within the epipsammic 

group, non-motile (EPM-NM) species are firmly attached (either stalked or adnate) to 

sand particles, while motile forms (EPM-M) can move within the sphere of individual 

sand grains. From a phylogenetic perspective, motile forms (i.e. all epipelon and motile 

epipsammon) exclusively belong to the pennate raphid clade (Kooistra et al. 2007), 

possessing a raphe allowing motility. Most non-motile epipsammon belongs to the 

pennate araphid lineage, but also includes some raphid pennates, such as Biremis 

lucens, which firmly attaches to sand grains (Sabbe et al. 1995). Tychoplankton includes 

both centric and pennate raphid forms. Intertidal benthic diatom species, but also 

growth forms, show distinct distribution patterns in time and space, suggesting 

pronounced (micro)niche differentiation (Sabbe, 1993; Méléder et al. 2007, Ribeiro et al. 

2013). For example, epipsammon dominates non-cohesive sandy sediments (Méléder et 

al. 2007), while epipelon dominates cohesive muddy sediments (Haubois et al. 2005). 

Epipelon typically display vertical ‘micromigration’ in the sediment following 

endogenous tidal/dial rhythms and environmental stimuli (Saburova and Polikarpov, 

2003; Consalvey et al. 2004; Coelho et al. 2011): during daylight emersion, they migrate 

to the sediment surface, while during immersion they migrate to deeper sediment 

layers.  

 

To prevent photoinhibition (Serôdio et al. 2008), benthic diatoms utilize behavioural and 

physiological responses (Mouget et al. 2008; van Leeuwe et al. 2009; Perkins et al. 

2010b; Cartaxana et al. 2011; Serôdio et al. 2012). Behavioural photoprotection involves 

motility, allowing cells to position themselves in light gradients and escape from 

prolonged exposure to excess light (Admiraal, 1984; Kromkamp et al. 1998; Consalvey et 

al. 2004; Serôdio et al. 2006). In addition, both motile and non-motile species employ 

fast regulatory physiological processes for photoprotection (i.e. ‘physiological 

photoprotection’; Lavaud, 2007; Goss and Jakob, 2010; Depauw et al. 2012; Lepetit et al. 

2012). In diatoms, two processes are important in field situations (Lavaud, 2007): 

photosystem II cyclic electron transfer (PSII CET) and non-photochemical quenching of 

chlorophyll (Chl) fluorescence (NPQ) (Depauw et al. 2012; Lepetit et al. 2012; Lavaud and 

Lepetit, 2013). NPQ is controlled by several regulatory partners including the light-

dependent conversion of diadinoxanthin (Ddx) to diatoxanthin (Dtx) by the Ddx de-

epoxidase (i.e. the XC) (Brunet and Lavaud, 2010; Goss and Jakob, 2010). In benthic 

diatoms however, XC-NPQ has only rarely been studied, and mostly in situ: it has been 

shown to vary with diurnal and tidal cycles, season, latitude (Serôdio et al. 2005; van 

Leeuwe et al. 2009; Chevalier et al. 2010), and to the organisms’ position within the 

sediments and along the intertidal elevation gradient (Jesus et al. 2009; Cartaxana et al. 
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2011). On the basis of their in situ measurements, the latter authors hypothesized the 

existence of a trade-off between behavioural and physiological photoprotection 

mechanisms in benthic diatoms, as a stronger XC was shown to occur in sandy vs. muddy 

sediments. However, at least the sandy sediments contained a mix of both epipsammic 

and epipelic forms (Jesus et al. 2009; Cartaxana et al. 2011), and even when the latter 

are not numerically dominant, they can still make a substantial contribution to biomass 

because of their much larger biovolumes (see for example, Hamels et al. 1998). 

 

Our study represents a comprehensive characterization of fast regulatory physiological 

photoprotection capacity in typical representatives of the major diatom growth forms 

occurring in intertidal marine sediments. Given the highly dynamic and often extreme 

intertidal light climate, we hypothesize that photoprotective features are key traits 

shaping niche differentiation between benthic growth forms, as has been proposed 

before for phytoplankton (Huisman et al. 2001; Litchman and Klausmeier, 2008; Dimier 

et al. 2009; Petrou et al. 2011; Lavaud and Lepetit, 2013). In this respect, we predict that 

the largely immotile epipsammic life forms are better able to cope with pronounced and 

rapid changes in light intensity at the physiological level than the motile epipelic forms 

which can actively position themselves in the sediment light gradient. 
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Materials and methods 

 
Diatom culturing and harvesting  

Fifteen benthic diatom strains were used (Table 1). All species were assigned to their 

respective growth form on the basis of microscopical observations on natural 

assemblages. They were grown in batch cultures at 20°C in sterile artificial F/2 seawater 

medium enriched with NaHCO3 (80 mg L-1 final concentration). Tychoplankton species 

were also grown in continuously flushed airlift (i.e. with air bubbling) to mimic 

‘planktonic’ growth conditions. Two light intensities (E, 20 and 75 μmol photons m-2 s-1) 

were used with a 16 h light:8 h dark photoperiod white fluorescent tubes, L58W/840, 

OSRAM, Munich, Germany. Cultures were photoacclimated to the above conditions at 

least 2 weeks before measurements and experiments (see below). Diatom suspensions 

for the experiments were prepared to a final concentration of 10 μg chlorophyll a (Chl a) 

mL-1. For this purpose, Chl a concentration was determined according to the Jeffrey and 

Humphrey (1975) spectrophotometric method. Diatom suspensions were continuously 

stirred at 20°C under the growth E (i.e. 20 or 75 μmol photons m-2 s-1) at least 1 h before 

the start of the experiments and all along the course of the experiments (Lavaud et al. 

2007). This kept the photosynthetic machinery in an oxidized state and prevented NPQ. 

 

Growth rates and biovolumes 

Specific growth rates, μ (day-1), were calculated from regression of the natural logarithm 

of the number of diatom cells during their exponential growth phase as microscopically 

determined in a Malassez’s counting chamber. Biovolumes (μm3) were calculated using 

the formula of Hillebrand et al. (1999) based on measurements performed on fifteen 

specimens per species. 

 

HPLC pigment analyses 

Chl a, Chlorophyll c (Chl c), fucoxanthin (Fx), Ddx, Dtx and β-carotene (β-car) content, all 

normalized to Chl a (i.e. expressed as mol. 100 mol Chl a-1), were measured using high-

performance liquid chromatography as described in Jakob et al. (1999). One milliliter of 

diatom suspension was rapidly filtered (Isopore 1.2 μm RTTP filters, Merck Millipore, 

Darmstadt, Germany) and immediately frozen in liquid nitrogen before extraction in a 

cold (4°C) mixture of 90% methanol/0.2 M ammonium acetate (90/10 vol/vol) and 10% 

ethyl acetate. The pigment extraction was improved by the use of glass beads (diameter 

0.25-0.5 mm, Roth, Karlsruhe, Germany) and included several short (20 s) vortexing 

steps. Supernatants were collected after centrifugation (5 min, 10 000 g, 4°C) and 

immediately injected into an HPLC system (Hitachi Lachrom Elite, Tokyo, Japan) 

equipped with a cooled auto-sampler and a photodiode array detector (L-2455). 

Chromatographic separation was carried out using a Nucleosil 120-5 C18 column (125 

mm long, 4 mm internal diameter, 5 μm particles, Macherey-Nagel, Germany) equipped 

with a pre-column (CC 8/4 Nucleosil, Macherey-Nagel, Düren, Germany) for reverse 
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phase chromatography during a 25 min elution program. The solvent gradient followed 

Jakob et al. (1999) with an injection volume of 50 μL and a flow rate of 1.5 mL min-1. 

Pigments were identified from absorbance spectra (400-800 nm) and retention times 

(Roy et al. 2011), and their concentrations were obtained from the signals in the 

photodiode array detector at 440 nm. The de-epoxidation state (DES in %) was 

calculated as [(Dtx / Ddx + Dtx) x 100], where Ddx is the epoxidized form and Dtx is the 

de-epoxidized form. Chl a concentration per cell was determined during exponential 

growth based on cell counts (see above) and the Chl a measurements. 

 

 Chl fluorescence yield and light curves (Table 2) 

For a complete overview of the definition and measurement of the photophysiological 

parameters, see Table 2. Chl fluorescence yield was monitored with a Diving-PAM 

fluorometer (Walz, Effeltrich, Germany) on a 2.5 mL stirred and 20°C controlled diatom 

suspension (Lavaud et al. 2004). Before measurement, the cells were dark-adapted for 

15 min, and a saturating pulse (3600 μmol photons m-2 s-1, duration 0.4 ms) was fired to 

measure F0, Fm and Fv/Fm. Two types of light curves were performed: Non Sequential and 

Rapid Light Curves (NSLCs and RLCs) (Perkins et al. 2010a). For NSLCs, continuous light 

(KL-2500 lamp, Schott, Mainz, Germany) was applied for 5 min at different Es (48-1950 

μmol photons m-2s-1); a new diatom suspension was used for each E. At the end of each 

exposure, Fm’ and NPQ were measured. For RLCs, one diatom suspension was exposed 

to 8 successive, incrementally increasing Es (29-1042 μmol photons m-2 s-1) of 30 s each 

(Perkins et al. 2006) ( Supplementary Table S1). RLCs allow constructing relative electron 

transport rate (rETR) vs. E and NPQ vs. E curves. The NPQ vs. E curve is based on the Hill 

equation model and it is described by the equation NPQ (E) = NPQm x [EnNPQ/(E50NPQ nNPQ 

+ EnNPQ’)] (Serôdio and Lavaud, 2011). From the fitted rETR-E curves (Eilers and Peeters, 

1988) and NPQ-E curves (Serôdio and Lavaud, 2011), rETRm, α, Ek, and NPQm, E50NPQ, 

nNPQ can be derived, respectively. All parameters are described in the Table 2. nNPQ is the 

Hill coefficient or the sigmoidicity coefficient of the NPQ-E curve (Serôdio and Lavaud, 

2011). It informs on the onset of NPQ at moderate Es, i.e. when the Dtx molecules are 

being ‘activated’ with increasing Es to effectively participate to NPQ: Dtx ‘activation’ 

depends on its enzymatic conversion and its binding to the PSII light-harvesting antenna 

complex in order to promote the antenna switch to a dissipative state of excess energy 

which is measurable by NPQ (see Lavaud and Lepetit, 2013). When nNPQ is < 1, the NPQ-E 

curve shows an asymptotic saturation-like increase towards NPQm, while when nNPQ is > 

1, the NPQ-E curve shows a sigmoidal shape. In the latter case, the Hill reaction (i.e. NPQ 

onset) is allosteric (as proposed for the NPQ mechanism, see Lavaud and Lepetit, 2013), 

nNPQ thus informing on the degree of allostery of the NPQ-E curve. The higher nNPQ, the 

more positively cooperative the Hill reaction is; nNPQ around 2 being the highest values 

reported so far (Serôdio and Lavaud, 2011). The same fitting procedure can obviously be 

used for the Dtx-E and the DES-E curves, thereby extracting analogous parameters as 

from the fitted NPQ E curves. 
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 O2 yield and the PSII CET 

The relative O2 yield produced during a sequence of single-turnover saturating flashes at 

a frequency of 2 Hz was measured with a home-made rate electrode (Lavaud et al. 

2002). The steady-state O2 yield per flash (YSS) was attained for the last 4 flashes of a 

sequence of 20 when the S-state cycle oscillations were fully damped (Lavaud et al. 

2002). YSS of 15 min dark-adapted (D) and illuminated (L, samples taken at the end of 

each NSLC) cells was used to calculate the PSII CET (Lavaud et al. 2002; Lavaud et al. 

2007) as follows:  

 

 [{(20xYSS L)-(Σ (Y1…20)L)} - {(20xYSS D)-( Σ (Y1…20)D)}] / YSS D. 

 

Statistics 

Statistical analyses were conducted using the statistical software package SAS 9.3 (Cary, 

NC, USA). Species were compared using the general linear model PROC GLM. Growth 

forms (groups) were compared using the mixed linear model PROC MIXED. Groups were 

regarded as fixed effects. Data were log transformed or square root transformed when 

needed to allow the best possible fit. Where necessary, estimated least squares means 

(lsmeans) and standard errors (SE) were back-transformed as in Jørgensen and Pedersen 

(1998). 

 

 

 

 

 

 

 

 

Species Growth form   Collection n° Sampling location 

Craspedostauros britannicus Epipelon NCC195-06-2 Pouliguen, Atlantic, 

C.b. (EPL)   France 

Entomoneis paludosa     NCC18-1 
Bay of Bourgneuf, 
Atlantic, 

E.p.       France 

Halamphora coffeaeformis     UTCC58 
Victoria, British 
Columbia, Pacific, 

H.c.       Canada 

Navicula phyllepta     CCY9804 
Westerschelde 
estuary, North sea, 

N.p.       The Netherlands 

Seminavis robusta     DCG 0105 
Progeny of strains 
from Veerse Meer, 

S.r.       The Netherlands 
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Amphora sp. Epipsammon motile DCG 0493 
Rammekenshoek, 
North sea, 

A. sp. (EPM) (EPM-M)   The Netherlands 

Nitzschia cf. frustulum     DCG 0494 
Rammekenshoek, 
North Sea, 

N.f.       The Netherlands 

Planothidium delicatulum     NCC363 
Bay of Bourgneuf, 
Atlantic, 

P.d.       France 

Biremis lucens   non-motile NCC360.2 
Bay of Bourgneuf, 
Atlantic, 

B.l.   (EPM-NM)   France 

Fragilaria cf. subsalina     DCG 0492 
Rammekenshoek, 
North sea, 

F.s.       The Netherlands 

Opephora guenter-grassii     DCG 0448 
Rammekenshoek, 
North Sea, 

O.g.       The Netherlands 

Plagiogramma 
staurophorum 

    DCG 0495 
Rammekenshoek, 
North sea, 

P.s.       The Netherlands 

Brockmanniella brockmannii Tychoplankton NCC161 
Bay of Bourgneuf, 
Atlantic, 

B.b. (TYCHO)   France 

Cylindrotheca closterium     Collection 
Ria de Aveiro, 
Atlantic, 

C.c.     Univ. Aveiro Portugal 

Plagiogrammopsis 
vanheurckii 

    NCC186-2 
Bay of Bourgneuf, 
Atlantic, 

P.v.       France 

 

Table 1: List of the fifteen diatom species used in this study with their growth form 

classification, collection number, origin and average biovolume. Abbreviations: NCC, Nantes 

Culture Collection-France ; UTCC, University of Toronto Culture Collection of Algae and 

Cyanobacteria-Canada (now the Canadian Phycological Culture Collection-CPCC); CCY, Culture 

Collection Yerseke-The Netherlands; DCG: BCCM (Belgian Coordinated Collections of 

Microorganisms) Diatom Culture Collection hosted by Laboratory for Protistology & Aquatic 

Ecology, Ghent University, Belgium ; n.d. not determined. 
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Parameter Unit Definition Photophysiological meaning Measurement conditions 

F0 No units Minimum PSII Chl fluorescence yield Used to calculate Fv/Fm (see below) Measured with NSLCs after 15 min of dark acclimation 

Fm No units Maximum PSII Chl fluorescence yield Used to calculate Fv/Fm and NPQ (see below) 
Measured with NSLCs during a saturating pulse after 15 min 
of dark acclimation 

Fv/Fm No units Maximum photosynthetic efficiency of PSII; Fv = Fm - F0 Maximum quantum efficiency of PSII photochemistry See the above measurement conditions for F0 and Fm 

Fm’ No units Fm for illuminated cells Used to measure NPQ and rETR 
Measured with NSLCs during a saturating pulse after 5 min of 
illumination at specific E 

NPQ No units Non-photochemical quenching of Chl fluorescence; NPQ = Fm / Fm’ - 1 Estimates the photoprotective dissipation of excess energy Measured with NSLCs 

rETR 
µmol 
electrons 
m

-2
 s

-1
 

Relative electron transport rate of PSII; rETR = φPSII x E where φPSII = Fm’-F/Fm’  Effective quantum yield of photochemistry vs. E 
Measured with RLCs; F is the steady-state of Chl fluorescence 
measured after 30 s illumination at a given E) 

α 
Relative 
units 

rETR-E curve initial slope Maximum light efficiency use 
Derived from fitted rETR-E curves measured with RLCs (Eilers 
and Peeters, 1988) 

rETRm 
µmol 
electrons 
m-2 s-1 

rETR-E curve asymptote Maximum relative photosynthetic electron transport rate 
Derived from fitted rETR-E curves measured with RLCs (Eilers 
and Peeters, 1988) 

Ek 
µmol 
photons. m-

2. s-1 
Ek = rETRm / α Light saturation coefficient 

Derived from fitted rETR-E curves measured with RLCs (Eilers 
and Peeters, 1988) 

NPQm No units NPQ-E curve asymptote Maximum NPQ Measured with NSLCs 

E50NPQ 
µmol 
photons. m-

2. s-1 
E for reaching 50% of NPQm Pattern of NPQ induction vs. E 

Derived from fitted NPQ-E curves (Serôdio and Lavaud, 2011) 
measured with NSLCs 

nNPQ No units NPQ-E curve sigmoidicity coefficient Onset of NPQ induction for moderate Es (< E50NPQ) 
Derived from fitted NPQ-E curves (Serôdio and Lavaud, 2011) 
measured with NSLCs 

Dtxm 
mol . 100 
mol Chl a-1 

Dtx-E curve asymptote Maximum Dtx concentration Measured with NSLCs 

E50DT 
µmol 
photons . 
m-2. s-1 

E for reaching 50% of DTmax Pattern of Dtx synthesis vs. E 
Derived from fitted Dtx-E curves (Serôdio and Lavaud, 2011) 
measured with NSLCs 

nDtx No units Dtx-E curve sigmoidicity coefficient Onset of Dtx synthesis for moderate Es (< E50NPQ) 
Derived from fitted Dtx-E curves (Serôdio and Lavaud, 2011) 
measured with NSLCs 

DESm % DES-E curve asymptote; DES = [Dtx / (Ddx + Dtx) x 100] Maximum de-epoxidation state Measured with NSLCs 

NPQ / Dtx No units NPQ-Dtx curve slope 
Effective involvement of Dtx in NPQ for all Es (Lavaud et 
Lepetit, 2013) 

Measured with NSLCs 

 

Table 2: Photophysiological parameters used in this study, their photophysiological meaning and measurement method and conditions. Abbreviations: Chl, chlorophyll; 

Ddx, diadinoxanthin; Dtx, diatoxanthin; E, light intensity; NSLCs, Non-Sequential Light Curves; PSII, photosystem II; RLCs, Rapid Light Curves. See the Materials and 

Methods section for further details. 
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Results 

 
Growth rate and photosynthetic properties  

 

Growth   Pigments           Photosynthetic parameters 

Form                         

  µ 
Chl a cell

-

1
 

Chl c Fx 
β-
car 

Ddx+Dtx DES Fv/Fm α rETRm Ek 
PSII 

CETm 

EPL 1.66 12.55 18.91 65.99 3.91 6.39 0.75 0.72 0.68 52.41 78.93 2.09 

  
± 

0.12 
± 12.91 

± 
3.05 

± 
7.90 

± 
0.39 

± 0.61 
± 

0.93 
± 

0.01 
± 

0.03 
± 

5.90 
± 

9.79 
± 0.23 

EPM-M 1.56 1.45 16.05 64.29 2.76 10.34 4.25 0.68 0.65 51.50 80.41 2.86 

  
± 

0.14 
± 0.78 

± 
3.34 

± 
10.21 

± 
0.43 

± 1.17 
± 

1.79 
± 

0.02 
± 

0.04 
± 

7.36 
± 

12.89 
± 0.33 

EPM-
NM 

1.45 2.13 20.12 70.52 2.11 11.52 2.30 0.67 0.63 39.20 61.01 2.82 

  
± 

0.12 
± 1.63 

± 
3.63 

± 
8.83 

± 
0.43 

± 1.13 
± 

1.33 
± 

0.02 
± 

0.04 
± 

4.88 
± 

8.52 
± 0.23 

TYCHO 1.61 1.72 24.81 79.36 3.04 9.25 4.29 0.73 0.71 58.32 82.79 2.03 

  
± 

0.14 
± 2.45 

± 
5.17 

± 
10.12 

± 
0.51 

± 1.09 
± 

1.83 
± 

0.02 
± 

0.04 
± 

8.44 
± 

13.40 
± 0.26 

 

Table 3: Growth rate, pigment content and photosynthetic properties of the four growth forms 

of benthic diatoms. All parameters were measured on cells in exponential growth phase 

sampled 2 h after the onset of light. Growth conditions were 20 μmol photons m-2 s-1, 16 h 

light:8 h dark, 20°C. Abbreviations: EPL, epipelon; EPM-M, motile epipsammon; EPM NM, non-

motile epipsammon; TYCHO, tychoplankton. μ, growth rate (day-1); pigments are expressed in 

mol 100 mol Chl a-1: Chl, chlorophyll; Fx, fucoxanthin; β-car, β-carotene; Ddx, diadinoxanthin; 

Dtx, diatoxanthin. Definitions and conditions of measurement of all parameters are listed in 

Table 2. The values for the individual species can be found in Table S3. Values are least squares 

means estimates and estimated standard errors (PROC MIXED procedure). 

 

 The Chl a concentration per cell showed an exponential relationship with biovolume 

with relatively small changes at the smaller cell volumes (Supplementary Figure S1). The 

average diatom biovolumes were independent of growth form (Table 3, Supplementary 

Figure S1). Growth rate did not differ significantly between the growth forms at growth 

E = 20 μmol photons m-2 s-1 (Table 3, Supplementary Table S2). Relative concentrations 

of the light-harvesting pigments Chl c and Fucoxanthin were comparable among growth 

forms. β-carotene, which is mainly associated with the photosystem cores, was only 

slightly but significantly higher in epipelon than in non-motile epipsammon. Ddx + Dtx 

content was significantly lower in epipelon than in the other growth forms. Because the 

cells were grown at low E, DES was generally low, with no significant differences 

between the growth forms (Table 3, Supplementary Table S3). The highest Ddx + Dtx 

(16.95 ± 2.56 mol 100 mol Chl a-1) and DES (16.4 ± 6.2 %) values were observed in 
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Plagiogramma staurophorum (non-motile epipsammon) (Table 3, Supplementary Table 

S2). There were no significant differences in Fv/Fm, α, rETRm, Ek and PSII CETmax between 

the growth forms. Ek was on average 3 to 4 times the growth E in all growth forms. PSII 

CETm was close to 3 (its maximum, Lavaud et al. 2002) for the two epipsammon growth 

forms, and about 2 in epipelon and tychoplankton (Table 3). 

 

NPQ properties  

At E values ≥ 230 μmol photons m-2 s-1, NPQ was significantly higher in non-motile 

epipsammon than in both epipelon and tychoplankton; the same holds true for motile 

epipsammon vs. epipelon and tychoplankton at E values ≥ 1050 μmol photons m-2 s-1 

(Figure 1, Supplementary Table S4). NPQ was also significantly higher in non-motile 

epipsammon than in motile epipsammon except at the lowest and highest E values. 

Likewise, NPQm was significantly higher (x 3.5 and x 2.4, respectively) in non-motile 

epipsammon and motile epipsammon than in epipelon and tychoplankton (Figure 1, 

Table 4 and Supplementary Tables S5 and S6). In epipelon and tychoplankton, the NPQ-E 

curves showed a lower variability than in the two epipsammon growth forms 

(Supplementary Figure S2). Non-motile epipsammon had the lowest E50NPQ, significantly 

lower than all other groups (Table 4, Supplementary Tables S5 and S6). In contrast, 

tychoplankton E50NPQ was significantly higher than in the other groups. Epipelic and 

motile epipsammic E50NPQ did not differ significantly from each other. In contrast, nNPQ 

was not significantly different and varied around its optimum (i.e. 2, Serôdio and Lavaud, 

2011) in most species except the tychoplanktonic ones (which is significantly lower than 

in epipsammon non-motile) (Table 4, Supplementary Tables S5 and S6). 
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Growth NPQm E50NPQ nNPQ DESm Dtxm E50Dtx nDtx NPQ/Dtx 

form                 

EPL 0.69 866.45 1.88 21.20 1.34 714.73 2.39 0.46 

  
± 

0.09 
± 

200.24 
± 

0.26 
± 

3.38 
± 

0.52 
± 

128.29 
± 

0.20 
± 0.10 

EPM-M 1.71 1061.25 2.04 28.68 3.08 809.41 1.38 0.52 

  
± 

0.28 
± 

310.20 
± 

0.34 
± 

4.37 
± 

1.36 
± 

164.71 
± 

0.20 
± 0.14 

EPM-
NM 

2.41 360.61 2.27 29.43 3.45 465.91 2.30 0.67 

  
± 

0.34 
± 91.42 

± 
0.29 

± 
3.79 

± 
2.21 

± 80.04 
± 

0.21 
± 0.16 

TYCHO 0.66 3887.42 1.12 22.73 1.78 1099.82 1.42 0.36 

  
± 

0.11 
1105.58 

± 
0.34 

± 
4.39 

± 
0.61 

± 
341.05 

± 
0.19 

± 0.10 

 

 

Table 4: Non-photochemical quenching (NPQ) and xanthophyll cycle (XC) properties of the four 

growth forms of benthic diatoms. Abbreviations: EPL, epipelon; EPM-M, motile epipsammon; 

EPM-NM, non-motile epipsammon; TYCHO, tychoplankton. Definitions and conditions of 

measurement of all parameters are listed in Table 2. The values for the individual species can 

be found in Tables S4. Values are least squares means estimates and estimated standard 

errors (PROC MIXED procedure). 

 

 

XC properties  

DES was only significantly different between epipelon and both tychoplankton and 

motile epipsammon at 105 μmol photons m-2s-1 and between epipelon and both 

epipsammic forms at 230 μmol photons m-2 s-1 (Figure 1, Supplementary Table S7). DESm 

varied between 21.2 ± 3.4 for epipelon, 22.7 ± 4.4 for tychoplankton, 28.7 ± 4.4 for 

motile epipsammon-M and 29.4 ± 3.8 for non-motile epipsammon (lsmeans ± SE) (Figure 

1, Table 4 and Supplementary Tables S5 and S6). The slight difference between epipelon 

and the epipsammon growth forms, although not significant, in combination with the 

significantly higher Ddx + Dtx in the latter, generated a significantly lower Dtxm in 

epipelon than in the epipsammon growth forms (Tables 3 and 4). E50Dtx was close to the 

E50NPQ in all growth forms except in tychoplankton where it was lower; no significant 

differences between the epipsammon and epipelon were observed, only non-motile 

epipsammon and tychoplankton E50Dtx differed significantly (Table 4, Supplementary 

Tables S5 and S6). nDtx was significantly lower in motile epipsammon and tychoplankton 

than in epipelon and non-motile epipsammon. NPQ/Dtx was about half its optimum (= 1 

under these experimental conditions) in all groups except non-motile epipsammon 

(Table 4, Supplementary Tables S5 and S6). It roughly followed the same order as 

observed for NPQm, i.e. non-motile epipsammon > motile epipsammon > epipelon ≅ 
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tychoplankton, with a 2x higher value in non-motile epipsammon (Table 4). The 

difference between non-motile epipsammon and the other growth forms, however, was 

not significant due to the low NPQ/Dtx value in Plagiogramma staurophorum 

(Supplementary Table S5). Figure 2 shows that in all growth forms except motile 

epipsammon there were species (Seminavis robusta, Fragilaria. cf. subsalina, P. 

staurophorum, Brockmanniella brockmannii) for which a low NPQ developed without 

Dtx synthesis, while two motile epipsammon species (Amphora sp. and Planothidium 

delicatulum) showed Dtx synthesis (0.17 ± 0.03 mol 100 mol Chl a-1) without NPQ (See 

also supplementary Table S5). All other species showed a NPQ/Dtx relationship with an 

origin close to 0, as expected.  

 

Effect of high light acclimation on the NPQ and XC properties  

All species were grown under an E (75 μmol photons m-2 s-1) roughly corresponding to 

the mean Ek for the low E acclimated cells (20 μmol photons m-2 s-1, Table 3); (Figure 3, 

Supplementary Table S8). Only epipelon had significantly higher growth rates at 75 μmol 

photons m-2 s-1. Ddx + Dtx significantly increased with a factor 1.6-1.7 in epipelon and 

epipsammon, and 2.3 in tychoplankton. There was a significant increase in DES at 75 

μmol photons m-2s-1 in all growth forms except in motile epipsammon. The increase in 

Ddx +Dtx and DES at the higher light intensity was most pronounced in tychoplankton 

and resulted in a pronounced, significant difference in both parameters between 

tychoplankton and epipelon at this light intensity. The comparison of Chl fluorescence 

yield and light curve parameters could only be performed for a selection of six species 

(covering all growth forms) and is summarized in Figure 4 (See also Supplementary Table 

S9). As expected, the Chl a content per cell decreased, roughly with a factor of 2 in all 

species (except Navicula phyllepta). There was only a slight (up to about 10 %) decrease 

in Fv/Fm in all species, illustrating the unstressed state of the cells (note that in Seminavis 

robusta and Planothidium delicatulum this decrease was slightly significant). DESm 

significantly increased in S. robusta only. Together with the overall increase in Ddx + Dtx, 

this resulted in a significant increase in Dtxm (by a factor of 4) in this species, but also in 

P. delicatulum and Plagiogrammopsis vanheurckii. The corresponding NPQm did not 

follow the same trend: it significantly increased in all species (except for P. delicatulum 

and Opephora sp.) but only by a factor of maximally 2. NPQ/Dtx remained low (0.2 to 

0.5) in all species (and significantly decreased in Opephora sp.). E50NPQ was significantly 

higher only in the non-motile epipsammic species Plagiogramma staurophorum. 
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Figure 2. Non-photochemical quenching of Chl fluorescence (NPQ) as a function of the amount 

of diatoxanthin (Dtx) measured during Non-Sequential Light Curves (NSLCs) in the five species 

of epipelon (EPL) (a), the four species of motile epipsammon (EPM-M) (b), the three species of 

tychoplankton (TYCHO) (c), and the three species of non-motile epipsammon (EPM-NM) (d). 

Cells were grown at 20 μmol photons m-2 s-1. The full names and classification of all species is 

listed in Table 1. 
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Figure 3. Growth rate (μ) (a), diadinoxanthin (Ddx) + diatoxanthin (Dtx) content (b) and de-

epoxidation state of Ddx to Dtx [DES = (Dtx / Ddx + Dtx x 100] (c) in the four benthic diatom 

growth forms (EPM-NM, epipsammon non-motile, EPM-M, epipsammon motile; EPL, epipelon 

motile; TYCHO, thychoplankton) for cells grown at light intensities of 20 and 75 μmol photons 

m-2 s-1 respectively. All parameters were measured on cells in exponential growth and sampled 

2 h after the onset of light; growth conditions were 16 h light:8 h dark, 20°C. The values for all 

species in 20 and 75 μmol photons m-2 s-1 conditions are found in Supplementary Tables S3 and 

S8, respectively. Values are estimated least squares means ± estimated standard errors (PROC 

MIXED procedure). 

 
Figure 4. Comparison of photosynthetic, non-photochemical quenching of Chl fluorescence 

(NPQ) and xanthophyll cycle (XC) parameters measured in diatom species representative of 

the four benthic diatom growth forms grown at light intensities of 20 and 75 μmol photons m-2 

s-1 respectively. For each parameter the ratio of the values obtained at 75 and 20 μmol 

photons m-2 s-1 – 1 was calculated (i.e. the 0 line is equal to a 75/20 ratio = 1 which is 

equivalent to no change of values between light intensities). Significant changes between both 

light intensities are indicated with an asterisk. The values used for the 20 and the 75 μmol 

photons m-2 s-1 conditions can be found in Supplementary Tables S3 and S8 respectively.  
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Figure 5. Comparison of growth, photosynthetic, pigment, non-photochemical quenching of 

Chl fluorescence (NPQ) and xanthophyll cycle (XC) parameters measured in the three 

tychoplankton diatom species in ‘benthic’ and ‘planktonic’ conditions. For each parameter the 

ratio of the values obtained under benthic and planktonic conditions – 1 was calculated (i.e. 

the 0 line is equal to a planktonic/benthic ratio = 1 which is equivalent to no change of values 

between ‘benthic’ and ‘planktonic’ conditions). Chl a per cell (in pg cell-1) and growth rates (in 

day-1) were measured on cells in exponential growth phase sampled 2 h after the onset of 

light; growth conditions were 20 μmol photons m-2 s-1, 16 h light:8 h dark, 20°C. Significant 

changes between both light intensities are indicated with an asterisk. The values used for the 

‘benthic’ and ‘planktonic’ growth conditions can be found in Supplementary Tables S3/S5 and 

S10, respectively. 
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Effect of ‘planktonic’ growth on the NPQ and XC properties of tychoplankton 

The three tychoplanktonic species were grown under ‘planktonic’ conditions (at 20 μmol 

photons m-2 s-1) for a comparison with growth under ‘benthic’ conditions (Figure 5, 

Supplementary Table s10). Brockmaniella brockmannii responded most strongly to a 

switch from ‘benthic’ to ‘planktonic’ growth: it showed a significantly lower growth rate 

and a higher DES and DESm but a lower NPQm, suggesting photosynthetic stress and 

investment of additional Dtx in other processes than NPQ. Plagiogrammopsis 

vanheurckii and Cylindrotheca closterium showed very little change, apart from a 

significantly higher growth rate during planktonic growth in P. vanheurckii, a slight 

decrease in NPQ/Dtx in C. closterium, and an increase in DES in both species. The most 

pronounced and consistent change in tychoplankton thus concerned an increase in DES 

when grown in suspension. Note that there is also an overall decrease in rETRm, but this 

decrease was just not significant (p=0.08). 

Discussion 
 

The present work constitutes the first comparative experimental study, using unialgal 

cultures in standardized conditions, of fast regulatory photoprotective mechanisms in 

the four main benthic diatom growth forms present in intertidal marine sediments 

(epipelon, motile and non-motile epipsammon and tychoplankton). Because no 

sediment was added in our experiments, motile diatoms were not able to position 

themselves in a light gradient, hence effectively incapacitating their behavioural 

response. As the growth rate and photosynthetic characteristics (main pigments, Fv/Fm, 

α, Ek, rETRm) of the studied species were comparable between the growth forms at 20 

μmol photons m-2 s-1, we were able to compare their purely physiological light response.  

 

Our study revealed a highly significant and pronounced difference in NPQ between the 

four growth forms. NPQ was significantly lower in epipelic and tychoplanktonic than in 

epipsammic species; differences in DES were only observed between epipelic and other 

forms at lower light intensities. Within the epipsammon, NPQ capacity was significantly 

higher in the non-motile than in the motile forms. As all growth forms included both 

small and large species, the functional light response (NPQ capacity) apparently did not 

depend on biovolume or the Chl a concentration per cell, as has also been observed in 

situ (Jesus et al. 2009). The absence of significant differences in PSII CET between growth 

forms underscores the importance of NPQ as the main fast photoprotective process in 

intertidal benthic diatoms, confirming earlier results for these organisms (Lavaud et al. 

2002) but in contrast with planktonic diatoms (Lavaud e et al. 2002; Lavaud et al. 2007). 

By analogy with previous studies on planktonic diatoms (Dimier et al. 2009; Lavaud et al. 

2007; Lavaud and Lepetit, 2013; Petrou et al. 2011; Strzepek and Harrison, 2004), our 

data suggest that epipelic and tychoplanktonic diatoms are adapted to a less fluctuating 

light climate and/or to a lower average irradiance, and vice versa for epipsammic 
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diatoms. This result fits well with the ecology of these growth forms. Large motile 

diatoms are not only more abundant in muddy cohesive sediments where light 

penetration is more restricted than in sandy sediments (Paterson and Hagerthey 2001; 

Cartaxana et al. 2011), but, more importantly, their (micro-)migratory behaviour allows 

positioning at the optimal irradiance in the vertical light gradient and rapid escape from 

periodic excess light (Kromkamp et al. 1998; Conn et al. 2004; Consalvey et al. 2004; 

Serôdio et al. 2006). This alleviates the need to invest in a strong physiological capacity 

to respond to light stress as previously proposed (Jesus et al. 2009; Cartaxana et al. 

2011), although the right balance between motility and physiology still remains essential 

(van Leeuwe et al. 2009; Perkins et al. 2010b; Cartaxana et al. 2011; Serôdio et al. 2012). 

Such balance is more crucial in the motile epipsammic species, which can move but have 

only limited control over their immediate light environment as movement is restricted, 

usually within the sphere of individual sand grains. As expected, they showed a 

significantly lower NPQ and a higher E50NPQ than non-motile epipsammon, which have 

no behavioural control over their light environment. An alternative, but not exclusive, 

explanation could be related to the difference in exopolysaccharide (EPS) secretion 

between motile and non-motile growth forms. EPS secretion could work as an 

alternative electron sink under stressful conditions (i.e. high light, nutrient limitation, 

etc.) in order to limit the over-reduction of the photosynthetic machinery (‘overflow’ 

hypothesis; Staats et al. 2000), alleviating the need for a strong NPQ. However, EPS 

secretion is not as fast as NPQ (minutes/hours vs. seconds/minutes) and may not be 

useful to the cells for responding to rapid light changes but only to cope with prolonged 

high light exposure. Additionally, while the ‘overflow’ hypothesis is often proposed 

(Underwood and Paterson, 2003; Stal, 2009), it was never clearly proven. A few studies 

have shown a positive relationship between light intensity and EPS production 

(Underwood, 2002; Wolfstein and Stal, 2002) but other studies have reported a negative 

relation with light intensity and no relationship with nutrient limitation (Hanlon et al. 

2001; Perkins et al. 2006). To date there is no information on EPS production in different 

benthic diatom growth forms, and only epipelic species have been compared 

(Underwood and Paterson, 2003), showing no clear relationship between light response 

and EPS secretion. To our knowledge, there are no reports on a relationship between 

NPQ-XC capacity and EPS production. Finally, tychoplankton typically alternates between 

resuspension in a highly turbid shallow water column at high tide and deposition and 

burial in the upper sediment layers of muddy sediments at low tide (deposition in sandy 

sediments does not occur due to the intense hydrodynamic disturbance in these 

sediments). As such, the tychoplankton resembles planktonic diatoms adapted to subtle 

light fluctuations and/or on average low irradiance (Bailleul et al. 2010; Lavaud and 

Lepetit, 2013). The reason for the NPQ differences between epipelon and epipsammon 

can be explained by its main control: the XC dynamics. Previous in situ studies reported a 

consistently stronger DES under light stress in epipsammic than in epipelic diatom 

communities (that is, in sandy vs. muddy sediments) and related growth form with 
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differential (behavioural vs. physiological) photoregulatory strategies (Jesus et al. 2009; 

Cartaxana et al. 2011). As recently shown, high NPQ is supported by the strong effective 

involvement of Dtx which first depends both on a high Ddx + Dtx content and a high DES 

(Lavaud and Lepetit, 2013). The slope of the NPQ/Dtx relationship has been proposed as 

a good indicator of light climate adaptation: the higher the NPQ/Dtx slope, the better 

the adaptation to a highly fluctuating and/or on average high light climate (Dimier et al. 

2009; Lavaud and Lepetit, 2013). All epipsammic species, and especially the non-motile 

ones, showed XC parameter values which are characteristic for a high NPQ capacity, viz. 

a higher Ddx + Dtx content and Dtxm which was 2x higher than in epipelon. Non-motile 

epipsammon also tended to show a higher efficiency in promoting NPQ (NPQ/Dtx), but 

this difference was not significant due to high intra-group variability. 

 

Within the epipsammon, NPQ is clearly more efficient in non-motile than in motile 

epipsammic species. In motile epipsammon, the discrepancy between E50NPQ and Ek is 

more pronounced than in non-motile forms: while there is no significant difference in Ek 

between both growth forms, E50NPQ is significantly higher in the motile growth forms. 

This suggests a weaker relationship between NPQ development and photochemistry in 

the latter group, with slower NPQ development with increasing E. Remarkably, E50Dtx 

does not significantly differ between both growth forms, and the significantly higher 

initial induction of Dtx synthesis (nDtx) but not NPQ (nNPQ) in the motile group, together 

with the fact that some representatives of this group show Dtx synthesis without NPQ, 

suggests that either Dtx is less or not involved in NPQ development, or that the light-

dependent built-up of the transthylakoidal proton gradient (which is involved in both the 

activation of the Ddx de-epoxidase and the molecular control of NPQ) and the onset of 

NPQ are uncoupled (Lavaud et al. 2012; Lavaud and Lepetit, 2013). Our observations 

thus suggest that in contrast to the non-motile group, motile epipsammic species rely 

more on a behavioural response (motility) and/or involve Dtx in other photoprotective 

processes such as the prevention of lipid peroxidation by reactive oxygen species (ROS) 

(Lepetit et al. 2010). The increase in E50NPQ in the non-motile epipsammic species 

Plagiogramma staurophorum during a shift to higher light illustrates the ability to 

physiologically modulate the NPQ vs. E development kinetics to its light environment in 

contrast to motile epipsammon, epipelon and tychoplankton.  

 

The influence of Dtx on the inter-group/species NPQ differences was further 

investigated by the acclimation to higher light (75 μmol photons m-2 s-1, close to the 

mean Ek for cells acclimated to 20 μmol photons m-2 s-1). High light exposure is known to 

induce constitutive Dtx synthesis (Schumann et al. 2007) and in field conditions, Dtx is 

usually even present in significant amounts in cells adapted to low/moderate light (Jesus 

et al. 2009; van Leeuwe et al. 2009; Chevalier et al. 2010; Cartaxana 423 et al. 2011). 

Acclimation to higher light resulted in a significant increase in XC pigments (Ddx + Dtx) 

and DES in most growth forms, suggesting that although epipelon uses behavioural 
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photoprotection, the XC is still important (cf. above). NPQm increased in most of the 

species examined, mainly due to a higher Dtxm resulting from a higher Ddx + Dtx rather 

than a higher DESm. The discrepancy between DESm and NPQm as well as the low 

NPQ/Dtx may be due to the fact that the additional Dtx primarily served in the 

prevention of lipid peroxidation rather than in NPQ as previously reported in high light 

acclimated diatoms (see also above). 

 

While under low light conditions, the growth, photosynthetic and steady-state light-

response features of tychoplankton were similar to those of epipelic diatoms (i.e. low 

NPQ, NPQm and Dtxm), their dynamic light response was significantly different, i.e. higher 

E50NPQ. Surprisingly, E50NPQ was beyond the natural light maximum (2000-2500 μmol 

photons m-2 s-1) illustrating the inability of tychoplankton to strongly and/or continuously 

develop NPQ in the environmental high light range (a situation also encountered in one 

epipelic species: Navicula phyllepta). In contrast, its low nNPQ supported a relatively 

strong onset of NPQ at low Es. Both E50Dtx and nDtx were correspondingly high and low, 

respectively (and significantly different from epipelon for nDtx), although E50Dtx was 

much lower than E50NPQ suggesting a discrepancy between Dtx synthesis and NPQ 

development (cf. above). The response of tychoplankton to higher light was much more 

pronounced, with the strongest increase in XC pigments and DES of all growth forms 

(Fig. 3). However, the NPQm and Dtxm data (only available however for one 

representative species, Plagiogrammopsis vanheurckii) did not show a similar response, 

with Dtxm showing a more pronounced increase than NPQm, suggesting that NPQ 

development was low and that Dtx may have mainly been involved in other processes 

than NPQ. For most parameters, the response of the tychoplankton species to growth in 

suspension (‘planktonic’ growth) was limited and largely species-specific, except for a 

general increase in DES and a decrease (albeit just non-significant) in rETRm. These data 

suggest that representatives of the tychoplanktonic growth form are well-adapted to 

their amphibious life style, which is characterized by an on average low irradiance 

(MacIntyre et al. 1996). In contrast, epipelic species do not grow well in suspended, 

turbulent conditions (J. Lavaud, pers. observation).  

 

 Our study for the first time shows that intertidal benthic diatoms display growth form 

specific variation in fast regulatory physiological mechanisms for photoprotective 

capacity (NPQ and the XC), which mirrors their behavioural light response. In epipelic 

motile diatoms, exclusively belonging to the raphid pennate clade, the physiological 

response is not well developed, as these diatoms appear to largely rely on motility to 

control their immediate light environment. In the motile epipsammon however the 

physiological response remains essential because their movement is restricted to the 

sphere of individual sand grains. The evolution of the raphe system, the hallmark 

synapomorphy of the raphid pennate diatom clade which enables locomotion, has 

therefore been essential for the colonization of intertidal sediments by not only 
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migratory epipelic biofilms but also motile epipsammon. In contrast, NPQ and XC 

capacity is high in non-motile araphid pennate diatoms which passively have to abide 

often pronounced variations in the intertidal light climate. Tychoplanktonic diatoms, 

which alternate between high tide resuspension in a turbulent and turbid water column, 

and low tide deposition in muddy sediments, appear to be adapted to an on average low 

light environment, with low NPQ and XC capacity. 

Although we made no formal analysis of the relationship between functional and 

phylogenetic diversity, it is obvious that despite the fact that a behavioural 

photoprotective response (motility) is restricted to the raphid pennate diatom clade, 

differences in the studied physiological traits are more strongly driven by growth form 

than phylogenetic relatedness. For example, the epipsammic species Biremis lucens, 

despite being a raphid pennate species, has a non-motile growth form, and shows a NPQ 

capacity which is more similar to non-motile epipsammon than to the (phylogenetically 

more closely related) motile epipsammon and epipelon. Likewise, photophysiological 

features of pennate raphid (Cylindrotheca closterium) and centric (Plagiogrammopsis 

vanheurckii and Brockmanniella brockmannii) tychoplankton 

 species were similar as reported before in planktonic centric/pennate species (Lavaud 

et al. 2004). Raphid pennate diatoms which have colonized an epipsammic or 

tychoplanktonic niche thus display a reverse evolutionary trade-off switch towards a 

much more performant physiological response. Our observations thus suggest that 

photoprotective capacity in diatoms is a highly adaptive trait which is to a certain degree 

constrained by clade-specific evolutionary innovations (the evolution of the raphe 

system and hence a behavioural response) but also, and more importantly, by growth 

form, which ultimately defines the balance between the physiological and behavioural 

photoprotective response in these organisms. Such differential adaptation is of primary 

importance for the regulation of the photosynthetic productivity vs. light, as has been 

demonstrated before in planktonic diatoms, where the photochemical vs. the 

photoprotective energy allocation as a function of light is drastically different in species 

adapted to a fluctuating vs. a more stable light environment (Wagner et al. 2006; Lavaud 

et al. 2007; Petrou et al. 2011; Lavaud and Lepetit, 2013). However, unlike in planktonic 

environments, the trade-off between a physiological and behavioural response in 

benthic diatoms allows local co-existence of different growth forms under the same 

overall light environment. 
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Supplementary Table S1 

Light intensity (E in µmol photons m-2 s-1) provided by the internal halogen lamp of the Diving-

PAM as measured by a quantameter Li-250A (Li-Cor, Biosciences, USA) immediately and 30 s 

after the onset of light, respectively. The light measurement was performed at 1.5 cm from the 

optic guide which corresponded to the centre of the 2.5 mL algal suspension in the DW2/2 O2 

electrode vial (see the Materials and methods section). The decrease of E during the 30 s 

illumination is unavoidable and is due to the heating of the halogen lamp of the Diving-PAM. E 

values measured after 30 s were preferred in order to optimize the building of relative electron 

transport rate (rETR) vs. E curves. 

 

Diving-PAM light steps Instantaneous E E after 30 s illumination 

1 5 5 

2 15 15.5 

3 31 29 

4 55 52 

5 81 76 

6 111 105 

7 164 152 

8 222 208 

9 333 310 

10 478 445 

11 698 649 

12 1117 1042 
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Supplementary Table S2 

Growth rate, pigment content and photosynthetic parameters of the fifteen diatom species. 

All parameters were measured on cells in exponential growth phase sampled 2 h after the onset 

of light. Growth conditions were 20 µmol photons m-2 s-1, 16 h light:8 h dark, 20°C. µ, growth 

rate (day-1), Chl a cell-1, content of chlorophyll a (in pg) per diatom cell; other pigments are 

expressed in mol 100 mol. Chl a-1: Chl, chlorophyll; Fx, fucoxanthin; β-car, β-carotene; Ddx, 

diadinoxanthin; Dtx, diatoxanthin; DES: de-epoxidation state of Ddx into Dtx (in %); n.d.: not 

determined. The full names of the species are listed in Table 1. Abbreviations, definitions and 

conditions of measurement of the photosynthetic parameters are listed in Table 2. Values are 

averages per species ± standard deviation. 

 

Species 

Growth 

form µ 

Pigments Photosynthetic parameters 

Chl a 

cell-1 Chl c CETm 

β-

car Ddx+Dtx DES Fv/Fm α rETRm Ek 

PSII 

CETm 

C.b. 

EPL 

1.62 32.10 24.58 68.68 4.55 5.98 0.98 0.74 0.70 86.35 128.28 n.d. 

± 

0.12 

± 

9.19 

± 

0.90 ± 1.96 

± 

0.12 ± 1.78 

± 

0.11 

± 

0.00 

± 

0.05 

± 

6.02 

± 

21.39 

E.p. 

1.71 2.74 19.13 72.92 3.57 5.66 0.70 0.73 0.73 31.92 44.36 2.48 

± 

0.02 

± 

0.21 

± 

0.08 ± 1.81 

± 

0.21 ± 0.46 

± 

0.99 

± 

0.01 

± 

0.03 

± 

1.85 ± 3.54 

± 

0.51 

H.c. 

2.05 7.98 15.29 60.96 3.68 7.76 2.87 0.69 0.67 42.26 63.71 2.32 

± 

0.02 

± 

1.00 

± 

0.63 ± 3.77 

± 

0.01 ± 1.42 

± 

1.55 

± 

0.04 

± 

0.07 

± 

6.54 

± 

10.20 

± 

0.59 

N.p. 

1.33 1.19 15.99 56.89 4.31 7.53 0.00 0.71 0.61 53.72 86.04 2.01 

± 

0.21 

± 

0.09 

± 

1.22 ± 2.02 

± 

0.53 ± 0.78 

± 

0.00 

± 

0.03 

± 

0.09 

± 

11.12 ±17.92 

± 

0.57 

S.r. 

1.77 18.73 21.18 70.52 3.54 5.78 1.19 0.72 0.69 63.09 98.77 1.60 

± 

0.13 

± 

4.69 

± 

2.13 ± 4.73 

± 

1.23 ± 2.12 

± 

0.33 

± 

0.02 

± 

0.06 

± 

10.87 ± 6.36 

± 

0.37 

A. sp. 

EPM-M 

1.38 1.08 11.87 50.30 3.09 10.01 4.52 0.70 0.67 51.27 75.32 3.24 

± 

0.15 

± 

0.07 

± 

0.21 ± 2.46 

± 

1.05 ± 1.41 

± 

2.20 

± 

0.02 

± 

0.02 

± 

3.73 ± 3.53 

± 

0.81 

N.f. 

1.37 0.92 17.53 64.02 2.98 11.06 8.66 0.69 0.69 62.30 92.31 n.d. 

± 

0.02 

± 

0.02 

± 

0.32 ± 2.40 

± 

0.46 ± 0.90 

± 

1.72 

± 

0.01 

± 

0.12 

± 

3.77 

± 

14.16 

P.d. 

1.98 2.35 19.98 78.64 2.22 10.32 2.56 0.66 0.58 43.16 76.41 2.48 

± 

0.20 

± 

1.09 

± 

2.22 ± 0.10 

± 

1.23 ± 1.75 

± 

3.13 

± 

0.01 

± 

0.06 

± 

3.72 

± 

11.26 

± 

0.25 
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B.l. 

EPM-

NM 

1.30 3.94 15.13 56.83 1.26 8.88 1.77 0.72 0.74 34.29 46.53 2.85 

± 

0.07 

± 

1.45 

± 

0.37 ± 0.43 

± 

0.12 ± 0.96 

± 

1.57 

± 

0.01 

± 

0.07 

± 

3.72 ± 2.06 

± 

0.11 

F.s. 

1.43 0.80 24.49 74.16 1.70 13.01 0.91 0.70 0.58 45.35 82.08 2.54 

± 

0.11 

± 

0.12 

± 

2.39 ± 3.75 

± 

0.48 ± 5.23 

± 

1.31 

± 

0.01 

± 

0.03 

± 

11.79 

± 

20.41 

± 

0.30 

O.g. 

1.65 1.64 10.43 41.82 3.62 9.81 0.68 0.71 0.71 37.22 54.11 3.59 

± 

0.06 

± 

0.07 

± 

0.85 ± 1.78 

± 

0.48 ± 0.66 

± 

0.96 

± 

0.01 

± 

0.05 

± 

2.64 ± 5.29 

± 

0.27 

P.s. 

1.43 n.d. 42.95 109.54 1.70 16.95 16.41 0.59 0.51 44.12 71.44 2.29 

± 

0.02  

± 

4.24 ± 4.51 

± 

0.48 ± 2.58 

± 

6.23 

± 

0.09 

± 

0.05 

± 

14.84 

± 

21.20 

± 

0.47 

B.b. 

TYCHO 

1.92 0.24 25.63 86.37 2.59 11.23 9.56 0.69 0.70 44.82 67.77 2.08 

± 

0.08 

± 

0.05 

± 

0.95 ± 4.82 

± 

0.28 ± 0.58 

± 

1.31 

± 

0.04 

± 

0.08 

± 

2.36 ± 5.38 

± 

0.38 

C.c. 

1.53 0.37 23.82 64.98 4.50 7.10 2.62 0.77 0.74 68.41 92.87 1.66 

± 

0.26 

± 

0.13 

± 

0.22 ± 0.54 

± 

0.34 ± 0.73 

± 

4.54 

± 

0.01 

± 

0.02 

± 

3.36 ± 7.35 

± 

0.33 

P.v. 

1.45 4.55 25.04 86.76 1.93 11.04 5.37 0.73 0.67 62.95 90.59 2.36 

± 

0.02 

± 

0.61 

± 

0.99 ± 3.48 

± 

0.34 ± 3.71 

± 

1.19 

± 

0.01 

± 

0.02 

± 

9.58 

± 

10.71 

± 

0.22 
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Supplementary Table S3 

Results of the PROC MIXED procedure for the comparison of the parameters of Table 3 

between the different growth forms. Red: p > 0.05; orange: p < 0.05; light green: p < 0.01; dark 

green: p < 0.001. Abbreviations: EPL, epipelon; EPM-M, motile epipsammon; EPM-NM, non-

motile epipsammon; TYCHO, tychoplankton; µ, growth rate (day-1); Chl, chlorophyll; Fx, 

fucoxanthin; β-car, β-carotene; Ddx, diadinoxanthin; Dtx, diatoxanthin. Abbreviations, 

definitions and conditions of measurement of the photosynthetic parameters are listed in Table 

2. 
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Supplementary Table S4 

Non-photochemical quenching (NPQ) and xanthophyll cycle (XC) properties of the fifteen 

diatom species. The full names of the species are found in Table 1. Definitions and conditions of 

measurement of all parameters are listed in Table 2. For some S.r., the fitting procedure of Dtx 

synthesis yielded unsatisfactory results: these have been indicated as n.d. and were excluded 

from further statistical analyses. Values represent averages per species ± standard deviation. 

 

Species 

Growth 

form NPQm E50NPQ nNPQ DESm DTm E50DT nDtx NPQ/Dtx 

  

 

0.46 1054.33  1.55 16.57 1.12 528.00 2.63 0.33 

C.b. 

 

± 0.08 
± 

179.86 
± 0.35 ± 3.51 ± 0.16 

± 

127.18 
± 0.81 ± 0.07 

  

 

0.65 399.50 1.97 28.00 1.81 682.67 2.18 0.35 

E.p. 

 

± 0.14 
± 

184.55 
± 0.51 ± 2.72 ± 0.06 

± 

278.75 
± 0.70 ± 0.08 

  

 

0.80 821.33  2.88 19.48 1.56 974.00 2.80 0.47 

H.c. 

 

± 0.16 
± 

222.83 
± 0.52 ± 1.34 ± 0.33 ± 93.98 ± 0.45 ± 0.11 

  

 

1.14 2540.33  1.30 28.88 2.05 796.60 2.20 0.60 

N.p. 

 

± 0.08 
± 

428.27 
± 0.29 ± 2.14 ± 0.06 

± 

236.56 
± 0.40 ± 0.22 

  

 

0.60 587.67  1.44 12.45 0.76 n.d. n.d. 0.74 

S.r. EPL 
± 0.06 

± 

173.08 
± 0.39 ± 3.61 ± 0.27     ± 0.10 

    2.41 997.00 1.85 34.48 4.82 950.50 1.16 0.46 

A.sp. 

  
± 0.30 

± 

198.03 
± 0.31 ± 4.46 ± 0.46 ± 58.69 ± 0.01 ± 0.09 

    1.67 1230.00 2.49 17.78 2.19 946.50 1.99 0.79 

N.f.   
± 0.04 

± 

319.61 
± 0.88 ± 0.08 ± 0.69 ± 57.28 ± 0.01 ± 0.18 

    1.30 1007.50 1.81 33.70 2.88 623.00 1.20 0.42 

P.d. EPM-M 
± 0.48 ± 57.28 ± 0.21  ± 1.93 ± 0.04 

± 

193.38 
± 0.49 ± 0.16 

    2.14 348.67 2.56 35.25 3.71 313.50 1.99 0.67 

B.l.   ± 0.32 ± 41.04 ± 0.27 ± 0.86 ± 0.23 ± 79.90 ± 0.63 ± 0.03 

    3.24 297.50 2.80 23.36 2.90 790.33 2.23 1.09 

F.s.   
± 0.19 ± 98.29 ± 0.78 ± 1.61 ± 0.74 

± 

198.90 
± 0.70 ± 0.47 

    2.42 598.67 2.13 20.54 1.97 412.33 2.77 1.07 

O.sp.   ± 0.21 ± 48.23 ± 0.23 ± 2.69 ± 0.21 ± 45.00 ± 0.48 ± 0.17 

    2.05 288.00 1.65 38.40 7.07 472.50 2.33 0.26 

P.s. EPM-NM ± 0.01 ± 84.18 ± 0.31 ± 4.48 ± 1.51 ± 67.18 ± 1.24 ± 0.04 
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    0.70 6387.00 0.56 27.45 2.50 1069.00 1.17 0.21 

B.b. 

  
± 0.03 

± 

171.12 
± 0.05 ± 0.48 ± 0.42 

± 

140.00 
± 0.09 ± 0.03 

    0.64 3829.33 1.82 18.44 1.05 3281.50 2.06 0.62 

C.c.   
± 0.18 

± 

332.06 
± 0.11 ± 4.29 ± 0.53 

± 

1402.19 
± 0.67 ± 0.62 

    0.67 2414.50 0.92 22.28 1.78 656.00 1.29 0.37 

P.v. TYCHO 
± 0.08 

± 

238.29 
± 0.09 ± 2.96 ± 0.19 

± 

370.26 
± 0.40 ± 0.02 
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Supplementary Table S5 

Results of the PROC MIXED procedure for the comparison of the non-photochemical quenching (NPQ) values at different light intensities (cf. Fig 1) 

between the different growth forms. Red: p > 0.05; orange: p < 0.05; light green: p < 0.01; dark green: p < 0.001. Abbreviations: EPL, epipelon; EPM-M, 

motile epipsammon; EPM-NM, non-motile epipsammon; TYCHO, tychoplankton; E, light intensity (in µmol photons. m-2. s-1). 

 

 

E 

EPL vs. 

TYCHO 

EPL vs.  

EPM-M 

EPL vs.  

EPM-NM 

EPM-M vs. 

EPM-NM 

EPM-M vs. 

TYCHO 

EPM-NM vs. 

TYCHO 

48 

      105 

      230 

  

*** ** 

 

** 

385 

  

*** *** 

 

*** 

485 

  

*** *** 

 

*** 

665 

  

*** ** 

 

*** 

1050 

 

** *** ** * *** 

1950 

 

** *** 

 

** *** 
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Supplementary Table S6 

Results of the PROC MIXED procedure for the comparison of the diadinoxanthin (Ddx) de-epoxidation (DES) values at different light intensities (cf. 

Fig 1) between the different growth forms. Red: p > 0.05; orange: p < 0.05; light green: p < 0.01; dark green: p < 0.001. Abbreviations: EPL, epipelon; 

EPM-M, motile epipsammon; EPM-NM, non-motile epipsammon; TYCHO, tychoplankton; E, light intensity (in µmol photons. m-2. s-1). 

 

 

E 

EPL vs. 

TYCHO 

EPL vs. EPM-

M 

EPL vs. EPM-

NM 

EPM-M vs. EPM-

NM 

EPM-M vs. 

TYCHO 

EPM-NM vs. 

TYCHO 

48 

   

      

105 * * 

 

      

230 

 

* **       

385 

   

      

485             

665             

1050             

1950             
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Supplementary Table S7 

Results of PROC MIXED procedure for the comparison of the parameters of Table 4 between the different growth forms. Red: p > 0.05; orange: p < 

0.05; light green: p < 0.01; dark green: p < 0.001. Abbreviations: EPL, epipelon; EPM-M, motile epipsammon; EPM-NM, non-motile epipsammon; 

TYCHO, tychoplankton. Abbreviations, definitions and conditions of measurement of all parameters are listed in Table 2. Species whose parameter 

values were not determined (see Table S4) were not included in the PROC MIXED analysis for that specific parameter. 
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NPQm EPL EPM-M EPM-NM TYCHO 

 

E50DT EPL EPM-M EPM-NM TYCHO 

EPL 

 

*** *** 

  

EPL 

    EPM-M *** 

  

** 

 

EPM-M 

    EPM-NM *** 

  

*** 

 

EPM-NM 

   

* 

TYCHO 

 

** *** 

  

TYCHO 

  

* 

 E50NPQ EPL EPM-M EPM-NM TYCHO 

 

nDtx EPL EPM-M EPM-NM TYCHO 

EPL 

  

* ** 

 

EPL 

 

** 

 

* 

EPM-M 

  

* ** 

 

EPM-M ** 

 

* 

 EPM-NM * * 

 

*** 

 

EPM-NM 

 

* 

 

* 

TYCHO ** ** *** 

  

TYCHO * 

 

* 

 nNPQ EPL EPM-M EPM-NM TYCHO 

 

NPQ/Dtx 

 

EPM-M EPM-NM TYCHO 

EPL 

     

EPL 

    EPM-M 

     

EPM-M 

    EPM-NM 

   

* 

 

EPM-NM 

    TYCHO 

  

* 

  

TYCHO 

    DESm EPL EPM-M EPM-NM TYCHO 

      EPL 

          EPM-M 

          EPM-NM 

          TYCHO 

          Dtxm EPL EPM-M EPM-NM TYCHO 

      EPL 

 

* * 

       EPM-M * 

         EPM-NM * 

         TYCHO 
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Supplementary Tables S8 

S8A. Growth rate and xanthophyll cycle properties of the fifteen diatom species and of the 

four growth forms of benthic diatoms grown under 75 µmol photons m-2 s-1. For each 

parameter, the ratio of the values obtained under 75 µmol photons m-2 s-1 (this table, left side) 

and 20 µmol photons m-2 s-1 (see Table S2) growth conditions was calculated (this table, right 

side). The full names of all species can be found in Table 1. Abbreviations: EPL, epipelon; EPM-M, 

motile epipsammon; EPM-NM, non-motile epipsammon; TYCHO, tychoplankton; µ, growth rate 

(in day-1); Ddx + Dtx, diadinoxanthin + diatoxanthin in mol 100 mol Chl a-1; DES, de-epoxidation 

state of Ddx into Dtx (in %). Values are averages  standard deviation for species and estimated 

least-square means from the PROC MIXED procedure  estimated standard error for the growth 

forms. 
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Species 

Growth 

form 

Parameters 

Ratio 75/20 75 µmol photons m-1 s-2 

  µ Ddx+Dtx DES µ Ddx+Dtx DES 

    1.69 9.27 3.09       

C.b. 

EPL 

± 0.10 ± 0.20 ± 0.08 1.04 1.55 3.15 

E.p. 

1.81 11.38 6.53 

1.06 2.01 9.37 ± 0.02 ± 0.39 ± 0.53 

H.c. 

2.52 13.32 4.16 

1.23 1.72 1.45 ± 0.03 ± 1.03 ± 0.38 

N.p. 

1.64 10.41 10.68 

1.23 1.38 n.d. ± 0.06 ± 1.72 ± 6.99 

  2.53 8.12 6.69       

S.r. ± 0.18 ± 1.24 ± 2.25 1.43 1.40 5.62 

A.sp. 

EPM-M 

1.94 17.42 7.32 

1.40 1.74 1.62 ± 0.22 ± 0.59 ± 1.10 

N.f. 

1.34 12.30 9.22 

0.98 1.11 1.07 ± 0.07 ± 2.07 ± 2.64 

P.d. 

1.23 19.88 2.56 

0.62 1.93 1.00 ± 0.08 ± 0.51 ± 3.13 

B.l. 

EPM-

NM 

1.46 19.86 18.49 

1.13 2.24 10.47 ± 0.09 ± 2.12 ± 1.52 

F.s. 

1.57 16.45 13.65 

1.10 1.26 14.92 ± 0.21 ± 1.87 ± 7.63 

O.g. 

2.12 14.14 6.98 

1.28 1.44 10.29 ± 0.02 ± 1.58 ± 1.67 

P.s. 

1.34 34.00 23.09 

0.93 2.01 1.41 ± 0.05 ± 5.38 ± 2.94 

    1.50 26.63 27.16       

B.b.   ± 0.03 ± 4.83 ± 4.70 0.78 2.37 2.84 

C.c. 

TYCHO 

1.57 17.09 10.13 

1.03 2.41 3.86 ± 0.02 ± 0.71 ± 2.30 

P.v. 

1.25 23.13 16.17 

0.86 2.10 3.01 ± 0.17 ± 3.03 ± 1.88 

  EPL 

2.01 10.33 6.31       

± 0.17 ± 1.24 ± 2.24 1.21 1.62 8.41 

  EPM-M 

1.48 16.17 6.26       

± 0.19 ± 2.52 ± 3.14 0.95 1.56 1.47 

  

EPM-

NM 

1.61 19.85 13.04       

± 0.17 ± 2.72 ± 3.19 1.11 1.72 5.67 

  TYCHO 

1.43 21.81 18.00       

± 0.19 ± 3.43 ± 3.08 0.89  2.36 4.20 
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S8B. Results of the PROC MIXED procedure for the comparison of the parameters measured at 75 µmol photons m-2 s-1 (see Table S8A) between the 

growth forms (left) and for the comparison of the same parameters at 20 vs 75 µmol photons m-2 s-1 (cf. Tables 3 and S8A) for all growth forms 

(right). Red: p > 0.05; orange: p < 0.05; light green: p < 0.01; dark green: p < 0.001. Arrows indicate an increase or decrease in the parameter from 20 to 

75 µmol photons m-2 s-1. 
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Supplementary Tables S9 

S9A. Photosynthetic, xanthophyll cycle and non-photochemical quenching (NPQ) properties of six diatom species representative of the four benthic 

growth forms grown under 75 µmol photons m-2 s-1. The full names of all species can be found in Table 1. Abbreviations, definitions and conditions of 

measurement of all parameters are listed in Table 2, Chl a cell-1, content of chlorophyll a (in pg) per diatom cell. Abbreviations: EPL, epipelon; EPM-M, 

motile epipsammon; EPM-NM, non-motile epipsammon; TYCHO, tychoplankton. n.d. = not determined. Values are averages  standard deviation for 

each species. 

 

Species 
Growth 

form 
Chl a cell-1 Fv/Fm DESm Dtxm NPQm NPQ/Dtx E50NPQ 

N.p. 
EPL 

 

 

 

0.83 0.68 24.28 3.07 1.73 0.42 1730.00 

 02         ± 0.16 ± 861.26 

S.r. 
8.41 0.65 33.21 3.08 1.17 0.45 287.00 

 68         ± 0.08 ± 84.12 

P.d. 
EPM-M 

 

0.93 0.60 32.19 5.52 1.38 0.22 900.50 

 10         ± 0.04 ± 259.51 

O.g. EPM-NM 

 

 

0.89 0.65 32.13 5.33 2.76 0.49 584.00 

 30         ± 0.10 ± 65.78 

P.s. 
n.d. 0.51 33.98 10.23 3.99 0.49 720.50 

         ± 0.10 ± 67.18 

P.v. 
TYCHO 

 

2.01 0.65 22.01 4.20 1.17 0.40 2156.00 

 41         ± 0.24 ± 985.44 
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S9B. Results of the PROC GLM procedure for the comparison of the parameters of Table S9A at 20 vs 75 µmol photons m-2 s-1 (cf. Tables S3, S4 and 

S9A) for all growth forms. Red: p > 0.05; orange: p < 0.05; light green: p < 0.01; dark green: p < 0.001. n.d. = not determined. The full names of all 

species can be found in Table 1. Abbreviations, definitions and conditions of measurement of all parameters are listed in Table 2. Arrows indicate an 

increase or decrease in the parameter from 20 to 75 µmol photons m-2 s-1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N.p. S.r. P.d. O.g. P.s. P.v. 

Chl a cell-1 ↓↓↓ ↓↓↓ ↓↓↓ ↓↓ n.d. 

 Fv/Fm   ↓ ↓       

DESm   ↑↑         

Dtxm   ↑↑ ↑↑     ↑↑ 

NPQm ↑↑ ↑↑     ↑↑↑ ↑ 

NPQ/Dtx       ↓↓     

E50NPQ         ↑↑   
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Supplementary Tables S10 

S10A. Growth rate, photosynthetic, xanthophyll cycle and non-photochemical quenching (NPQ) properties of the three tychoplankton diatom 

species grown under ‘planktonic’ conditions. The full names of the species can be found in Table 1. Abbreviations, definitions and conditions of 

measurement of all parameters are listed in Table 2. µ, growth rate (day-1), Chl a cell-1, content of chlorophyll a (in pg) per diatom cell. Values are 

averages  standard deviation per species.  

 

 

Species µ Chl a cell-1 Fv/Fm rETRm Ddx+Dtx DES NPQm DESm NPQ/Dtx 

B.b. 
1.34 0.62 0.70 38.9 11.19 21.02 0.59 37.87 0.17 

   5             ± 0.04 

C.c. 
1.46 0.37 0.75 47.72 7.82 17.29 0.50 17.29 0.18 

   17             ± 0.11 

P.v. 
1.76 0.36 0.71 37.64 8.43 16.18 0.75 21.74 0.47 

   19             ± 0.12 
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S10B. Results of the PROC MIXED procedure (group effect) and PROC GLM procedure (species difference) for the comparison of the parameters of 

Table S10A measured under ‘benthic’ vs ‘planktonic’ conditions (cf. Tables S3, S4 and S10A). Red: p > 0.05; orange: p < 0.05; light green: p < 0.01; dark 

green: p < 0.001. The full names of the species can be found in Table 1. Abbreviations, definitions and conditions of measurement of all parameters are 

listed in Table 2. Arrows indicate an increase or decrease in the parameter from benthic to planktonic growth condition. 

 

 

 

 

B.b. C.c. P.v. TYCHO 

Chl a cell-1 ↑↑↑ 

 

↓↓ 

 µ ↓↓   ↑↑   

Fv/Fm         

rETRm         

DD+DT         

DES ↑ ↑ ↑ ↑↑↑ 

NPQm ↓       

DESm ↑       

NPQ/DT   ↓     
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Supplementary Figure S1 

Relationship between the average biovolume of diatom cells and their chlorophyll a (Chl a) content (in pg cell-1). Cells were grown at 20 µmol 

photons m-2 s-1 and sampled in their exponential phase of growth. The full names and functional classification of all species are listed in Table 1. Data 

are from Table 1 and Table S2. 
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Supplementary Figure S2 

Non-photochemical quenching of Chl fluorescence (NPQ) as a function of light intensity (E from darkness to 1950 µmol photons m-2 s-1 which is 

equivalent to full sunlight in the field) measured during Non-Sequential Light Curves (NSLCs) in the five species of epipelon (EPL) (A), the seven species 

of motile (EPM-M, open symbols) (B) and non-motile epipsammon (EPM-NM, closed symbols), and in the three species of tychoplankton (TYCHO) 

(C). Cells were grown at 20 µmol photons m-2 s-1. The full names and functional classification of all species are listed in Table 1. Values are averages  

standard deviation. 

 

 

 

 

0

0.5

1

1.5

2

2.5

3

3.5

0 500 1000 1500 2000

E (µmol photons m
-2

 s
-1

)

C

N
P

Q

P.v.
B.b.

C.c.

0

0.5

1

1.5

2

2.5

3

3.5

0 500 1000 1500 2000

N
P

Q

E (µmol photons m
-2

 s
-1

)

A

N.p.

H.c.
E.p.
S.r.
C.b.

0

0.5

1

1.5

2

2.5

3

3.5

0 500 1000 1500 2000

N
P

Q

E (µmol photons m
-2

 s
-1

)

O.sp.

F.s.

B.l.
P.s.

B

A.sp.

P.d.

N.f.



Chapter 3: Contrasting NPQ dynamics 
and xanthophyll cycling in a motile 
and a non-motile intertidal benthic 

diatom 
Lander Blommaert1,4, Marie J. J. Huysman1,2,3, Wim Vyverman1, Johann Lavaud4,5 & 

Koen Sabbe1 

1 Ghent University, Lab. Protistology & Aquatic Ecology, B-9000 Ghent, Belgium 

2 VIB, Department of Plant Systems Biology, B-9052 Ghent, Belgium 

3 Ghent University, Department of Plant Biotechnology and Bioinformatics, B-9052 

Ghent, Belgium 

4 CNRS/Université de La Rochelle, UMR7266 LIENSs, Institut du Littoral et de 

l’Environnement, 17000 La Rochelle, France  

5 Current address : CNRS/Université Laval, UMI3376 Takuvik Joint International 

Laboratory, Département de Biologie, Pavillon Alexandre Vachon, Université 

Laval, 1045 avenue de la Médecine, Québec, Qc, G1V 0A6, Canada  

 

Adapted from: 

Blommaert, L., M. J. J. Huysman, W. Vyverman, J. Lavaud, and K. Sabbe. 2017. 
Contrasting NPQ dynamics and xanthophyll cycling in a motile and a non-motile 
intertidal benthic diatom. Limnol. Oceanogr. doi:10.1002/lno.10511 

 

 

  



96 
 

  



97 
 

Abstract 
 

Diatoms living in intertidal sediments have to be able to rapidly adjust photosynthesis in 

response to often pronounced changes in light intensity during tidal cycles and changes 

in weather conditions. Strategies to deal with oversaturating light conditions, however, 

differ between growth forms. Motile epipelic diatoms can migrate to more optimal light 

conditions. In contrast, non-motile epipsammic diatoms appear to mainly rely on higher 

Non-Photochemical Quenching (NPQ) of chlorophyll a fluorescence to dissipate excess 

light energy, and this has been related to a larger pool of xanthophyll cycle (XC) 

pigments. We studied the effect of 1 h high Photosynthetically Available Radiation (PAR) 

(2000 µmol photons m-2 s-1) on the kinetics of the xanthophyll cycle and NPQ in both a 

motile diatom (Seminavis robusta) and a non-motile diatom (Opephora guenter-grassii) 

in an experimental set-up which did not allow for vertical migration. O. guenter-grassii 

could rapidly switch NPQ on and off by relying on fast XC kinetics. This species also 

demonstrated high de novo synthesis of xanthophylls within a relatively short period of 

time (1 h), including significant amounts of zeaxanthin, a feature not observed before in 

other diatoms. In contrast, S. robusta showed slower NPQ and associated XC kinetics, 

partly relying on NPQ conferred by de novo synthetized diatoxanthin molecules and 

synthesis of Light-Harvesting Complex X (LHCX) isoforms. Part of this observed NPQ 

increase, however, is sustained quenching (NPQs). Our data illustrate the high and 

diverse adaptive capacity of microalgal growth forms to maximize photosynthesis in 

dynamic light environments. 
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Introduction 

 
Diatoms are dominant primary producers in areas characterized by pronounced 

fluctuations in light conditions (Armbrust 2009; Lavaud and Goss 2014). Rapid changes in 

light climate in well mixed waters or on intertidal flats challenge planktonic and benthic 

diatoms, respectively, to adjust light harvesting to what can be safely used for 

photosynthesis. As periods of high light conditions can result in oxidative damage to, in 

particular, the photosystem II (PSII) core, diatoms possess various mechanisms to deal 

with high light stress: (1) avoid excess light energy absorption by decreasing cell pigment 

content (MacIntyre et al. 2002); (2) dissipate excess excitation energy as heat in a 

process called Non-Photochemical Quenching of chlorophyll a (Chl a) fluorescence (NPQ) 

(Lavaud and Goss 2014; Goss and Lepetit 2015), and/or by engaging alternative electron 

cycling pathways (Wagner et al. 2016); (3) scavenge reactive oxygen species (ROS) 

(Janknegt et al. 2008, 2009a; b; Waring et al. 2010); (4) repair damaged PSII cores, 

mainly by replacing the D1 protein of the PSII reaction centre (Wu et al. 2011; Lavaud et 

al. 2016); (5) behavioural down regulation through vertical cell movement (microcycling 

and bulk migration) (Kromkamp et al. 1998; Serôdio 2004). Of the above mechanisms, 

especially NPQ is able to track fast light fluctuations experienced in the natural habitat 

(Brunet and Lavaud 2010; Lavaud and Goss 2014).  

In land plants, three NPQ components have been distinguished, based on the relaxation 

kinetics after high light exposure: the rapidly relaxing component qE (seconds to 

minutes), the slower state transitions qT (tens of minutes), and the so-called 

‘photoinhibitory’ quenching qI, which relaxes in the range of hours (Horton and Hague 

1988). In diatoms, however, only two of these have been observed (Owens 1986). 

Energy dependent quenching (qE) is the main component and is controlled by (1) the 

build-up of a proton gradient (ΔpH) across the thylakoid membrane, (2) the (reversible) 

de-epoxidation of diadinoxanthin (Ddx) to diatoxanthin (Dtx) in the xanthophyll cycle 

(XC) and (3) the presence of Light-Harvesting Complex X (LHCX) proteins, homologs of 

the Light-Harvesting Complex Stress-Related (LHCSR) proteins found in green algae 

(Lavaud and Goss 2014; Goss and Lepetit 2015). The origin of the second component 

(qI), however, is less clear. Besides PSII photoinactivation and damage, Dtx and some 

LHCX isoforms might be involved in this sustained quenching mechanism (Zhu and Green 

2010; Lavaud and Lepetit 2013). It is increasingly referred to as NPQs (for sustained 

NPQ) or ‘dark NPQ’ as it persists even under prolonged dark acclimation, particularly in 

intertidal benthic diatoms (Perkins et al. 2011; Lavaud and Goss 2014). 

A molecular mechanism of qE in diatoms has been recently proposed (Lavaud and Goss 

2014; Goss and Lepetit 2015). qE is hypothesized to be based on two quenching sites 

within the LHC antenna of PSII: (1) Q2 which is localized in a part of the LHC that remains 

attached to the PSII and which directly depends on the synthesis and activation of Dtx, 

and (2) Q1 which is localized in a part of the LHC that detaches from PSII upon Dtx 
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activation at Q2 and which forms an energy sink that amplifies Q2 quenching. It is 

believed that the persistence of Dtx, even in the dark, is responsible for keeping both 

quenching sites active and especially Q1, i.e. as long as Dtx is present at Q2 site, FCP 

(Fucoxanthin Chlorophyll a/c binding Protein) oligomers cannot reconnect to PSII which 

generates part of the sustained qI/NPQs (Lavaud and Goss 2014).  

Marked differences in NPQ capacity and kinetics were discovered between planktonic 

diatom species and even between ecotypes isolated from habitats experiencing different 

degrees of average irradiances and/or light fluctuations. These differences have been 

attributed either to variation in XC kinetics and/or the amount of LHCX proteins (Lavaud 

et al. 2007; Dimier et al. 2007; Bailleul et al. 2010; Petrou et al. 2011; Lavaud and Lepetit 

2013; Lepetit et al. 2017). The emerging picture from these reports is that a 

higher/faster Dtx synthesis supports a faster NPQ induction and a higher NPQ capacity in 

species/ecotypes adapted to habitats characterized by strong light fluctuations and/or 

average higher irradiance (Lavaud and Goss 2014). One of the specificities is the de novo 

Dtx synthesis, which in case of prolonged stress light conditions helps to amplify 

photoprotection via enhanced NPQ and/or ROS scavenging (Lepetit et al. 2010). Species 

thriving in fluctuating light conditions, for example, exhibit high de novo synthesis of Dtx 

molecules which correlates well with NPQ development during strong light conditions. 

Species experiencing a more stable light climate in their natural habitat also synthetize 

Dtx molecules de novo when shifted to high light conditions but these are probably not 

involved in NPQ but may rather have an antioxidant function (Lavaud and Lepetit 2013). 

In addition to a high NPQ capacity and fast Dtx production during oversaturating light 

conditions, fast relaxation of NPQ in low light conditions is key to track changes in 

irradiance (Lavaud et al. 2007). As Dtx molecules have to be epoxidized back to Ddx to 

switch the antenna system from an energy dissipating to a light harvesting mode, 

diatoms with a high Dtx epoxidation rate dissipate NPQ faster compared to diatoms with 

a lower epoxidation rate (Goss et al. 2006a; Lavaud and Lepetit 2013). A difference in 

NPQ capacity can also be attributed to differences in LHCX protein content. The low 

amount of LHCX1 protein, for instance, explains limited NPQ capacity in a high latitude 

Phaeodactylum tricornutum ecotype isolated from a supralitoral rockpool (P.t.4) which 

experiences lower average light intensity, and less drastically fluctuating light conditions, 

compared to other ecotypes (Bailleul et al. 2010). Whereas the LHCX1 gene is already 

maximally expressed in low light conditions, several other LHCX family members of both 

centric and pennate diatoms are highly and rapidly upregulated when exposed to high 

light (Nymark et al. 2009; Park et al. 2010; Zhu and Green 2010; Lepetit et al. 2013) and 

other stressful environmental conditions that impair photosynthetic capacity (Taddei et 

al. 2016). These proteins might either confer higher NPQ capacity by binding newly 

synthetized Dtx molecules and/or be involved in NPQs after prolonged high light 

exposure (Zhu and Green 2010; Lepetit et al. 2013, 2017). 
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While our knowledge of NPQ regulation is mostly based on studies of planktonic 

diatoms, whose light climate is mostly governed by water column turbulence, far less 

attention has been paid to NPQ regulation in benthic diatoms thriving in, and on, the 

sediments of intertidal flats (Jesus et al. 2009; Perkins et al. 2010; Cartaxana et al. 2011, 

2016b; a; Serôdio et al. 2012; Lavaud and Goss 2014; Ezequiel et al. 2015; Pniewski et al. 

2015; Laviale et al. 2015). Like terrestrial plants, these diatoms can experience fast light 

fluctuations, not buffered by a water column, during low tide. The tidal rhythm, 

furthermore, can change the light climate drastically as no or very little light reaches the 

sediments in turbid estuaries when submerged (Underwood and Kromkamp 1999).  

NPQ capacity of intertidal benthic diatoms is mainly defined by their ability or inability to 

avoid excess light energy (Jesus et al. 2009; Cartaxana et al. 2011; Barnett et al. 2015). 

Diatoms belonging to the raphid clade possess a raphe system that allows movement by 

secreting extracellular polymer substances (EPS) through the raphe slit. Raphid diatoms 

can thus migrate vertically into the sediment matrix to a more optimal light climate 

(Consalvey et al. 2004). In addition, microcycling of motile diatoms within the top layers 

of the sediments was proposed with algae migrating down to avoid photoinhibition 

being replaced by others (Kromkamp et al. 1998; Serôdio 2004). Such sequential 

turnover at the species level was indeed observed in laboratory mesocosms (Paterson 

1986) and during an in situ emersion period (Underwood et al. 2005). 

In contrast, diatoms living attached or in close association with single sand grains 

(epipsammic diatoms) are immotile or only capable of limited movement and therefore 

need to rely on physiological photoprotection (Cartaxana et al. 2011). This can explain a 

higher de-epoxidation of the Ddx-Dtx cycle pigments in epipsammic communities (Jesus 

et al. 2009). Barnett et al. (2015) experimentally demonstrated higher NPQ values, 

coupled with higher Dtx content, in epipsammic diatoms. A more comprehensive 

comparison between the regulation and kinetics of the NPQ mechanism of both motile 

and non-motile diatoms, however, has so far not been made. 

In this study we demonstrate fast irradiance tuning of NPQ, coupled with fast XC kinetics 

in the immotile epipsammic diatom species Opephora guenter-grassii. We show that this 

species, in addition to Dtx, also accumulates considerable amounts of the de-epoxidized 

xanthophyll zeaxanthin (Zx) during a short period (1 h) of high light exposure, a feature 

so far only observed in planktonic diatoms after prolonged (up to 6 h) periods of 

oversaturating light conditions (Lohr and Wilhelm 1999). As the high de novo synthesis 

of de-epoxidized xanthophylls in this species is not paralleled by an equal increase in 

NPQ, these xanthophylls are not expected to be directly involved in the NPQ 

mechanism. In contrast, an epipelic species, Seminavis robusta, shows a less dynamic 

NPQ, despite concerted de novo synthesis of both Dtx molecules and LHCX proteins. Our 

findings add to the physiological underpinning of the differential response of motile and 

non-motile diatom species (Juneau et al. 2015; Barnett et al. 2015) and of benthic 
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diatom communities in sediment (Pniewski et al. 2015; Laviale et al. 2015; Cartaxana et 

al. 2016b) to their environment.  

  



102 
 

Materials & methods 

 
Culture conditions 

Strains were obtained from the diatom culture collection (BCCM/DCG) of the Belgian 

Coordinated Collection of Micro-organisms (http://bccm.belspo.be), accession numbers 

Seminavis robusta (DCG 0105) and Opephora guenter-grassii (DCG 0448), and grown in 

semi-continuous batch culture in 1.8 L glass Fernbach flasks (Schott) in a day/night 

rhythm of 16/8 h with a Photosynthetically Available Radiation (PAR) of 20 µmol 

photons m-2 s-1. Cells were cultured in Provasoli’s enriched f/2 seawater medium using 

Tropic Marin artificial sea salt (34.5 g L-1) enriched with NaHCO3 (80 mg L-1 final 

concentration). Cultures were acclimated to these culturing conditions for at least 2 

weeks. Chlorophyll a (Chl a) was measured daily according to Jeffrey and Humphrey 

(1975) to monitor growth.  

High light exposure 

Cultures in exponential growth were concentrated to 10 mg Chl a L-1 by centrifugation 

(Eppendorf 5810 R) at 4000 RCF for 5 min in 50 mL falcons. The cultures were again 

acclimated to their growth conditions for 2 h before exposure to high light. Immediately 

before the experiment started NaHCO3 (4 mM, final concentration) was added from a 2 

M stock to prevent carbon limitation during the experiment. Four 65 W white light 

energy-saving lamps (Lexman) were used to provide high light (HL) conditions (2000 

µmol photons m-2 s-1) for 1 h. Cells were then allowed to recover for 1 h in low light (LL, 

20 µmol photons m-2 s-1), provided by one 20 W Lexman energy saving lamp. All light 

conditions were measured as PAR with a spherical micro quantum sensor (Walz) 

submerged in the centre of a 10 mg Chl a L-1 diatom suspension, thus corresponding to 

the concentrations used during the experiments. Cells were continuously stirred in a 

glass test tube to obtain a homogenous cell suspension. This glass test tube was cooled 

in a custom-made glass cooler by a water bath at 20°C. 

LHCX protein detection 

Sampling was conducted as described by Lepetit et al. (2013). Samples were taken 

immediately before light exposure (T0), after 1 h HL and after one subsequent h of LL 

recovery. Protein extraction, SDS-PAGE, Western-blot and ECL immunodetection were 

carried out as published by Laviale et al. (2015). Both an FCP6 antibody (dilution 

1/10,000), anti-FCP6 (LHCX1) from Cyclotella cryptica (Westermann and Rhiel 2005), and 

an anti-LHCSR3 (dilution 1/20,000) from Chlamydomonas reinhardtii (Bonente et al. 

2011) were tested. Anti-PsbB (CP47, Agrisera) was used as a loading control. Anti-LHCX6 

from T. pseudonana (Zhu and Green 2010) was not usable for the two investigated 

species. Phaeodactylum tricornutum CCAP 1055/1 (P.t.) samples exposed to HL for 3 h 

were analysed at the same time as a control.  
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Pigment analyses 

Diatom suspensions were rapidly filtered onto Isopore 1.2 µm RTTP filters (Merck 

Millipore), immediately frozen in liquid nitrogen and stored at -80°C. Samples were 

freeze-dried before adding -20°C cold 1.4 mL extraction buffer (90% methanol/0.2 M 

ammonium acetate (90/10 vol/vol) and 10% ethyl acetate). Pigment extraction was 

enhanced by adding glass beads (diameter 0.25–0.5 mm, Roth) and vortexing for 30 s. 

The extracts were sonicated for 30 s on ice at 40% amplitude with 2 s pulse, 1 s rest and 

filtered over a 0.2 µm filter. One hundred microliters were immediately injected into the 

HPLC system (Agilent). Samples were analysed according to Van Heukelem and Thomas 

(2001). As buffered extraction medium was used, no additional TBAA buffer was 

injected. All pigment concentrations (chlorophyll c (Chl c), fucoxanthin (Fx), 

diadinoxanthin (Ddx), diatoxanthin (Dtx), violaxanthin (Vx), antheraxanthin (Ax), 

zeaxanthin (Zx), chlorophyll a (Chl a) and β-carotene (β-car)) were calculated by 

comparison with pigment standards. All standards were obtained from DHI, with 

exception of Chl a, which was obtained from Sigma-Aldrich. 

Pulse Amplitude Modulated (PAM) Fluorometry  

Chlorophyll fluorescence was measured using a Diving PAM fluorometer (Walz). 

Saturating flashes (0.4 s, 3600 µmol photons m-2s-1) were provided by the internal 

halogen lamp to measure photosynthetic parameters (see Barnett et al. 2015 for a 

complete overview of parameters). The duration of 0.4 s for saturating pulses was tested 

as the best setting for measurement of the maximum photosynthetic efficiency of PSII 

(Fv/Fm) and effective quantum efficiency of PSII photochemistry (ΔF/Fm’). When applied 

longer, the maximal fluorescence yield (Fm) is under-estimated which artificially lowers 

Fv/Fm and ΔF/Fm’. This is most probably due to the high energy delivered by the halogen 

lamp of the Diving-PAM fluorometer (different from the LEDs used for most other PAM 

fluorometers). We have applied these settings before (see Barnett et al. 2015) and it 

provided reliable results. To avoid interference from the HL setup, the lights were 

switched off immediately before firing a saturating pulse (see Lepetit et al. 2013). The 

photosynthetic efficiency of PSII (ΔF/Fm’) was calculated as (Fm’-F’)/Fm’ and expressed as 

a percentage, taking the maximal photosynthetic efficiency (Fv/Fm), measured 

immediately before HL onset as 100%. Non-Photochemical Quenching (NPQ) was 

calculated as (Fm-Fm’)/Fm’. 
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Rate estimation and statistics 

The ΔF/Fm’ recovery rate constant (k) was calculated by fitting an exponential decay 

function:  

ΔF/Fm’(t) = ΔF/Fm’rec + [ΔF/Fm’(0) - ΔF/Fm’rec]e-kt 

where t represents time (in min) during recovery and ΔF/Fm’(0) and ΔF/Fm’rec represents 

ΔF/Fm’ (expressed in percentage from the ΔF/Fm’ before HL onset) at the start of the 

recovery period and after 30 min of recovery in LL respectively (Serôdio et al. 2012). Ddx 

de-epoxidation, Dtx and Zx epoxidation and the XC de novo synthesis rates were 

calculated as in Lavaud et al. (2004) using exponential decay functions for epoxidation 

and de-epoxidation rate constants (k). The Ddx epoxidation, for instance, was fitted as 

the decrease of Ddx with the exponential decay function: 

Ddx (t) = Ddxminimal + (Ddxinitial - Ddxminimal)e
-kt 

where t represents time (in min), and Ddxinitial and Ddxminimal represent the highest and 

lowest observed concentrations, respectively. Linear functions were fitted for 

xanthophyll de novo synthesis rates. Statistical analyses were conducted using the 

statistical software package SAS 9.4. Species parameters (3 biological replicates per 

species) were compared using the general linear model PROC GLM. In case of unequal 

variances, a Welch’s t-test was performed.  
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Results 

 
General characteristics  

The epipelic diatom Seminavis robusta and epipsammic diatom Opephora guenter-

grassii were grown under low light (LL) conditions; resulting in a XC pigment pool (Ddx + 

Dtx) of 4.94 ± 0.45 mol (100 mol Chl a)-1 for S. robusta and 9.88 ± 0.59 mol (100 mol Chl 

a)-1 for O. guenter-grassii. The maximal PSII quantum yield ΔF/Fm, measured immediately 

before HL exposure and without dark adaptation, was 0.685 ± 0.031 for S. robusta and 

0.665 ± 0.017 for O. guenter-grassii and did not differ significantly (p = 0.099) between 

the two species. This indicates that the cells were in an unstressed condition prior to HL 

exposure, which is also supported by the absence or negligible concentrations of 

diatoxanthin (Dtx). 

PSII quantum yield and NPQ  

Both O. guenter-grassii and S. robusta were exposed to HL for 1 h, after which they were 

allowed to recover in LL conditions. The quantum yield of PSII (ΔF/Fm’) of both species 

dropped during HL (Fig. 1a), but was significantly higher for O. guenter-grassii at the end 

of the HL period in comparison with S. robusta (p = 0.049, Welch’s t-test). During the 

subsequent low light conditions ΔF/Fm’ of O. guenter-grassii recovered about 90 % of its 

value before HL exposure whereas S. robusta recovered less than 75 %. The ΔF/Fm’ 

recovery rate constant was more than double the rate constant for the epipsammic 

species (0.096 min-1 ± 0.009 compared to 0.040 min-1 ± 0.004 for S. robusta). At each 

time point during HL, NPQ was higher in O. guenter-grassii, compared to S. robusta (Fig. 

1b). During the start of the LL period, O. guenter-grassii showed very rapid NPQ 

relaxation, with about half of its NPQ relaxing within 2.5 minutes. Both fast NPQ 

relaxation and recovery of ΔF/Fm’ slowed down when O. guenter-grassii was placed in 

darkness instead of LL (Fig. 2a&b). NPQ dissipation in S. robusta occurred more gradually 

and was incomplete after 1 h of LL, with a remaining NPQ of 0.504 ± 0.07 compared to 

0.188 ± 0.002 for O. guenter-grassii.  
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 S. robusta O. guenter-grassii 

Ddx + Dtx content 4.942 9.880 

[mol (100 Chl a)-1] ±0.479 ±0.594 

Dtx after 60 min HL 3.146 5.685 

[mol (100 Chl a)-1] ±0.424 ±1.413 

Ddx de-epoxidaton rate 0.081 0.164 

[min-1] ±0.017 ±0.0521 

De novo synthetized Dtx  1.976 2.138 

[mol (100 Chl a)-1] ±0.422 ±0.612 

Dtx de novo synthesis rate 0.341 0.444 

[mmol (mol Chl a)–1 min–1] ±0.035 ±0.065 

De novo synthetized Vx cycle pigments 0.131 2.043 

[mol (100 Chl a)-1] ±0.010 ±0.216 

De novo synthesis rate Vx cycle pigments 0.0185 0.35 

[mmol (mol Chl a)–1 min–1] ±0.009 ±0.025 

Dtx epoxidation rate in LL 0.08 0.406 

[min-1] ±0.01 ±0.144 

Zx epoxidation rate in LL n.d. 0.311 

[min-1]   ±0.060 

 

Table 1: Xanthophyll cycle characteristics. Abbreviations: Chl a, Chlorophyll a; Ddx, 

diadinoxanthin; Dtx, diatoxanthin; Vx, violaxanthin; Zx, zeaxanthin. All pigments are expressed 

as mol (100 mol chlorophyll a)-1. Epoxidation and de-epoxidation rates are calculated by fitting 

exponential decay functions. De novo synthesis rates were fitted with linear functions. Values 

represent averages of three independent measurements ± standard deviations. 
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Figure 1a&b: Photophysiological measurements. O. guenter-grassii (filled circles) and S. 

robusta (open circles) were exposed to one h of HL (2000 µmol photons m-2 s-1) and one 

subsequent h of recovery in low light (LL, 20 µmol photons m-2 s-1). The quantum yield of PSII 

(ΔF/Fm') (a), expressed in percentage of the maximal photosynthetic efficiency of PSII (Fv/Fm) 

before HL exposure and (b) Non-Photochemical Quenching (NPQ). Values represent averages 

of three independent measurements ± standard deviations. 
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Figure 2: Dark recovery of O. guenter-grassii after HL exposure. O. guenter-grassii was exposed 

to 1 h of HL (2000 µmol photons m-2 s-1) and one subsequent h of recovery in low light (LL, 20 

µmol photons m-2 s-1)(filled circles) or in dark recovery (open circles) with LL onset at 105 min 

(indicated by an arrow). (a) Photosynthetic efficiency of PSII ΔF/Fm' is expressed in percentage 

of the maximal photosynthetic efficiency of PSII (Fv/Fm) measured before high light onset. (b) 

Non-Photochemical Quenching (NPQ) and (c) Dtx, expressed in mol (100 mol Chl a)-1. Values 

represent averages of three independent measurements ± standard deviations for the low 

light recovery treatment. For the dark recovery treatment, only one replicate is plotted.  
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Xanthophyll cycle characteristics  

The higher Ddx-Dtx pool of O. guenter-grassii (p = 0.000) resulted in higher Dtx 

concentrations after 5 minutes of HL (p = 0.0447) (Fig. 3a&b, Table 1). The de-

epoxidation state (DES, calculated as Dtx/(Ddx + Dtx)), however, was not significantly 

different between the species during the HL period (Fig. 4). From 15 minutes onwards 

the total Ddx + Dtx pool increased (due to de novo synthesis of xanthophylls) with 

similar rates in both species (Fig. 3a&b, Table 1). During 1 h of HL treatment each species 

synthetized an additional 2 mol Ddx + Dtx (100 mol Chl a)-1. At the end of the HL period 

O. guenter-grassii contained significantly (p = 0.040) more Dtx (5.69 ± 1.41 mol (100 mol 

Chl a)-1) than S. robusta (3.15 ± 0.42 mol (100 mol Chl a)-1) (Table 1). Due to the lower 

amount of Dtx originating from de-epoxidation of Ddx in S. robusta and similar de novo 

Dtx synthesis as O. guenter-grassii, the relative contribution of de novo synthetized Dtx 

was about two-thirds of the accumulated Dtx in S. robusta, whereas the de novo 

contribution was only one third in the case of O. guenter-grassii. 

During the LL recovery period, Dtx was rapidly epoxidized by O. guenter-grassii. Its Dtx 

epoxidation rate constant in LL was about 5 times higher than in S. robusta (p = 0.003) 

(see Table 1), with most Dtx being epoxidized to Ddx within the first 5 min of LL 

recovery. Epoxidation occurred more gradually in S. robusta (Fig. 3a&b). Differences in 

epoxidation rate resulted in significant differences in de-epoxidation state at 5 (p = 

0.022) and 15 min (p = 0.019) during the LL recovery period (Fig. 4). At the end of the 

recovery period however, nearly all Dtx had disappeared in both species (Fig. 3a&b, 

Table 1). The fast Dtx epoxidation by O. guenter-grassii in LL was not observed in 

darkness (Fig. 2c). In both species, an increase in the Ddx + Dtx pool was recorded during 

LL treatment. O. guenter-grassii gained 2.26 ± 0.21 mol Ddx + Dtx (100 mol Chl a)-1, 

whereas in S. robusta the increase was 1.84 ± 1.10 mol Ddx + Dtx (100 mol Chl a)-1 (Table 

1). 

Besides the Dtx cycle pigments, pigments of the violaxanthin (Vx) cycle were detected in 

both species during HL (Fig. 3c&d, Table 1). O. guenter-grassii accumulated about 2 mol 

(100 mol Chl a)-1 Vx cycle pigments during the HL period (Table 1). At the end of the HL 

treatment, 1.34 ± 0.19 mol (100 mol Chl a)-1 of the de-epoxidized pigment Zeaxanthin 

(Zx) was detected in O. guenter-grassii. The intermediate between Zx and Vx, 

antheraxanthin (Ax), was also detected during HL (Fig. 3c). In comparison, S. robusta 

accumulated significantly less (p = 0.001) Vx cycle pigments (Fig. 3d) and both Zx and Ax 

were only present in trace amounts. During the LL recovery period epoxidation of Zx 

started immediately in O. guenter-grassii, resulting in a short peak of Ax (at time point 

2.5-5 min) and an increase in Vx. The total Vx cycle pool (Vx + Ax + Zx) decreased 

markedly for both species during LL with a decrease of 1.62 ± 0.48 mol (100 mol Chl a)-1 

for O. guenter-grassii and a smaller decrease of 0.07 ± 0.02 mol (100 mol Chl a)-1 for S. 

robusta. Notably, in O. guenter-grassii, Vx cycle pigments decreased as fast during the LL 
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period as new Ddx cycle pigments were synthetized (0.28 mmol (mol Chl a)-1 min-1 ± 0.08 

and 0.36 mmol (mol Chl a)-1 min-1 ± 0.05, respectively). During the course of the 

experiment no notable changes in Fx, Chl c and β-car were observed (Data not shown). 

Correlation between Dtx accumulation and NPQ  

NPQ correlated well with Dtx mol (100 mol Chl a)-1 for both species (Fig. 5). They showed 

similar slopes (0.7-0.8) until about 3 Dtx mol (100 mol Chl a)-1, after which less NPQ was 

developed per mol Dtx for O. guenter-grassii. The relationship remained true for S. 

robusta during the course of the experiment. Its Dtx content, nevertheless, did not 

exceed the threshold at which the curve slope changed in O. guenter-grassii. The y-axis 

intercept differed from zero for S. robusta, as was reported earlier (Barnett et al. 2015). 
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Figure 3a,b,c&d: Xanthophyll cycle kinetics. O. guenter-grassii and S. robusta were exposed to 

1 h of HL (2000 µmol photons m-2 s-1) and one subsequent h of recovery in low light (LL, 20 

µmol photons m-2 s-1). (a) Ddx cycle kinetics of O. guenter-grassii; (b) Ddx cycle kinetics of S. 

robusta; (c) Vx cycle kinetics of O. guenter-grassii; (d) Vx cycle kinetics of S. robusta. Short 

dashed lines represent the epoxidized pigment (Ddx or Vx) whereas solid lines represent the 

fully de-epoxidized pigment (Dtx of Zx). The grey line represents the intermediate Ax. Long 

dashed lines represent the sum of all xanthophylls per cycle. Values represent averages of 

three independent measurements ± standard deviations. 
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Figure 4: De-epoxidation state of O. guenter-grassii and S. robusta. O. guenter-grassii (filled 

circles) and S. robusta (open circles) were exposed to 1 h of HL (2000 µmol photons m-2 s-1) and 

one subsequent h of recovery in low light (LL, 20 µmol photons m-2 s-1). De-epoxidation state 

(DES) was calculated as 100[Dtx/(Ddx + Dtx)]. Values represent averages of three independent 

measurements ± standard deviations. 

 

 

Fig. 5a&b: Relationship between NPQ and Dtx. NPQ is plotted in function of Dtx, sampled at 

the same timepoints for O. guenter-grassii (a, circles) and S. robusta (b, triangles), exposed to 

1 h of HL (2000 µmol photons m-2 s-1) and one subsesquent h of recovery in low light (LL, 20 

µmol photons m-2 s-1). White symbols represent data points sampled during HL, whereas black 

symbols represent data points sampled during LL recovery. For O. guenter-grassii a distinction 

is made in the relationship below (solid line, slope p < 0.001) and above 3 mol Dtx (100 mol Chl 

a)-1 (dashed line, slope p < 0.001). The NPQ/Dtx relationship for S. robusta is represented by a 

dotted line (slope p < 0.001, intercept p < 0.001). 
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LHCX presence during HL  

For immunodetection of LHCX-isoforms, we tested an anti-FCP6 (LHCX1) antibody from 

Cyclotella cryptica (Westermann and Rhiel 2005), and an anti-LHCSR3 antibody from 

Chlamydomonas reinhardtii (Bonente et al. 2011). In O. guenter-grassii (Fig. 6a) the best 

results were obtained using the anti-FCP6 antibody, as less a-specific binding occurred in 

comparison with the LHCSR3 antibody. Only one LHCX isoform could be detected with a 

molecular weight close to that of P. tricornutum LHCX3 (22.24 KDa). This isoform was 

apparent in LL acclimated cells and increased in abundance during the 1 h of HL and the 

subsequent h of recovery in LL. 

In S. robusta (Fig. 6b) only the anti-LHCSR3 antibody revealed LHCX isoforms. One 

isoform, with a molecular weight equal to P. tricornutum LHCX3 (22.24 KDa) and another 

more faint band with an equal size to P. tricornutum LHCX2 (24.73 KDa) were present in 

LL acclimated cells. The former increased in abundance during HL and subsequent 

recovery in LL. After 1 h of HL, moreover, two additional LHCX isoforms could be 

detected. An LHCX isoform of about 23 KDa was clearly present after 1 h of HL and after 

the additional recovery period. The second one, about the size of LHCX1 in P. 

tricornutum (21.95 KDa), became visible after 1 h of HL.  

 

Figure 6a&b: Western blot of LHCX proteins. Western blot of (a) O. guenter-grassii using an 

FCP6 antibody and (b) S. robusta using anti-LHCSR3 sampled before (T0) exposure to HL (2000 

μM photons m-2 s-1), after 1 h of HL (HL) and after 1 h of recovery in LL (20 μM photons m-2 s-1) 

(HL + LL). An antibody against the plastid encoded PsbB (CP47) protein was used as a loading 

control. Phaeodactylum tricornutum (P.t.) samples which were exposed to HL for 3 h were 

analysed at the same time as a control. Phaeodactylum samples showed three LHCX bands 

using the LHCSR3 antibody which were previously identified as LHCX1, LHCX2 and LHCX3 

(Lepetit et al., 2013). Identification of P.t. LHCX2&3 was less clear using the FCP6 antibody in 

(a).  
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Discussion 
 

In this study we demonstrate marked differences in irradiance tuning of NPQ and 

associated XC pigment and LHCX protein dynamics between a motile and a non-motile 

marine benthic diatom. The non-motile species (O. guenter-grassii) exhibits a dynamic 

and strong high-energy quenching (qE), coupled to fast XC kinetics and pronounced 

synthesis of de-epoxidized xanthophylls, including zeaxanthin. In this species, strong 

physiological photoprotection may compensate for its lack of motility as a way to avoid 

oversaturating light conditions. The motile species (S. robusta) on the other hand 

exhibited an overall lower qE capacity, even though NPQ increased during the light 

period, possibly due to de novo synthesis of both Dtx and LHCX proteins. 

Prior to the experiments, both species were acclimated to low light conditions, to avoid 

the presence of Dtx and NPQ in cultures, as much as possible, which could bias the 

measurement of Fm. These growth conditions resulted in similar XC content as observed 

by Barnett et al. (2015) under identical light conditions for the same benthic species 

used in this study, and also as observed for a range of planktonic species grown in a PAR 

of 40 µmol photons m-2s-1 (Lavaud et al. 2004). The non-motile epipsammic species O. 

guenter-grassii showed higher NPQ during high light exposure, compared to the epipelic 

diatom S. robusta. As reported by Barnett et al. (2015), higher NPQ values coincided 

with a higher overall Dtx content de-epoxidized from a larger initial Ddx pool, rather 

than a higher de-epoxidation state (DES) or a higher involvement of Dtx molecules in the 

NPQ mechanism (Lavaud and Lepetit 2013). Indeed, we did not observe a difference in 

DES between O. guenter-grassii and S. robusta, nor a difference in the slopes of the 

NPQ/Dtx plots. Note that Jesus et al. (2009), working on natural epipelic and epipsammic 

communities, did observe a difference in DES between both, but this may have been due 

to high light avoidance by vertical migration and/or microcycling in the epipelic 

communities, which was impeded in our study.  

Accumulation of Dtx, independent from Ddx de-epoxidation, was observed for both 

species during high light exposure as reported for planktonic diatoms (Lavaud et al. 

2004; Lavaud and Lepetit 2013) and natural epipelic communities (Laviale et al. 2015). 

The rate constant of this de novo Dtx synthesis was similar for both species and in the 

range of planktonic diatoms exposed to the same HL conditions (Lavaud et al. 2004), 

resulting in the same increase of the Ddx + Dtx pool. The XC pool at the end of the HL 

period, nonetheless, was still relatively low for both species, as up to 26 mol Ddx + Dtx 

(100 mol Chl a)-1 were observed by Lohr and Wilhelm (1999) in Cyclotella meneghiniana 

and even up to 30-40 Ddx + Dtx (100 mol Chl a)-1 in Chaetoceros socialis (Dimier et al. 

2007). These large XC pools, however, required a prolonged exposure (i.e., several h) to 

high irradiances, whereas in this study the HL period was relatively short (1 h). In the 

diatoms Plagiogramma staurophorum and Brockmanniella brockmannii, nonetheless, 
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acclimation to a PAR of 75 µmol photons m-2s-1 resulted in XC pools higher than 25 Ddx + 

Dtx (100 mol Chl a)-1 (Barnett et al. 2015). 

The involvement of de novo synthetized Dtx differed between both species. Whereas 

the NPQ-Dtx relationship remained true for S. robusta, de novo synthetized Dtx in O. 

guenter-grassii did not contribute equally to the NPQ mechanism, as shown by a decline 

in the NPQ-Dtx relationship. Part of this additionally synthetized Dtx is possibly present 

in the lipid matrix of the thylakoid membrane (Schumann et al. 2007) to prevent lipid 

peroxidation (Lepetit et al. 2010). It should be noted, however, that the total Dtx values 

observed for S. robusta during our experiments remained rather low compared to values 

recorded for other species using a similar setup (Lavaud et al. 2004; Lepetit et al. 2013; 

Lavaud and Lepetit 2013) and might be due to a small Ddx pool before HL onset (Lavaud 

et al. 2004). A stable NPQ/Dtx slope during de novo synthesis of Dtx, as observed in S. 

robusta, nonetheless, may indicate synthesis of new Dtx-binding proteins such as LHCXs 

(Lepetit et al. 2013).  

As fast epoxidation of Dtx is crucial to switch the light harvesting system from an energy 

dissipation state to a light harvesting state, we monitored NPQ relaxation and Dtx 

epoxidation during low light following high light exposure. O. guenter-grassii displayed 

very rapid Dtx epoxidation coupled with an equally fast NPQ relaxation, but not during 

dark recovery, as previously reported (Goss et al. 2006b). This is also demonstrated by 

the fast recovery of PSII quantum yield in low light, which is severely restricted in 

darkness as the epoxidation reaction is possibly slowed down by NADPH depletion (Goss 

et al. 2006b). The fast reversal of NPQ and nearly complete recovery of PSII quantum 

yield, moreover, indicate that the observed high NPQ values comprise mostly qE while 

qI/NPQs is virtually absent. 

A fast switch from energy dissipation to light harvesting after high light exposure was 

not observed in the epipelic diatom S. robusta, where Dtx epoxidation and coupled NPQ 

relaxation occurred more gradually. Together with an incomplete and slower recovery of 

PSII quantum yield our data demonstrate a higher susceptibility to photoinhibition 

during prolonged high light as has been shown for species isolated from habitats lacking 

strong light fluctuations (Goss et al. 2006b; Su et al. 2012; Lavaud and Lepetit 2013). The 

observed NPQ values, increasing during the high light treatment, therefore comprise not 

only qE but also a significant fraction of qI due to PSII photoinactivation and damage 

(since Dtx is almost fully converted back to Ddx). 

Even though both S. robusta and O. guenter-grassii accumulated similar amounts of 

newly synthetized Dtx within 1 h of high light, the latter synthetized the same amount of 

Vx cycle and Dtx cycle pigments, including Zx. The presence of a parallel Vx-Ax-Zx cycle 

has been demonstrated in several algae possessing the Ddx-Dtx cycle, including the 

diatom species C. meneghiniana and P. tricornutum (Lohr & Wilhelm, 1999). Zx 

accumulation in these species, however, required prolonged (up to 6 h) high light 
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exposure (Lohr and Wilhelm 1999, 2001) and has never been reported in studies on P. 

tricornutum using similar PAR and exposure time (i.e. within 1 h, 2000 µmol photons m-

2s-1) as used in this study (Lavaud et al. 2004; Domingues et al. 2012; Lepetit et al. 2013; 

Lavaud and Lepetit 2013). Epoxidation of Zx in low light was as fast as Dtx epoxidation, 

while the second epoxidation step occurred more slowly, resulting in a transient peak in 

the intermediate Ax. This transient peak in Ax has been reported before for the green 

alga Chlorella (Goss et al. 2006a). The Vx cycle pool of O. guenter-grassii declined during 

the 1 h recovery period and to a lesser degree also in S. robusta, whereas a similar Vx 

cycle pool decline in P. tricornutum was not observed within 1 h of low light recovery 

(Lohr & Wilhelm, 1999). The high amount of Vx cycle pigments synthetized by O. 

guenter-grassii in high light may have been converted to Ddx during the recovery period, 

as the decline in Vx cycle pigments was paralleled by an equal increase in Ddx + Dtx. A 

pathway from Vx to Ddx through the intermediate neoxanthin has been proposed by 

Dambek et al. (2012). In S. robusta, however, more Ddx + Dtx accumulated during the LL 

period than was lost from the Vx cycle pool. This might be due to additional synthesis of 

Ddx cycle pigments during low light, even though additional de novo synthesis in low 

light conditions is considered to be low (Lohr & Wilhelm, 1999). According to Lohr and 

Wilhelm (1999, 2001), the primary role of Vx cycle pigments in diatoms is not 

photoprotection as they mainly serve as intermediates in Ddx and fucoxanthin 

production. Increasing the light intensity, nonetheless, changes the allocation of newly 

synthesized xanthophylls to the Vx-Ax-Zx pool in P. tricornutum (Lohr and Wilhelm 

1999). Moreover, Vx cycle pigments are mostly detected in algae displaying high de novo 

xanthophyll synthesis combined with high de-epoxidase activity. This fits with our 

observations of O. guenter-grassii, de novo synthetizing substantially more xanthophylls 

(considering both Ddx and Zx cycle pigments) and de-epoxidising more Ddx to Dtx during 

HL than S. robusta. We do not expect Zx to be directly involved in the NPQ mechanism of 

O. guenter-grassii as the NPQ/Dtx relationship decreased during de novo synthesis of 

both xanthophylls. In higher plants, Zx can dissolve in the thylakoid membrane lipids 

instead of being protein bound (Jahns et al. 2009), scavenging reactive oxygen species 

with a higher capacity than other xanthophylls found in higher plants (Havaux et al. 

2007), or possibly regulating membrane fluidity (Havaux and Gruszecki 1993). 

As LHCX proteins play a central role in the NPQ mechanism of diatoms (Bailleul et al. 

2010; Zhu and Green 2010; Lepetit et al. 2013), we compared LHCX synthesis for the first 

time between an epipsammic and an epipelic diatom. We could detect only one LHCX 

isoform (~22 kDa) in the epipsammic model O. guenter-grassii using the FCP6 antibody. 

It did not strongly react to a shift to high light and was more abundant in subsequent 

low light. The epipelic diatom S. robusta, however, revealed two out of four isoforms 

which strongly reacted to HL: one isoform with MW ~23 kDa and a second one with MW 

~19 kDa. However, aspecific binding of the used antibody or MW differences due to 

post-translational modifications (e.g. phosphorylation, see Bonente et al. 2011) could 
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not be excluded. Interestingly, in epipelic communities, a 23 kDa isoform was shown to 

positively reacts to high light, high temperature and motility inhibition (Laviale et al. 

2015). The two isoforms already present in low light might provide benthic diatoms with 

a basic NPQ to rapidly cope with sudden changes in light climate, as has been 

demonstrated for LHCX1 of P. tricornutum (Bailleul et al., 2010). However, the S. robusta 

genome does not contain a close homolog to the P. tricornutum LHCX1 gene at the 

sequence level (L. Blommaert et al., data not shown). LHCXs which are strongly 

upregulated during high light have been suspected to either bind de novo synthetized 

Dtx, conferring higher NPQ and/or participate in a sustained component of NPQ (NPQs) 

after prolonged high light exposure (Zhu and Green 2010; Lepetit et al. 2013, 2017). As 

S. robusta accumulates novel Dtx during HL while its NPQ increases, the two observed 

light-responsive LHCX isoforms may be responsible for Dtx binding, as suggested by Zhu 

and Green (2010), and (Lepetit et al. 2013, 2017). However, other FCP proteins may be 

responsible as for instance the LHCR6 and LHCR8 (Light-Harvesting Complex Red lineage) 

genes are strongly upregulated in P. tricornutum, upon a shift to high light (Nymark et al. 

2009). 

Ecological implications 

A fast and strong irradiance-tuning of NPQ is to be expected in immotile epipsammic 

diatoms as they live attached to sand grains (Ribeiro et al. 2013) and are unable to move 

away from oversaturating light conditions. Furthermore, sandy sediments are 

characterized by strong light scattering in the uppermost layers, thereby increasing the 

average incident irradiance to which these diatoms are exposed (Kuhl et al. 1994; 

Cartaxana et al. 2016b). Even though our epipsammic species was acclimated to low PAR 

(20 µmol photons m-2s-1) it was able to cope with a sudden change to a light intensity 

similar to full sunlight. Similar transitions from low to full sunlight (and vice versa) can be 

common in sandy sediments during low tide (Hamels et al. 1998). Given the prolonged 

harsh light conditions in these sediments, epipsammic diatoms probably demonstrate a 

high de novo synthesis of photoprotective xanthophylls in situ, including Zx. This can also 

explain the previously observed discrepancy between high Zx content and absence of 

colonial cyanobacteria (containing Zx) in sandy sediments, as reported in Hamels et al. 

(1998). Taken together, our results suggest that epipsammic diatoms use a combination 

of distinct photoprotective strategies described by Lavaud and Lepetit (2013) to cope 

with the light climate of sandy intertidal sediments: (1) a strong and fast reversible qE to 

track light fluctuations, combined with (2) high de novo synthesis of de-epoxidized 

xanthophylls, probably unbound to the LHC antenna system, which may fulfil an anti-

oxidant function during prolonged light conditions. Even though our study was 

performed on only one epipsammic representative, a strong qE and a relatively higher 

XC pool (compared to epipelic species) seem to be general for epipsammic species 

(Barnett et al. 2015). 



118 
 

The epipelic model S. robusta displayed a lower NPQ consisting partly of photoinhibition 

(qI). This is expected as epipelic diatoms use vertical migration and/or microcycling as 

their primary photoprotection mechanism when motility is allowed (Kromkamp et al. 

1998; Serôdio 2004; Perkins et al. 2010; Cartaxana et al. 2011; Serôdio et al. 2012; 

Laviale et al. 2015). Furthermore, vertical migration is fast enough to reduce the amount 

of absorbed photons and can operate simultaneously with NPQ induction (Laviale et al. 

2016). Both synthesis of new Dtx pigments and LHCX proteins, nonetheless, have been 

shown in epipelic communities under high light conditions (Laviale et al. 2015), which is 

in line with our findings. Furthermore, our data suggests the involvement of light-

regulated LHCX proteins during harsh light conditions, allowing epipelic species to 

acclimate to prolonged higher light conditions (Ezequiel et al. 2015; Barnett et al. 2015). 

Hence, although adapted to a habitat with more cohesive sediments, characterized by a 

strongly attenuated photic zone (Cartaxana et al. 2016b), epipelic diatoms still possess 

the ability to increase their low basal photoprotective ability. The fact that epipelic 

species have been shown to emerge at the sediment surface at different times during 

tidal emersion suggests that they have different species-specific light niches (Paterson 

1986; Underwood et al. 2005). As a result, their capacity for physiological 

photoprotection is also expected to differ between species. Future studies, therefore, 

should focus on the interspecific differences in the balance between behavioural and 

physiological photoprotection. 
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Abstract 

 
Benthic diatoms are dominant primary producers in intertidal marine sediments, which 

are characterized by widely fluctuating and often extreme light conditions. To cope with 

sudden increases in light intensity, benthic diatoms display both behavioural and 

physiological photoprotection mechanisms. Behavioural photoprotection is restricted to 

raphid pennate diatoms, which possess a raphe system that enables motility and hence 

positioning in sediment light gradients (e.g. via vertical migration into the sediment). The 

main physiological photoprotection mechanism is to dissipate excess light energy as 

heat, measured as Non-Photochemical Quenching (NPQ) of chlorophyll fluorescence. A 

trade-off between vertical migration and physiological photoprotection (NPQ) in benthic 

diatoms has been hypothesized before, but this has never been formally tested. We 

exposed five epipelic diatom species (which move in between sediment particles) and 

four epipsammic diatom species (which live in close association with individual sand 

grains) to high light conditions, and characterized both NPQ and the relative magnitude 

of the migratory response to high light. Our results reveal the absence of a significant 

downward migratory response in the araphid diatom (Opephora guenter-grasssii), but 

also in several raphid epipsammic diatoms, while all epipelic species showed a significant 

migratory response (20-40 % decrease in surface biomass in 30 min) upon high light 

exposure. In all epipsammic species the upregulation of NPQ was rapid and pronounced 

(NPQ ~3 after 5 min); NPQ relaxation in low light conditions, however, occurred faster in 

the araphid diatom (Opephora guenter-grasssii), compared to the raphid epipsammic 

species. In contrast, all epipelic species lacked a strong and flexible NPQ response (NPQ 

~1.5 after 5 min of high light) and showed higher susceptibility to photodamage when 

not able to migrate, with the exception of Navicula arenaria that relaxed its NPQ to the 

same extent as epipsammic diatoms. While overall our results support the vertical 

migration-NPQ trade-off, the lack of strong relationships between the capacity for 

vertical migration and NPQ within the epipsammic and epipelic groups suggests that 

other factors as well, such as cell size, substrate type and photoacclimation, may 

influence photoprotective strategies. 
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Introduction 
 

Light is an indispensable but often highly variable resource for microalgae. While traits 

associated with light utilization are plastic, they can also differ between taxa, often in 

relation to the specific light climate in their respective habitats (Litchman and 

Klausmeier 2008). For example, rapid physiological photoprotection mechanisms, such 

as excess energy dissipation as heat through Non-Photochemical Quenching of 

chlorophyll fluorescence [NPQ, related to de-epoxidation of xanthophyll pigments in the 

so-called xanthophyll cycle (XC), (Lavaud and Goss 2014)] are more strongly developed 

in diatom species which inhabit strongly mixed and turbid coastal environments than in 

those inhabiting open ocean environments with a more stable light climate (Lavaud et 

al. 2007; Dimier et al. 2009; Bailleul et al. 2010).  

At low tide, benthic diatoms living in intertidal sediments experience a light climate 

similar to the terrestrial environment, with often fast and unpredictable fluctuations in 

light (Lavaud and Goss 2014), and display a high NPQ capacity (Perkins et al. 2010a). 

Large differences in NPQ capacity have been observed between benthic growth forms 

(Jesus et al. 2009, Cartaxana et al. 2011, Barnett et al. 2015, Pniewski et al. 2015, 

Cartaxana et al. 2016b). Dense biofilms composed of epipelic diatoms are formed on 

fine-grained sediments (Sabbe 1993; Ribeiro et al. 2013). Epipelic diatoms live freely on 

and in sediments and possess a raphe structure through which mucilage is secreted 

allowing movement (Round et al. 1990; Aumeier and Menzel 2012). In addition to 

endogenous vertical migration rhythms in response to diurnal and tidal cycles 

(Consalvey et al. 2004), epipelic diatoms can also actively position themselves within 

sediment light gradients in order to maximize photosynthesis and/or avoid 

overexposure (Admiraal 1984; Serôdio et al. 2006; Cartaxana et al. 2016a). While in situ 

epipelic diatom communities also activate the XC as a response to high light (Chevalier 

et al. 2010), downward vertical migration (VM) into the sediment is considered to be 

their prime response to high light stress (Perkins et al. 2010b). This behavioural response 

could as such minimize the need for physiological photoprotection (Serôdio et al. 2001; 

Raven, 2011).  

In more sandy sediments, epipelic communities are largely replaced by communities of 

epipsammic diatoms. These diatoms are either araphid (and hence non-motile) and 

firmly attached to sand grains (either adnate or via a mucilage stalk), or raphid. In the 

latter case, it is hypothesized that their movement is largely restricted to the sphere of 

individual sand grains (Sabbe 1997; Ribeiro et al. 2013). As in situ communities living on 

sandy sediments showed no migratory behaviour and exhibited higher 

diatoxanthin/diadinoxanthin (Dtx/Ddx) ratios than communities living on silt, a trade-off 

between behavioural (VM) and physiological photoprotection (NPQ) was proposed (van 

Leeuwe et al. 2008; Jesus et al. 2009). Exposing both silt- and sand-inhabiting 
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communities to high light in controlled laboratory conditions supported this hypothesis 

as the sand-inhabiting communities showed higher Dtx/Ddx ratios while not migrating 

downward in response to high light (Cartaxana et al. 2011). These observations were 

confirmed by Barnett et al. (2015) who used unialgal cultures to show that epipsammic 

diatoms indeed have a higher capacity for NPQ and XC than epipelic species. In addition, 

non-motile epipsammic species show a stronger coupling between NPQ development 

and the light saturation point (Ek) than motile epipsammic species. Finally, Laviale et al. 

(2016) showed that in epipelic communities light induction of VM occurs at a similar rate 

as NPQ induction, an essential condition for a migration-physiology trade-off.  

While all above studies support a trade-off between NPQ and VM, combined 

measurements of both traits are limited to natural communities (Perkins et al. 2010b; 

Serôdio et al. 2012; Laviale et al. 2015, 2016). Natural communities however usually 

contain a mix of growth forms and species (Hamels et al. 1998), which can hamper the 

interpretation of NPQ and XC measurements as both growth form and species responses 

can be quite specific (Underwood et al. 2005; Barnett et al. 2015; Cohn et al. 2015). 

Photoprotection capacity of raphid and araphid epipsammic growth forms has rarely 

been investigated in unialgal cultures (Barnett et al. 2015; Blommaert et al. 2017), while 

the capacity for vertical migration in epipsammic species has to our knowledge never 

been investigated in cultures.  

Here we investigated the relationship between NPQ activation and relaxation and the 

vertical migration capacity, measured as a decrease in surface biomass, expressed as 

Normalized Difference Vegetation Index (NDVI) (as used by Serôdio et al. 2006; Laviale 

et al. 2016), for a set of common epipelic (5) and epipsammic (4) diatom species. As it is 

important that trade-offs are studied with all else being equal (Litchman and Klausmeier 

2008), we quantified both traits under identical conditions, with all strains acclimated to 

the same light climate. 
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Materials and Methods 
 

Epipelic and epipsammic diatom strains were obtained from the diatom culture 

collection (BCCM/DCG) of the Belgian Coordinated Collection of Micro-organisms 

(http:/BCCM.belspo.be) and the Nantes Culture Collection-France (NCC), 

(http://ncc.univ-nantes.fr/). Accession numbers are given in Table 1. Photographs of all 

species were taken with an Axiophot2 microscope (Carl Zeiss AG, Oberkochen, 

Germany), equipped with a monochrome digital camera, AxioCam MRm (Carl Zeiss AG, 

Oberkochen, Germany) (Fig. 1). Species were grown at 20°C in batch cultures in a 

day/night regime of 16/8 h with a light intensity of 20 µmol photons m-2 s-1 using two 

L58W/840 Lumilux cool white tubes and one L58W/865 cool daylight fluorescent tube 

(Osram, Munich, Germany). Cells were cultured in Provasoli’s enriched f/2 seawater 

medium using Tropic Marin artificial sea salt (Dr. Beiner GmbH, Wartenberg, Germany) 

(34.5 g l-1) enriched with NaHCO3 (80 mg l-1 final concentration). Cultures were 

acclimated to these culturing conditions for at least 2 weeks prior to the experiments.  

 

Fig. 1: Light microscopy photographs of the species used in this study. a: Navicula arenaria var. 

rostellata, b: Craspedostauros britannicus, c: Seminavis robusta, d: Entomoneis paludosa, e: 

Navicula phyllepta, f: Planothidium delicatulum, g: Biremis lucens, h: Nitzschia cf. frustulum, i: 

Opephora guenter-grassii. Scale bar = 10 µm.  
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Table1: Species information 

Species Abbreviation Growth 

form 

Collection n° Sampling location 

Craspedostauros 

britannicus E.J. 

Cox  

C.b. Epipelon NCC195-06-

02 

Pouliguen, Atlantic, France 

Entomoneis 

paludosa (W. 

Smith) C.W. 

Reimer  

E.p. Epipelon NCC18-1 Bay of Bourgneuf, Atlantic, France 

Navicula 

phyllepta F.T. 

Kützing 

N.p. Epipelon DCG 0486 Paulina Schor, The Netherlands 

Navicula arenaria 

var. rostellata H. 

Lange-Bertalot 

N.a. Epipelon DCG 0489 Paulina Schor, The Netherlands 

Seminavis robusta 

D.B. Danielidis & 

D.G. Mann  

S.r. Epipelon DCG 0105 Progeny of strains from Veerse 

Meer, The Netherlands 

Nitzschia cf. 

frustulum (F.T. 

Kützing) A. 

Grunow  

N.f. Epipsam

mon 

(raphid) 

DCG 0494 Rammekenshoek, North Sea, The 

Netherlands 

Planothidium 

delicatulum (F.T. 

Kützing) F.E. 

Round & L. 

Bukthiyarova,  

P.d. Epipsam

mon 

(raphid) 

NCC363 Bay of Bourgneuf, Atlantic, France 

Biremis lucens 

(F.R. Hustedt) K. 

Sabbe A. 

Witkowski & W. 

Vyverman 

B.l. Epipsam

mon 

(raphid) 

NCC360.2 Bay of Bourgneuf, Atlantic, France 

Opephora 

guenter-grassii (A. 

Witkowski & H. 

Lange-Bertalot) K. 

Sabbe & W. 

Vyverman  

O.g. Epipsam

mon 

(araphid) 

DCG 0448 Rammekenshoek, North Sea, The 

Netherlands 
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Preparation of monospecific biofilms 

Light brown kaolin (Carl Roth GmbH, Karlsruhe, Germany) was used as a standard test 

substrate for diatom motility as it has similar properties as mudflat sediment (Hay et al. 

1993) and is commercially available. Differences in sediment light climate between 

natural sediments and kaolin, however, could not be excluded. A schematic overview of 

artificial biofilm preparation is shown in Fig. 2. 24-well plates were filled with 0.75 g 

kaolin in each well and mixed with one ml of medium to obtain a homogenous 

suspension. The sediment was pelleted by centrifugation at 1000 RCF for 5 min. For 

epipelic diatoms, monospecific suspensions (0.5 ml, 6-10 µg Chl a/ml) were mixed with 

0.1 g kaolin, pipetted on top of the kaolin within the wells and centrifuged at 50 RCF for 

1 min. The diatom suspensions were mixed with kaolin because centrifugation without 

kaolin resulted in an uneven distribution of the diatom layer on the sediment. For 

epipelic species 10 µg Chl a/ml suspensions were used, except for both Navicula species 

(6 µg Chl a/ml). After a second centrifugation step (to conform with the epipsammic 

treatment, see below), the supernatant medium was removed and diatoms were 

allowed to migrate to the surface for 6 h in 20 µmol photons m-2 s-1 at 20°C. Higher light 

intensities were not used for upward migration to avoid a photophobic response or a 

change in photophysiology. For epipsammic diatoms, 0.1 g kaolin, mixed with 0.5 ml 

artificial seawater but without diatoms, was first added to the wells already containing 

0.75 g centrifuged kaolin, as described above, and then centrifuged at 50 RCF for 1 min. 

Afterwards, 1 ml suspension of epipsammic diatoms (2 µg Chl a/ml) was added and 

centrifuged at 50 RCF for 1 min after which the supernatant medium was removed. The 

epipsammic treatment was slightly different from the epipelic one because the cells 

were either non-motile or did not migrate to the sediment surface within the same time 

frame used for the epipelic diatoms. By analogy with the epipelic treatment, the 

epipsammic species were then placed in 20 µmol photons m-2 s-1 at 20°C for 6 h before 

high light exposure. Surface biomass (expressed as Normalized Difference Vegetation 

Index (NDVI), see further), measured before the start of the experiments, ranged 

between 0.1 and 0.25 for all species. To quantify the extent of vertical migration, relative 

values were calculated, thus standardizing for differences in initial surface biomass. 
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Fig. 2: A schematic overview of artificial biofilm preparation.  
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NDVI and chlorophyll fluorescence measurements 

Both pulse amplitude modulated (PAM) fluorescence imaging and NDVI were measured 

with a standard MAXI Imaging PAM M-series (Heinz Walz GmbH, Effeltrich, Germany), 

equipped with an IMAG-K4 camera and mounted with an IMAG-MAX/F filter. The 

illumination unit of the imaging system contains red (660 nm) and near-infrared (NIR, 

780 nm) LEDs providing monochromatic pulse modulated light. The reflectance images 

of the monochromatically illuminated samples were captured by the same CCD-chip that 

captures chlorophyll fluorescence.  

In two separate experiments, NPQ and VM (see below) were measured immediately 

before (0 min) and after 2.5, 5, 10, 15, 20, 25 and 30 min HL illumination (1900 µmol 

photons m-2 s-1, photosynthetically available radiation), provided by the MAXI Imaging 

PAM Blue LED-panel. The outer wells of the 24-well plates were not included to avoid 

inhomogeneity in light intensity.  

The intensities of both red and NIR illumination sources were calibrated with a 18% grey 

standard (Neutral Grey Card 4963, FOTOWAND-Technic Dietmar Meisel, Sudwalde, 

Germany), placed in the middle of the camera field of view as during HL exposure the 

NIR reflectance decreased while red reflectance increased. Red and NIR reflectance 

images were captured automatically using the script function in the ImagingWin 

software. Areas of interest (AOI) were placed in the middle of each well to avoid edge-

effects using the ImagingWin (v2.41a) software (Heinz Walz GmbH, Effeltrich, Germany). 

Sediment temperature was maintained at 20°C by working in an air-conditioned room, 

removing the Perspex eye-protection hood and providing additional cooling by a fan, 

and keeping the 24-well plate, which was perforated in between the wells, in a water 

bath on a stirring plate.  

For NDVI measurements, a saturating pulse (0.8 s, INT 8) was fired at the end of each HL 

interval to create a new file in which only one red and NIR image could be saved. Red 

and NIR were captured after 10 s of darkness after this saturating pulse to avoid 

interference. NDVI was calculated as (R780 – R660)/(R780 + R660) using the AOI 

averages (Rouse et al. 1974). An NDVI vs. chlorophyll a (Chl a) calibration curve was 

constructed by creating artificial biofilms by centrifuging (cf. epipsammic treatment 

above) suspensions of known Chl a content (determined spectrophotometrically, Jeffrey 

and Humphrey, 1975) of the diatom Phaeodactylum tricornutum K. Bohlin (Fig. 3). The 

extent of vertical migration was calculated as the relative (percentage) decline in initial 

NDVI values (Laviale et al. 2016) after subtraction of the NDVI value of kaolin without 

diatoms, which was recorded simultaneously. Even though we controlled for changes in 

red and NIR illumination, we observed a decline in recorded NDVI of a sheet of green 

paper (absorbing in the red spectrum) under the same light conditions, possibly due to a 

shift in LED-spectrum resulting from the heating up of the LED panel during HL 

illumination. We corrected for this artifact (see Supplemental Fig. S1) by adding the 
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average decline of 15 observations (3 independent measurements of 5 AIOs in the green 

sheet) to the recorded data for diatoms.  

 

Fig. 3: Correlation of Normalized Difference Vegetation Index (NDVI) with Chlorophyll a 

content, determined photospectrometrically, on a Phaeodactylum tricornutum dilution series 

centrifuged on kaolin. 

NPQ was measured on diatom suspensions in 24-well plates (1 ml containing 1 µg Chl a, 

measured as above) using the same light conditions as the vertical migration essay. As 

no sediment was present, a behavioural photoprotection response was not possible. 

NPQ reversal was measured during an additional 30 min low light (LL) recovery period 

(15 µmol photons m-2 s-1). Saturating pulses (0.8 s, INT 8) were fired automatically each 5 

min. A fluorescence standard (Heinz Walz GmbH, Effeltrich, Germany) was measured 

simultaneously to correct for deviations in measuring light intensity during HL. NPQ was 

calculated as (Fm-Fm’)/Fm’, where Fm is the Maximum PSII chlorophyll fluorescence yield 

and Fm’ is maximum PSII Chl fluorescence yield (Fm) during illumination. As Fm’ values 

recorded during HL were lower than the minimum PSII Chl fluorescence yield F0 (as 

observed in diatoms by Lavaud et al. 2002), qN (as used by Laviale et al. 2016) was not 

determined. Photosynthetic efficiency of PSII (ΔF/Fm’) was calculated as (Fm’-F’)/Fm’ and 

expressed as a percentage, taking the maximal photosynthetic efficiency (Fv/Fm), 

measured immediately before HL onset as 100%.  

  

The NPQ induction (1) and recovery (2) rates (k) were calculated by fitting an 

exponential decay function (nonlinear regression), derived from Olaizola and Yamamoto 

(1994):  

 

(1) NPQ(t) = NPQmax + [NPQ0 – NPQmax]e
-kt 
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where t represents time during HL and NPQmax and NPQ0 represent NPQ after 30 min HL 

and before HL onset, respectively. 

 

(2) NPQ(t) = NPQr + [NPQmax - NPQr]e
-kt 

 

where t represents time during recovery and NPQmax and NPQr represent NPQ at the 

start of the recovery period and after 30 min of recovery in LL, respectively. Statistical 

analyses were conducted using the statistical software package SAS 9.4. Exponential 

decay functions were fitted using the nonlinear regression procedure (PROC NLIN). 

Measured and fitted parameters (3 biological replicates per species) were compared 

between species using ANOVA, followed by a Tukey’s test, using the General Linear 

Model procedure (PROC GLM) in the statistical software package SAS 9.4 (SAS Institute 

Inc., Cary, NC, USA). P-values of 0.05 or less were considered statistically significant. A 

decrease in surface biomass was evaluated as a one-sided t-test (only a decrease 

was considered).  
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Results 
 

NDVI measured with the MAXI Imaging PAM M-series 

A dilution series of Phaeodactylum tricornutum suspensions of known Chl a content was 

centrifuged on kaolin sediment to create artificial biofilms. NDVI of these biofilms 

correlated very well (R2=0.98, p < 0.0001) with Chl a content (Fig. 3). As the y-intercept 

was larger than zero (p = 0.0002), a blank with bare sediment was included and its NDVI 

measurement subtracted from all samples in all VM experiments. 

Behavioural photoprotection - vertical migration (VM) 

All epipelic species showed a significant (one-sided t-test, p < 0.05) decrease in surface 

biomass (20-40%) by the end of the HL illumination period (VM30)(Fig. 4a, b; significant 

p-values listed in Table S1). As only two replicates were included for Entomoneis 

paludosa, this species was excluded from statistical analysis. None of the epipsammic 

species, including the motile ones, showed a significant surface biomass decline during 

the HL period (Fig. 4a, b; p-values listed in Table S1). Of the epipelic species, only 

Craspedostauros britannicus showed a small but significant decrease in surface biomass 

after 2.5 min (p = 0.001). After 15 min of HL, C. britannicus, Navicula phyllepta and N. 

arenaria had significantly lower surface biomass than at the start of the experiment 

(one-sided t-test). The smallest epipelic species N. phyllepta exhibited the most 

pronounced vertical migration (Fig. 4a); decreasing its surface biomass significantly more 

than any other tested epipelic species within the 30 min HL exposure period (ANOVA 

and Tukey’s post hoc pairwise comparison, p-values reported in Table S2). No significant 

differences in surface biomass decrease were found between the other epipelic diatoms 

after 30 min of HL (Table S2). A control experiment, using only the largest (N. arenaria) 

and smallest (N. phyllepta) epipelic diatoms (2 technical replicates each), showed no VM 

in growth light conditions (20 µmol photons m-2 s-1, Supplemental Fig. S2). 

Physiological photoprotection - NPQ 

All investigated epipsammic species displayed a strong NPQ induction, resulting in 

significantly higher NPQ values than epipelic species after 5 min HL (Fig. 4c, d) (ANOVA 

and Tukey’s post hoc pairwise comparison, p-values reported in Table S3). No significant 

differences in NPQ were observed between diatoms of the same growth form at this 

time point (Table S3). The NPQ induction rate was lowest in C. britannicus (rate constant 

k = 0.08 min-1; SD = 0.02), which was significantly lower than in B. lucens, E. paludosa, O. 

guenter-grassii and P. delicatulum (ANOVA and Tukey’s post hoc pairwise comparison, p-

values reported in Table S4). The epipsammic species showed a comparable but lower 

further increase in NPQ during the rest of the HL period. In the epipelic species, NPQ 

diverged by the end of the HL exposure period. Both C. britannicus and E. paludosa 
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showed a strong NPQ increase during the HL period, resulting in significantly higher NPQ 

values than the other tested epipelic species (except for the difference between E. 

paludosa and N. phyllepta which was not significant, ANOVA and Tukey’s post hoc 

pairwise comparison, p-values reported in Table S5).  

 

 

Fig. 4a, b, c, d: The decrease in surface biomass, measured as NDVI, of epipelic diatoms (a) and 

epipsammic diatoms (b) on kaolin during 30 min of HL. Note that the y-axis in these plots 

starts at 50%. Non-photochemical quenching (NPQ) for epipelic diatoms (d) and epipsammic 

diatoms (c), measured during 30 min HL and 30 min LL recovery. Values represent averages of 

three independent measurements ± standard deviations. 
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During the 30 min low light recovery period NPQ relaxed rapidly in all epipsammic 

species, whereas only one epipelic species, N. arenaria, showed clear NPQ relaxation. 

Sustained quenching (NPQs) after 30 min recovery was highest for C. britannicus, 

followed by E. paludosa. Fitting NPQ relaxation with exponential decay functions 

revealed significantly faster NPQ relaxation in the araphid epipsammic diatom Opephora 

guenter-grassii (rate constant k = 0.52 min-1; SD = 0.03), whereas no significant 

differences were observed between the raphid epipsammic diatoms and N. arenaria 

(rate constant k = 0.13 min-1; SD = 0.06) (ANOVA and Tukey’s post hoc pairwise 

comparison, p-values reported in Table S4). The recovery of the quantum yield of PSII 

(ΔF/Fm’) after 30 min of LL (Fig. 5) was higher in all epipsammic species compared to the 

investigated epipelic species, with the notable exception of the epipelic species N. 

arenaria which showed an equally high recovery (ANOVA and Tukey’s post hoc pairwise 

comparison, p-values reported in Table S6). 

 

Fig. 5: The quantum yield of PSII (ΔF/Fm’), after 30 min of HL and 30 min of LL recovery, 

expressed in percentage of the maximal photosynthetic efficiency of PSII (Fv/Fm) before HL 

exposure for epipelic (black bars) and epipsammic diatoms (white bars). Values represent 

averages of three independent measurements ± standard deviations.  
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Plotting the NPQ values after 5 min HL versus VM30 (% NDVI decrease after 30 min) (Fig. 

6) revealed a clear VM-NPQ trade-off between the epipelic and epipsammic diatom 

groups, with epipelic diatoms displaying high VM30 and low NPQ, and epipsammic 

diatoms showing no clear VM and high NPQ. No VM30/NPQ trade-offs, however, were 

observed within both functional groups. 

 

 

Fig. 6: The extent of vertical migration (measured as the decrease in surface biomass in 

percentage, cf. Fig. 4a, b), measured after 30 min of HL in function of the NPQ capacity, 

measured after 5 min of HL to avoid the effect of photoinhibition for epipelic (black symbols) 

and epipsammic diatoms (white symbols). Three replicates per species are plotted (with 

exception of E. paludosa, n = 2). 
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Discussion 
 

As the ability to vertically migrate (VM) away from high light to avoid photoinhibition 

might minimize the costs associated with high and flexible NPQ (Raven 2011), we 

compared NPQ and VM capacity as photoprotection mechanisms in a set of five epipelic 

and four epipsammic species and confirm a general NPQ-VM trade-off between both 

functional groups.  

The fact that no vertical movement was observed in the epipsammic species shows that 

the migration observed in the epipelic species was not caused by a passive process such 

as water percolation. To further test whether the response was indeed caused by high 

light, we performed a control experiment with the largest (N. arenaria) and smallest (N. 

phyllepta) epipelic diatoms in which we exposed them to growth light conditions (i.e. 

low light) instead of high light conditions. No migratory response was observed (see 

supplemental Fig. S2), clearly demonstrating that the migratory response was caused by 

high light. Even though diatom motility response changes according to the spectral 

quality of light at relatively low light intensities (McLachlan et al. 2009; Cohn et al. 2015), 

high light intensities evoke photophobic responses (Cohn et al. 2015). In our 

experiments, the used blue light induced a high level of photoinhibition in all epipelic 

diatoms (with the exception of N. arenaria), indicating we were mainly observing 

photophobic responses, while positive phototaxis (motility towards light) could be 

considered to be low. 

While all epipelic species showed significant VM, they migrated less fast compared to 

natural epipelic communities, where surface biomass decreased up to 30% within the 

first 2.5 min of high light (Laviale et al. 2016). In our experiments, where VM was 

prevented under HL conditions, NPQ was initially low for all epipelic species, but for 

some species, it increased considerably during the course of the HL exposure. Most of 

this NPQ, however, coincided with high sustained NPQ (NPQs, see below). Epipsammic 

species compensated for the absence of significant VM with a strong NPQ response 

during HL onset. Consistent differences in NPQ induction rate between epipelic and 

epipsammic diatoms were not observed, possibly due to the fact that we have no data 

for the first five minutes of high light, during which most of the NPQ induction, due to 

Ddx de-epoxidation, takes place (Serôdio et al. 2005). 

Besides a strong NPQ after HL onset, epipsammic diatoms were also able to relax NPQ 

rapidly during low light conditions. Within both growth forms, trade-offs between both 

photoprotective strategies were not observed. However, the only araphid (and hence by 

definition non-motile) epipsammic diatom included here showed considerably faster 

relaxation of NPQ after high light exposure than the raphid epipsammic diatoms and is 

therefore able to more efficiently track rapid changes in irradiance intensity (Lavaud et 

al. 2007; Lavaud and Lepetit 2013). Taken together, our results confirm that epipelic and 
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epipsammic growth forms can be seen as different functional groups exhibiting 

contrasting primary photoprotection strategies.  

NPQ differences between epipelic and epipsammic growth forms were studied by 

Barnett et al. (2015), and agree with our observations after 5 min HL. Higher NPQ values 

in epipsammic diatoms were attributed to higher Dtx production, originating from a 

larger Ddx + Dtx pool rather than a higher Ddx de-epoxidation state. The measured NPQ 

values in two epipelic species (C. britannicus and E. paludosa), however, increased to 

similar levels as in the epipsammic diatoms after 30 min HL, a feature not observed by 

Barnett et al. (2015) as only 5 min illumination periods were used. During the low light 

recovery period, however, all epipelic species except N. arenaria showed high NPQs and 

a low recovery of PSII quantum yield. High NPQs has been observed after exposure to 

high light conditions or a combination of high light and elevated temperatures (Zhu et al. 

2010; Lavaud and Lepetit 2013; Laviale et al. 2015), and has been attributed to a slow 

epoxidation of Dtx back to Ddx (Lavaud and Lepetit 2013; Lavaud and Goss 2014; 

Blommaert et al. 2017) and/or photoinhibition (qI). In contrast with our observations, 

epipelic communities freshly obtained from the field are able to withstand high light 

doses (up to 1200 μmol photons m-2s-1) for up to three hours, even when VM is inhibited 

(Serôdio et al. 2012; Laviale et al. 2015). Moreover, they show higher NPQ values, while 

relaxing their NPQ more in low light conditions (Serôdio et al. 2005, 2008, 2012), 

suggesting that these field communities are less sensitive to photoinhibition than 

monospecific epipelic cultures. This could be due to the fact that the diatom cultures 

used in our study were acclimated to rather low light intensities (20 μmol photons m-2s-

1) and exposed to relatively high light intensities. Acclimation to higher irradiances 

increased the NPQ capacity of epipelic diatoms (Cruz and Serôdio 2008; Ezequiel et al. 

2015; Barnett et al. 2015) and caused them to accumulate at higher light intensities in a 

light gradient (Ezequiel et al. 2015). As a result, the VM/NPQ trade-off between 

epipsammic and epipelic diatoms observed in the field may not be as pronounced as 

observed in our experiments. 

Alternatively, the high NPQs/qI in epipelic species, as observed in this study, could be 

related by the origin of the strains. Diatom communities originating from Portuguese 

mudflats, as used in the above studies, tend to have overall higher NPQ and less NPQs 

and/or photoinhibition after high light exposure than communities sampled at higher 

latitudes along the Atlantic Coast (Laviale et al. 2015). Pniewski et al. (2015) also 

observed photoinhibition (measured as a decline in oxygen evolution-irradiance curves) 

in epipelic communities from Aiguillon Bay (Atlantic coast, France). The observed 

absence or low amount of NPQs/qI and in general higher recovery of PSII quantum yield 

in epipsammic diatoms in this study confirms that the energy dissipating mechanisms of 

these diatoms are capable of tracking light fluctuations (cf. Blommaert et al. 2017) and 

optimizing photosynthesis in rapidly fluctuating and high light conditions, as 

photosynthesis can be forgone if energy dissipating mechanisms fail to relax in light-
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limiting conditions (Raven 2011). Finally, sustained NPQ in MPB diatoms may be 

advantageous to keep the antenna system in a basal dissipative state, allowing the cells 

to cope with a sudden increase in light intensity after a long dark period as may happen 

during immersion and night emersion (Lavaud and Goss 2014). 

Differences in motility of epipelic diatoms (here mainly between N. phyllepta and larger 

species) were not reflected in NPQ capacity and thus do not point to a VM-NPQ trade-off 

within the epipelic group. N. phyllepta is much smaller (~13 µm long) than the other 

studied epipelic species (>30 µm long) but exhibited the strongest migratory response, 

whereas no differences in VM were observed between the larger species. The difference 

in VM between N. phyllepta and the larger species may be due to the fact that because 

of its smaller size (and assuming comparable pigment concentration per unit biovolume) 

pigment self-shading may be lower, rendering the cells more vulnerable to 

photoinactivation (Key et al. 2010) and therefore requiring higher photoprotection (i.c. 

VM). In this respect it is interesting to note that in a field study small naviculoid diatoms 

were mainly observed at the sediment surface in early morning when light intensity was 

still relatively low whereas larger species dominated the intertidal surface biofilm at 

noon (Underwood et al. 2005). It should also be noted that while VM was observed in all 

epipelic species, most diatom biomass stayed at the sediment surface as observed by 

Laviale et al. (2015, 2016). Therefore, epipelic diatoms might have used alternative 

photoprotection strategies or displayed within-population cyclical micromigration at the 

sediment surface (Kromkamp et al. 1998), as such obscuring differences in VM as a 

photoprotection strategy.  

An NPQ-VM capacity trade-off was also not observed within the epipsammic group: no 

significant NPQ differences were detected during the high light period and no significant 

VM was observed. However, all epipsammic species we tested, with the exception of O. 

guenter-grasssii, were raphid and therefore in principle capable of movement. However, 

despite the fact that some of them were in the same size range (see Fig. 1) as N. 

phyllepta (which displayed the strongest migratory response), they did not migrate 

down in response to high light. The absence of vertical migration is in accordance with 

the lack of endogenous migratory rhythms in epipsammic communities (Jesus et al. 

2009) and the observation that epipsammic diatoms in the field do not seem to migrate 

down in response to high light (Cartaxana et al. 2011). Barnett et al. (2015) did observe 

differences in NPQ capacity between motile and non-motile epipsammic species but not 

at the highest light intensity (2000 μmol photons m-2s-1). The most notable difference 

between the epipsammic species in our study was the faster NPQ relaxation in the 

araphid species O. guenter-grassii, which is due to fast Dtx epoxidation in low light 

conditions (Blommaert et al. 2017). The slower relaxation in raphid epipsammic species 

may suggest that they do use motility, not to perform VM but to move to slightly more 

shaded areas on the sand grain surface, such as depressions, where epipsammic diatoms 

are often seen to aggregate (Miller et al. 1987; Jewson et al. 2006; Sabbe, unpubl. obs.). 
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While it has been hypothesized that cell accumulations in depressions can represent a 

strategy to protect against abrasion (Miller et al. 1987), it could also be a way to reduce 

high light stress through increased cell shading caused by cell accumulation and the 

microtopography of the sand grain. This may slightly reduce the need for the very rapid 

NPQ relaxation observed in the araphid species. An alternative explanation for the 

absence of significant VM in raphid epipsammic species in sandy sediments is that 

because light is scattered and penetrates deeper than in silty sediments (Kühl et al. 

1994; Cartaxana et al. 2016b), downward VM would probably not drastically change the 

experienced light climate (Cartaxana et al. 2016b). A third potential explanation for the 

observed difference in NPQ relaxation between the araphid and raphid epipsammic 

species could be that slower NPQ relaxation represents a phylogenetic signal typical for 

raphid, motile diatoms which was retained in raphid taxa which adopted an epipsammic 

growth form. 

Finally, it needs to be pointed out that the distinction between araphid and raphid 

epipsammon does not necessarily coincide with a difference in motility. Some raphid 

species, such as Biremis lucens are usually observed as small colonies which are attached 

to the sand grain surface via their girdle side (Sabbe et al. 1995). For this reason, this 

species was classified as non-motile in Barnett et al. (2015). In the present study, we 

focused on the distinction between araphid and raphid, as raphid diatoms are at least 

potentially motile as they possess a raphe. Motility in most of these forms, however, has 

not yet been properly characterized. 
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Supplemental information 
 

 

Supplemental Figure S1. Decline in NDVI, expressed in percentage, during the HL period, 

measured on green paper. 
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Supplemental Figure S2: Absence in vertical migration in the epipelic species Navicula 

phyllepta and N. arenaria at 20 µmol photons m
-2

 s
-1

. 

 

 

 

The absence of a VM response in epipsammic diatoms and in the largest (N. arenaria) and 

smallest (N. phyllepta) epipelic diatoms (2 technical replicates) in growth light conditions (20 

µmol photons m
-2

 s-1) confirms that the observed VM in Fig. 4a occurred in response to the 

HL conditions. 
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Supplemental Table S1: significance of surface biomass (NDVI) decline  

 

  NDVI decline 

15 min. One 

sided t-test 

significances 

at the 0.05 

level are 

indicated by * 

NDVI decline 30 min. One sided t-

test significances at the 0.05 level are 

indicated by * 

Navicula 

phyllepta 

epipelic 

0.003 0.0008 

Seminavis 

robusta 

epipelic 

/ 0.02 

Craspedostauros 

britannicus 

epipelic 

0.0068 0.0037 

Navicula 

arenaria 

epipelic 

0.0003 0.002 

Biremis lucens epipsammic / /  

Opephora 

guenter-grasssii 

epipsammic / /  

Nitzschia cf. 

frustulum 

epipsammic / / 

Planothidium 

delicatulum 

epipsammic / / 
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Supplemental Table S2: Comparison of surface biomass differences between species after 30 

min of HL. 

 

Comparisons significant at the 0.05 level are 

indicated by *. 

species 

Comparison 

Difference 

Between 

Means 

Simultaneous 95% Confidence 

Limits 
 

N.f. - B.l. 2.847 -11.940 17.634  

N.f. - O.g. 5.464 -9.323 20.251  

N.f. - P.d. 9.068 -5.719 23.855  

N.f. - N.a. 22.218 7.431 37.005 * 

N.f. - S.r. 22.793 8.006 37.580 * 

N.f. - E.p. 25.555 9.023 42.087 * 

N.f. - C.b. 27.102 12.315 41.889 * 

N.f. - N.p. 42.818 28.031 57.605 * 

B.l. - N.f. -2.847 -17.634 11.940  

B.l. - O.g. 2.617 -12.170 17.404  

B.l. - P.d. 6.221 -8.566 21.008  

B.l. - N.a. 19.371 4.584 34.158 * 

B.l. - S.r. 19.946 5.159 34.733 * 

B.l. - E.p. 22.708 6.175 39.240 * 

B.l. - C.b. 24.255 9.468 39.042 * 

B.l. - N.p. 39.971 25.184 54.758 * 

O.g. - N.f. -5.464 -20.251 9.323  

O.g. - B.l. -2.617 -17.404 12.170  

O.g. - P.d. 3.604 -11.183 18.391  

O.g. - N.a. 16.754 1.967 31.541 * 

O.g. - S.r. 17.329 2.542 32.116 * 

O.g. - E.p. 20.091 3.558 36.623 * 
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O.g. - C.b. 21.638 6.851 36.425 * 

O.g. - N.p. 37.354 22.567 52.141 * 

P.d. - N.f. -9.068 -23.855 5.719  

P.d. - B.l. -6.221 -21.008 8.566  

P.d. - O.g. -3.604 -18.391 11.183  

P.d. - N.a. 13.150 -1.637 27.937  

P.d. - S.r. 13.725 -1.062 28.512  

P.d. - E.p. 16.487 -0.046 33.019  

P.d. - C.b. 18.034 3.247 32.821 * 

P.d. - N.p. 33.750 18.963 48.536 * 

N.a. - N.f. -22.218 -37.005 -7.431 * 

N.a. - B.l. -19.371 -34.158 -4.584 * 

N.a. - O.g. -16.754 -31.541 -1.967 * 

N.a. - P.d. -13.150 -27.937 1.637  

N.a. - S.r. 0.575 -14.212 15.362  

N.a. - E.p. 3.337 -13.196 19.869  

N.a. - C.b. 4.884 -9.903 19.671  

N.a. - N.p. 20.600 5.813 35.386 * 

S.r. - N.f. -22.793 -37.580 -8.006 * 

S.r. - B.l. -19.946 -34.733 -5.159 * 

S.r. - O.g. -17.329 -32.116 -2.542 * 

S.r. - P.d. -13.725 -28.512 1.062  

S.r. - N.a. -0.575 -15.362 14.212  

S.r. - E.p. 2.762 -13.770 19.294  

S.r. - C.b. 4.309 -10.477 19.096  

S.r. - N.p. 20.025 5.238 34.812 * 

E.p. - N.f. -25.555 -42.087 -9.023 * 

E.p. - B.l. -22.708 -39.240 -6.175 * 
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E.p. - O.g. -20.091 -36.623 -3.558 * 

E.p. - P.d. -16.487 -33.019 0.046  

E.p. - N.a. -3.337 -19.869 13.196  

E.p. - S.r. -2.762 -19.294 13.770  

E.p. - C.b. 1.548 -14.985 18.080  

E.p. - N.p. 17.263 0.731 33.795 * 

C.b. - N.f. -27.102 -41.889 -12.315 * 

C.b. - B.l. -24.255 -39.042 -9.468 * 

C.b. - O.g. -21.638 -36.425 -6.851 * 

C.b. - P.d. -18.034 -32.821 -3.247 * 

C.b. - N.a. -4.884 -19.671 9.903  

C.b. - S.r. -4.309 -19.096 10.477  

C.b. - E.p. -1.548 -18.080 14.985  

C.b. - N.p. 15.715 0.929 30.502 * 

N.p. - N.f. -42.818 -57.605 -28.031 * 

N.p. - B.l. -39.971 -54.758 -25.184 * 

N.p. - O.g. -37.354 -52.141 -22.567 * 

N.p. - P.d. -33.750 -48.536 -18.963 * 

N.p. - N.a. -20.600 -35.386 -5.813 * 

N.p. - S.r. -20.025 -34.812 -5.238 * 

N.p. - E.p. -17.263 -33.795 -0.731 * 

N.p. - C.b. -15.715 -30.502 -0.929 * 
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Supplemental Table S3: Comparison of NPQ, measured after 5 min HL, between species. 

Means with the same letter 

are not significantly different. 

Tukey Grouping Mean N species 

A 3.1085 3 B.l. 

A       

A 2.9853 3 N.f. 

A       

A 2.6575 3 P.d. 

A       

A 2.6343 3 O.g. 

        

B 1.6879 3 E.p. 

B       

B 1.5507 3 C.b. 

B       

B 1.4392 3 N.a. 

B       

B 1.4205 3 N.p. 

B       

B 1.2458 3 S.r. 
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Supplemental Table S4: Values (a) and comparison of the NPQ induction rate k per species 

(b). 

a 

 

Least Squares Means 

Effect species Estimate 
Standard 

Error 
DF t Value Pr > |t| 

species B.l. 0.3083 0.001733 2 177.85 <.0001 

species C.b. 0.07573 0.009312 2 8.13 0.0148 

species E.p. 0.1457 0.007279 2 20.02 0.0025 

species N.a. 0.4308 0.09057 2 4.76 0.0415 

species N.f. 0.3386 0.04592 2 7.37 0.0179 

species N.p. 0.2797 0.04184 2 6.69 0.0216 

species O.g. 0.2592 0.02730 2 9.50 0.0109 

species P.d. 0.2640 0.01303 2 20.26 0.0024 

species S.r. 0.2382 0.03472 2 6.86 0.0206 

 

b 

 

Differences of Least Squares Means 

Effect species _species 
Estimat

e 

Standar

d 

Error 

DF 
t 

Value 
Pr > |t| Adjustment Adj P 

species B.l. C.b. 0.2325 
0.00947

2 

2.1

4 
24.55 0.0012 

Tukey-

Kramer 

0.000

4 

species B.l. E.p. 0.1626 
0.00748

2 

2.2

3 
21.73 0.0012 

Tukey-

Kramer 

0.000

6 

species B.l. N.a. -0.1225 0.09058 2 -1.35 0.3088 
Tukey-

Kramer 

0.869

6 

species B.l. N.f. 
-

0.03033 
0.04595 

2.0

1 
-0.66 0.5769 

Tukey-

Kramer 

0.996

4 

species B.l. N.p. 0.02853 0.04187 2.0 0.68 0.5657 Tukey- 0.995
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1 Kramer 6 

species B.l. O.g. 0.04903 0.02735 
2.0

2 
1.79 0.2139 

Tukey-

Kramer 

0.694

6 

species B.l. P.d. 0.04423 0.01315 
2.0

7 
3.36 0.0745 

Tukey-

Kramer 

0.227

3 

species B.l. S.r. 0.07007 0.03476 
2.0

1 
2.02 0.1808 

Tukey-

Kramer 

0.602

6 

species C.b. E.p. 
-

0.06996 
0.01182 

3.7

8 
-5.92 0.0049 

Tukey-

Kramer 

0.046

5 

species C.b. N.a. -0.3550 0.09105 
2.0

4 
-3.90 0.0579 

Tukey-

Kramer 

0.156

3 

species C.b. N.f. -0.2629 0.04685 
2.1

6 
-5.61 0.0253 

Tukey-

Kramer 

0.054

9 

species C.b. N.p. -0.2040 0.04286 2.2 -4.76 0.0343 
Tukey-

Kramer 

0.089

7 

species C.b. O.g. -0.1835 0.02884 
2.4

6 
-6.36 0.0139 

Tukey-

Kramer 

0.037

1 

species C.b. P.d. -0.1883 0.01602 
3.6

2 
-11.75 0.0005 

Tukey-

Kramer 

0.004

8 

species C.b. S.r. -0.1625 0.03595 
2.2

9 
-4.52 0.0354 

Tukey-

Kramer 

0.104

1 

species E.p. N.a. -0.2851 0.09086 
2.0

3 
-3.14 0.0869 

Tukey-

Kramer 

0.267

8 

species E.p. N.f. -0.1929 0.04649 2.1 -4.15 0.0491 
Tukey-

Kramer 

0.132

2 

species E.p. N.p. -0.1340 0.04246 
2.1

2 
-3.16 0.0810 

Tukey-

Kramer 

0.264

1 

species E.p. O.g. -0.1135 0.02825 
2.2

8 
-4.02 0.0453 

Tukey-

Kramer 

0.144

2 

species E.p. P.d. -0.1183 0.01493 
3.1

4 
-7.93 0.0036 

Tukey-

Kramer 

0.018

2 

species E.p. S.r. 
-

0.09251 
0.03548 

2.1

8 
-2.61 0.1111 

Tukey-

Kramer 

0.395

6 

species N.a. N.f. 0.09217 0.1015 
2.9

6 
0.91 0.4317 

Tukey-

Kramer 

0.977

5 

species N.a. N.p. 0.1510 0.09976 2.8 1.51 0.2330 Tukey- 0.809
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2 Kramer 5 

species N.a. O.g. 0.1715 0.09459 
2.3

6 
1.81 0.1918 

Tukey-

Kramer 

0.685

9 

species N.a. P.d. 0.1667 0.09150 
2.0

8 
1.82 0.2050 

Tukey-

Kramer 

0.682

2 

species N.a. S.r. 0.1926 0.09699 
2.5

8 
1.99 0.1563 

Tukey-

Kramer 

0.614

8 

species N.f. N.p. 0.05887 0.06212 
3.9

7 
0.95 0.3974 

Tukey-

Kramer 

0.972

0 

species N.f. O.g. 0.07937 0.05342 
3.2

6 
1.49 0.2271 

Tukey-

Kramer 

0.820

5 

species N.f. P.d. 0.07457 0.04773 
2.3

2 
1.56 0.2416 

Tukey-

Kramer 

0.790

2 

species N.f. S.r. 0.1004 0.05757 
3.7

2 
1.74 0.1614 

Tukey-

Kramer 

0.715

0 

species N.p. O.g. 0.02050 0.04995 
3.4

4 
0.41 0.7058 

Tukey-

Kramer 

0.999

9 

species N.p. P.d. 0.01570 0.04382 
2.3

8 
0.36 0.7494 

Tukey-

Kramer 

0.999

9 

species N.p. S.r. 0.04153 0.05437 
3.8

7 
0.76 0.4888 

Tukey-

Kramer 

0.991

3 

species O.g. P.d. 
-

0.00480 
0.03025 

2.8

7 
-0.16 0.8844 

Tukey-

Kramer 

1.000

0 

species O.g. S.r. 0.02103 0.04417 
3.7

9 
0.48 0.6601 

Tukey-

Kramer 

0.999

6 

species P.d. S.r. 0.02583 0.03709 
2.5

5 
0.70 0.5441 

Tukey-

Kramer 

0.994

9 
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Supplemental Table S5: Comparison of NPQ, measured after 30 min HL, between species. 

Means with the same letter 

are not significantly different. 

Tukey Grouping Mean N species 

  A 3.8379 3 B.l. 

  A       

  A 3.7760 3 P.d. 

  A       

  A 3.7466 3 N.f. 

  A       

  A 3.6312 3 C.b. 

  A       

  A 3.4449 3 O.g. 

  A       

B A 2.9071 3 E.p. 

B         

B C 1.9736 3 N.p. 

  C       

  C 1.8584 3 N.a. 

  C       

  C 1.8016 3 S.r. 
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Supplemental Table S6: Comparison of ΔF/Fm’, measured after 30 min LL recovery, 

between species. 

 

Means with the same letter 

are not significantly different. 

Tukey Grouping Mean N species 

  A 84.151 3 O.g. 

  A      

 B A 71.693 3 N.a. 

 B A      

 B A 70.904 3 B.l. 

 B A      

 B  53.999 3 P.d. 

 B       

 B  51.608 3 N.f. 

        

 C 26.461 3 N.p. 

 C      

 C 15.451 

 

3 C.p. 

  C      

  C 14.089 3 E.p. 

  C      

  C 2.950 

 

3 S.r. 

 

 

 

 

 

 

 



162 
 

 



Chapter 5: LHCX proteins in Seminavis 
robusta 

Lander Blommaert1, Emmelien Vancaester2,3, Marie Huysman2,3, Sofie D’hondt1, Tore 

Brembu4, Per Winge4, Atle Bones4, Bernard Lepetit5, Johann Lavaud6, Klaas 

Vandepoele2,3, Wim Vyverman1 & Koen Sabbe1 

1. Ghent University, Lab. Protistology & Aquatic Ecology, B-9000 Ghent, Belgium 

2. VIB, Department of Plant Systems Biology, B-9052 Ghent, Belgium 

3. Ghent University, Department of Plant Biotechnology and Bioinformatics, B-9052 

Ghent, Belgium 

4. Department of Biology, Norwegian University of Science and Technology, 

Trondheim, Norway 

5. Zukunftskolleg, Pflanzliche Ökophysiologie, Universität Konstanz 78457, Germany 

6. CNRS/Université Laval, UMI3376 Takuvik Joint International Laboratory, 
Département de Biologie, Pavillon Alexandre Vachon, Université Laval, 1045 
avenue de la Médecine, Québec, Qc, G1V 0A6, Canada 
 

  



164 
 

  



165 
 

Abstract 
 

Intertidal benthic diatoms experience a highly variable light regime, which especially 

challenges these organisms to cope with excess light energy during low tide. Non-

photochemical quenching of chlorophyll fluorescence (NPQ) is one of the most rapid 

mechanisms diatoms possess to dissipate excess energy. Its capacity is mainly defined by 

the xanthophyll cycle (XC) and Light-Harvesting Complex X (LHCX) proteins. Whereas the 

XC and its relation to NPQ has been well-studied in both planktonic and benthic diatoms, 

our current knowledge about LHCX proteins and their potential involvement in NPQ 

regulation is mostly based on planktonic diatoms. While recent studies using immuno-

localization have revealed the presence of light-regulated LHCX proteins in benthic 

diatom communities and isolates, nothing is as yet known about the diversity, identity 

and transcriptional regulation of these LHCX proteins. We identified LHCX genes in the 

Seminavis robusta and followed their transcriptional regulation during a day/night cycle 

and during exposure to high light conditions. The S. robusta genome contains 14 LHCX 

sequences, which is much more than in the sequenced planktonic model diatoms (4-5), 

but similar to the sea ice associated diatom Fragilariopsis cylindrus. LHCX diversification 

in both species, however, seems to have occurred independently. Our data suggest that 

the involvement of several light regulated LHCX genes in the photophysiology of S. 

robusta may represent an adaptation to the complex and highly changeable light 

environment in this benthic diatom species. 
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Introduction 
 

Due to the complex interplay of diurnal and tidal cycles and weather conditions, the 

surface sediments of tidal flats experience highly variable light conditions. Nevertheless, 

they are very productive ecosystems thanks to the presence of biofilms, called 

microphytobenthos (MPB), which is dominated by benthic diatoms (Underwood and 

Kromkamp 1999). The fluctuating light conditions challenge these diatoms to maximize 

light harvesting under low light conditions while avoiding oxidative damage to their 

photosynthetic apparatus under high light, either by minimizing light absorbance or by 

the dissipation of excess light energy. Benthic diatoms possess two main strategies 

which are fast enough to track rapid fluctuations in light intensity, namely, vertical 

migration and excess energy dissipation as heat (Lavaud and Goss 2014; Laviale et al. 

2016). Raphid pennate diatoms possess a raphe structure which allows for motility by 

the secretion of mucilage. These diatoms, often referred to as epipelic diatoms, can 

form dense biofilms on fine-grained sediments (Sabbe 1993; Ribeiro et al. 2013) and are 

able to position themselves within the sediment light gradient via vertical migration 

(Admiraal 1984; Consalvey et al. 2004; Serôdio et al. 2006; Cartaxana et al. 2016). In 

addition, they can dissipate excess light energy as heat, measured as Non-Photochemical 

Quenching of chlorophyll a fluorescence (NPQ). NPQ comprises a quickly and a slowly 

reversible component, referred to as ‘qE’ and NPQs (Lavaud and Goss 2014) 

respectively. The capacity for this fast physiological photoprotection mechanism is 

mainly defined by the xanthophyll cycle (XC) pigments diatoxanthin (Dtx) and its de-

epoxidized form diadinoxanthin (Ddx) (Barnett et al. 2015; Blommaert et al. 2017) and 

the presence of Light-Harvesting Complex X (LHCX) proteins (Bailleul et al. 2010; Taddei 

et al. 2016; Ghazaryan et al. 2016; Lepetit et al. 2017). While the XC in benthic diatoms 

has been well-studied using natural communities (van Leeuwe et al. 2008; Jesus et al. 

2009; Serôdio et al. 2012; Laviale et al. 2015) and more recently also unialgal isolates 

(Barnett et al. 2015; Blommaert et al. 2017), our current knowledge about LHCX proteins 

as an NPQ regulator is mostly based on studies on planktonic diatoms (Büchel 2014; 

Lavaud and Goss 2014; Goss and Lepetit 2015; Ghazaryan et al. 2016). The latter 

includes studies on the pennate model diatom Phaeodactylum tricornutum (Bowler et al. 

2008) whose ecological life style to date remains obscure but which has mainly been 

isolated from coastal plankton samples (De Martino et al. 2007). 

LHCX proteins are closely related to the Light-Harvesting Complex Stress-Related 

(LHCSR) proteins that are present in most eukaryotic algae and mosses but absent in 

plants (Niyogi and Truong 2013; Goss and Lepetit 2015). Even though LHCX/LHCSR 

proteins are Light Harvesting Proteins, they have an energy dissipating rather than a 

light harvesting function (Niyogi and Truong 2013). LHCSR proteins appear to function 

both as excess light sensors and quenching sites (Bonente et al. 2011b; Ballottari et al. 

2016). A similar function as NPQ regulators has been proposed for LHCX proteins in 
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planktonic diatoms as high light induces LHCX transcription and augments LHCX protein 

content (Oeltjen et al. 2002; Nymark et al. 2009; Bailleul et al. 2010; Park et al. 2010; Zhu 

and Green 2010; Lepetit et al. 2013; Taddei et al. 2016). However, the precise function 

of LHCX proteins in NPQ and their location in the thylakoid membrane is as yet not 

known. They are hypothesized to bind the XC pigments Ddx and Dtx (Beer et al. 2006; 

Lepetit et al. 2013) and change the supramolecular organization of antenna complexes 

(Ghazaryan et al. 2016), a crucial feature in a recent mechanistic model for NPQ 

formation (Lavaud and Goss 2014; Goss and Lepetit 2015).  

 

LHCX function and transcriptional regulation has been intensively studied in 

Phaeodactylum tricornutum (Nymark et al. 2009, 2013; Bailleul et al. 2010; Lepetit et al. 

2013, 2017; Taddei et al. 2016). Its genome contains four LHCX genes (LHCX1-4). Of 

these four genes, LHCX1 is highly expressed in non-stressful light conditions; additional 

expression upon high light exposure is low (Nymark et al. 2009; Lepetit et al. 2013; 

Taddei et al. 2016). Its corresponding protein consequently is present in low light 

conditions where it might provide the diatom with a basal level of NPQ when exposed to 

sudden changes in light climate. In addition, the different content in LHCX1 between 

different P. tricornutum ecotypes has been related to their natural variability in NPQ 

capacity. In strong light conditions, both LHCX2 and LHCX3 transcription is strongly 

induced (Nymark et al. 2009; Lepetit et al. 2013, 2017; Taddei et al. 2016). As both 

proteins accumulate in concert with de novo synthesis of Ddx + Dtx, they may provide 

additional Ddx/Dtx binding sites to enhance the basal NPQ provided by LHCX1 (Lepetit et 

al. 2013). Overexpresssion of both LHCX2&3, indeed, has been shown to rescue NPQ in a 

low-NPQ ecotype of P. tricornutum (Pt4) (Taddei et al. 2016). LHCX4 gene expression is 

inhibited by light, whereas its transcript accumulates in prolonged darkness, questioning 

its role in photoprotection (Nymark et al. 2013; Lepetit et al. 2013; Taddei et al. 2016). 

As overexpresssion of this gene can (partly) rescue the low-NPQ phenotype of Pt4, it 

seems to be able to contribute to NPQ and could together with an enhanced Ddx + Dtx 

pool play a role in the high NPQ levels observed in cultures exposed to long dark periods 

interrupted by short light periods (Lavaud et al. 2002; Ruban et al. 2004; Lepetit et al. 

2017). Interestingly, in the LHCX4 protein only one of the three amino-acid residues 

responsible for luminal pH (ΔpH) sensing (as a NPQ trigger) in the LHCSR3 protein in 

Chlamydomonas reinhardtii is conserved, whereas in the LHCX1,2&3 proteins two out of 

the three protonable residues are conserved (Ballottari et al. 2016; Taddei et al. 2016).  

 

Recent studies using immuno-localization revealed the presence of several light-

regulated LHCX-isoforms in natural communities and isolates of MPB diatoms (Laviale et 

al. 2015; Blommaert et al. 2017). Up to date, however, nothing is known about the 

sequence identity and transcriptional regulation of these LHCX proteins in truly benthic 

diatoms. Several studies, moreover, indicate that the findings for the P. tricornutum may 

not be directly transferable to other pennate diatoms and benthic epipelic diatoms in 
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particular. This is corroborated by the recent discovery of 11 LHCX genes in the genome 

of the sea ice diatom Fragilariopsis cylindrus, none of which could readily be related to 

the four LHCX genes in P. tricornutum (Mock et al. 2017). In addition, the F. cylindrus 

genome contains an LHCX gene that is closely related to the LHCX6 in Thalassiosira 

pseudonana, whereas a similar sequence is absent in the P. tricornutum genome. The T. 

pseudonana LHCX6 protein could be associated with Dtx binding and may play a direct 

role in excess energy dissipation via sustained quenching NPQs during acclimation to 

prolonged HL stress (Zhu & Green 2010). Interestingly, an LHCX isoform of slightly larger 

size was detected with an anti-LHCX6 antibody in the intertidal benthic diatom Navicula 

phyllepta (Laviale et al. 2015). Recently, we studied the presence and high light 

responsiveness of LHCX isoforms in the intertidal benthic diatom Seminavis robusta and 

revealed an isoform, present in low light, and two isoforms that were only observed 

after high light exposure (Blommaert et al. 2017), one of which did not correspond in 

size to any isoform in P. tricornutum. In the present study, therefore, we identified LHCX 

genes in the S. robusta draft genome and followed their transcriptional regulation during 

a day/night cycle and during exposure to high light conditions. 
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Materials and methods 
 

Culture conditions 

Seminavis robusta was obtained from the diatom culture collection (BCCM/DCG) of the 

Belgian Coordinated Collection of Micro-organisms (http://bccm.belspo.be/about-

us/bccm-dcg), accession number (DCG 0105). Diatom cultures were grown in semi-

continuous batch culture in 1.8 l glass Fernbach flasks (Schott) under a day/night rhythm 

of 16/8 hour with a light intensity of 20 µmol photons m-2 s-1. Cells were cultured in 

Provasoli’s enriched f/2 seawater medium (Guillard, 1975) using Tropic Marin artificial 

sea salt (34.5 gL-1) enriched with NaHCO3 (80 mg L-1 final concentration) Cultures were 

acclimated to these culturing conditions for at least 2 weeks. S. robusta was then grown 

in 650 mL culture flasks (Greiner bio-one) to monitor LHCX expression during a 24 hour 

16/8 hour day/night and extended dark cycle (where cultures were kept in the dark 

during the normal light period, after the normal night period). Three biological replicates 

were sampled independently. Gene expression was compared to the samples at the end 

of the first light period. 

 

High light exposure 

 

High light exposure was identical to the conditions described in Blommaert et al. (2017). 

Cultures in exponential growth were concentrated to 10 mg/L Chl a (determined 

spectrophotometrically, Jeffrey and Humphrey 1975) by centrifugation at 4000 RCF for 5 

min. The cultures were again acclimated to their standard growth conditions for 2 h 

before exposure to high light. Immediately before the start of the experiment, NaHCO3 

(4 mM) was added from a 2M stock to prevent carbon limitation during the experiment. 

Four 65 W white light energy-saving lamps (Lexman) were used to provide high light (HL) 

conditions (2000 µmol photons/m-2s-1) as used by Lepetit et al. (2013). Cells were 

continuously stirred in a glass test tube to obtain a homogenous cell suspension. This 

glass test tube was continuously cooled in a custom-made glass cooler by a water bath 

at 20°C. Three biological replicates were sampled immediately before the onset of 2000 

µmol photons m-2s-1 and after 15, 30 and 60 min of HL. Gene expression of treated 

samples was compared to the samples before HL. 

 

RNA extraction and cDNA synthesis 

 

Samples for RNA were taken before high light exposure (T0) and during 15, 30 and 60 

min of high light exposure. Four mL of cell culture was sampled each time on 3 µm 

Versapore filters (PALL corporation), washed with ice-cooled phosphate buffered saline 

(PBS) and immediately frozen in liquid nitrogen. Samples were stored at -80°C before 
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RNA extraction. RNA extraction was based on (Le Bail et al. 2008). Frozen samples were 

immediately incubated in 500 µL extraction buffer (100 mM Tris-HCl pH 7.5, 2% CTAB, 

1.5 M NaCl, 50 mM EDTA, and 10% β-mercaptoethanol) and subsequently beaten with 

carbid beads for 30 min in a bead-beater at 30 Hz. One hundred μl of 10% Chelex-100 

was added before the samples were incubated for 15 minutes at 56°C with occasional 

vortexing. One volume of chloroform:isoamyl alcohol (24:1, Vol/Vol) was subsequently 

added before shaking the samples for 25 min at 5 Hz. After centrifugation, the upper 

phase was transferred to a new tube and mixed with 0.3 volume of absolute ethanol to 

precipitate polysaccharides. One volume of chloroform was added and after 

centrifugation the upper phase was transferred to a fresh tube. RNA was precipitated 

overnight at -20°C, by adding 0.25 volumes of 12M LiCl and 1% (of final volume) β-

mercapto-ethanol. The next day, the RNA was pelleted, dried and washed with 70% 

ethanol. Residual DNA was eliminated with DNAse I (Turbo DNAse, Ambion) according to 

the manufacturer’s instructions. Extraction was performed with 1 volume Phenol-

Chlorophorm (1:1, Vol/Vol). After centrifugation the upper phase was transferred to a 

fresh tube, extracted with one volume of chlorophorm:isoamylic alcohol (24:1, Vol/Vol) 

and centrifuged again. The upper phase was precipitated with 0.3 M NaOAc (pH 5.5) and 

100% ice cold ethanol by incubating for 1 hour at -80°C. After the samples were 

centrifuged for 20 minutes at 4°C, the supernatant was discarded and the pellet washed 

with 70% ethanol. The pellet was finally resuspended in RNAse-free water. The samples 

were reverse transcribed using Bio-Rad iScript cDNA kit. 

 

Identification LHCX genes in S. robusta draft genome 

A HMMER search (Biosequence analysis using profile Hidden Markov Models) for LHCX 

homologs was conducted using an in-house draft genome of the D6 strain of S. robusta 

(DCG 0489). A non-redundant set of LHCX genes, containing only one copy of each LHCX 

gene, was obtained according to Mock et al. (2017): contigs containing putative LHCX 

genes were aligned with NCBI BLASTn (Basic Local Alignment Search Tool for 

nucleotides) using as thresholds at least 50% coverage and at least 90% sequence 

identity (in contrast to 95% as in Mock et al. 2017). LHCX genes on these contigs were 

considered as alleles if they had best bi-directional hits on the corresponding contig and 

had at least 90% nucleotide identity with one another. Tandem repeats were identified 

with Tandem Repeats Finder (Benson 1999).  

A maximum likelihood tree was constructed, based on amino-acid sequences with 

RaxML, after sequence alignment with MUSCLE and manual editing with Jalview. 1000 

bootstrap iterations were run. LHCX sequences from Thalassiosira pseudonana, 

Phaeodactylum tricornutum, Fragilariopsis cylindrus and Pseudo-nitzschia multiseries 

(with kind permission of E. V. Armbrust) were obtained from the JGI database 

(http://genome.jgi.doe.gov/).  
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qPCR 

 

RT-qPCR was performed with a Light Cycler ® 480II (ROCHE). Primers were designed 

using Primer3 (Supplementary table S1b). Primer specificity was tested in silico with 

FastPCR (PrimerDigital). Single nucleotide polymorphisms (SNPs) between the whole 

genome sequenced strain (D6) and the strain used in the experiments (85A) were 

identified using in-house RNAseq data (Bilcke et al. unpublished data) using Integrative 

Genomics Viewer (IGV, Broad Institute) and did not affect primer specificity. 

CDKA1, V4 and V1 (Moeys et al. 2016) were used for normalization as these were most 

stably expressed (Qbase+ software). Log2 expression ratios were compared with 

REST2013 software. The RT-qPCR program contained the following steps: 

Pre-incubation: 95°C – 5 min 

Amplification: 95°C – 10 s 
58°C – 10 S 

72°C – 20 s (40 cycli) 
Melting curve: 95°C – 5 min 

65°C – 1 min 

97°C – continuous 
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Results  
 

LHCX presence in the genome of S. robusta 

A HMMER search, with a profile based on the four P. tricornutum LHCX sequences, yielded 21 

putative LHCX sequences in the draft S. robusta genome, (SrLHCX) (Table 1, Fig. 1). We removed 

six sequences (highlighted in grey in Table 1), present on redundant contigs, from the total set of 

LHCX loci. From the remaining sequences, 11 showed complete LHCX sequences (see alignment 

Fig. 2). The automatically annotated SrLHCX3h sequence contained two introns, but was 

adjusted to contain only one intron, changing the N-terminal part based on in-house RNAseq 

data and corresponding to other LHCXs. Four sequences (including one possible allele) were 

incomplete and lacked the N-terminal part (indicated with a red font color in Table 1). Based on 

homology with other SrLHCX sequences, they were extended to a plausible start codon. The 

automatically annotated sequence on Sr-Backbone_263_11.1 contained multiple introns, 

possibly introduced by the software due the high amount of stop codons in all reading frames. In 

addition, the in-house RNA seq data did not support transcription of this sequence. It might 

therefore be a pseudogene and was not given an LHCX name or included in the gene tree (Fig. 

1). For both alleles of SrLHCX3g (Sr-Backbone_377_4.1 and Sr-Backbone_757_9.1) a complete 

open reading frame (ORF) could not be determined. However, Sr-Backbone_757_9.1 contained 9 

consecutive guanine (G) nucleotides, which might be an incorrect homopolymer due to a 

sequencing error. Removing two, five of seven guanine nucleotides, however, yielded a 

complete ORF. The deletion of several guanine nucleotides, moreover, is supported by a gap at 

this position (Fig. S1) in the mapped PACBIO reads. However, due to lack of RNA seq support for 

the sequence in general, the complete transcript sequence could not be determined. Its 

potential allele Sr-Backbone_377_4.1, contains a tandem repeat (Fig. S2a) (Benson 1999) from 

which the first repeat does not result in an LHCX amino acid sequence (Fig. S2b) and is not 

strongly supported by in-house PACBIO reads. The second repeat however does correspond to 

an LHCX sequence.  

The maximum likelihood LHCX tree (Fig. 1) shows that the SrLHCX sequences do not show a clear 

one on one relationship with sequences from P. tricornutum or the other included diatom 

species. Most SrLHCX sequences, however, seem to cluster with PtLHCX3, but this is not well 

supported by the bootstrap values. High bootstrap values, nonetheless, support the clustering of 

SrLHCX1a and SrLHCX1b, of SrLHCX4a and SrLHCX4b and of SrLHCX3b and the other SrLHCX3 

sequences. SrLHCX6 seems rather unrelated to the other SrLHCX sequences and is found in a 

cluster containing TpLHCX6 and FcLHCX6, however, again with low bootstrap support. The long 

branches for SrLHCX3f and 3g, probably reflect uncertainties in their respective gene models, see 

above. 
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Figure 1: Maximum likelihood tree of LHCX genes in Seminavis robusta (Sr, green), constructed, based on amino-acid sequences with RaxML, after 

sequence alignment with MUSCLE and manual editing with Jalview. 1000 bootstrap iterations were run (values are shown at the nodes. LHCX 

sequences from Thalassiosira pseudonana (Tp), Phaeodactylum tricornutum (Pt), Fragilariopsis cylindrus (Fc) and Pseudo-nitzschia multiseries (PM, 

with kind permission of E. V. Armbrust) were obtained from the JGI database (http://genome.jgi.doe.gov/).  
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Gene ID Name MW[KDa] 
query 
cover 

contig seq 
id 

gene seq 
id location 

Sr-Backbone_1106_30.1 SrLHCX1a 20.86       87110..87610,87690..87779 

Sr-Backbone_38_3.1 SrLHCX1b 20.87       41589..42089,42164..42253 

Sr-Backbone_1106_29.1 SrLHCX2 21.60       85759..85851,85961..86467 

Sr-Backbone_478_55.1  SrLHCX3a 22.38       131757..132398 
Sr-Backbone_785_13.1     58% 94% 100% 25569..26210 

Sr-Backbone_392_6.1 SrLHCX3b 22.33       32258..32899 

Sr-Backbone_440_61.1 SrLHCX3c 22.43       175336..175878,175963..176061 

Sr-Backbone_1330_26.1 SrLHCX3d 22.42       49819..49914,50012..50554 

Sr-Backbone_514_62.1 SrLHCX3e 22.38       155822..155917,156001..156543 
Sr-Backbone_413_8.1     66% 100%   19435..19530,19614..19903 
Sr-Backbone_1430_6.1     82% 92%   22330..22872,22960..23055 

Sr-Backbone_335_3.1 SrLHCX3f         10678..11342 

Sr-Backbone_377_4.1 SrLHCX3g         2109..2881 
Sr-Backbone_757_9.1     52% 97% 97% 15478..16136 

Sr-Backbone_742_15.1 SrLHCX3h 22.54       51101..51202,51287..51829 

Sr-Backbone_263_11.1 /         32718..32914,33027..33065,33284..33413,33484..33534 

Sr-Backbone_830_11.1 SrLHCX4a 20.81       40661..41248 

Sr-Backbone_514_29.1 SrLHCX4b 20.83       77193..77497,77600..77882 
Sr-Backbone_1740_5.1     97% 99% 98% 7218..7500,7604..7908 

Sr-Backbone_53_45.1 SrLHCX6 32.82       166273..166944 
Sr-Backbone_1602_3.1     60% 95%   8064..8469,8555..8967 

Table 1: LHCX sequences in S. robusta. MW: molecular weight, Query cover: % coverage of the smaller by the larger contig. Seq identity: % identical 
base pairs on contig overlap. Gene seq id: % identical base pairs of transcripts. Not calculated in case of gene model uncertainty. Values are only 
reported for sequences considered alleles.  
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Table 2: Primer specificity testing using FastPCR in silico PCR with default settings. Gene 
models with names in red are uncertain. Green color represents an amplified PCR product, 
whereas orange represents the possibility of an amplified gene product, however with one of 
the primers having a melting temperature <50°C when binding on the corresponding LHCX 
transcript. As most LHCX3 sequences are rather similar in the primer regions, the primer LHCX3 
picks up multiple related transcripts. 
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LHCX gene expression 

To identify which SrLHCX genes are responsive to high light, we exposed S. robusta cells 

to the same HL treatment as in (Blommaert et al. 2017), see section methods. The 

specificity of primer sets used in this experiment is given in Table 2, results are shown in 

Fig. 3. All Sr LHCX genes, were highly upregulated during the HL treatment. The highest 

upregulation was detected for SrLHCX3g & 4b (Fig. 3). Of all light induced LHCXs, only 

SrLHCX2, 3g & 6 were significantly more highly upregulated after 15 min. of HL. After 30 

min tested all LHCXs were significantly upregulated. SrLHCX2 reached the highest 

expression levels at 15 minutes, with subsequent significant decreases after both 30 and 

60 min. Also SrLHCX1a,b, 3g &6 showed a significant decline in expression between 30 

and 60 minutes of HL. 

 

 

Figure 3: Expression ratios are log2 transformed and indicated by the color chart. Values are 

averages of three independent replicates and relative to the respective initial values (LL). 

Significant changes at p<0.05 (Pairwise Fixed Reallocation Randomization Test performed by 

REST2013) are indicated with an asterisk.  

In addition, we studied LHCX expression in S. robusta during 24 hours of a 16 h light (20 

µmol photons m2s-1) 8 h dark cycle (Fig. 4a). Cultures kept in prolonged darkness were 

sampled in parallel (Fig. 4b). Gene expression was compared to expression levels in 

samples at the end of the previous light period (time point 0:00 in Fig. 4a-b). As in some 

replicates SrLHCX2&4a transcripts were not detected at the reference time point (0:00), 

transcription was compared to samples collected two hours before light onset (time 

point 6:00 in Fig. 4a-b). In the latter samples, no genes were significantly more highly 
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expressed. All SrLHCX genes showed a significant upregulation 15 minutes after the 

dark/light transition, with the exception of SrLHCX6. In the samples kept in prolonged 

darkness only SrLHCX2 was significantly upregulated one hour after the light period 

would have started. All genes showed significantly higher expression values at 15 

minutes of light exposure, compared to the samples kept in darkness (data not shown). 

This was also the case after one hour of light exposure, with exception of SrLHCX3g and 

3h. Only SrLHCX2 was significantly more highly expressed 3 h after light onset, compared 

to unexposed samples (data not shown).  

 

 

 

 

Figure 4: Expression ratios are log2 transformed and values are indicated by the color chart. 

Values are averages of three independent biological replicates and are relative to the first time 

point (0:00), with the exception of SrLHCX2 and SrLHCX4a, which are relative to the values at 

the second time point (6:00) as no transcripts were detected at (0:00). Therefore, the first time 

point (0:00) is represented by a ‘/’. Significant changes (p<0.05, Pairwise Fixed Reallocation 

Randomization Test performed by REST) are indicated with an asterisk. (a) LHCX expression 

during a 24 hour 16/8 hour day/night regime with light onset at 8:00. (b) LHCX expression 

during a 24-hour cycle with an extended dark period. 
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Figure 5: Alignment of regions 1 and 2 of Chlamydomonas reinhardtii LHCSR3, P. tricornutum 

LHCX3 and 4, and all LHCX sequences in S. robusta. The highlights in green represent 

conserved pH-sensing residues, whereas red highlights represent the absence of conserved 

pH-sensing residues. 

We investigated the presence of three amino acid residues which are known to function 

as sensor of the thylakoid lumen pH in the LHCSR3 in C. reinhardtii and are indispensable 

for NPQ functioning (Ballottari et al. 2016), two of which are also present in all P. 

tricornutum LHCX sequences, except LHCX4 (Fig. 5). SrLHCX6 contains none of the 

protonable residues in C. reinhardtii as is the case for LHCX6 in T. pseudonana (not 

shown). The same residues are conserved in all SrLHCX sequences as in PtLHCX1,2&3, 

with the exception of SrLHCX4a,b which both lack the same residue as PtLHCX4. 
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Discussion 
 

As LHCX proteins play a central role in the NPQ mechanism of planktonic diatoms 

(Bailleul et al. 2010; Zhu and Green 2010; Lepetit et al. 2013, 2017; Taddei et al. 2016) 

and light responsive LHCX-isoforms have been observed in benthic diatom isolates and 

communities (Laviale et al. 2015; Blommaert et al. 2017), we investigated the presence 

of LHCX genes in the benthic diatom Seminavis robusta and studied their transcriptional 

regulation during high light conditions and a darkness/low light transition.  

 

We detected 14 LHCX genes and one possible pseudogene in S. robusta, a high number 

compared to the model diatoms P. tricornutum (4) and T. pseudonana (5), but in the 

same range of the psychrophilic sea ice diatom F. cylindrus (11) (Armbrust et al. 2004; 

Bowler et al. 2008; Mock et al. 2017). Even though a similar amount of LHCX genes was 

discovered, LHCX diversification in both species seems to have occurred independently 

as LHCX genes of both species were found in different clades. It has to be pointed out 

however that the relationships between SrLHCX proteins and isoforms in other diatom 

species, however, in general were not well resolved with bootstrap values being 

generally low. Using a cut-off value of 50%, for instance, strongly changes the tree 

topology (Fig. S3).   

 

Even though a possible functional redundancy can be expected due to the high number 

of LHCX genes in S. robusta, transcription appears to be strongly light-regulated in all of 

the studied genes: all investigated LHCX transcripts were strongly upregulated in high 

light conditions, as was reported for planktonic diatoms (Nymark et al. 2009; Zhu and 

Green 2010; Lepetit et al. 2013) and in line with the observation of light responsive LHCX 

isoforms in benthic communities and the benthic diatoms Navicula phyllepta (Laviale et 

al. 2015) and S. robusta (Blommaert et al. 2017). In addition, the transcription of these 

genes, with the exception of SrLHCX6, peaked transiently after the dark/low light 

transition, confirming a possible regulating role in photosynthesis/photoprotection 

(Oeltjen et al. 2004; Nymark et al. 2009; Lepetit et al. 2013). Our results, however, do 

not allow to conclude why S. robusta has such a high number of LHCX genes (see below). 

One possibility, could be that a large set of LHCX genes is required to cope with variable 

light conditions. However, P. tricornutum only possesses four LHCX genes which still 

enable the species to rapidly adjust to a highly fluctuating light climate (Lepetit et al. 

2017). The ability of motile epipelic diatoms to rapidly migrate away from strong light 

conditions, furthermore, could minimize the need for strong physiological 

photoprotection (Laviale et al. 2016).   

 

Whereas the transcriptional response to changing light conditions was similar for most 

studied LHCX genes, a differential response was observed for SrLHCX2 and SrLHCX6. 

Interestingly, these genes are not closely related to the majority of LHCX genes in S. 
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robusta: SrLHCX6 clusters in a clade containing LHCX6 in the centric diatom T. 

pseudonana and the pennate diatom F. cylindrus (however with low bootstrap support). 

As SrLHCX6 was strongly upregulated in high light, whereas it was not upregulated from 

a dark to low light transition, it is possible that its gene product only accumulates in 

oversaturating conditions. Thus, together with Dtx binding, SrLHCX6 may play a role in 

sustained quenching (NPQs), as proposed for the LHCX6 in T. pseudonana. This matches 

the observation of sustained quenching and de novo Dtx synthesis in S. robusta under 

identical high light conditions. In N. phyllepta, which is phylogenetically related to S. 

robusta (Chepurnov et al. 2008), the anti-LHCX6 antibody raised against LHCX6 in T. 

pseudonana recognized a high light inducible LHCX isoform, whose size (~33KDa) is 

similar to the calculated size in S. robusta, Table 1, (Laviale et al. 2015). The same 

antibody, nonetheless, failed to recognize an isoform of any size in S. robusta 

(Blommaert et al. 2017). 

 

In contrast to SrLHCX6, the SrLHCX2 transcript was induced during the first 3 h after light 

onset and was the only gene being significantly induced when the dark/light transition 

was replaced by continuous darkness. Additional transcription upon a transition to high 

light, moreover, was only transiently induced. A similar light-regulation pattern was 

observed in PtLHCX1 (Nymark et al. 2009; Bailleul et al. 2010; Lavaud and Lepetit 2013; 

Lepetit et al. 2017) and could suggest that the gene product of SrLHCX2 is consistently 

present in the light harvesting antennae to provide a basal (but rather low) NPQ capacity 

(Barnett et al. 2015; Blommaert et al. 2017). As the difference in transcriptional 

regulation between SrLHCX2 and the other studied SrLHCX genes was less pronounced 

than in P. tricornutum and all transcripts, except SrLHCX6, were induced upon a 

light/dark transition, we cannot rule out that other SrLHCX proteins fulfill a similar role 

as PtLHCX1. The presence of LHCX transcripts in low light in S. robusta is consistent with 

the findings of Blommaert et al. (2017). The size of the observed isoform, nonetheless, is 

different from the calculated size of SrLHCX2 and is more likely to be an isoform of 

SrLHCX3. Linking transcriptional data and immuno-localization, in this case, is not 

straightforward as the used antibody (anti-LHCSR3, Bonente et al. 2011) was not 

specifically designed to recognize certain diatom LHCX isoforms. In addition, the large 

number of LHCX genes of similar sizes (Table 1) and differences in actual and predicted 

protein size (Bonente et al. 2011a) complicate the comparison of both datasets as was 

also observed for the observed discrepancies in transcriptional and translational 

regulation of LHCXs in P. tricornutum and T. pseudonana (Zhu and Green 2010; Lepetit et 

al. 2017). 

 

One of the most highly upregulated transcripts in high light was SrLHCX4b, which 

remained highly expressed even after 60 min of HL exposure. This gene is closely related 

to SrLHCX4a and seems to be differentiated from the majority of SrLHCX3s. A major 

difference between the SrLHCX4a&b proteins and the other SrLHCX proteins (with the 
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exception of SrLHCX6) is that only one protonable instead of two protonable amino-acid 

residues (compared to the three amino-acids responsible for the switch to energy-

dissipating mode in C. reinhardtii) is conserved. A similar difference in amino-acid 

sequence has been reported for PtLHCX4 and other P. tricornutum isoforms, the former, 

however, being induced only in prolonged darkness (Nymark et al. 2013; Taddei et al. 

2016). Even though NPQ regulation by a light-induced luminal pH change in diatoms is as 

yet not clear (Blommaert et al. in prep, Chapter 6), the above findings may suggest that 

both SrLHCX4 as PtLHCX4 are not or less controlled by a trans-thylakoidal proton 

gradient and hence possibly could contribute to a more sustained NPQ component as 

was suggested for TpLHCX6 (Zhu and Green 2010), which completely lacks these 

residues.  

 

In this study, we demonstrated the presence of multiple light-regulated LHCX genes, 

which may allow epipelic species to respond and/or acclimate to prolonged higher light 

conditions (Ezequiel et al. 2015; Barnett et al. 2015), either through an increase of the 

fast-responsive NPQ component ‘qE’ or through a more sustained quenching NPQs 

(Lavaud and Goss 2014). The differential involvement of SrLHCX proteins could be 

further discriminated using laboratory simulations of natural light conditions, such as a 

gradually increasing or rapidly fluctuating light regime (Lepetit et al. 2017) or during 

nutrient starvation conditions (Taddei et al. 2016). In addition, more specific antibodies 

could be designed or mass-spectrometry could be used to identify the proteins of the 

observed LHCX-isoforms, whereas knock-out mutants can give more details about the 

specific function. However, both approaches could also be complicated due to the high 

number of similar LHCX genes.  
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Supplemental information 
 

Table S1: primer sequences 

 

ID Left primer Right primer 

LHCX primers 
  LHCXmerged1 CGGAGAAGCTGTTGAAGGGT CAGTGACCAAGAGAGCCCAG 

comp36360_c0_seq1 CAGTGGCCAAGGACTGTCAT TCGGTGATTCATGGCTCCAG 

comp48425_c0_seq1 CCCCTTGGATTGAAGCCTGA TCCGTTGACAAGCTCCTGTG 

comp48425_c0_seq2 GCCTGAGGATCCTGAAGAGC TCCACCAACTCTTGTGCCAT 

comp51532_c0_seq1 GGCTGATGTCAACACCCTCA CAGTCACAGAGGCATCCCAG 

comp66598_c0_seq1 ACCAGTTGATGTACCAGCGG CCTGAGCCATGAATCCTGCA 

comp66734_c0_seq1 GGTTGGTGAAGCTGTCGAGA CCAGGCTTGTCAAATGGCAC 

comp75154_c0_seq2 TCTTGTGGGATGCCAGTGTC TCAGCACGCTTTTGTTCAGC 

LHCX6 TACTAGACGAGCAAGGCAGC ACAGTGAAGAAAGTAGCTTGTGT 

 

Figure S1: mapped PACBIO reads on Backbone_757_9.1 

Red reads with a ‘-‘ represent deletions, whereas blue and green reads are mapped sequences 

to the contig. The stretch of nine G’s on the reverse strand (second grey bar), hense seem not 

supported by the PACBIO reads.  
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Figure S2a: Sr-Backbone_377_4.1 [2109..2881] contains a tandem repeat. Sequence and 

alignement of both sesquences 

High within sequence similarity of two parts of this nucleotide sequence (highlighted in 

yellow and green in the Clustal Omega alignment below). ‘part 2’ yields an open reading 

frame, matching other LHCXs.  

ATGAAGTTCGCTGCTGCCATCACTCTTTTTGCTGCTTCTGCCAGTGCTTTCAGCCCTTTTGGTGTTGCTTCC

AAGAAGGCTGCCACTGTGGCTCCGCTTCACTGTGAAACTATCTCCGACTCTGAGCCTGTGCACTGACCCTT

GTTGGCGACAAGTCTGAAGAAGACTGAAAGCGAACCGAGCTGACTTACCACATGACTGTGCCATGCTTG

CTGTGCCATTGGTTCTTGGCTGGAGAAGCGTTGAAGGATCCTCCTCTGTGGGATCCAGTGTTACCAGTCCT

GCCCATCCCACCTGCTCAGGTCCCACTTTCCCTGGGCTTGTTGTACGAATTGAAGCGCTGAACAAAAAGC

GGCGAGTATTGGATGCTTGCTGCCATTGGTTTCTTGGCTGGAGAAGCTGTTGAAGGATCCTCCTTCTTGT

GGGATGCCAGTGTTACCGGTCCTGCCATTTCCCACCTTGCTCAGGTCCCACCTCTTTTCTGGGCCTTGTTG

GTTACTGGAATTGGAGCTGCTGAACAAAAGCGTGCTGAGATTGGATGGGTTGATCCTGCTGATGTTCCAG

TTGACCAACCAGGCCTTCTCCGCGCTGATTACACTCCTGGTGACATTGGCTTTGACCCCCTTGGATTGAAG

CCTGAGGATCCTGAAGAGCTTTTGGTTCTCCAAAACAAGGAACTCCAGAACGGTCGCTTGGCCATGCTTG

CTGCTGCTGGATTCATGGCACAAGAGTTGGTGGATGGAAAGGGAATCATTGAGCACTTGATGCACTAA 

part1      ATGCTTGCTGTGCCATTGGTTCTTGGCTGGAGAAGC-GTTGAAGGATCCTCC---TCTGT 

part2      ATGCTTGCTGCC-ATTGGTTTCTTGGCTGGAGAAGCTGTTGAAGGATCCTCCTTCTTGTG 

           **********     * * ***************** ***************   *     

 

part1      GGGATCCAGTGTTACCAGTCCTGCCCATCCCACC--TGCTCAGGTCCCACTTTCC---CT 

part2      GGATGCCAGTGTTACCGGTCCTGCCATTTCCCACCTTGCTCAGGTCCCACCTCTTTTCTG 

           **   *********** ********  * **  *  ************** *         

 

part1      GGGCT----TGTTGTACGAATTG-AAGCGCTGAACAAAAAGCGGCGAGTATTGG 

part2      GGCCTTGTTGGTTACTGGAATTGGAGCTGCTGAACAAAAGCGTGCTGAGATTGG 

           ** **     ***    ****** *   ***********    **    ***** 
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Figure S2b: Sr-Backbone_377_4.1 mapped PACBIO reads as viewed in Genomviewer. 

Red reads with a ‘-‘ represent deletions, whereas blue and green reads are mapped sequences 

to the contig. The smallest cyan bar represents the automatically annotated ORF, which was 

extended to a larger sequence (larger cyan bar). 
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Figure S3: The gene tree (Fig. 1) was collapsed with Treegraph 2, using a bootstrap value cut-

off of 50%. Bootstrap values are shown at the nodes. LHCX sequences from Thalassiosira 

pseudonana (Tp), Phaeodactylum tricornutum (Pt), Fragilariopsis cylindrus (Fc) and Pseudo-

nitzschia multiseries (PM, with kind permission of E. V. Armbrust) were obtained from the JGI 

database (http://genome.jgi.doe.gov/).  
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Abstract 

 
Plants and algae organisms need light for photosynthesis, but absorption of too much 

light can lead to oxidative damage to the photosynthetic apparatus. Therefore, they can 

dissipate excess light energy harmlessly as heat in a process measured as Non-

Photochemical Quenching (NPQ). In plants and green algae, this photoprotection 

mechanism is mainly controlled by the proton gradient across the thylakoid membrane 

(ΔpH), which is established during photosynthetic electron transfer. The magnitude of 

ΔpH has been estimated experimentally in plants and green algae, confirming its role as 

NPQ regulator. In diatoms the role of ΔpH in NPQ regulation is far less clear as it has 

never been measured experimentally. Therefore, in this preliminary study, we employed 

a method, established in plants, to determine ΔpH in the diatom Opephora guenter-

grassii in conjunction with NPQ measurements. As observed in plants, the 

ElectroChromic Shift (ECS) signal of O. guenter-grassii exhibited a drop below the (dark) 

baseline (ECS inversion, ECSinv), which is supposed to correlate with the magnitude of 

the ΔpH. Exposing O. guenter-grassii to a range of different light intensities, indeed, 

showed a strong relationship between NPQ, the xanthophyll cycle and ECSinv. However, 

we exploited the sensitivity of O. guenter-grassi to the uncoupler nigericin, which at low 

concentrations dissipates ΔpH while keeping overall photosynthesis intact to test the 

validity of ECSinv as a ΔpH proxy. As at low concentrations of nigericin ECSinv increases 

while NPQ decreases, it might be that NPQ is not regulated by the magnitude of ΔpH 

and/or the used method is not valid to measure ΔpH in diatoms and should be 

reevaluated in plants.  
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Introduction 
 

Photosynthetic organisms often absorb more light than they can safely use for 

photosynthesis and have therefore developed mechanisms to protect themselves 

against excess light energy (Li et al. 2009; Goss and Lepetit 2015). One of the main 

photoprotection mechanisms is called Non-Photochemical Quenching of chlorophyll 

fluorescence (NPQ) in which excess light energy is dissipated as heat (Demmig-adams et 

al. 2014). A major component of the NPQ models in plants and algae is the proton 

gradient across the thylakoid membrane (ΔpH) (Goss and Lepetit 2015). This proton 

gradient is established during photosynthetic electron transport whereby protons are 

translocated from the thylakoid lumen to the stroma and are consequently used for ATP 

synthesis. In plants and green algae, the magnitude of ΔpH increases in strong light 

conditions and functions as a feedback control on light harvesting, as it triggers the 

switch in the light-harvesting antennae from a light-harvesting to an energy-dissipating 

state, which is observed as NPQ (Demmig-adams et al. 2014; Erickson et al. 2015; Ruban 

2016; Sacharz et al. 2017). 

In plants, a high ΔpH leads to protonation of the ΔpH sensor PSII subunit S (PsbS) which 

then undergoes a conformational change and induces rearrangement of the light-

harvesting antennae (Ruban 2016; Sacharz et al. 2017). In green algae, ΔpH is sensed by 

Light-Harvesting Complex Stress Related (LHCSR) proteins (Peers et al. 2009). The 

LHCSR3 C-terminal domain in C. reinhardtii functions as a protonable pH sensor, 

controlling the quenching state of the light harvesting complexes (Liguori et al. 2013; 

Ballottari et al. 2016). Thylakoid lumen acidification in plants and green algae, 

furthermore, activates the de-epoxidation of the pigment violaxanthin (Vx) to 

zeaxanthin (Zx) in the xanthophyll cycle (XC). Zx is not essential for NPQ formation in 

both plants and green algae (Niyogi 1997; Bonente et al. 2011), but rather functions as 

an allosteric regulator in the NPQ formation in plants (Horton 2012).  

In the PsbS protein as well as the LHCSR protein, protonable residues necessary for NPQ 

regulation have been identified using N,N’ dicyclohexyl carbodiimide (DCCD) labeling 

and site-targeted mutations (Li et al. 2004; Ballottari et al. 2016). In plants and green 

algae, moreover, the magnitude of ΔpH has been estimated experimentally, confirming 

its role as NPQ regulator (Cruz et al. 2001, 2005; Kramer et al. 2003). The technique used 

to estimate the relative amplitude of ΔpH is based on the fact that protons are charged 

and proton accumulation in the lumen also generates an electric field (ΔΨ) across the 

thylakoid membrane (Kramer et al. 2003). Both the ΔpH and ΔΨ component make up 

the proton motive force (PMF), which drives ATP synthesis (Mitchell 1961). The ΔΨ 

component can be measured, based on the phenomenon that thylakoid pigments 

change their absorption spectrum under influence of a trans-thylakoidal electric field, 

called the Electro-Chromic Shift signal (ECS) (Bailleul et al. 2010a). Both components, 

however, are not equal as the thylakoid lumen is buffered and ΔΨ is (partly) dissipated 
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by counter-ion fluxes. The relaxation of ΔpH and ΔΨ upon an abrupt light-dark transition 

(which halts the proton influx) is thought to differ, which allows discrimination between 

both. In a first phase a fast decline in ECS signal is observed. Due to the low electric 

capacitance of the thylakoid membrane (Vredemberg 1976) and the high proton 

buffering capacity of the lumen (Junge and McLaughlin 1987), the PMF reaches its 

equilibrium value by decreasing mostly ΔΨ (the observed ECS signal), whereas the 

buffered ΔpH remains almost the same. As proton efflux continues until the PMF is 

completely dissipated, the observed ECS signal representing the transthylakoidal electric 

field, would be inverted (due to more positive charges on the stromal side) which is 

indicative of the magnitude of ΔpH. In a second phase when protons are freed from the 

“buffering network”, ΔpH decreases while ΔΨ increases (the PMF being constant). Since 

what ECS follows is ΔΨ, these two phases translate into an ECS inversion (see Kramer et 

al. 2003, box 2 and Fig. 3 for a visual representation). 

Diatoms possess a high capacity for NPQ (Ruban et al. 2004), which can respond rapidly 

to changes in light intensity (Lavaud and Goss 2014). The role of ΔpH as a NPQ regulator, 

however, is far from clear. As diatoms belong to a lineage that acquired photosynthesis 

mainly by incorporating a plastid of red algal origin (Archibald 2009), the NPQ regulatory 

components differ from those of the green lineage (reviewed by Goss & Lepetit, 2015). 

Diatom genomes lack the PsbS gene (Armbrust et al. 2004; Bowler et al. 2008) and the 

diadinoxanthin/diatoxanthin (Ddx/Dtx) cycle replaces the Vx cycle as the major 

xanthophyll cycle (Lohr and Wilhelm 1999). Like in the green lineage however, LHCX 

proteins (related to LHCSR proteins in green algae) are thought to be involved in the 

NPQ mechanism (Bailleul et al. 2010b; Zhu and Green 2010; Lepetit et al. 2013, 2017; 

Taddei et al. 2016).  

Specific differences exist between plants/green algae and diatoms regarding the 

xanthophyll cycle and LHCX proteins. Therefore, a similar role for ΔpH as an NPQ 

regulator in diatoms as in the green algae and plants cannot be assumed: (1) LHCX 

proteins in diatoms only have two instead of three protonable residues, essential for 

ΔpH sensing in C. reinhardtii (with the exception of LHCX4 in Phaeodactylum 

tricornutum, in which only one residue is conserved (Ballottari et al. 2016; Taddei et al. 

2016)); (2) The XC enzyme responsible for the de-epoxidation step (DDE) of Ddx to Dtx 

shows activity at a pH of 6.5 and higher (Jakob et al. 2001; Grouneva et al. 2006), while 

the activity of the Vx de-epoxidase in plants is strongly reduced at the same pH; (3) As a 

considerable PMF is present in darkness in diatoms (Bailleul et al. 2015), the thylakoid 

lumen might already be acidic in dark conditions. Therefore, the DDE enzyme already 

might be active in darkness and may therefore need an alternative regulator to become 

active in high light conditions. 

The role of the ΔpH as an NPQ regulator in diatoms has been investigated using 

uncouplers (substances which artificially disrupt or increase ΔpH) and specific 
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illumination conditions, leading to the following model regarding the involvement of the 

ΔpH in NPQ in (pennate) diatoms (Lavaud and Goss 2014; Goss and Lepetit 2015): (1) A 

certain magnitude of ΔpH is needed for NPQ; (2) Once NPQ is established, only the 

presence of Dtx is sufficient to maintain a quenching state, even in the absence of a ΔpH; 

(3) Dtx is mandatory: NPQ is always accompanied by the de-epoxidized xanthophyll Dtx, 

however a XC-independent NPQ component has been observed in artificial conditions 

(Lavaud and Kroth 2006; Eisenstadt et al. 2008; Lepetit et al. 2013). To date, however, 

the magnitude of ΔpH in diatoms was not measured experimentally, making its role in 

NPQ difficult to investigate.  

In the present study, we aimed to investigate in the relationship between NPQ and ΔpH 

in diatoms, by measuring both in vivo using the methodology previously used in plants 

(Cruz et al. 2001; Takizawa et al. 2007)(see above). The araphid pennate diatom 

Opephora guenter-grassii was chosen as a model organism, because its NPQ responds 

very rapidly to changes in irradiance (Blommaert et al. 2017) (Chapter 3), and because in 

contrast to the pennate model Phaeodactylum tricornutum its NPQ is sensitive to the 

uncoupler nigericin (found in a preliminary experiment) which dissipates ΔpH without 

affecting the ΔΨ, by equilibrating K+ and H+ across the thylakoid membrane (Harned et 

al. 1951; Graven et al. 1966; Reed 1979). The latter makes it possible to test the validity 

of ΔpH measurements in diatoms. As in diatoms, furthermore, both linear and quadratic 

ECS signals are present (Bailleul et al. 2015), and the ECS inversion method is based on a 

purely linear probe, we first identified at which wavelengths only a purely linear and 

quadratic signal is present. 
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Materials & Methods 
 
Culture conditions 
 
Opephora guenter-grassii was obtained from the diatom culture collection (BCCM/DCG) 

of the Belgian Coordinated Collection of Micro-organisms (http://bccm.belspo.be), 

accession number: DCG 0448, and grown in a CU-41L4 tissue culture chamber (Percival) 

in a 12 h light/12 h dark cycle with a Photosynthetically Available Radiation (PAR) of 10 

μmol photons m-2 s-1. Cells were cultured in Provasoli’s enriched f/2 seawater (Guillard 

1975) medium using Tropic Marin artificial sea salt (34.5 g L-1) enriched with NaHCO3 (80 

mg L-1 final concentration) in 200 mL tissue culture flasks (Greiner).  

 

Sample preparation 
 
Cells were concentrated by centrifugation at 3000 RPM for 5 min at 20°C (J-E, Avanti), 

resuspended in a smaller volume of the supernatant and supplemented with 10% w/v 

ficoll (Sigma-Aldrich) to prevent sedimentation.  

 
Deconvolution of linear and quadratic ECS components  

 

Absorption difference signals were measured at different wavelengths with a home-

made Joliot-type spectrophotometer equipped with a Varispec LC tunable filter 

(PerkinElmer, Ohio, USA), which allows to adjust wavelengths in the 500-600 nm range (7 

nm bandwidth). To deconvolute the linear and quadratic contributions to the ECS signals, 

we used a low concentration of FCCP (Carbonyl cyanide 4-(trifluoromethoxy) 

phenylhydrazone, 10 µM) in order to ensure that there was no electric field (ΔΨ) in the 

dark. The buildup of the ΔΨ was then achieved with a short (duration ~10 ms) pulse of 

strong (4500 µmol photons m-2 s-1) red illumination. We then followed the kinetics of the 

ECS signal decay over the 500-600 nm range and used the protocol described in Bailleul 

et al. (2015) to mathematically deconvolute the ECS signals into linear and quadratic 

components. Briefly, we assumed that the ΔΨ followed a mono- exponential decay:  

 

ΔΨ(t) = ΔΨ0 . exp (-t/τ) 

 

where t is time after the end of the light pulse, ΔΨ0 is the initial electric field at the end 

of the light pulse, and τ is the electric field decay lifetime. Given that the linear and 

quadratic ECS are theoretically proportional to ΔΨ and ΔΨ2, respectively, the ECS signal’s 

spectro-temporal matrices are described as a sum of two exponentials:  

 

ECS (λ,t) = Al(λ) · exp (-t/τ) + Aq(λ) · exp (-2.t/τ) 
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The kinetics of ECS relaxation at all wavelengths were fitted by a global routine, using the 

Origin software, which considers the lifetime τ as a global (wavelength independent) 

variable, and the amplitudes of linear and quadratic components (Al and Aq, 

respectively) as local (wavelength dependent) variables. The plots of the Al and Aq 

amplitudes as functions of the wavelength provide the spectra of the linear and 

quadratic ECS components, respectively. This measurement was done only once because 

it was only a first step in the determination of the purely linear and quadratic 

wavelengths.  

 

 

Measuring purely linear and quadratic ECS signals 

 

The optimal wavelengths to probe linear and quadratic signals were determined around 

the approximated wavelengths identified by deconvolution (see previous paragraph). 

Wavelengths were selected using interference filters, which were rotated to transmit 

specific wavelengths. This was checked with an S2000 fiber optic spectrometer (Ocean 

Optics). Antimycin A (AA) and salicylhydroxamic acid (SHAM) were added to the 

darkened sample as it inhibits mitochondrial respiration and as such slows down the 

chloroplast ATP synthase activity (see Bailleul et al. 2015), which enhances the temporal 

resolution of the decay function. ECS signals were measured with a Joliot-type 

spectrophotometer (JTS-10, Biologic, Grenoble, France). 

 

ECS measurements and contribution of ΔpH and ΔΨ to the PMF  

Absorption differences during the transition from light to dark were measured as in 

Bailleul et al. (2015) with a Joliot-type spectrophotometer (JTS-10, Biologic, Grenoble, 

France) equipped with a white probing LED and an interference filter of 564 nm, rotated 

to transmit 560 nm light (this was checked with an S2000 fiber optic spectrometer, 

Ocean Optics). The photodiode was protected from actinic light using a Schott BG-39 

filter. The same spectrophotometer was used to detect chlorophyll fluorescence (hence 

the measuring pulses had a wavelength of 560 nm) by placing a long-pass filter (Schott 

RG-695) in front of the photodiode detector. Saturating pulses (5000 µmol photons m-2s-

1, 250 ms, 629 nm in wavelength) were provided each 30 s. The photosynthetic 

efficiency of PSII (ΔF/Fm’) was calculated as (Fm’-F’)/Fm’ with F’ the minimal chlorophyll 

fluorescence yield in illuminated cells and Fm’ the corresponding maximum chlorophyll 

fluorescence yield. The relative electron transport rate (rETR) was calculated as 

(ΔF/Fm’)*PAR. NPQ was calculated as (Fm-Fm’)/Fm’, where Fm is the maximum chlorophyll 

fluorescence yield before high light exposure. NPQ was monitored until a steady state 

was reached (typically 5-7 min). The rate of PSII and PSI chemistry was calculated as the 

negative slope of the ECS signal, during 10 ms after light was shut off after steady state 

was reached (Joliot and Joliot 2002; Bailleul et al. 2010a). Five different light intensities 

were tested: 0, 135, 340, 800 and 1500 μmol photons m-2s-1, provided by a ring of red 
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(629 nm) LEDs. For each light intensity, NPQ was measured until a steady state was 

reached. A new sample was used for each light intensity. All experiments were 

replicated two times, with aliquots taken from a different stock culture each day. 

 

Pigment analyses 

After chlorophyll fluorescence and absorption difference measurements, one mL was 

sampled for pigments and analyzed as described by Blommaert et al. (2017). Diatom 

suspensions were rapidly filtered onto Isopore 1.2 µm RTTP filters (Merck Millipore), 

immediately frozen in liquid nitrogen and stored at -80°C. Samples were freeze-dried 

before adding -20°C cold 0.7 mL extraction buffer (90% methanol/0.2 M ammonium 

acetate (90/10 vol/vol) and 10% ethyl acetate). Pigment extraction was enhanced by 

adding glass beads (diameter 0.25–0.5 mm, Roth) and vortexing for 30 s. The extracts 

were sonicated for 60 s on ice at 40% amplitude with 2 s pulse, 1 s rest to pulverize the 

precipitated ficoll and filtered over a 0.2 µm filter. One hundred microliters were 

immediately injected into the HPLC system (Agilent). Samples were analyzed according 

to Van Heukelem and Thomas (2001). As buffered extraction medium was used, no 

additional TBAA buffer was injected. All pigment concentrations: diadinoxanthin (Ddx), 

diatoxanthin (Dtx) and chlorophyll a (Chl a) were calculated by comparison with pigment 

standards. All standards were obtained from DHI, with exception of Chl a, which was 

obtained from Sigma-Aldrich. Xanthophyll cycle pigments were normalized to 100 mol 

chlorophyll a (Chl a). 
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Results & discussion 
Deconvolution of linear and quadratic ECS components  

 
As in diatoms both linear and quadratic ECS components have been observed (Bailleul et 

al. 2015), we first identified the wavelengths at which wavelengths the ECS signal in O. 

guenter-grassii was either purely linear or quadratic, by following the kinetics of the ECS 

signal decay after a pulse of strong light (Fig. 1a) and estimated the contribution of the 

linear and quadratic component (Ai) (Fig. 1b). We found a wavelength around 560 nm 

where the signal was purely linear (i.e. the contribution from the quadratic component 

was null) and a wavelength around 580 nm where the contribution was purely quadratic 

(i.e. the linear contribution is null). These two wavelengths minimize contribution of 

cytochromes (Bailleul et al. 2015). 

 
Fig. 1. (a, b). (a) Example of the decay of the ECS signal (the absorption difference ΔI/I), 
measured at different wavelengths (different colours) after a strong light pulse and (b) the 
contribution of quadratic (black) and linear (red) ECS signal (Ai) to the ECS signal amplitude. 

 

The presence of a dark electric field 
 

In diatoms the presence of both linear and quadratic components allows to measure the 

absolute electric field, as by plotting the relationship between ECSquad and ECSlin signals 

during the relaxation in the dark after a light pulse, a parabola can be observed (Bailleul 

et al. 2015). In diatoms, however, the ECS measurements do not reach the minimum of 

the parabola, suggesting the presence of a dark electric field ΔΨd and the presence of a 

PMF (Bailleul et al. 2015). To determine this dark electric field (ΔΨd) in O. guenter-grassii, 

we used the same light perturbation as above and followed the kinetics of the ECS signal 

at 560 nm (linear signal) and 581 nm (quadratic signal). (Fig. 2). Unfortunately, the dark 

electric field could not be normalized to give a quantitative value, expressed in charge 

separations per PS (like in Bailleul et al 2015) because the laser was not operational at 

the time of the experiment. However, our results clearly showed that there was a dark 

electric field (and therefore a PMF), in the dark, due to the hydrolysis of ATP from 

mitochondrial origin, since it was suppressed in the presence of the cytochrome bc1 
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complex and AOX (Alternative OXidase) inhibitors, AA (Antimycin A) and 

salicylhydroxamic acid (SHAM) (Fig. 2) (as observed by Bailleul et al. 2015). The good fit 

of the experimental data with a parabolic equation in both control and mitochondria 

inhibited conditions, furthermore, validated the choice of the two wavelengths for the 

following experiments.  

 

 

Fig. 2. The relationship between the linear and quadratic ECS signals in darkness in Opephora 
guenter-grassii: control (white symbols) and treated with 5 µM AA and 1 mM SHAM (black 
symbols). The red double arrow represents the extent of the dark electric field in an untreated 
sample (ΔΨd). Note that when mitochondria were inhibited a small electric field was still 
present (black double arrow), indicating that there remained some ATP generated by 
glycolysis/remaining mitochondrial respiration. 

An ECS inversion was observed upon turning off illumination after a steady-state NPQ 

was reached. 

When illumination was turned off, after a steady-state NPQ was reached, a fast decay of 

the linear ECS signal was observed (Fig. 3 a). The total decay has been interpreted as 

being equal to the PMF (Cruz et al 2001)(Fig. 3b), after which the signal increased again 

to reach a stable value, supposedly the dark-adapted level of electric field ΔΨd (Cruz et 

al. 2001). The drop below the dark baseline represents an inversion of the ECS signal 

(ECSinv) and has been related to the light-generated ΔpH fraction of the total PMF, 

whereas the difference between the signal during the light acclimated level and the 

supposed dark baseline ECSss has been related to the light-generated electric field (ΔΨ). 

As an ECS inversion has been observed in terrestrial plants and green algae (Cruz et al. 

2001, 2005) and to our knowledge this work represents the first observation of an ECS 

inversion in diatoms (no ECS inversion has been observed in diatoms tested so far, 
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Bailleul, personal communication), the validity of the model/interpretation needs to be 

investigated in other diatoms before it can be used to probe ΔpH and ΔΨ. 

 

Fig. 3. (a,b) The ECS inversion observed in O. guenter grassii after exposure to 800 µmol 
photons m-2 s-1. With the total ECS decline (ECSt), steady state ECS in darkness (ECSss) and the 
ECS inversion (ECSinv = ECSt – ECSss) in (a) being related to the proton motive force (PMF), the 
light-generated electric field (ΔΨ) and the pH gradient (ΔpH) by Cruz et al. (2001) in (b). 

 

The relationship between ΔpH and Dtx/NPQ 

In order to characterize the light response of O. guenter-grassii we exposed it to 

different intensities of red light until a steady-state NPQ was reached. The relative ETR 

(rETR) (Fig. 4a) saturated above 350 μmol photons m-2s-1. A noticeable decay in rETR was 

observed at higher light intensities (800 and 1500 μmol photons m-2s-1). As this species 

has been shown to be able to withstand prolonged exposure to high light (e.g. 1 h, 2000 

μmol photons m-2s-1, Blommaert et al. 2017) the observed decline in rETR was most 

probably due to a large development of NPQ during light exposure (Lefebvre et al. 

2011), or to an underestimated ΔF/Fm’ due to insufficienty high light pulses to reach Fm’, 

instead of photoinhibition. Above saturating light conditions, diadinoxanthin (Ddx) de-

epoxidation resulted in accumulation of diatoxanthin (Dtx) and NPQ development (Fig. 

4b, c). Note that even though cells were acclimated to low light intensities, Dtx was 

present in significant amounts (about 1 mol (100 Chl a)-1) before exposure to high light 

conditions, which could indicate that cells were not in an optimal (unstressed) condition 

before the experiments. The contributions of the putative ‘ΔΨ’ and ‘ΔpH’ component to 

the total PMF changed with increasing light intensity (Fig. 4d). Whereas the contribution 

of ‘ΔpH’ was low below light saturation, it was about 50% at 800 μmol photons m-2 s-1. A 
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similar parsing have been observed in higher plants, where at the highest tested light 

intensity (1500 μmol photons m-2 s-1) nearly all PMF consisted of ‘ΔpH’ (Klughammer et 

al. 2013). A small dip in ‘PMF’ and ‘ΔpH’ beyond the saturation point, as described by 

Klughammer et al. (2013) and Lyu and Lazár (2017) was not observed, possibly because 

we only have data for two light intensities beyond the saturation point. The above 

findings support the hypothesis that an increase in ‘ΔpH’ at the expense of ‘ΔΨ’ at 

oversaturating conditions (Kramer et al. 2003) regulates xanthophyll de-epoxidation and 

engages the NPQ mechanism in diatoms (Lavaud and Goss 2014). 

 

a 

 

b 
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c 

 
d 

 
Fig.4. (a,b,c,d) The response of different photosynthetic parameters to increasing levels of 
Photosynthetically Available Radiation (PAR): (a) the relative Electron Transport Rate (rETR); 
(b) the diatoxanthin content (Dtx) normalized to Chl a; (c) Non-photochemical quenching 
(NPQ); and (d) the parsing of the PMF according to Cruz et al. (2001), see Fig. 3. Values are 
averages of two independent replicates, error bars represent standard deviations. A new 
sample was used for each data point. 
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Is ECSinv a valid proxy for ΔpH? 

The validity of ΔpH estimation as ECSinv, as described by Cruz et al. (2001) was tested by 

using nigericin. This ionophore exchanges H+ and K+ (Reed 1979) and thus decreases the 

light-generated (here 800 μmol photons m-2s-1) transthylakoidal proton gradient while 

keeping the electric field component intact. As we wanted to be certain that nigericin 

modified only ΔpH, while not affecting other photosynthetic processes, we monitored 

the photochemical rate of PSII and PSI, Rph (Joliot and Joliot 2002), and the 

photosynthetic efficiency of PSII (ΔF/Fm’) (Fig.5 a,b). Especially above a nigericin 

concentration of 0.56 μM, a drastic decline in both photosynthetic parameters was 

observed. At higher nigericin concentrations, ECSt decreased, concomitantly with the 

decrease in Rph and ΔF/Fm’, indicating that the electron transfer rate is altered in those 

conditions. Therefore, above 0.56 μM nigericin affects not only ΔpH, making it 

impossible to interpret its regulatory role in NPQ at the higher nigericin concentration 

ranges. 

The largest decline in Dtx and NPQ (Fig. 5 c,d), however, was observed when using the 

lowest nigericin concentrations (0.14, 0.28 and 0.56 μM). As ECSt, which has been 

interpreted as the light-generated PMF (Fig. 5e), did not decrease at the lowest nigericin 

concentrations (0.14-0.28 μM), but rather showed a small increase and similar Rph and 

ΔF/Fm’ values as in the untreated controls were observed, we can assume that in the 

lower concentration ranges nigericin only affects ΔpH. In contrast to what was expected 

however, ECSinv showed a pronounced increase at a nigericin concentration of 0.14-0.28 

μM, while ECSss decreased, suggesting an increase in ΔpH at the expense of ΔΨ (Cruz et 

al. 2001). Even though there was a positive relationship between ECSinv or ‘ΔpH’ and 

NPQ and Dtx with increasing light intensity (Fig. 4), the opposite relationship was 

observed upon nigericin addition (Fig. 5c,d&e, Fig. 6). Furthermore, an increase in ECSinv 

was also observed when nigericin was added in increasing doses after a steady state was 

reached at 800 µmol photons m-2 s-1 and waiting until NPQ stabilized before measuring 

ECSinv (Fig. 7), as such confirming the results obtained from non-sequential observations. 

Interestingly, the small increase in ECSt was observed as well. However, NPQ did not 

decrease at these nigericin concentrations (data not shown). 

The correlation between NPQ and Dtx was strong, and remained similar in the presence 

of nigericin, as is commonly observed in diatoms (Lavaud et al. 2004; Schumann et al. 

2007) (Fig. 8). Dtx, however, was not fully epoxidized to Ddx upon nigericin addition, but 

reached a level of about 1 mol (100 mol Chl a)-1, similar to samples not exposed to 800 

μmol photons m-2s-1 and as described above. NPQ on the other hand was completely 

abolished at the highest nigericin concentrations. Unfortunately, it was difficult to 

compare the relationship between nigericin treated and untreated samples as data 

points for the latter (obtained upon exposure to different light intensities) in the same 

Dtx range were lacking. This could be alleviated by sampling in light conditions between 
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350 and 800 µmol photons m-2 s-1. Interestingly, in rather artificial conditions, small 

deviations in the NPQ/Dtx relationship have been observed in P. tricornutum, by 

decreasing the thylakoid lumen pH with NH4Cl (Lavaud et al. 2002) or using DCCD, which 

increases ΔpH by inhibiting the ATP synthase. Additional deviations, moreover, were 

observed when increasing Dtx content by addition of exogenous ascorbate (shifting the 

pH optimum of the de-epoxidase) or a stepwise pre-illumination protocol at moderate 

light intensities (Lavaud and Kroth 2006).  
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e 

 
Fig. 5. (a,b,c,d,e) The response of different photosynthetic parameters at 800 µmol photons m-

2 s-1 to different concentrations of nigericin: (a) the photochemical rate of PSII and PSI, relative 

to the untreated control; (b) The effective quantum efficiency of PSII photochemistry, relative 

to the untreated control; (c) the diatoxanthin content (Dtx) normalized to 100 mol Chl a. The 

white symbol represents samples not exposed to 800 µmol photons m-2 s-1 and without 

nigericin; (d) Non-photochemical quenching (NPQ) relative to the control; and (e) the parsing 

of the PMF according to Cruz et al. (2001), see Fig. 3. All Values are averages of two 

independent replicates, error bars represent standard deviations.  
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Fig. 6. Non-photochemical quenching (NPQ) in function of ECSinv, see Fig. 3. Both NPQ and 
ECSinv were normalized to 1 (black data point with cross hairs) for the control values for 
demonstrative purposes. Different colors represent different biological replicates. A fresh 
sample was used for each data point. The grey arrow represents increasing nigericin 
concentration. 

 

 
Fig. 7. The ECS inversion observed after turning off illumination (800 µmol photons m-2 s-1) 
with increasing doses of nigericin applied to the same sample. 
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Figure 8: The relationship between Non-photochemical quenching (NPQ) and diatoxanthin 
(Dtx) normalized to 100 mol Chl a, black symbols represent data points from Fig. 5 c-d, 
whereas the white symbols represent data points from Fig. 4b-c.  

Using small concentrations of nigericin we observed an increase ECSinv while both NPQ 

and Dtx decreased. These observations could be explained by two alternative 

hypotheses: 1) the ECS-based method to measure ΔpH as ECSinv is not valid in diatoms, 

or 2) NPQ is not regulated by ΔpH. However, as our results comprise only two replicated 

sets of experiments on one diatom species, more replication on the studied species and 

experiments on more diatom representatives are required to evaluate the above 

hypotheses. 

We suggest that the method of Cruz et al. (2001) should be used with caution. Even 

though this method is commonly applied to determine ΔpH in plants and green algae 

(Cruz et al. 2001, 2005; Kanazawa and Kramer 2002; Klughammer et al. 2013; Lyu and 

Lazár 2017), its findings (e.g. the presence of a light-generated ΔΨ in steady state 

conditions) have been recently disputed by Johnson and Ruban (2014). They argued that 

the observed ΔΨ in steady state conditions (as evidenced by ECS measurements at 515 

nm) might be (at least partly) due to overlap with absorption changes around 535 nm, 

associated with the formation of qE. At the light intensity used in this study (700 µmol 

photons m-2 s-1), the contribution of ΔΨ to the PMF nonetheless is considered to be low 

(Klughammer et al. 2013). Recent modeling of the light-induced ΔΨ (Lyu and Lazár 

2017), however, agrees with the presence of a generally low ΔΨ. In diatoms, a qE 

associated 535 nm absorption change has not been observed, but an analogous 

absorption band has been observed at 522 nm (Ruban et al. 2004). As in our study we 

measured (linear) absorption changes at 560 nm, it is very unlikely that our signal is 

contaminated by qE related absorption changes. Either way, it would be informative to 
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test the ECS-based ΔpH determination in plants using similarly low nigericin 

concentrations. 

 

An alternative methods to determine ΔpH is the use of the fluorescent dye 9-

aminoacridine as a pH indicator (Johnson and Ruban 2011). The use of 9-aminoacridine, 

however, is mostly applied to chloroplasts. Therefore, to resolve the function of a ΔpH in 

the regulation of NPQ in diatoms, a new method should be developed. The presence of 

both a linear and quadratic ECS signal in diatoms (Bailleul et al. 2010a, this study), allows 

measuring the absolute value of the electric component ΔΨ of the PMF. As, at least in 

plants, it is possible to determine the total PMF (Joliot and Joliot 2008), applying this 

method in combination with determining its electric component ΔΨ, the ΔpH can be 

calculated as the difference between PMF and ΔΨ. By developing this method in 

diatoms the role of ΔpH in regulating NPQ can be further dissected. 

  

  



213 
 

References 
Archibald, J. M. 2009. The Puzzle of Plastid Evolution. Curr. Biol. 19: 81–88. 

doi:10.1016/j.cub.2008.11.067 

Armbrust, E., J. Berges, and C. Bowler. 2004. The genome of the diatom Thalassiosira 
pseudonana: ecology, evolution, and metabolism. Science (80-. ). 306: 79–86. 

Bailleul, B., N. Berne, O. Murik, and others. 2015. Energetic coupling between plastids and 
mitochondria drives CO2 assimilation in diatoms. Nature 524: 366–369. 
doi:10.1038/nature14599 

Bailleul, B., P. Cardol, C. Breyton, and G. Finazzi. 2010a. Electrochromism: a useful probe to study 
algal photosynthesis. Photosynth. Res. 106: 179–89. doi:10.1007/s11120-010-9579-z 

Bailleul, B., A. Rogato, A. De Martino, S. Coesel, P. Cardol, C. Bowler, A. Falciatore, and G. Finazzi. 
2010b. An atypical member of the light-harvesting complex stress-related protein family 
modulates diatom responses to light. Proc. Natl. Acad. Sci. 107: 18214–18219. 
doi:10.1073/pnas.1007703107 

Ballottari, M., T. B. Truong, E. De Re, E. Erickson, G. R. Stella, G. R. Fleming, R. Bassi, and K. K. 
Niyogi. 2016. Identification of pH-sensing sites in the Light Harvesting Complex Stress-
related 3 protein essential for triggering Non-photochemical Quenching in Chlamydomonas 
reinhardtii. J. Biol. Chem. 291: 7334–46. doi:10.1074/jbc.M115.704601 

Blommaert, L., M. J. J. Huysman, W. Vyverman, J. Lavaud, and K. Sabbe. 2017. Contrasting NPQ 
dynamics and xanthophyll cycling in a motile and a non-motile intertidal benthic diatom. 
Limnol. Oceanogr. doi:10.1002/lno.10511 

Bonente, G., M. Ballottari, T. B. Truong, T. Morosinotto, T. K. Ahn, G. R. Fleming, K. K. Niyogi, and 
R. Bassi. 2011. Analysis of LhcSR3, a protein essential for feedback de-excitation in the 
green alga Chlamydomonas reinhardtii. PLoS Biol. 9: e1000577. 
doi:10.1371/journal.pbio.1000577 

Bowler, C., A. E. Allen, J. H. Badger, and others. 2008. The Phaeodactylum genome reveals the 
evolutionary history of diatom genomes. Nature 456: 239–44. doi:10.1038/nature07410 

Cruz, J. A., A. Kanazawa, N. Treff, and D. M. Kramer. 2005. Storage of light-driven transthylakoid 
proton motive force as an electric field (Δψ) under steady-state conditions in intact cells of 
Chlamydomonas reinhardtii. Photosynth. Res. 85: 221–233. doi:10.1007/s11120-005-4731-
x 

Cruz, J. A., C. A. Sacksteder, A. Kanazawa, and D. M. Kramer. 2001. Contribution of electric field 
(Δψ) to steady-state transthylakoid proton motive Force (PMF) in vitro and in vivo. Control 
of PMF parsing into Δψ and ΔpH by ionic Strength. Biochemistry 40: 1226–1237. 
doi:10.1021/bi0018741 

Demmig-adams, B., C. M. Cohu, J. J. Stewart, W. W. A. III, and Govindjee. 2014. Non-
Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria, B. 
Demmig-Adams, G. Garab, W. Adams III, and Govindjee [eds.]. Springer Netherlands. 

Eisenstadt, D., I. Ohad, N. Keren, and A. Kaplan. 2008. Changes in the photosynthetic reaction 
centre II in the diatom Phaeodactylum tricornutum result in non-photochemical 
fluorescence quenching. Environ. Microbiol. 10: 1997–2007. doi:10.1111/j.1462-
2920.2008.01616.x 



214 
 

Erickson, E., S. Wakao, and K. K. Niyogi. 2015. Light stress and photoprotection in 
Chlamydomonas reinhardtii. Plant J. 82: 449–465. doi:10.1111/tpj.12825 

Goss, R., and B. Lepetit. 2015. Biodiversity of NPQ. J. Plant Physiol. 172: 13–32. 
doi:10.1016/j.jplph.2014.03.004 

Graven, S. N., S. Estrada-O, and H. A. Lardy. 1966. Alkali metal cation release and respiratory 
inhibition induced by nigericin in rat liver mitochondria. Proc. Natl. Acad. Sci. U. S. A. 56: 
654–8. 

Grouneva, I., T. Jakob, C. Wilhelm, and R. Goss. 2006. Influence of ascorbate and pH on the 
activity of the diatom xanthophyll cycle-enzyme diadinoxanthin de-epoxidase. Physiol. 
Plant. 126: 205–211. doi:10.1111/j.1399-3054.2006.00613.x 

Guillard, R. R. . 1975. Culture of phytoplankton for feeding marine invertebrates, p. 26–60. In 
W.L. Smith and M.L. Chanley [eds.], Culture of Marine Invertebrate Animals. Planum Press. 

Harned, R. L., P. H. Hidy, C. J. Corum, and K. L. Jones. 1951. Nigericin a new crystalline antibiotic 
from an unidentified Streptomyces. Antibiot. Chemother. (northf. III.) 1: 594–596. 

Van Heukelem, L., and C. S. Thomas. 2001. Computer-assisted high-performance liquid 
chromatography method development with applications to the isolation and analysis of 
phytoplankton pigments. J. Chromatogr. A 910: 31–49. doi:10.1016/S0378-4347(00)00603-
4 

Horton, P. 2012. Optimization of light harvesting and photoprotection: molecular mechanisms 
and physiological consequences. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 367: 3455–65. 
doi:10.1098/rstb.2012.0069 

Jakob, T., R. Goss, and C. Wilhelm. 2001. Unusual pH-dependence of diadinoxanthin de-
epoxidase activation causes chlororespiratory induced accumulation of diatoxanthin in the 
diatom Phaeodactylum tricornutum. J. Plant Physiol. 158: 383–390. doi:10.1078/0176-
1617-00288 

Johnson, M. P., and A. V. Ruban. 2011. Restoration of rapidly reversible photoprotective energy 
dissipation in the absence of PsbS protein by enhanced DeltapH. J. Biol. Chem. 286: 19973–
19981. doi:10.1074/jbc.M111.237255 

Johnson, M. P., and A. V. Ruban. 2014. Rethinking the existence of a steady-state Δψ component 
of the proton motive force across plant thylakoid membranes. Photosynth. Res. 119: 233–
242. doi:10.1007/s11120-013-9817-2 

Joliot, P., and A. Joliot. 2002. Cyclic electron transfer in plant leaf. Proc. Natl. Acad. Sci. 99: 
10209–10214. doi:10.1073/pnas.102306999 

Joliot, P., and A. Joliot. 2008. Quantification of the electrochemical proton gradient and 
activation of ATP synthase in leaves. Biochim. Biophys. Acta - Bioenerg. 1777: 676–683. 
doi:10.1016/j.bbabio.2008.04.010 

Junge, W., and S. McLaughlin. 1987. The role of fixed and mobile buffers in the kinetics of proton 
movement. Biochim. Biophys. Acta 890: 1–5. 

Kanazawa, A., and D. M. Kramer. 2002. In vivo modulation of nonphotochemical exciton 
quenching (NPQ) by regulation of the chloroplast ATP synthase. Proc. Natl. Acad. Sci. 99: 
12789–12794. doi:10.1073/pnas.182427499 



215 
 

Klughammer, C., K. Siebke, and U. Schreiber. 2013. Continuous ECS-indicated recording of the 
proton-motive charge flux in leaves. Photosynth. Res. 117: 471–487. doi:10.1007/s11120-
013-9884-4 

Kramer, D. M., J. A. Cruz, and A. Kanazawa. 2003. Balancing the central roles of the thylakoid 
proton gradient. Trends Plant Sci. 8: 27–32. doi:10.1016/S1360-1385(02)00010-9 

Lavaud, J., and R. Goss. 2014. The peculiar features of the non-photochemical fluorescence 
quenching in diatoms and brown algae, p. 421–443. In B. Demmig-Adams, G. Garab, W. 
Adams III, and Govindjee [eds.], Non-Photochemical Quenching and Energy Dissipation in 
Plants, Algae and Cyanobacteria. Springer. 

Lavaud, J., and P. G. Kroth. 2006. In diatoms, the transthylakoid proton gradient regulates the 
photoprotective non-photochemical fluorescence quenching beyond its control on the 
xanthophyll cycle. Plant Cell Physiol. 47: 1010–6. doi:10.1093/pcp/pcj058 

Lavaud, J., B. Rousseau, and A.-L. Etienne. 2002. In diatoms, a transthylakoid proton gradient 
alone is not sufficient to induce a non-photochemical fluorescence quenching. FEBS Lett. 
523: 163–166. 

Lavaud, J., B. Rousseau, and A.-L. Etienne. 2004. General features of photoprotection by energy 
dissipation in planktonic diatoms (Bacillariophyceae). J. Phycol. 40: 130–137. 
doi:10.1046/j.1529-8817.2004.03026.x 

Lefebvre, S., J.-L. Mouget, and J. Lavaud. 2011. Duration of rapid light curves for determining the 
photosynthetic activity of microphytobenthos biofilm in situ. Aquat. Bot. 95: 1–8. 
doi:10.1016/j.aquabot.2011.02.010 

Lepetit, B., G. Gélin, M. Lepetit, and others. 2017. The diatom Phaeodactylum tricornutum 
adjusts nonphotochemical fluorescence quenching capacity in response to dynamic light 
via fine-tuned Lhcx and xanthophyll cycle pigment synthesis. New Phytol. 214: 205–218. 
doi:10.1111/nph.14337 

Lepetit, B., S. Sturm, A. Rogato, A. Gruber, M. Sachse, A. Falciatore, P. G. Kroth, and J. Lavaud. 
2013. High light acclimation in the secondary plastids containing diatom Phaeodactylum 
tricornutum is triggered by the redox state of the plastoquinone pool. Plant Physiol. 161: 
853–865. doi:10.1104/pp.112.207811 

Li, X.-P., A. M. Gilmore, S. Caffarri, R. Bassi, T. Golan, D. Kramer, and K. K. Niyogi. 2004. 
Regulation of photosynthetic light harvesting involves intrathylakoid lumen pH sensing by 
the PsbS Protein. J. Biol. Chem. 279: 22866–22874. doi:10.1074/jbc.M402461200 

Li, Z., S. Wakao, B. B. Fischer, and K. K. Niyogi. 2009. Sensing and responding to excess light. 
Annu. Rev. Plant Biol. 60: 239–60. doi:10.1146/annurev.arplant.58.032806.103844 

Liguori, N., L. M. Roy, M. Opacic, G. Durand, and R. Croce. 2013. Regulation of light harvesting in 
the green alga Chlamydomonas reinhardtii: the C-terminus of LHCSR is the knob of a 
dimmer switch. J. Am. Chem. Soc. 135: 18339–42. doi:10.1021/ja4107463 

Lohr, M., and C. Wilhelm. 1999. Algae displaying the diadinoxanthin cycle also possess the 
violaxanthin cycle. Proc. Natl. Acad. Sci. 96: 8784–8789. doi:10.1073/pnas.96.15.8784 

Lyu, H., and D. Lazár. 2017. Modeling the light-induced electric potential difference (ΔΨ), the pH 
difference (ΔpH) and the proton motive force across the thylakoid membrane in C3 leaves. 
J. Theor. Biol. 413: 11–23. doi:10.1016/j.jtbi.2016.10.017 



216 
 

Mitchell, P. 1961. Coupling of Phosphorylation to Electron and Hydrogen Transfer by a Chemi-
Osmotic type of Mechanism. Nature 191: 144–148. doi:10.1038/191144a0 

Niyogi, K. K. 1997. Chlamydomonas xanthophyll cycle mutants identified by video imaging of 
chlorophyll fluorescence quenching. Plant Cell 9: 1369–1380. doi:10.1105/tpc.9.8.1369 

Peers, G., T. B. Truong, E. Ostendorf, A. Busch, D. Elrad, A. R. Grossman, M. Hippler, and K. K. 
Niyogi. 2009. An ancient light-harvesting protein is critical for the regulation of algal 
photosynthesis. Nature 462: 518–521. doi:10.1038/nature08587 

Reed, P. W. 1979. Ionophores, p. 435–454. In Methods in enzymology. 

Ruban, A., J. Lavaud, B. Rousseau, G. Guglielmi, P. Horton, and A.-L. Etienne. 2004. The super-
excess energy dissipation in diatom algae: comparative analysis with higher plants. 
Photosynth. Res. 82: 165–75. doi:10.1007/s11120-004-1456-1 

Ruban, A. V. 2016. Nonphotochemical chlorophyll fluorescence quenching: Mechanism and 
effectiveness in protecting plants from photodamage. Plant Physiol. 170: 1903–16. 
doi:10.1104/pp.15.01935 

Sacharz, J., V. Giovagnetti, P. Ungerer, G. Mastroianni, and A. V. Ruban. 2017. The xanthophyll 
cycle affects reversible interactions between PsbS and light-harvesting complex II to control 
non-photochemical quenching. Nat. Plants 3: 16225. doi:10.1038/nplants.2016.225 

Schumann, A., R. Goss, T. Jakob, and C. Wilhelm. 2007. Investigation of the quenching efficiency 
of diatoxanthin in cells of Phaeodactylum tricornutum (Bacillariophyceae) with different 
pool sizes of xanthophyll cycle pigments. Phycologia 46: 113–117. doi:10.2216/06-30.1 

Taddei, L., G. R. Stella, A. Rogato, and others. 2016. Multisignal control of expression of the LHCX 
protein family in the marine diatom Phaeodactylum tricornutum. J. Exp. Bot. 67: 3939–
3951. doi:10.1093/jxb/erw198 

Takizawa, K., J. A. Cruz, A. Kanazawa, and D. M. Kramer. 2007. The thylakoid proton motive force 
in vivo. Quantitative, non-invasive probes, energetics, and regulatory consequences of 
light-induced PMF. Biochim. Biophys. Acta 1767: 1233–44. 
doi:10.1016/j.bbabio.2007.07.006 

Vredemberg, W. J. 1976. Electrostatic interactions and gradients between chloroplast 
compartments ands cytoplasm., p. 53–87. In J. Barber [ed.], The intact chloroplast. 
Elservier, Amsterdam, The Netherlands. 

Zhu, S.-H., and B. R. Green. 2010. Photoprotection in the diatom Thalassiosira pseudonana: role 
of LI818-like proteins in response to high light stress. Biochim. Biophys. Acta 1797: 1449–
1457. doi:10.1016/j.bbabio.2010.04.003 

 

 

Acknowledgments 
 

The authors would like to thank the Research Foundation Flanders (FWO project 
G.0222.09N), Ghent University (BOF-GOA 01G01911). 
 



217 
 

Chapter 7: General discussion  
In this dissertation we studied photoprotection strategies in the major benthic diatom 

growth forms present in intertidal sediments. One of the main photoprotection 

mechanisms, Non-Photochemical Quenching (NPQ), and its regulation (comprising the 

xanthophyll cycle and LHCX proteins) to date have been mainly characterized in 

(tycho)planktonic diatoms and to a lesser degree also in motile epipelic diatoms (Lavaud 

and Goss 2014). Very little is known about NPQ regulation in epipsammic diatoms (Jesus 

et al. 2009; Cartaxana et al. 2011; Pniewski et al. 2015). While NPQ as a photoprotection 

strategy in intertidal diatoms has been studied in natural communities, the results of 

these measurements on natural communities (on sediment), are difficult to interpret. 

This can be due to rapid micro-migration and bulk vertical migration of epipelic diatoms, 

which may affect the fluorescence signal, especially using long (≥30 s) illumination steps 

(Jesus et al. 2006; Perkins et al. 2011). In addition, pre-existing NPQ levels, induced by in 

situ light conditions (Perkins et al. 2011), may interfere with NPQ determination. Diatom 

communities on sandy sediments, furthermore, often contain a mix of both epipsammic 

and epipelic diatoms (Hamels et al. 1998; Ribeiro et al. 2013; Cartaxana et al. 2016b), 

making it difficult to draw conclusions about growth-form specific photoprotection 

traits. 

In this study, therefore, we obtained and/or established cultures of the four major 

morphological diatom growth form of the microphytobenthos (epipelon, tychoplankton 

and motile as well as non-motile epipsammon). This enabled us to compare NPQ and XC 

characteristics comprehensively between these growth forms. In Chapters 2,3 and 4 we 

observed a generally higher NPQ capacity due to a larger XC pigment pool in non-motile 

epipsammic diatoms in comparison with epipelic and tychoplanktonic species, while 

motile epipsammic diatoms showed intermediate values. NPQ relaxation differences 

between epipsammic and epipelic species, moreover, became obvious during low light 

conditions following high light (Chapters 3 & 4). Epipsammic diatoms rapidly relaxed 

NPQ in response to a switch to non-saturating light conditions, a feature particularly 

evident in the non-motile epipsammic model Opephora guenter-grassii, which showed 

very fast Dtx epoxidation kinetics (Chapter 3). Epipelic diatoms, which are able to 

migrate away from high light (Chapter 4) generally showed a slower NPQ relaxation or 

even sustained a considerable NPQ portion (Chapter 4). In the epipelic model Seminavis 

robusta, this was due to slower Dtx epoxidation kinetics (Chapter 3). Immuno-

localization revealed the presence of LHCX isoforms in low light conditions in O. guenter-

grassii as well as in S. robusta. When both species were exposed to high light conditions, 

accumulation of additional isoforms could only be detected in S. robusta (Chapter 3). 

The genome of S. robusta, moreover, contains fourteen LHCX genes, of which all 

investigated genes showed distinct upregulation during (high) light exposure. Combining 

our results, with the results from studies, mainly conducted in situ or on natural 
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communities (see Table 1) we come to the photoprotection models below (Fig. 1&2). 

The main NPQ regulators in diatoms: the xanthophyll cycle and LHCX proteins are 

discussed in detail in their respective sections 

Conceptual models of photoprotection in microphytobenthic 

diatoms 
 

Epipelic diatoms 

 

Figure 1: A conceptual model of photoprotection in epipelic diatoms on cohesive sediments. 
References are added in superscript and compiled in Table 1. See text for details. 

Epipelic diatoms, dominating cohesive sediments, position themselves within steep 

sediment light gradient (Kühl et al. 1994) to avoid overexposure (Admiraal 1984; Serôdio 

et al. 2006; Cartaxana et al. 2016a). Both cyclic micromigration in the upper sediment 

layers (Kromkamp et al. 1998; Underwood et al. 2005; Cartaxana et al. 2016a) and bulk 

downward migration (vertical migration, VM) (Consalvey et al. 2004; Serôdio et al. 2006; 

Perkins et al. 2010; Laviale et al. 2016) can reduce the light climate experienced by 

epipelic diatoms at a rate, fast enough to influence the acclimation state and 

physiological photoprotection (Laviale et al. 2016), Chapter 4. This may explain why 

epipelic species in situ generally show characteristics of being low light acclimated: (1) 

they have a higher fucoxanthin/chlorophyll a ratio (Jesus et al. 2009; Pniewski et al. 
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2015), (2) a lower light saturation point (Pniewski et al. 2015; Cartaxana et al. 2016b), 

and (3) are more vulnerable to photoinhibition compared to epipsammic communities 

(Pniewski et al. 2015), Chapters 3-4. In addition, the formation of dense epipelic diatom 

biofilms can result in strong self-shading and lead to the above characteristics (Jesus et 

al. 2009).  

The ability to avoid high light in epipelic diatoms ‘behavioural photoprotection’, may 

explain the generally low NPQ capacity and higher photoinhibition/NPQs after strong 

light conditions in these species, as observed in Chapters 2-4. The NPQ capacity 

measured in epipelic communities, freshly obtained from the field, nonetheless, can be 

up to 4 times higher than in our experiments, whereas photoinhibition/NPQs in general 

is lower (Serôdio et al. 2005, 2012; Laviale et al. 2015), indicating that epipelic species 

use a combination of both physiological and behavioural photoprotection to cope with 

fluctuating light intensities (Cartaxana et al. 2011). Indeed, epipelic benthic diatoms can 

increase their NPQ capacity according to the light climate to which they are exposed 

(Cruz and Serôdio 2008; Ezequiel et al. 2015) by increasing their cellular Dtx content 

(Laviale et al. 2015), Chapters 2&3 and/or accumulation of LHCX proteins (Laviale et al. 

2015), Chapters 3&5 and below. This may especially be relevant in harsh conditions 

when vertical migration is restricted by high temperatures and/or sediment desiccation 

(Laviale et al. 2015).  

Epipsammic diatoms 

 
Figure 2: A conceptual model of photoprotection in epipsammic diatoms in non-cohesive 
sediments. References are added in superscript and compiled in Table 1. See text for details. 
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While the epipsammic species in this work were grown in the same low light intensities 

as the epipelic species, they showed a consistently higher NPQ capacity, associated with 

stronger XC characteristics, see further (Chapters 2,3,4). This may compensate for the 

lack of vertical migration in the epipsammic growth form (Jesus et al. 2009; Cartaxana et 

al. 2011, 2016b), Chapter 4. Epipsammic species, moreover, were able to cope with light 

conditions similar in intensity to in situ light (Chapters 3&4), which is in line with the lack 

of photoinhibition in natural epipsammic communities (Pniewski et al. 2015). Transitions 

from prolonged low light conditions to strong light conditions may be common in sandy 

sediments that are constantly reworked by tidal forces and bioturbation (Hamels et al. 

1998; Cartaxana et al. 2006). Additional differences in NPQ capacity and dynamics were 

also observed between araphid and raphid (hence potentially motile) epipsammic 

species (Chapter 2&4) (E.g. Higher NPQ values Chapter 2 and a faster NPQ relaxation 

rate, Chapter 4). Raphid epipsammic species can theoretically use their motility to move 

to more optimal light conditions within the sphere of individual sand grains. Pronounced 

vertical migration, as observed in epipelic diatoms, however, was not observed in the 

raphid epipsammic species in Chapter 4 and in epipsammic communities (Cartaxana et 

al. 2011, 2016b). The strong light scattering and deeper penetration in sandy sediments, 

furthermore, makes VM a less effective photoprotection strategy than in silty sediments 

(Cartaxana et al. 2016b). 
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Table 1: An overview of photoprotection strategy studies in intertidal benthic diatoms 
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The xanthophyll cycle 
 

As the xanthophyll cycle and its kinetics can explain NPQ capacity differences in planktonic 

diatoms, originating from habitats experiencing different degrees of light fluctuations 

(Lavaud et al. 2007; Dimier et al. 2007; Lavaud and Lepetit 2013), it was the main focus in 

both chapters 2 and 3. The main findings are that (1) NPQ in epipsammic diatoms is 

generally higher compared to epipelic species, both acclimated to low light conditions, as 

they possess larger Ddx + Dtx pools and as such de-epoxidize more Dtx in high light 

conditions, rather than showing a larger de-epoxidation state as observed in situ (Jesus et al. 

2009; Cartaxana et al. 2011). (2) During exposure to higher light intensities, both epipelic as 

epipsammic species increase their XC pools. (3) the epipsammic species O. guenter-grassii 

accumulates, besides Dtx, significant amounts of Vx-cycle pigments when exposed to a 

relatively short period of strong light conditions (2000 µM photons m-2 s-1, 1 h). (4) 

Epoxidation in this epipsammic species is very fast enabling it to relax its NPQ rapidly in low 

light conditions. 

The XC pool in epipsammic species is larger, compared to epipelic species, when both grown 

in low light conditions (20 µmol photons m-2 s-1), this results in higher Dtx content and NPQ 

capacity in the former when exposed to high light (Barnett et al. 2015; Blommaert et al. 

2017). Dtx was absent or only present in very low concentrations (Chapters 2&3) in epipelic 

as well as epipsammic species, in above culture conditions, whereas in field conditions it is 

usually present, even in low/moderate light conditions (van Leeuwe et al. 2008; Jesus et al. 

2009; Chevalier et al. 2010; Cartaxana et al. 2011). The total Ddx + Dtx content in these 

cultures, moreover, was rather low, compared planktonic species exposed to prolonged high 

light conditions (Lohr and Wilhelm 1999; Dimier et al. 2007). Therefore, we studied Ddx + 

Dtx content in cultures acclimated to 75 µmol photons m-2 s-1 (Barnett et al. 2015) or 

exposed to 2000 µmol photons m-2 s-1 (Chapter 3). Both conditions resulted in a significant 

increase in the Ddx + Dtx pool in both epipelic as epipsammic species, generally resulting in 

higher NPQ capacity, as has been observed in natural (epipelic) communities (Laviale et al. 

2015). In some cases, however, a decline in the NPQ/Dtx slope was observed. This was 

especially the case at high Dtx concentrations and may be due to the fact that the additional 

Dtx may be dissolved in the lipid shield surrounding the FCPs, where it may play a role as 

antioxidant, preventing lipid peroxidation rather than participating in NPQ (Lepetit et al. 

2010; Lavaud and Lepetit 2013), or regulating membrane fluidity as has been observed for Zx 

in plants (Havaux and Gruszecki 1993).  

Accumulation of significant amounts of Zx in the epipsammic diatom O. guenter-grassii 

during one hour of 2000 µmol photons m-2s-1 was a rather unexpected finding and 

represents the first observation of both XCs in benthic diatoms, as Zx accumulation in 

diatoms has been only reported in (tycho)planktonic diatoms exposed to prolonged (up to 6 

hours) strong light conditions (Lohr and Wilhelm 1999, 2001; Dimier et al. 2007). The 
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generality and function of Zx in (epipsammic) benthic diatoms, however, is not entirely clear. 

As proposed by Lohr and Wilhelm (1999, 2001) Zx could mainly be an intermediate in Dtx 

synthesis and was observed in species that have a high rate of carotenoid de novo synthesis 

in combination with high de-epoxidation activity, which fits our observations (Lohr and 

Wilhelm 1999). Vx-cycle pigments, moreover, disappeared rapidly and possibly were 

converted via the intermediate neoxanthin to the Ddx-cycle pool (Dambek et al. 2012), 

arguing for their possible role as intermediates. Alternatively, de-epoxidized xanthophylls 

may play a role in scavenging reactive oxygen species or membrane stability as mentioned 

above. However, we have no reasons to assume that Zx would be better at either functions 

as the more abundant Dtx.  

Another major characteristic of the XC in relation to NPQ is the epoxidation reaction, which 

is crucial to switch the light harvesting system from an energy dissipating state back to a 

light harvesting state (Goss and Jakob 2010; Lavaud and Goss 2014). The fast epoxidation 

reaction in the epipsammic species O. guenter-grassii during low light allowed this species to 

rapidly relax its NPQ and as such to optimize light harvesting. This is in contrast to the 

epipelic species S. robusta, in which both epoxidation of Dtx and NPQ relaxation occurred 

more gradually. Even though Dtx epoxidation was only studied in two species (Chapter 3), a 

generally faster NPQ relaxation in epipsammic diatoms in contrast to epipelic species after 

high light illumination implicate faster epoxidation in the former, as described in Chapter 4. 

Interestingly, NPQ relaxation was substantially faster in the araphid and thus non-motile 

species O. guenter-grassii, compared to the other raphid and possibly motile epipsammic 

species. Hence, monitoring Dtx epoxidation in other araphid epipsammic species could 

resolve whether the fast epoxidation in O. guenter-grassii is rather exceptional or common 

in araphid epipsammic diatoms. 

 

LHCX proteins  
 

While LHCX proteins are a crucial component of the NPQ mechanism in diatoms (Bailleul et 

al. 2010b; Taddei et al. 2016; Ghazaryan et al. 2016), current knowledge about their function 

is mostly based on studies in planktonic diatoms (Lavaud and Goss 2014; Goss and Lepetit 

2015), with the exception of an immuno-localization study of LHCX proteins in epipelic 

communities and in the epipelic diatom Navicula phyllepta (Laviale et al. 2015). As we 

observed NPQ differences between epipsammic and epipelic species, we studied light-

regulation of LHCX isoforms in a representative of each group (Chapter 3). In addition we 

investigated the presence of LHCX genes in the epipelic model S. robusta and their 

transcriptional regulation in response to a day/night light climate and to oversaturating light 

conditions (Chapter 5). 

As the used antibodies were not specifically designed to recognize LHCX isoforms in our 

benthic model diatoms, we could not quantitatively compare LHCX content between species. 
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However, we could detect an isoform present in low light in both species, which could 

provide both benthic diatoms with a basal NPQ to cope with a sudden increase in light 

intensity (Chapter 3). In the pennate model diatom P. tricornutum, LHCX1 fulfills this 

function (Bailleul et al. 2010b). The molecular weight of both isoforms, present in low light 

conditions in our studied benthic diatoms, seems to be higher than PtLHCX1. Moreover, we 

did not find a close homolog to LHCX1 in the genome of S. robusta (Chapter 5). As we 

showed that NPQ capacity is strongly correlated to Dtx content (Chapter 2&3) and Dtx 

molecules need pigment-binding proteins (probably LHCXs or certain LHCFs) to be involved 

in the NPQ mechanism (Lepetit et al. 2013, 2017) we do suspect that in general, LHCX 

proteins are abundant in epipsammic diatoms acclimated to low light conditions, in contrast 

to in epipelic diatoms. This hypothesis is also supported by relatively high NPQ/Dtx slopes in 

most epipsammic diatoms (Chapter 2).  

When exposed to prolonged moderate/high light conditions, benthic diatoms (epipelic as 

well as epipsammic species) are able to increase their NPQ capacity (Ezequiel et al. 2015; 

Barnett et al. 2015). Besides de novo XC pigment synthesis (Lavaud et al. 2004; Schumann et 

al. 2007; Dimier et al. 2007), accumulation of specific LHCX proteins may play a role in 

adjusting the NPQ capacity to the experienced light climate (Lepetit et al. 2013, 2017; Laviale 

et al. 2015). In the only studied epipsammic diatom (O. guenter-grasssii), one LHCX isoform 

was detected in low light conditions, which seemed to increase in abundance during high 

light conditions (Blommaert et al. 2017). Lack of detection of other light-inducible isoforms 

in this species may be due to the fact that the antibody was not specific and might not be 

able to recognize particular LHCX isoforms (Lepetit et al. 2017). Alternatively, epipsammic 

species already have a relatively high and flexible NPQ capacity when acclimated to low light 

conditions (Barnett et al. 2015; Blommaert et al. 2017) as described in Chapters 2-4, which 

may alleviate the need for additional NPQ capacity.  

The opposite situation is observed in epipelic diatoms. When acclimated to low light 

intensities, they generally have lower NPQ capacities, which increases during acclimation to 

higher light conditions (See Chapters 2-4, Ezequiel et al. 2015). These findings are in line with 

high light inducible transcription of LHCX genes (Chapter 5) and accumulation of additional 

LHCX isoforms (Chapter 4) in S. robusta and natural epipelic communities (Laviale et al. 

2015) upon high light exposure. Interestingly, in contrast to epipsammic diatoms, a 

sustained quenching is generally observed after prolonged exposure to strong light 

conditions (Laviale et al. 2015), (Chapter 3&4), which may be partly attributed to 

photoinhibition and to the slow epoxidation of Dtx (Lavaud and Goss 2014). In Thalassiosira 

pseudonana, the observed sustained quenching might be associated with accumulation of 

the TpLHCX6 protein which may be responsible for additional Dtx binding. A protein, with 

similar characteristics as TpLHCX6, seems to be present in epipelic diatoms and may fulfill a 

similar function during prolonged light stress (Laviale et al. 2015), Chapter 5. 
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NPQ in the intertidal: macro-algae vs. benthic diatoms 
 

While microphytobenthic diatoms dominate intertidal sediments (Underwood and 

Kromkamp 1999), rocky shores are dominated by dense populations of macro-algae. On 

temperate coasts of the northern hemisphere, these populations exhibit a strong vertical 

zonation with fucoid algae thriving on the high to the low mid-shore and laminarians 

occurring on the lower shore (Migné et al. 2015). These brown algae experience a similar 

light climate as benthic diatoms when emerged (Lavaud and Goss 2014). Therefore, they 

may require similar flexible photoprotection strategies.  

While both diatoms and brown algae are capable of strong excess light energy dissipation as 

heat (measured as NPQ) (Lavaud and Goss 2014) and both belong to the Stramenopila 

(Kooistra et al. 2007), they differ in the main xanthophyll cycle pigments. Whereas in 

diatoms Dtx is involved in NPQ, Zx is responsible for NPQ in brown algae. Similar to our 

findings in benthic diatoms (Barnett et al. 2015; Blommaert et al. 2017), the total 

xanthophyll pool and the ability to produce de-epoxidized xanthophylls (Zx in the case of 

brown algae) is correlated with inter-species NPQ differences, with species living higher on 

the shore exhibiting higher NPQ/XC capacities than lower shore/subtidal species (Harker et 

al. 1999; Rodrigues et al. 2002).  

A common feature of the respective xanthophyll cycles in brown algae and diatoms is that 

xanthophylls have to be converted to their epoxy-form (epoxidation) in order to relax NPQ in 

low light conditions, whereas in plants and green algae a change in the transthylakoidal 

proton gradient (ΔpH) is sufficient to accomplish NPQ relaxation, disregarding the slow Zx 

epoxidation in the green lineage (Goss and Jakob 2010; Goss and Lepetit 2015). While 

diatoms are capable of rapid Dtx epoxidation in low light conditions (Goss et al. 2006), a 

feature particularly evident in the epipsammic diatom O. guenter-grassii (Blommaert et al. 

2017), the epoxidation reaction in brown algae is as slow as in plants (Goss and Jakob 2010). 

Therefore, also NPQ relaxation in brown algae is slow and unable to track fast fluctuations in 

light intensity (García-Mendoza and Colombo-Pallotta 2007). According to Goss and Jacob 

(2010), large kelps (and especially their deeper thallus parts) do not need flexible 

photoprotection mechanisms as they are exposed to relatively slowly changing light 

conditions. However, it would be interesting to assess the Zx epoxidation rate in brown algae 

living high in the intertidal, as they may experience more light fluctuations and/or a higher 

overall light climate. Additionally, as a similarly strong relationship between NPQ and de-

epoxidized xanthophylls in diatoms and brown algae exists (see above), it would be valuable 

to assess the relationship between NPQ and ΔpH as we have attempted in a diatom in 

Chapter 6. Using a brown macro-alga, instead of a diatom suspension would have the 

additional advantages that the ElectroChromic Shift (ECS) signal would not drift as much 

(due to cell sedimentation in the case of diatoms) and that an optically dense macro-algal 

sample increases the signal to noise ratio. 
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The function of LHCSR proteins in photoprotection is less well-studied in brown algae than in 

diatoms. Sequencing of the Ectocarpus siliculosus genome, however, revealed 13 isoforms 

(Dittami et al. 2010). This is a high copy number, compared to the planktonic model diatoms 

Thalassiosira pseudonana and Phaeodactylum tricornutum, but in the range of the sea-ice 

associated diatom Fragilariopsis cylindrus and the epipelic benthic diatom Seminavis robusta 

(see Taddei et al. 2016; Mock et al. 2017 and Chapter 5 for an overview). Functional 

evidence for these proteins in NPQ regulation is scarce. In the giant kelp Macrocystis pyrifra 

members of the LHCSR family show a higher expression in blades near the surface than at 18 

m depth. Targeted mutagenesis in brown algae (which is at present not possible; Lipinska, 

pers. comm.) may help to resolve whether LHCSR proteins share a similar NPQ regulatory 

function as in diatoms.  

Finally, besides brown algae, red algae are also found in the intertidal. Even though NPQ has 

been measured in these organisms, the regulatory mechanism is far from clear as they do 

not seem to possess LHCSR proteins (Dittami et al. 2010) and have no functional xanthophyll 

cycle (Goss and Lepetit 2015). 
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Conclusion & future perspectives 
 

Contribution of NPQ and XC to overall photoprotection in benthic diatoms 

We showed that in epipsammic diatoms possess a high capacity for NPQ, and in combination 

with a high accumulation of de-epoxidized xanthophylls, this possibly leads to the a low 

vulnerability to photoinhibition, as observed in epipsammic communities in the field 

(Chapters 2-4 Pniewski et al. 2015). The contribution of the XC and NPQ to photoprotection, 

however, is not clear. Therefore, blocking the XC cycle using DTT (dithiothreitol), which 

inhibits Ddx de-epoxidase enzyme, in epipsammic species and/or communities could resolve 

the actual contribution of NPQ to overall photoprotection in this growth form (Lavaud et al. 

2002). In addition, the contribution of NPQ- XC (and of migratory behavior) to the overall 

photoprotection in epipelic diatoms is not equivocal (Serôdio et al. 2012; Cartaxana et al. 

2013; Laviale et al. 2015) and may depend, besides on in situ conditions, on the method 

used to quantify photoinhibition: recovery of photosynthetic efficiency during recovery in 

low light (Serôdio et al. 2012; Laviale et al. 2015) or quantifying the PSII core protein D1 

(Cartaxana et al. 2013). In the case of photosynthetic efficiency recovery, it was shown that 

the total contribution of vertical migration and xanthophyll-cycle based photoprotection was 

relatively low (~20%) in epipelic communities from the Tagus estuary (Serôdio et al. 2012; 

Laviale et al. 2015). This is in contrast with the study of Cartaxana et al. (2013), where 

blocking the xanthophyll cycle with DTT decreased the D1 protein content 60%, compared to 

20% in a control exposed to high light. As in diatoms a sustained NPQ component involving 

Dtx and LHCX proteins (Lavaud and Goss 2014; Laviale et al. 2015, Chapters 3&4) decreases 

the efficiency of PSII, it does not necessarily involve damage to the PSII core. Interestingly, a 

new PAM-based technique which allows discriminating between a protective and 

photoinhibitory NPQ component in a non-destructive and rapid (e.g. not requiring prolonged 

dark or low light conditions) manner. has recently been developed in plants (Ruban and 

Murchie 2012; Ruban 2016). 

Species-specific balance behavioural/physiological photoprotection strategies in situ 

Even though we observed general differences between epipelic and epispammic growth 

forms, our findings also suggest the existence of pronounced species-specific responses to 

high light conditions within each growth form, such as the accumulation of high amounts of 

Ddx + Dtx which are not involved in NPQ in the epipsammic diatom Plagiogramma 

staurophorum, (Chapter 2), a significantly stronger migratory response in the epipelic diatom 

Navicula phyllepta than in other epipelic species, or the fast relaxation of NPQ in the epipelic 

species Navicula arenaria, which is almost similar to that observed in epipsammic species 

(Chapter 4). These observations corroborate the observation of different surfacing peaks of 

epipelic diatom species during tidal emersion, suggesting different light niches (Underwood 

et al. 2005) and/or photoprotective capacities. Species-specific differences in NPQ capacity 

can be further investigated using imaging chlorophyll fluorescence microscopy (Oxborough 
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et al. 2000; Underwood et al. 2005, Jesus, pers comm) in cells freshly obtained from sandy 

and silty sediments . This could allow assessing whether some epipelic species couple a 

stronger capacity for NPQ with a less pronounced migratory response (high light avoidance) 

or whether epipelic and epipsammic species in sandy sediments have equally high NPQ 

capacities. To our knowledge, photophysiological features of epipelic species typical of sandy 

sediments (which are different from those typically present in silty sediments, e.g. 

representatives of the genus Petroneis, Sabbe 1997) have not yet been investigated. 

 

Other photoprotective mechanisms 

 

In this work the we studied mainly fast-regulatory photoprotective mechanism. Whereas 

NPQ and vertical migration clearly differed between the growth forms, this was not the case 

for PSII cyclic electron transfer (CET, Chapter 2). Other alternative electron pathways such as 

PSI CET (Bailleul et al. 2015) and the water-to-water cycle (Waring et al. 2010; Bailleul et al. 

2015) could be evaluated in a set of epipelic and epipsammic species. In addition, the release 

of organic carbon could play a role during prolonged illumination as in both epipsammic 

(Cook et al. 2007) and epipelic communities (Smith and Underwood 2000) a considerable 

part of fixed carbon is excreted through the apical pore field or through the raphe slit (which 

is present only in raphid diatoms) in the form of carbohydrate rich extracellular polymeric 

substances (Hoagland et al. 1993). A comprehensive comparative study between both 

growth forms, however, is lacking. The photoprotective potential for this ‘overflow’ 

mechanism, moreover, is not clearly proven. 

 

Adaptation to prolonged darkness in epipsammic diatoms 

 

Epipsammic diatoms seem to be well-adapted to episodic high light conditions. However, 

they probably also spend long periods of time buried below the photic zone (Jewson et al. 

2006; Cartaxana et al. 2011), and this without noticeable pigment degradation (Steele and 

Baird 1968). They must therefore possess adaptations to cope with long dark periods. It is 

known that benthic diatoms can respire nitrate to survive dark and anoxic conditions (Kamp 

et al. 2011). Anoxic conditions, however, may be less of an issue in sandy sediments (Anil et 

al. 2007). The uptake of amino acids, indeed seems to be higher in attached species, 

compared to motile species (Nilsson and Sundbäck 1996). The heterotrophic use of amino 

acids and other organic substrates in epipsammic diatoms could enable these species to 

survive for prolonged time periods, as has been shown in freshwater species (Tuchman et al. 

2006). 

 

Function of LHCX proteins as NPQ regulator in diatoms 

Even though a crucial function for LHCX proteins has been implicated by the use of knock-

down mutants (Bailleul et al. 2010b; Taddei et al. 2016; Ghazaryan et al. 2016), the exact 

contribution of LHCX proteins to the NPQ mechanism and to photoprotection in general is 
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unclear. Therefore, we suggest the use of knock-out mutants by targeted mutation in P. 

tricornutum (Serif et al. 2017). The presence of only four LHCX isoforms and their 

characterization in different conditions (Nymark et al. 2009, 2013; Bailleul et al. 2010b; 

Lepetit et al. 2013, 2017; Valle et al. 2014; Taddei et al. 2016), furthermore, make it the ideal 

model species for the time being, in contrast to S. robusta for which a standardized 

transformation protocol is not yet developed (Gust Bilcke, personal communication) and 

which contains 14 different LHCX genes. In addition, the differential conservation of 

protonable residues in C. reinhardtii, P. tricornutum and S. robusta raises interesting 

questions about their function in the regulation of NPQ in response to a trans-thylakoidal 

proton gradient (ΔpH). It is, for instance, unclear whether conserved protonable residues in 

diatoms LHCXs indeed have an NPQ regulatory function and whether LHCX4 in P. 

tricornutum and S. robusta (in which only one protonable residue is conserved) have a 

function in sustained NPQ. Introducing an LHCX1 construct, lacking one or both ‘protonable 

residues’ in an LHCX knockout context in P. tricornutum, as has been done for LHCSR3 in C. 

reinhardtii, could possibly resolve the first question. Overexpression of LHCX4 in a P. 

tricornutum strain lacking all other LHCXs, could possibly answer the second question. 

 

Function of a trans-thylakoidal proton gradient as NPQ regulator 

A new method to measure ΔpH in diatoms in vivo should be developed. The presence of 

both a linear and quadratic ECS signal in diatoms (Bailleul et al. 2010a) including O. guenter-

grassii (Chapter 6), allows to measure the absolute value of the electric component ΔΨ of 

the PMF. As, at least in plants, it is possible to determine the total PMF (Joliot and Joliot 

2008), applying this method in combination with determining its electric component ΔΨ, the 

ΔpH can be calculated as the difference between PMF and ΔΨ. By developing this method in 

diatoms the role of ΔpH in regulating NPQ can be further dissected. 
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Chapter 8: Summary 
 

Benthic diatoms are dominant primary producers in intertidal marine sediments and are 

roughly divided into two main growth forms: the epipelon comprises mainly larger 

raphid motile diatoms and dominates silty sediments, whereas the epipsammon mainly 

consists of small motile and non-motile species that live in close association with single 

sand particles. As intertidal sediments are characterized by rapidly fluctuating and often 

extreme light conditions, benthic diatoms display behavioural as well as physiological 

photoprotection mechanisms. Vertical migration into the sediment (behavioural 

photoprotection), however, is largely restricted to epipelic diatoms, whereas 

epipsammic diatoms have to undergo changes in light conditions. As in natural 

communities (in situ studies) it is hard to characterize the photoprotective strategies of 

diatom growth forms (as natural communities can contain both epipelic and epipsammic 

growth forms), we studied the photoprotection capacity of unialgal isolates belonging to 

the main growth forms under controlled lab conditions. 

One of the major physiological photoprotection mechanisms is to dissipate excess light 

energy as heat which can be measured as Non-Photochemical Quenching (NPQ). The 

capacity of this mechanism is mainly defined by the xanthophyll cycle (XC) pigment 

diatoxanthin and Light-harvesting Complex X (LHCX) proteins. We show that epipelic and 

epipsammic diatoms show fundamentally different photoprotective responses: 

epipsammic diatoms have a higher NPQ and associated XC capacities compared to 

epipelic diatoms. In the latter group, the behavioural response (vertical migration) is 

more important which may alleviate the need for strong physiological photoprotection. 

The regulation and performance of NPQ was further studied using model 

representatives of each functional group during and after exposure to high light. The 

epipsammic species Opephora guenter-grassii could rapidly switch NPQ on and off by 

relying on fast XC kinetics. This species also demonstrated high de novo synthesis of 

xanthophylls within a relatively short period of time (1 h), including significant amounts 

of zeaxanthin, a feature not observed before in other diatoms. In contrast, the epipelic 

representative Seminavis robusta showed slower NPQ and associated XC kinetics, partly 

relying on NPQ conferred by de novo synthetized diatoxanthin molecules and synthesis 

of Light-Harvesting Complex X (LHCX) isoforms. The genome of S. robusta contains 

fourteen LHCX genes. For eight LHCX genes we could show distinct upregulation during 

(strong) light exposure.  

While overall our results support the a trade-off between behavioural and physiological 

photoprotection mechanisms other factors besides growth form, such as environmental 

factors, cell size, substrate type and photoacclimation, may influence photoprotective 
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strategies and explain species-specific photoregulation traits in intertidal benthic 

diatoms.  

 

  



239 
 

Samenvatting 
Benthische (bodem bewonende) kiezelwieren zijn de dominante primaire producenten 

in de sedimenten van mariene intergetijdengebieden. Ze worden doorgaans opgedeeld 

in twee grote groepen: Epipelische soorten leven meestal op fijne, slibrijke sedimenten 

en zijn in staat om te bewegen. Epipsammische soorten zijn doorgaans kleiner en leven 

vastgehecht aan zandkorrels of kunnen rond bewegen op één zo’n zandkorrel. Gezien in 

intertidale sedimenten het lichtklimaat sterk kan fluctueren en er vaak hoge licht 

condities voorkomen, hebben deze kiezelwieren beschermingsmechanismes ontwikkeld 

tegen de extreme, en snel veranderende lichtcondities. Zowel gedragsmatige- als 

fysiologische mechanismes zijn gekend. Gedragsmatige mechanismes (het verticaal in 

het sediment migreren bij te sterk light), is echter alleen mogelijk in epipelische soorten, 

terwijl epipsammische soorten veranderingen in lichtklimaat moeten doorstaan. Studies 

met natuurlijke gemeenschappen suggereerden inderdaad dat gemeenschappen op 

zandige sedimenten, in vergelijking met modderige sedimenten sterkere fysiologische 

beschermingsmechanismes bezitten. Op zandige sedimenten, komen echter zowel 

epipelische als epipsammische soorten voor en is het meten van fysiologische 

beschermingsmechanismes niet evident. Daarom hebben we in deze studie fysiologische 

beschermingsmechanismes bestudeerd in monoclonale celculturen in een 

gecontroleerde labo omgeving. 

Eén van de belangrijkste fysiologische beschermingsmechanismes bij hoog licht in 

kiezelwieren is de overtollige lichtenergie kwijt spelen als warmte, tijdens een proces 

genaamd Non-Photochemical Quenching, ‘NPQ’. Zowel het xanthofylcyclus-pigment 

diatoxanthine als Light-Harvesting Complex (LHCX) eiwitten spelen hierbij een rol. In 

deze studie toonden we aan dat epipelische en epipsammische kiezelwieren duidelijk 

verschillen in het gebruik van beschermingsprocessen tegen sterke lichtcondities. 

Epipsammische kiezelwieren hebben een sterkere NPQ capaciteit dan epipelische 

kiezelwieren, doordat ze meer diatoxanthine kunnen aanmaken. Gezien epipelische 

soorten weg kunnen bewegen van hoog licht, hebben ze vermoedelijk geen nood aan 

sterke fysiologische bescherming. We onderzochten de regulatie van NPQ verder voor 

een vertegenwoordiger van elke groep. Hierbij toonden we aan dat de epipsammische 

soort zijn NPQ mechanisme zeer snel aan- en af kan zetten, afhankelijk van het 

lichtklimaat. Dit door zeer snel (1 uur) diatoxanthine aan te maken en terug om te 

vormen tot zijn precursor wanneer nodig. Opmerkelijk was dat deze soort ook een ander 

xanthofyl pigment aanmaakt: zeaxanthine. Dit werd bij kiezelwieren nog nooit eerder 

waargenomen op eenzelfde tijdsperiode. De epipelische soort Seminavis robusta 

reageerde trager en minder sterk op een verandering in lichtintensiteit. We namen 

echter wel waar dat deze soort zijn NPQ capaciteit kan opdrijven door nieuwe 

xanthofylcyclus pigmenten en LHCX eiwitten aan te maken. Er zitten dan ook 14 LHCX 
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genen in het genoom van S. robusta. Voor acht ervan konden we aantonen dat deze 

werden opgereguleerd bij hoge lichtintensiteiten. 

Hoewel onze resultaten bevestigen dat epipelische en epipsammische kiezelwieren er 

verschillende strategieën op na houden om met sterke lichtintensiteiten om te gaan, zijn 

er ook duidelijke verschillen binnen de grote groepen. Deze verschillen zijn vermoedelijk 

te wijten aan onder andere omgevingsfactoren, celgrootte en sedimenttype. 
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