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“In the oceanic world of plankton, there is light where there are no nutrients. 

Equally, for terrestrial plants, light and CO2 are in the sky, nutrients are in the soil. 

The world appears to be made of misplaced things” 

Ramon Margalef 
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1. Global phenomena of harmful algal blooms 

The number of human cosmonauts on Fuller’s spaceship Earth (ref. Fuller, 1969) 

has drastically changed since the Industrial Revolution. Going from 1.5 to 6.1 billion, 

the human population growth of the 20th century was three times greater than that of 

the entire preceding history of mankind (Kremer, 1993). Over 6.5% of all humans 

ever born, are alive today (Haub, 1995). Still, this number continues to climb as the 

global population is set to surpass 10 billion by the end of this century (UN, 2015). 

Consequently, planet Earth has irrevocably entered a new geological time period 

 – colloquially called “the Anthropocene” – in which mankind’s influence on the 

environment rivals the scale, power and universality of the greater forces of Earth 

(Crutzen, 2002; Ellis and Ramankutty, 2008; Waters et al., 2016). 

Population growth, as well as changes in per capita income, increase the demand 

for plant- and animal-based food (Alexandratos and Bruinsma, 2012; Speedy, 2003). 

Anthropologists estimate that the current global population consumes over 40% and 

35% of the total primary productivity of terrestrial and coastal systems, respectively 

(Pauly and Christensen, 1995; Rojstaczer et al., 2001). To produce food, water and 

shelter for all of mankind, we have transformed vast portions of the planet’s surface. 

Although the land-use changes vary between regions, the transformation generally 

entailed extensive deforestation in favour of agricultural biomes and urban centres 

(Ellis and Ramankutty, 2008; Foley et al., 2005). Pastures and fields are now among 

the most common habitat types in the world (Foley et al., 2005; Matson et al., 1997). 

Yet, while surface expansions contributed to the success of modern agriculture, most 

of the production gains were brought about by the introduction of chemical fertilizers, 

high-yield cultivars, (automated) irrigation and biocides (i.e. the Green Revolution). 

Fertilizers, whose worldwide use increased by well over 700% in the last 50 years, 

cause extensive environmental damage (Tilman et al., 2001). Most long-term records 

show distinct increases in the nitrogen (N) and phosphorus (P) loading of coastal 

ecosystems (Brush, 2008; Clarke et al., 2006; Cloern, 2001). These decadal changes 

in the availability of nutrients have profound effects on the composition and dynamics 

of phytoplankton assemblages, ultimately increasing the likelihood of harmful algal 

blooms (HABs) (Anderson et al., 2002; Davidson et al., 2014; Glibert et al., 2014; 

Granéli et al., 2008b; Heisler et al., 2008; Hodgkiss and Ho, 1997; Paerl et al., 2014). 

HABs have steadily increased in frequency, scale and geographical distribution 

during the past decades (Anderson et al., 2012). Never before have we seen this 

much food web disruption caused by this many harmful algae, nor have we suffered 

as much economic losses, in this many locations, as today.  
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2. Harmful mechanisms 

The term “harmful algal bloom” invokes images of extensive accumulations of 

pelagic, unicellular phytoplankton which cause a clear discoloration of the water, as 

seen during classical “red tides”. In reality, however, HAB is an umbrella term which 

encompasses a wide range of harmful events. Not all HAB species are unicellular. 

HABs can be composed of colony-forming (e.g. Phaeocystis spp.), chain-forming 

(e.g. Pseudo-nitzschia spp.) and even multicellular organisms (e.g. Ulva spp.). HABs 

are not “extensive blooms” per se (e.g. low-biomass bloomers & epibenthic species), 

nor are they necessarily made by algae (e.g. cyanobacteria and euglenoids). Among 

the microalgae, HAB species are found across the Chrysophyceae, Cryptophyceae, 

Bacillariophyceae, Dinophyceae, Prymnesiophyceae and the Raphidophyceae. 

Generally speaking, “harmful” is the only common denominator. Any organism can 

be a “HAB species” as long as its proliferation can be associated with debilitating 

effects on the environment, human health or economies (Granéli and Turner, 2006). 

The vast majority of the ± 300 known bloom-forming algae are, in fact, not inherently 

harmful but cause environmental damage through indirect effects such as anoxia, 

shading and starvation (Anderson et al., 2002; Hallegraeff, 1993). 

 

2.1 Anoxia, shading & starvation 

Oxygen depletion (i.e. hypoxia to anoxia) is a growing threat to marine ecosystems 

(Diaz and Rosenberg, 2008). Ten years after the introduction of artificial fertilizers, 

coastal dissolved oxygen (DO) levels started to decrease (Galloway et al., 2008). 

This is often caused by an interplay of thermal stratification – the restricted mixing of 

deep water layers with oxygen-rich surface water during summer (Gehrke, 1916) – 

and excessive plankton growth. Algal blooms developing in the warm surface layers 

may reduce the DO levels of the surface layers by their respiratory requirements 

(Anderson et al., 2002; Pitcher and Probyn, 2016). More commonly, however, dead 

cells sink to the bottom where they fuel microbial respiration which depletes the DO 

of bottom layers (Baird et al., 2004). The resulting hypoxia inhibits nitrification and 

triggers the release of phosphorus from the sediment, providing a double feedback 

mechanism for the bloom (Kemp et al., 1990). Based on the severity of the hypoxia, 

the duration of the event, and the degree of ecosystem degradation, these HABs 

affect benthic life of all trophic levels (Hallegraeff, 1993; O’Boyle and Nolan, 2011), 

as well as zooplanktonic grazers (Grodzins et al., 2016). The resulting “dead zones” 

take years to recover and have been reported in over 400 systems, spanning a total 

area of more than 245.000 km² across the globe (Diaz and Rosenberg, 2008).  
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Prolonged hypoxia affects the food web structure of coastal systems profoundly. 

The loss of invertebrate populations and vegetation removes shelter and prey from 

the ecosystem and, hence, debilitates the entire marine food web (Baird et al., 2004). 

Similar trophic cascades can be seen when vegetation is killed by light attenuation 

(Bonsdorff et al., 1997; Hauxwell et al., 2003; Lee et al., 2007). HABs may also be 

inedible or unpalatable, deadlocking nutrients in biomass that contributes little to the 

secondary productivity of the ecosystem (Stolte et al., 2007). A well-known example 

of this inedibility is Phaeocystis spp. which has a gelatinous morphology that protects 

against predation and viral infections (Verity et al., 2007). Phaeocystis spp. blooms 

are also notorious for the odorous foam on beaches that affect the coastal tourism. 

Likewise, decaying Ulva spp. blooms can harm tourism-based economies. 

 

2.2 Morphology 

Chain and colony formation are alternative behavioural responses to planktonic 

grazers which balance nutrient efficiency against the protection against predation 

(Bergkvist et al., 2012; Bjærke et al., 2015; van Donk et al., 1999; Verity and Medlin, 

2003). Another feature that discourages grazers, is the formation of protruding spines 

(Pondaven et al., 2007; Tillmann, 2004). This trait is only found in taxa with a rigid 

outer skeleton such as diatoms (e.g. Chaetoceros spp. and Skeletonema spp.) and 

dinoflagellates (e.g. Ceratium spp. and Peridinium spp.). Once embedded in the soft 

tissues of fish gills, spines cause irritation, lesions and excessive mucus production 

(Albright et al., 1993; Bell, 1961; Kent et al., 1995; Mamcarz and Worniallo, 1986). 

Blood hypoxia usually starts within 12 hours, followed by necrosis of the gut and liver. 

Blooms of spine-carrying species can decimate entire farms of caged finfish where 

fish are unable to display natural avoidance behaviour. In 2003, for instance, a bloom 

of Chaetoceros wighami killed off 170 tonnes of Atlantic salmon – net worth in excess 

of 500m € – in a single Scottish sea loch (Treasurer et al., 2003). 

 

Figure 1.1: (FLTR) Phaeocystis globosa, Chaetoceros debilis & Ceratium macroceros.  
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2.3 Toxins 

The most infamous HABs produce potent toxins that affect life of all trophic levels, 

incl. man. Phycotoxins accumulate in seafood, causing gastrointestinal problems as 

well as neurologic disorders that range from motoric weakness, headache, dizziness, 

disorientation and confusion to memory loss, paralysis and death (FAO, 2004). 

Blooms of Karenia spp. and Ostreopsis spp. are also known to aerosolize toxins, 

causing severe respiratory distress (Ciminiello et al., 2014; Fleming et al., 2011). 

Roughly a third of all HAB species, spread across all major HAB taxa, possess toxins 

(Chomérat et al., 2016). Marine toxins are very diverse in their function and structure. 

Most have a unique biological activity which, in some cases, can be extremely lethal. 

Saxitoxin and maitotoxin are, for instance, 50 and a 1000 times more deadly than the 

notorious nerve gas sarin (Dixit et al., 2005; Halstead, 2002). Toxins are often 

classified by their effectiveness (fast vs. slow-acting), certain chemical properties 

(e.g. lipophilicity), their mode of action, structural similarity or their tissue specificity. 

Most commonly, however, toxins are grouped by human diseases, of which 10 are 

linked to HABs (Botana and Alfonso, 2015; Cembella, 2003; Chomérat et al., 2016; 

FAO, 2004; Khora, 2015; Landsberg, 2002; Martínez et al., 2015). 

Table 1.1: Known HAB-related diseases and their respective causative agents. 

Syndrome--- Toxins--- Producers------- 

Amnesic Shellfish Poisoning 
(ASP) 

Domoic acid (DA) Pseudo-nitzschia spp., Nitzschia spp. 

Azaspiracid Shellfish Poisoning 
(AZP) 

Azaspiracid (AZA) Azadinium spp., Protoperidinium spp. 

Ciguatera Fish Poisoning 
(CFP) 

Cigua- and maitotoxin 
Cooliatoxin, OTX, PTX, OA 

Gambierdiscus spp., Coolia spp., 
Ostreopsis spp., Prorocentrum spp. 

Diarrhetic Shellfish Poisoning 
(DSP) 

Okadaic acid (OA), 
Pectenotoxins (PTX) 
Dinophysistoxins (DTX) 

Dinophysis spp., Prorocentrum spp. 

Hepatotoxic Shellfish Poisoning 
(HSP) 

Microcystins, Nodularins, 
Cylindrospermopsins, Anatoxins, 

Cyanobacteria 
(Microcystis spp., Anabaena spp., etc.) 

Neurotoxic Shellfish Poisoning 
(NSP) 

Brevetoxins (BTX) 
Karenia brevis, Chattonella spp., 
Heterosigma spp., Fibrocapsa spp. 

Paralytic Shellfish Poisoning 
(PSP) 

Saxitoxins (STX) 
Gonyautoxins (GTX) 

Alexandrium spp., Gymnodinium spp., 
Pyrodinium spp. 

Palytoxin Poisoning Palytoxins Ostreopsis spp. 

Spiroimine Shellfish Poisoning 
(SSP) 

Spirolides (SPX) Alexandrium spp. 

Yessotoxin poisoning Yessotoxin (YTX) 
Protoceratium spp., Lingulodinium spp., 
Gonyaulax spp. 
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3. Evolutionary ecology 

At this point, it should be clear that the field of HAB research is rather complex. 

HAB species are distributed among several taxa with different ecological niches, 

often possess multiple mechanisms which may or may not come into play at once, 

and affect systems that range from fresh and brackish water to eutrophic coastal 

zones and oligotrophic oceans. Due to this diversity, there is no single answer to 

HABs or HAB research. Choices are inevitable. The focus of this work was mostly on 

dinoflagellates and the high-biomass blooming dinoflagellates that cause “red tides”. 

“…all the waters that were in the river were turned to blood. And the fish that were in 

the river died; and the river became foul, and the Egyptians could not drink water 

from the river“       Exodus 7: 20-21 

This Bible verse, detailing the first Plague of Egypt, is thought to be the oldest 

written record of a red tide (Hallegraeff, 1993; Hort, 1957). Despite recent concerns, 

HABs have been around for ages. The fossil record shows that dinoflagellates first 

appeared during the Precambrian, 1.8 billion years ago, and speciated during the 

Mesozoic (Fensome et al., 1996; Meng et al., 2005). For the last 200 million years, 

dinoflagellates have been a major component of the phytoplankton, depositing both 

their cysts as well as their victims (e.g. whale graveyards) into the sedimentary rock 

(Dale, 2001; Pyenson et al., 2014). 

Throughout their history, dinoflagellates have amassed numerous adaptations to 

cope with their environment. Still, they are usually slow-growing, poor competitors 

(Smayda, 1997). Margalef (1978), inspired by the famous r/K selection paradigm of 

MacArthur and Wilson (1967), considered them to be true K-strategists. Similarly, the 

CSR classification of Smayda and Reynolds (2001) defined them as nutrient efficient 

and stress-tolerant (S) species, placing them alongside faster growing, r-selected 

colonist (C) species that should displace them when sharing a niche. Yet, despite the 

competitive exclusion principle (Hardin, 1960), a remarkable variety of phytoplankton 

species can co-exist on a finite number of resources in perpetual non-equilibrium. 

This “paradox of the plankton” can be explained by resource partitioning, species 

interactions, weather-driven fluctuations, seasonal cycles, and chaotic oscillations 

(Huisman et al., 2002; Hutchinson, 1961; Richerson et al., 1970; Stewart and Levin, 

1973; Tilman, 1977). In addition, dinoflagellates can escape competitive exclusion by 

toxicity-mediated allelopathy, grazer deterrence and mixotrophy (Chakraborty et al., 

2015; Crane and Grover, 2010; Gross, 2003; Roy and Chattopadhyay, 2007).  
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3.1 Allelopathy 

The ancient Greek and Roman philosophers already knew that terrestrial plants 

may interfere with the growth of neighbouring plants (Willis, 2007). This process was 

later dubbed “allelopathy” (Molisch, 1937). Over time, the definition was broadened to 

include stimulatory as well as inhibitory chemical-based interactions between plants, 

grazers and parasites (Rice, 1974). However, the resulting concept encroached on 

predator-prey relationships, making it difficult to separate allelopathy from species 

interactions such as grazer deterrence. For this reason, it was recently reversed back 

to its original essence i.e. “chemical interactions between plants, algae or bacteria 

which inhibit the growth of competitors” (Legrand et al., 2003; Willis, 2007). Here, 

allelopathy will only be discussed in this strict sense. 

The ability to successfully compete for nutrients determines the bloom potential of 

a species. In r-selected species, this is achieved with fast nutrient uptake and high 

conversion rates. Other algae produce “allelochemicals” that suppress competitors. 

Such exudates are found in all major HAB taxa including diatoms, dinoflagellates 

cyanobacteria, prymnesiophytes and raphidophytes (Allen et al., 2016; Granéli and 

Hansen, 2006; Gross, 2003). These metabolites are usually hemolytic, perforating 

the membranes of both algae and grazers, though the inhibition of photosynthesis, 

cell-cycle progression and other enzymatic activities have also been observed 

(Granéli et al., 2008a; Legrand et al., 2003; Reigosa et al., 1999). Allelopathy can be 

tied to toxins associated with human poisoning (e.g. OA, DTX) peptides, fatty acids 

or other substances (e.g. reactive oxygen species). 

Allelochemicals are thought to prevent the competitive exclusion of HA species, 

but this process is rather difficult to study in situ (Gross, 2003; Legrand et al., 2003). 

As a result, allelopathy is usually demonstrated in mixed batch cultures or with daily 

additions of cell-free filtrate (Granéli and Hansen, 2006). Co-culturing may, however, 

create false positives when pH conditions are generated that are fatal to competitors 

(Hansen, 2002; Lundholm et al., 2005; Møgelhøj et al., 2006). Filtrates, per contra, 

neglect labile toxins and changes in production and sensitivity under shared stress 

(Fistarol et al., 2004, 2005; Granéli and Johansson, 2003). Both approaches should 

be interpreted with great care. The strength of allelopathic interactions depends on 

conditions like temperature, light, pH, nutrients, densities and the species’ sensitivity 

(Fistarol et al., 2003, 2005; Schmidt and Hansen, 2001; Tillmann, 2003). Significant 

interactions are nearly always found at bloom concentrations (Jonsson et al., 2009). 

For this reason, it has been suggested that the role of allelochemicals is to prolong 

HABs, rather than establish them (Granéli et al., 2008a; Smayda, 1997).  
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3.2 Grazer deterrence & avoidance 

HABs are biologically controlled by the combined grazing of microzooplankton, 

mesozooplankton and benthic filter-feeders (Smayda, 2008). Before the 1990’s, most 

research focused on interactions between toxic algae and zooplanktonic grazers 

(Turner and Tester, 1997). Recently, though, we have come to understand that 

microzooplankton – i.e. heterotrophic dinoflagellates and ciliates - are as (if not more) 

important than mesozooplankton to control HABs (Tillmann, 2004; Turner, 2006). 

Together, copepods and benthic filter-feeders consume between 10-40% and 0-30% 

of the phytoplanktonic biomass. By contrast, microzooplankton consumes 60-70% of 

the primary production (Calbet, 2001; Calbet et al., 2003; Calbet and Landry, 2004). 

Microzooplanktonic grazers can reduce the growth of blooms but, in some cases, fall 

prey to potentially harmful heterotrophic dinoflagellates themselves, creating complex 

feedback loops which are not fully understood (Calbet et al., 2003; Calbet, 2008; 

Calbet and Saiz, 2005; Jeong et al., 2010; Sherr and Sherr, 2009, 2007). 

Mesozooplankton, on the other hand, is usually unable to prevent bloom proliferation, 

but can affect the initiation of blooms by consuming both toxic and non-toxic algae as 

well as parasites and microzooplanktonic grazers (Calbet et al., 2003; Turner, 2014; 

Turner and Anderson, 1983; Turner and Tester, 1997). While much still needs to be 

learned about these interactions, HABs generally reflect a lapse in grazing pressure 

(Smayda, 2008). To facilitate the breakdown in grazer control, dinoflagellates have 

developed mechanisms to avoid or deter grazers over the course of their evolution. 

These will be explained through the concept of the grazing pit, which is an extension 

of a three dimensional Lotka-Volterra predator-prey model (Messier, 1994). 

 

Figure 1.2 Messier’s grazing pit, from Bakun (2006), Messier (1994) and Wyatt (2014).  
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Only a fraction of cells in natural assemblages are harmful algae (Turner, 2006). 

This rarity offers refuge from grazers and pathogens, as it is energetically inefficient 

to purposely target scarcely distributed cells. Rare cells are also less vulnerable to 

indiscriminate feeding. As the prey densities increase beyond a threshold, however, 

selective grazers will improve their uptake rates by purposely targeting the species. 

When prey abundances are sufficiently high, though, grazers can become saturated: 

i.e. they are unable to match their uptake to the availability of more prey within an 

ecologically relevant time-frame (Messier, 1994; Wyatt, 2014). Both equilibria are 

separated by a period of growth with unfavourably high mortality, i.e. the grazing pit, 

which harmful algae need to navigate in order to form a bloom (Bakun, 2006). 

Small HAB species (e.g. cyanobacteria) simply outgrow the pressure of grazers 

(Domis et al., 2007). For others, size is similarly related to grazing like abundance 

(Kiørboe, 2008; Sournia, 1982). For this reason, colonies and chains can be formed 

or dissolved in response to grazers (Bergkvist et al., 2012; van Donk et al., 1999). 

The formation of spines or barbed setae may also be induced, but their function and 

efficiency is questionable (Gifford et al., 1981; Nguyen et al., 2011; Tillmann, 2004). 

Dinoflagellates, on the other hand, often produce chemicals which are detrimental to 

micro- and mesozooplanktonic grazers (Huntley et al., 1986; Teegarden, 1999; 

Teegarden et al., 2001; Tillmann et al., 2007). In addition, dinoflagellates can affect 

the fitness of grazers through their poor nutritional value (Cruz-Rivera and Hay, 2003; 

Prince et al., 2006; Vehmaa et al., 2012). Most grazers will, hence, not feed on toxic 

dinoflagellates when alternative prey is present. In other words, toxicity pushes the 

grazing threshold towards higher densities while, at the same time, inducing rapid 

grazer saturation by reducing the fertility and survival of grazers. 

By removing competitors, grazers prevent the exclusion of HA and facilitate the 

onset of blooms (Chakraborty et al., 2012; Solé et al., 2006; Teramoto et al., 1979). 

Yet, despite deleterious effects, most grazers will eventually consume toxic algae if 

other prey becomes scarce (Cruz-Rivera and Hay, 2003; Prince et al., 2006; Schultz 

and Kiorboe, 2009; Teegarden, 1999). Due to the nutritional quality of dinoflagellates, 

they even tend to increase their uptake rates. As competitors divert grazing pressure 

from HA, evolution may select against strong allelopathic interactions (Flynn, 2008). 

Natural selection should also benefit grazers that are less susceptible to the toxins. 

HAB exposed copepod populations are, indeed, more resilient than naive populations 

(Colin and Dam, 2005, 2007; Dam and Haley, 2011). As a result, the introduction of 

toxic HA in non-native areas by ballast water dispersal decreases grazing pressure, 

enhancing the competitive success of the invasive, toxic species in a similar fashion 

as is described by the enemy release hypothesis (Keane and Crawley, 2002).  
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While algal blooms facilitate sexual reproduction, enhance the formation of cysts 

and offer shelter against grazing, they also promote grazer adaptation (Wyatt, 2014). 

To avoid the coevolution of grazers, it is advantageous for HABs to be randomly 

distributed in space and time. Irregular escapes from rarity instil ecological and 

evolutionary advantages, and should be viewed as a distinct demographic strategy 

(Bakun, 2006; Lewis, 1977). Blooms also need to be ephemeral: critical densities 

need to be attained before grazers have the opportunity to respond, and the life-cycle 

should be completed as quickly as possible. This is done through mass excystment, 

thin layer formation, and physical aggregation. 

Dinoflagellate blooms often accumulate faster than regular growth would allow. 

Mass excystment of “seed banks” provides one way to rapidly escape (pseudo-)rarity 

(Wyatt, 2014). Around 10% of all marine dinoflagellates is able to produce cysts 

(Dale, 2001; Dodge and Harland, 1991). In coastal environments, around 20 to 50% 

of all motile dinoflagellates is a cyst-producer (Anderson et al., 1985; Dale, 1976). 

Cysts formation can be used to temporarily escape grazing pressure or unfavourable 

conditions by diapause (e.g. pellicle cyst), or to provide a long-term survival strategy 

(Bravo and Figueroa, 2014; Smayda and Trainer, 2010). Dormant resting cysts that 

have a thick dinosporin cell wall remain viable for months to a hundred years on end 

(Bravo and Figueroa, 2014; Lundholm et al., 2011). When sufficient numbers of cysts 

hatch simultaneously, dinoflagellates may skip the grazing pit entirely. 

Harmful algae, like all phytoplankton, are influenced by the local hydrodynamics. 

In a lot of cases, HABs are initiated offshore – where the nutrient-poor conditions 

benefit the K-selected species – and are then pushed into nutrient-rich coastal waters 

by the wind-driven currents (McGillicuddy et al., 2003; Ruiz-de la Torre et al., 2013). 

Contrarily, developing blooms can be disrupted by Eddy diffusion, vertical shear 

gradients and small-scale turbulent motions (Estrada et al., 1987; Margalef, 1978). 

To some extent, certain dinoflagellates are able to reduce the effect of these physical 

processes by secreting extracellular polysaccharides that change their hydrodynamic 

environment (Cheriton et al., 2009; Wyatt and Horwood, 1973). More often, though, 

they use their exceptional motility to counter physical drift. Dinoflagellates swim up to 

16m a day (Eppley et al., 1968; Smayda, 2002). Using geotaxis and chemotaxis, they 

perform daily vertical migrations for the acquisition of nutrients and to avoid grazers 

(Harvey and Menden-Deuer, 2012; Kamykowski et al., 1998). In addition, they can 

use their mobility to accumulate in 1m thick subsurface layers wherein their densities 

exceed grazer saturation (Cheriton et al., 2009; Margalef, 1978; Smayda, 2002). 
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Figure 1.3 The life-cycle of cyst-forming dinoflagellates (Bravo and Figueroa, 2014). 

 

3.3 Mixotrophy 

The competitive success of toxic dinoflagellates is also commonly bolstered by 

their ability to obtain nutrients from both photosynthesis as well as phagocytosis 

(Dagenais-Bellefeuille and Morse, 2013; Jeong et al., 2010). Mixotrophy is found in 

all major dinoflagellate taxa (Stoecker, 1999). The vast majority are facultative 

heterotrophs: i.e. they consume external organic matter, but need light to grow 

(Stoecker, 1998). Extreme cases, e.g. Dinophysis spp., are obligate heterotrophs: 

they do not own chloroplasts, but utilize chloroplasts “borrowed” from cryptophytic, 

haptophytic or cyanobacterial prey (Qiu et al., 2011). Less than 10% are “ideal” 

mixotrophs that grow equally well on photosynthesis or heterotrophy (Hansen, 2011). 

Mixotrophic dinoflagellates often feed on bacteria, pico-eukaryotes, nanoflagellates, 

cryptophytes, haptophytes, raphidophytes, prasinophytes, ciliates, diatoms and other 

dinoflagellates (Jeong et al., 2010 and references therein). Feeding strategies 

include active hunting (raptorial feeding), generating water movement towards their 

uptake site (filter feeding) and passively waiting for prey uptake (diffusion feeding). 

Prey particles can be engulfed (phagocytosis), captured by a veil (pallium feeding), or 

siphoned out (peduncle feeding) (Jeong et al., 2010). The consumption of N2-fixing 

cyanobacteria, in particular, is thought to promote the development of HABs in 

nutrient-poor waters (Glibert et al., 2009; Jeong et al., 2005). 
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Box 1.1 Observations on the role of benthic grazers 

Most commonly farmed shellfish species, i.e. mussels, oysters, scallops, cockles 

and clams, readily feed on harmful algae. This creates the risk of human intoxication 

during both blooms as well as periods of low abundance (FAO, 2004; Turner, 2006). 

Through accumulation and biotransformation, bivalves accumulate toxin profiles with 

completely different toxic effects. While the speed of these processes varies among 

bivalve species and toxin classes, bivalves will vector toxins to higher trophic levels 

(e.g. gastropods, cephalopods, crustaceans, finfish, mammals & humans) based on 

their position in the food web (Shumway, 1995). Yet, due to their small contribution to 

the grazing pressure on HABs, the effect of benthic grazers on bloom development is 

often overlooked (Calbet, 2001; Calbet et al., 2003; Calbet and Landry, 2004). 

The increasing occurrence of harmful brown tides (Aureococcus anophagefferens) 

along the coast of New Jersey has been linked to eutrophication as well as the loss 

of benthic filter-feeders during the 1980’s (Cerrato et al., 2004; Gastrich et al., 2004). 

The overexploitation of the Northern quahog Mercenaria mercenaria is thought to 

have increased the relative importance of planktonic grazers, which are often more 

efficient at selective feeding than bivalves (Gobler and Sunda, 2006). This shifting 

grazer pressure has contributed to the success of Aureococcus spp. by removing 

their competitors (Gobler and Sunda, 2012). Now, the blooms of Aureococcus spp. 

prevent the restoration of the quahog population and cause mortality and recruitment 

failures in bay scallops Argopecten irradians and seagrass beds Zostera marina, 

resulting in a complete disruption of the ecosystem. 

The case of Aureococcus spp. highlights the need to understand the interactions 

between HABs and benthic filter feeders. Bivalves often seem to be immune to toxins 

that are lethal to copepods, fish, birds or even whales. In part, their resilience is due 

to their lack of a central nervous system, a common target of marine toxins. Adult 

bivalves also possess a remarkable innate immune system, and can respond to toxic 

HA by reducing their filtration rates, producing mucosal pseudofaeces and closing 

their shells (Manfrin et al., 2012). Bivalve larvae are, however, more vulnerable to 

environmental stress (ASTM, 2004). This frail pelagic life-stage is essential for the 

recruitment of next generations of both natural and commercial bivalve populations 

(Seitz et al., 2001; Smaal, 2002). A number of recent studies have shown that 

harmful dinoflagellates affect the viability and development of these early life-stages 

(Jeong et al., 2004; Padilla et al., 2006; Rolton et al., 2014). To prevent the collapse 

of benthic communities (cfr. New Jersey) and protect the exploitation of shellfish, 

more research into the direct and indirect effects of HABs on larvae is still needed.  
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4. Environmental control of blooms 

4.1 Windows of opportunity 

HABs are a departure from the norm, an exceptional succession of phytoplankton 

that requires certain environmental qualities. Identifying the specific combinations of 

biotic and abiotic conditions that enable the initiation and development of HABs, 

dubbed “windows of opportunity” (Stoecker et al., 2008b), has been the holy grail of 

HAB research for decades. Phytoplankton communities are continuously structured 

by nutrient availability, biotic interactions (grazing, allelopathy, competition), abiotic 

variability (wind, light, temperature, turbulence, etc.) and a degree of randomness 

(Armstrong, 1979; Chesson, 1994; Richerson et al., 1970; Tilman, 1977, 1982). This 

complexity gave HABs the allure of unpredictability which, as discussed, is enforced 

by their biological traits (Sweeney, 1975, 1978). Still, some environmental conditions 

are essential to their development and persistence. 

Ramon Margalef (1978) was among the first to try to strip away the HAB ecology 

and identify some key features that make dinoflagellate blooms “optional”. In his now 

iconic “mandala” (Figure 1.4), he found that nutrient availability and turbulent energy 

determine the succession of phytoplankton groups and, hence, the likelihood of HAB 

development. In this simple bottom-up model, individual species are sorted, based on 

their life cycles and the “selective properties of the environment” (Margalef, 1978). 

While species may occur outside their designated zones by chance, they will be at a 

competitive disadvantage there as they are not adapted to the prevailing conditions. 

Due to seasonal weather changes, nutrient and turbulence conditions can shift in any 

direction, promoting one over another species. 

 

Figure 1.4 Margalef’s mandala (Wyatt, 2014) 
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The mandala is divided into four domains (I-IV) that represent the annual cycle of 

phytoplankton biomass (ref. Winder and Cloern, 2010). From late autumn onwards, 

remineralization and vertical mixing releases nutrients (i.e. N, P, Si) into the water, 

but temperatures are too low for substantial algal growth. For this reason, domain IV 

is considered “empty”. Next, r-selected diatoms deplete most nutrients during the 

spring blooms (domain I). Later, summer temperatures create thermal stratification 

which reduces vertical mixing and enhances the depletion of nutrients. At that time, 

the abundance of zooplankton increases. These conditions promote grazer resistant 

and nutrient efficient K-selected species. Ideally, the system produces a harmless 

peak of non-siliceous algae during summer (domain III). Yet, when sufficient nutrients 

remain in the system, red tides may develop instead (domain II). 

The mandala covers much of the abiotic control over phytoplankton communities. 

Slobodkin (1989) later wrote: ‘‘any body of water that meets the criterion of relatively 

constant conditions and a low mixing rate will tend towards a monoculture bloom’’. 

According to the mandala, sufficiently stable conditions will indeed create a bloom of 

whichever species is best adapted to the prevailing conditions. Yet, it still overcomes 

Hutchinson’s paradox by incorporating constant changes in nutrients and turbulence. 

The mandala is neither absolute nor unidirectional, as time and time-related factors 

(e.g. light, temperature) are rather implicit. These strengths made Margalef’s work a 

cornerstone in phytoplankton ecology. As Margalef put it: “there is no paradox of the 

plankton, but we are excessively myopic in the perception of the many possibilities of 

spatial and temporal organization’’ (Margalef, 1978). 

His mandala was nonetheless a product of its time. Our understanding of red tides 

has progressed tremendously since its publication. Adaptive traits and strategies 

(e.g. allelopathy, grazer deterrence, cysts, motility, internal nutrient storage) which let 

HAB species cope with diverse environments are now given more credit than before. 

We now know that grazing and eutrophication are both crucial for HAB development 

(Chakraborty and Feudel, 2014; Mitra and Flynn, 2006; Sunda and Shertzer, 2014), 

which cannot be included in a simple bottom-up model (Glibert, 2016; Wyatt, 2014). 

Even so, the enigmatic nature of Margalef’s mandala continues to inspire authors to 

adapt the framework to the new insights and groups (Balch, 2004; Cullen et al., 2007; 

Smayda and Reynolds, 2001). In its latest incarnation (ref. Glibert, 2016; Fig. 1.5), 

the mandala has become a twelve dimensional “map” that contains (1) turbulence, 

(2) nutrient ratios, (3) temperature, (4) r vs K strategies, (5) cell size, (6) cell motility, 

(7) relative growth rate, (8) pigmentation, (9) autotrophic or mixotrophic preference, 

(10) the production of toxins or reactive oxygen species, (11) grazing pressure and 

(12) the chemical form of nitrogen  



 

Chapter 1 

 
16  

 

4.2 Fishing and shipping 

Most axes of the revised mandala are intrinsic species properties. Other axes are 

directly affected by anthropogenic activities. As already discussed, benthic grazing is 

susceptible to overfishing, leading to relatively more pelagic grazing which is also 

affected by fishing activities. Fisheries have generally depleted the stocks of large 

piscivorous fish (FAO, 2016), increasing the number of small planktivorous fish that 

remove zooplanktonic grazers and, hence, modify the grazing pressure of HABs 

(Anderson et al., 2012). These trophic cascades indirectly influence the grazing pit, 

and may be enhanced by the involuntary introduction of toxic algae in locations with 

naïve grazer populations through ballast water dispersal and shellfish stock vectoring 

(Colin and Dam, 2005, 2007; Dam and Haley, 2011; Smayda, 2007). 

 

4.3 Eutrophication 

Coastal eutrophication has been linked to the increasing frequency of HABs 

across the globe (Anderson et al., 2002, 2012; Cloern, 2001; Davidson et al., 2014; 

Glibert et al., 2014). The predominant underlying cause is rather straight-forward. 

The Green Revolution has increased the nutrient availability of most aquatic systems. 

The industrial production rates of N and P vastly exceed the natural weathering rates 

of these elements (Carpenter and Bennett, 2011; Galloway et al., 2008). By contrast, 

the natural availability of silicon has changed little (Tréguer and De La Rocha, 2013). 

Nearshore diatom communities tend to be silicon-limited (e.g. Burson et al., 2016), 

leaving more nitrogen and phosphorus to fuel blooms of non-siliceous phytoplankton 

(Graneli et al., 1999; Officer and Ryther, 1980; Radach et al., 1990; Riegman et al., 

1992; Roberts, 2003; Schöllhorn and Granéli, 1996; Smayda, 1989; Sommer, 1994). 

Changes in the relative availability of nutrients are commonly expressed as ratios. 

Shifts in ambient nutrient ratios may move co-existing phytoplankton species towards 

competitive exclusion when each is limited by another resource (Tilman, 1977, 1980). 

In the case of silicious vs. non-silicious phytoplankton, it is clear that the N:Si or the 

P:Si ratio has an important structuring role. Still, eutrophication has another effect. 

While nitrogen fertilizers are still extensively used, phosphorus emissions have been 

severely restricted by legislation (e.g. Clean Water Act, Water Framework Directive). 

In addition, wastewater treatment plants remove P more efficiently than N, causing 

riverine inputs to be richer in N than P (Glibert et al., 2014; Van Drecht et al., 2009). 

As a result of this imbalance, marine systems now vary between extreme N-limitation 

(e.g. 1:1) and extreme P-limitation (e.g. 375:1) on varying spatial and temporal scales 

(Burson et al., 2016; Conley et al., 2009; Elser et al., 2007). 
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For want of an atmospheric component, P is held to be the most limiting nutrient 

on the geological time-scale (Conley et al., 2009; Elser et al., 2007; Tyrrell, 1999). 

Conversely, N is thought to be self-regulating. Redfield (1934) observed that oceans 

have an average N:P ratio of 16:1. This ratio is balanced by nitrogen homeostasis. 

Higher ratios inhibit nitrogen fixation, while lower ratios promote nitrogen fixation 

(Redfield, 1958; Tyrrell, 1999). This was recently attributed to a homeostatic balance 

between protein and RNA synthesis, as the 16:1 protein:RNA ratio is found in both 

prokaryotic and eukaryotic organisms (Daines et al., 2014; Loladze and Elser, 2011). 

The Redfield ratio is, hence, firmly rooted in the fundamental structure of life. 

Recent measurements have shown that the global oceanic mean is currently 22:1 

(Martiny et al., 2014). Imbalanced supplies of N, P and C affect the nutritional quality 

of phytoplankton, causing grazers to increase their consumption rates, increase their 

retention efficiency or decrease their body sizes (Malzahn et al., 2010; Malzahn and 

Boersma, 2012; Schoo et al., 2009, 2014; Sterner, 1990; Vanni and McIntyre, 2016). 

These trade-offs affect the food web at all trophic levels (Philippart et al., 2007). 

Shifting N:P ratios have, hence, also been associated with an increased risk of HABs 

(Heil et al., 2007; Hodgkiss and Ho, 1997; Lagus, 2004). While there is little evidence 

that N:P ratios play a significant role in the bottom-up control of toxic red tides 

(Davidson et al., 2012; Flynn, 2010), nutrient stoichiometry may indirectly affect the 

top-down control of HABs through changes in food quality or the production of toxins 

(Granéli and Flynn, 2006; Malzahn et al., 2010; Schoo et al., 2009). Yet, there is no 

reason to suggest that the N:P ratio selects for red tides by itself. 

Associating red tides to the recent deviations from the Redfield ratio harkens back 

to the succesful association of N:Si ratios and blooms of non-siliceous phytoplankton. 

At first glance, there is even a theoretical framework to support the HAB-N:P theory. 

The Redfield ratio is not a universal optimum for all algae (Klausmeier et al., 2004). 

Fast-growing r-strategist cells have a greater energy allocation to P-rich ribosomes, 

and are more attuned to low N:P ratios, than slow-growing K-strategists which have 

more N-rich proteins and, hence, grow well at high N:P ratios. Given a sustantial shift 

in N:P ratio, Tilman’s resource ratio hypothesis predicts the competitive displacement 

of one group by the other (Tilman, 1977). While this could explain the recent success 

of cyanobacterial HABs or Phaeocystis spp., it fails to address the issue of red tides. 

There is no ecological theory which supports the notion that nutrient ratios can select 

between closely related species with resembling nutrient requirements. Nevertheless, 

the link between N:P ratios and red tides is frequently reiterated without this nuance 

(Glibert et al., 2014; Glibert, 2016; Heisler et al., 2008).  
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4.4 Climate change 

Besides our influence on the global nitrogen cycle, human activities have also 

transgressed the planetary boundaries of climate change (Rockström et al., 2009). 

Anthropogenic global change is now beyond dispute (Cook et al., 2013; IPCC, 2014). 

Relative to 1986-2005, the global mean surface temperatures will have increased by 

0.3 (best case) to 4.8°C (worst case) by the end of the 21st century (IPCC, 2014). 

Even though the Paris climate agreement intends to hold global warming below 2°C, 

the proposed climate efforts could still result in a warming of 2.6°C to 3.1°C by 2100 

(Rogelj et al., 2016). Marine ecosystems will have higher sea surface temperatures, 

sea level rise by thermal expansion and ice melt, deoxygenation, ocean acidification, 

changes in continental runoff, and an increased frequency of extreme events such as 

storms (Pörtner et al., 2014). Several of these effects may promote the occurrence of 

HABs in the future oceans (Anderson et al., 2012; Hallegraeff, 2010). 

Long-term changes in the phytoplanktonic biomass production of the North Sea 

are linked to eutrophication and regional changes in temperature (Edwards, 2001). 

Though cell growth is generally positively correlated with temperature (Eppley, 1972), 

dinoflagellates are already more adapted to higher temperatures than other algae, 

giving them more chance to grow under climate change conditions than competitors 

(Smayda and Smayda, 2015). Range expansions of harmful species, together with 

range contractions of competitors and grazers, will determine the risk of future HABs 

(Anderson et al., 2012; Chevin et al., 2010; Wells et al., 2015). Climate change may 

also increase the production during winter and affect the timing of peak productivity, 

leading to trophic mismatches between producers, grazers and higher trophic levels 

(Anderson et al., 2012; Edwards, 2001; Edwards and Richardson, 2004). 

On a regional scale, changes in precipitation and continental runoff will enhance 

both the thermal and haline stratification (Holt et al., 2014; Hordoir and Meier, 2012). 

Dinoflagellate blooms are often associated with persistently stratified environments, 

as they promote nutrient efficiency, mixotrophy, cell motility, and the accumulation of 

biomass into thin layers (Berdalet et al., 2014; Huisman et al., 2004; Smayda, 2002). 

Stratification also severely reduces the competitive effectiveness of their main rivals. 

Diatoms, which tend to outgrow other phytoplankton groups, need upward advection 

or mixing to maintain a depth with favourable light conditions (Huisman et al., 2002). 

As a result, climate chance is believed to increase the windows of opportunity for 

HAB development. Little is known, however, about the effects of temperature and pH 

on nutrient competition and toxin-mediated processes such as allelopathy and grazer 

deterrence (Wells et al., 2015).  
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Figure 1.6 The predicted effect of climate-change related stressors, like temperature (T), 

ocean acidification (OA) and stratification, as well as the future impact of eutrophication and 

grazing on different phytoplankton groups. Arrows indicate inhibition, stimulation or species-

dependent effects (double arrow). Questions marks are insufficiently studied to predict. 

Symbols denote confidence: likely (+) and very likely (++). Credit to Wells et al. (2015). 

 

Climate change will also affect the mechanisms that can induce bloom termination. 

Most commonly, senescent blooms dissipate by weather-driven changes in currents 

(pushed offshore) and waves (turbulence or loss of stratification). Long-term records 

of the North Sea have, for instance, detected decadal changes in the wind forcing, 

showing an increase in mean wind speeds and a higher occurrence of westerly winds 

(Siegismund and Schrum, 2001). Ultimately, these changes determine the likelihood 

of bloom termination by weather patterns. Another potential way of bloom termination 

is nutrient depletion. As the growth rates increase with temperature (Eppley, 1972), 

blooms may deplete nutrients more rapidly, potentially making them more ephemeral. 

This process could be enforced further by an increase in thermal stratification which 

will prevent mixing with deeper, nutrient-rich waters. Climate change will, however, 

also have an effect on nutrient remineralisation (Segschneider and Bendtsen, 2013), 

which could perhaps negate the rapid depletion of available nutrients to some extent. 

Lastly, established blooms are known to succumb to viral, bacterial and fungal lysis 

(Bidle and Vardi, 2011; Frenken et al., 2016; Imai et al., 1998; Mayali et al., 2008). 

The linkage between algal blooms and these parasitic organisms will evolve as each 

clade adapts to the global change conditions (temperature, pH, etc.).  
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Box 1.2 The complex interactions between bacteria and algae 

To bridge Messier’s grazing pit, algae need to overcome the mortality induced by 

viral and bacterial infections, that shunt about 20% of all the produced biomass away 

from higher trophic levels (Cole et al., 1988; Fuhrman and Noble, 1995; Wyatt, 2014). 

For the most part, this mortality can be linked to Roseobacter clade bacteria, though 

Flavobacter clade bacteria are also positively related to the density of phytoplankton 

(Buchan et al., 2014; Cole, 1982; Mayali et al., 2008). The interactions between HA 

and their bacteria can vary from commensalism to parasitism (Ramanan et al., 2016), 

and change over time as the organic matter excreted by the algae bottom-up induces 

bacterial succession which affects the functional traits of the associated community 

(Riemann et al., 2000; Teeling et al., 2012). 

Little is known, though, about the role of bacteria in controlling HABs. Infections 

both promote and inhibit bloom formation (e.g. Ferrier et al., 2002; Imai et al., 1995), 

creating unstable trade-offs between the uptake of nutrients and the risk of infection 

(Menge and Weitz, 2009). In certain cases, the bacterial diversity in the phycosphere 

may also act as both the target and mediator of allelopathic interactions between HA 

(Hulot and Huisman, 2004; Weissbach et al., 2011), further complicating their role in 

the formation and maintenance of HABs. In a few rare cases, the production of toxins 

(e.g. DA) of the algae has been linked to the presence of certain associated bacteria 

(Bates et al., 2004; Stewart et al., 1997). 

While we still do not completely understand the role of bacteria in HAB dynamics, 

climate change is predicted to have a tremendous impact on prokaryotic communities 

(Vezzulli et al., 2012). Crucially, bacteriologists fear that global warming will increase 

the occurrence of pathogens, such as Vibrio splendidus and Vibrio coralliilyticus, 

which are found in bloom-associated communities (Barlaan et al., 2007; Burge et al., 

2014; Eiler et al., 2006; Mourino-Perez et al., 2003; Vezzulli et al., 2016). If and when 

this happens, the effects of HA may work in tandem with the virulence of pathogens, 

enhancing the environmental impact of HABs. Up to now, only a handful of studies 

have looked at the interactive effects of HABs and pathogens on benthic grazers, 

and none have investigated this mixed toxicity in pelagic grazers. In adult bivalves, 

both synergistic and antagonistic interactions between HA and pathogens were found 

(Basti et al., 2015a; da Silva et al., 2008; Hégaret et al., 2010). To date, however, not 

a single study has looked into the potential for mixed toxicity effects in bivalve larvae, 

which are usually more susceptible to environmental stress. To truly understand the 

entire impact of HABs on (benthic) grazing communities (ref. box 1.1), these mixed 

toxicity effects need to be evaluated further.  
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5. North Sea status 

The North Sea was recently identified as a global “hot spot” of climate change 

(Holt et al., 2014; Pinnegar et al., 2016). In the past, the North Sea was a “hot spot” 

for eutrophication (QSR, 1987; Fig. 1.7), and decades of overfishing that changed the 

food web towards a new ecosystem regime that favours above normal Chl A levels 

(McQuatters-Gollop et al., 2007). The Southern Bight of the North Sea, in particular, 

is highly eutrophied (Djambazov and Pericleous, 2015) and its nutrient stoichiometry 

is very heterogeneious (Burson et al., 2016), increasing the risk of HAB development. 

 

Figure 1.7: The evolution of the Chlorophyll A concentration of the English Channel and 

the Southern Bight of the North Sea (A), and the winter (December–February) concentrations 

of ammonium (B), phosphate (C), nitrate (D), silicate (E), and nitrite (F). Full black lines are 

the median values, dotted red lines represent the 25-75% quantiles. Monitoring data derived 

from the ICES data portal (ICES areas IVc and VIId).  
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Table 1.3: List of potentially harmful phytoplankton spotted inside the Belgian EEZ, based 

on a query of the EurOBIS database for the Belgian EEZ, and expanded with (grey) literature 

and personal observations. 

Harmful species Effect References 

Dinophysis acuta Toxic (OA,DTX) Bastin (1991) 
Van Wichelen et al. (2008) 

Dinophysis acuminata Toxic (OA,DTX) Louis et al. (1974) 
Bastin (1991) 
M’harzi (1999) 
Denys and Maeckelberghe (2002) 
Van Wichelen et al. (2008) 

Dinophysis norvegica Toxic (OA,DTX) Louis et al. (1974) 

Dinophysis rotundata Toxic (OA,DTX) Müller (2004) 
personal observations 

Protoceratium reticulatum Toxic (YTX) M’harzi (1999); Gonyaulax grindleyii 

Karenia mikimotoi Fish kills 
Hypoxia 
Toxic (Gym) 

Parke and Dixon (1976); Gymnodinium breve  
Louis and Petes (1979); Gymnodinium aureum 
personal observations 

Scrippsiella trochoidea Hypoxia Louis and Petes (1979); Scrippsiella faeroeense 
personal observations 

Phaeocystis globosa Hypoxia Baumann et al. (1994) 
personal observations 

Phaeocystis pouchetii Hypoxia De Pauw (1975) 
Lancelot and Mathot (1985) 
Müller (2004) 

Prorocentrum lima Toxic  

(OA,DTX) 

Leloup and Miller (1940) 
personal observations 

Prorocentrum micans Hypoxia De Pauw (1975) 
Louis and Petes (1979) 
Bastin (1991) 
Van Wichelen et al. (2008) 
personal observations 

Pseudo-nitzschia seriata Toxic(DA) M’harzi (1999) 
Denys and Maeckelberghe (2002) 

Alexandrium ostenfeldii Toxic 

(SPX, STX) 

Woloszynska & Conrad (1939); Pyrodinium phoneus 
Van Wichelen et al. (2008) 

Skeletonema costatum Fish kills  

(spines) 

Reid et al. (1990) 
M’harzi (1999) 
Rousseau et al. (2002) 

Heterocapsa rotundata Hypoxia Leloup and Miller (1940) 
Mommaerts-Billiet et al. (1974) 
Van Wichelen et al. (2008) 

Heterocapsa triquetra  Hypoxia Louis and Petes (1979); Peridinium triquetra 
Conrad (1939); Gonyaulax. triacantha 
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In recent years, though, the nutrient loading of the Southern Bight of the North Sea 

is gradually decreasing (ref. ICES data; Fig. 1.7). First, the phosphate levels dropped 

to stagnant levels because of the voluntary agreements with the detergent industries 

and a European-wide ban on phosphates in household detergents. Now, the nitrogen 

levels are plummeting as the combined result of a multitude of European legislations 

(i.e. the Nitrates Directive, the Urban Waste Water Directive, the Water Framework 

Directive, the Marine Strategy Framework Directive etc.). Despite this progress, the 

nutrient inputs are still too high and unbalanced, causing a shift in the natural nutrient 

stoichiometry of the Southern Bight of the North Sea. The average N:P ratio of the 

Belgian Part of the North Sea (BPNS) is, for instance, between 12 and 14, though 

extremer cases of N-limitation (e.g.1:1) and P-limitation (365:1) have also been found 

(Brion et al., 2004; Burson et al., 2016). Assuming that HAB occurrences can indeed 

be linked to changes in the N:P ratio, these shifts could have increased the risk of 

HAB development in the BPNS. 

Because of eutrophication, overfishing and climate change, scientists believe that 

more HABs will develop in the North Sea (Peperzak, 2005; Friocourt et al., 2011). 

Some of the countries adjacent to the Southern Bight of the North Sea, like France, 

the Netherlands and the UK have, in fact, already found an increase in HABs within 

their EEZs (Figure 1.8). Yet, despite the number of known harmful algae which were 

spotted within the Belgian EEZ (Table 1.3), Belgium still needs to start monitoring for 

HAB events. As a result, we know little about the risk of HABs inside the BPNS. 
 

 

Figure 1.8: The yearly occurrence of HABs in the Southern Bight of the North Sea (left), 

and the predominant toxin groups that occur during these blooms (right). Data extracted from 

the Harmful Algal Event Database (HAEDAT), using a subset of zones (FR01, FR02, FR03, 

GB03, GB04, GB06, GB07, NL03) that coincide with ICES areas IVc and VIId.  
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6. Objectives 

While all of the neighbouring countries have detected various HAB species in their 

economic exclusion zones, ref. reports by Rijkswaterstaat (NL), Ifremer (France), and 

CEFAS (UK), Belgium remains ignorant of the human health risks that lurk within its 

coastal waters. Despite growing evidence that dinoflagellate blooms are gaining in 

importance on a global scale, our environmental monitoring report is still based on 

broad parameters such as chlorophyll-A, total inorganic nutrient concentrations, and 

the abundance of a single known harmful species i.e. Phaeocystis spp. (FOD, 2015). 

Contrary to most other European countries, the historical collapse of our aquaculture 

industry robbed us of a compelling reason to monitor beyond what was required by 

European laws against eutrophication (e.g. Water Framework Directive 2000/60/EC). 

Now, though, the Marine Strategy Framework Directive (2008/56/EC) requires us to 

include indicators that reveal changes in the phytoplanktonic community composition, 

with increased attention to the presence of HAB species, and recommends research 

into the effects of nutrient ratios and nutrient loads on the structure and function of 

the planktonic food web in relation to other trophic levels. 

The main objective of this thesis was to assess whether the ongoing chances in 

the environmental conditions of the BPNS have any effect on the risk of toxic HABs. 

Based on the knowledge gaps that were identified in the general introduction, and the 

recommendations of the EU Marine Strategy Framework Directive, we formulated 

five research questions which were addressed throughout the chapters of this PhD. 

Each question was used to improve our understanding of HAB dynamics and the 

associated effects on the food web, so that we could formulate a suitable answer to 

the main objective. 

1. Do shifting N:P ratios affect the competitive traits of dinoflagellates? 

2. Do nutrient load reductions affect the competitive traits of dinoflagellates? 

3. Will global change affect the competitive traits of dinoflagellates? 

4. Do toxic HABs affect populations of keystone bivalve species? 

5. What is the risk of HABs in the BPNS? 
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7. Rationale and scope of this work 

As the world plunges ever-faster towards the point of no return for climate change, 

the chance to avoid a major escalation of HABs worldwide is gradually slipping away. 

Now more than ever, policymakers need to comprehend the dangers of ecosystem 

disruption by HABs, and get a clear signal which areas to prioritize in order to avoid 

this catastrophe (Chomérat et al., 2016). There is, however, a lack of experimental 

evidence that global change will affect HABs (Wells et al., 2015). While the rate of 

temperature change is already accelerating in some regions (Smith et al., 2015), 

HAB scientists are still discussing the fundamental ecological importance of key traits 

(e.g. allelopathy) and environmental constraints (e.g. N:P ratio) in HAB development. 

Critically, we need to identify and employ model species in cross-validated, long-term 

multifactorial studies with co-occurring species to rapidly progress our understanding 

of HAB and non-HAB physiological plasticity to climate stress (Wells et al., 2015). 

These efforts should, however, not preclude the search for “windows of opportunity” 

and “black swans” in HAB ecology. Quantifying the effects on the socioeconomic 

well-being of our species, by continuing to look for new HAB species, new toxins, 

newly affected locations and previously unknown toxic effects on key organisms, 

should not be impeded either, as this information is key to persuade policy makers. 

The first two chapters of this dissertation aim to improve our understanding of two 

age-old questions which often detract from the bigger environmental issues at hand: 

the N:P ratio and allelopathy. Chapter 2 investigates how nutrient stoichiometry and 

temperature affect monocultures and mixed cultures of four dinoflagellates. While the 

success of dinoflagellate blooms is often ascribed to these factors, few studies have 

simultaneously investigated their effect on closely related species. We hypothesized 

that temperature would affect growth rates and, hence, nutrient consumption, but that 

changes in nutrient stoichiometry would not be able to affect the species’ dominance 

because of the resemblance in nutrient requirements of these species. 

Chapter 3 builds further on chapter 2 to elucidate the roles of nutrient competition, 

allelopathy and relative densities during bloom initiation. Several theoretical studies 

suggest that allelopathy is dysfunctional at low densities, but experimental studies 

often fail to elucidate nutrient competition from allelopathic interactions. We believe 

that allelopathy plays no significant role during the first stage of bloom development. 

To demonstrate this, and verify the role of the N:P ratios, we grew communities of 

three dinoflagellates under different temperatures, N:P ratios and initial densities. 

Using mechanistic modelling, we then identified the predominant mechanism which 

determines interspecific competition in mixed laboratory cultures.  
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The second half of this dissertation looks at the effect of red tides on bivalves. 

These bioturbating or reef-forming organisms are ecosystem engineers and, hence, 

are often keystone species in temperate marine ecosystems such as the North Sea. 

In shallow systems with a high biomass to water volume ratio (e.g. Eastern Scheldt), 

bivalves may have a strong influence on phytoplankton abundance (Dame, 2011). 

Yet, despite of this, their role in HAB ecology has long been overlooked. Recently, 

self-sustaining brown tides have been linked to the overexploitation of bivalves 

(Gobler and Sunda, 2012). This “black swan” event (i.e. an unexpected event with 

major ramifications that is often overly rationalized later with the benefit of hindsight) 

encourages renewed research efforts into interactions between HABs and bivalves. 

Adult bivalves are known to sequester and transform various chemical pollutants. 

Marine toxins are frequently found at remarkably high concentrations without any 

apparent effect on the mussel. Despite the risk to human consumers, little is known 

about the accumulation and detoxification mechanisms of bivalves. The simultaneous 

exposure to multiple toxic algae, in particular, is yet to be studied. For this reason, 

chapter 4 looks at the absorption, distribution, metabolization and excretion kinetics 

of two emerging toxin groups (OA & SPX) in the common mussel Mytilus edulis by 

HPLC-MS/MS. We knew that mussels would accumulate toxins by feeding on the two 

toxic dinoflagellates, and assumed that the combined exposure to both would reduce 

the accumulation of toxins due to an increase in avoidance behaviour. 

As both HABs and pathogens will become more prevalent in the near future, 

marine bivalves will increasingly have to face both stressors at once. Because of this, 

chapter 5 explored the potential for interactive toxicity effects in their most sensitive 

life-stage i.e. the larvae. Beforehand, we reasoned that the exposure to okadaic acid 

and domoic acid, the two most common toxins in Europe, may affect the viability and 

immunological resilience of M. edulis larvae. We expanded on the latter hypothesis 

by simultaneously exposing mussel larvae to marine pathogens and a whole range of 

previously unstudied toxic dinoflagellates in chapter 6. 

The final part of this thesis, chapter 7, summarizes the results and conclusions of 

this work, and frames them within the current state of the art of the HAB field. 

Suggestions for future research are then provided alongside recommendations for 

the regional management of the Belgian Part of the North Sea (BPNS). 

 



 

 

 

 

 

 

 

2 
The effect of temperature and nutrient stoichiometry  

on the performance of potentially harmful dinoflagellates 

 
Credit: Rockström et al. (2009) 
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Abstract 

Over the last sixty years, eutrophication has gradually upset the biogeochemical 

balance of the world’s oceans. Shifts in the relative abundance of growth-limiting 

nutrients such as nitrogen and phosphorus have been observed across the world. 

The resource ratio (i.e. nutrient stoichiometry) can affect the biological success of 

competing taxa when species are limited by different nutrients. As a result, there is a 

persistent believe that the imbalance in N:P ratios is linked to the growing success of 

dinoflagellate blooms. Yet, to date, there is a lack of experimental evidence that 

changes in the external nutrient stoichiometry promote harmful dinoflagellates over 

co-occurring benign species. Here, four dinoflagellates of the Belgian Part of the 

North Sea (Prorocentrum micans, Prorocentrum lima, Protoceratium reticulatum & 

Scrippsiella trochoidea) were grown in 300 single and mixed batch cultures to 

explore the effect of nutrient stoichiometry on the outcome of interspecific 

competition across 10 N:P ratios (between 8 and 24) and two temperatures (20°C 

and 24°C). Cell counts, nutrient measurements and toxin extractions were then used 

to determine the individual performance of each dinoflagellate. Overall, the results of 

this study indicate that the N:P ratio has no structuring role in the competition 

between dinoflagellates. Observed patterns between growth rates and N:P ratios 

either failed to replicate themselves at another temperature, or vanished in mixed 

cultures. For this reason, this study warns against the use of the N:P ratio as a key 

predictor of the risk of HAB development in coastal areas such as the BPNS. 

 

 

 

 

 

 

 

  



 

Nutrient stoichiometry 

 
 29 

 

1. Introduction 

Since the 1950’s, mankind has left enough distinctive geochemical signatures in 

the geological record to warrant the creation of a new epoch: the Anthropocene 

(Crutzen, 2002; Waters et al., 2016). Among these signs is the gradual increase in 

the availability of growth-limiting nutrients. The industrial production of nitrogen and 

phosphorus vastly exceeds the natural weathering rates of these structural elements 

(Carpenter and Bennett, 2011; Galloway et al., 2008). While our influence on the 

silicon cycle is limited (Tréguer and De La Rocha, 2013), the N and P cycles have 

drastically changed since the Green Revolution. Coastal eutrophication is detected in 

all long-term monitoring records (Brush, 2008; Clarke et al., 2006; Cloern, 2001). 

Changes in the relative and total abundance of N and P are linked to the increase in 

harmful algal blooms (HABs) across the globe (Anderson et al., 2002, 2008; Cloern, 

2001; Davidson et al., 2014; Glibert et al., 2014; Paerl et al., 2014; Smith, 2003). Yet, 

it is still not fully understood how nutrient availability and nutrient stoichiometry affect 

HAB species (Wells et al., 2015). 

Due to the extensive use of N fertilizers in agriculture, the high emission of N-rich 

waste by lifestock production, the higher removal efficiency of P in wastewater 

treatment plants and the strict legislation concerning P in detergents, anthropogenic 

emissions tend to be richer in N than P (Glibert et al., 2014; Van Drecht et al., 2009). 

Predominantly N-rich riverine inputs were fed into the world’s oceans for decades. 

Now, the mean N:P ratio of marine systems has evolved from 16:1 in the 1930’s - the 

famous, biogeochemically balanced Redfield ratio (Redfield, 1958) – to 22:1 today 

(Martiny et al., 2014; Redfield, 1934). Changes in nutrient ratios can drive co-existing 

phytoplankters towards competitive exclusion when each species is limited by a 

different resource (Tilman, 1977, 1980). Nutrient ratios determine the phytoplankton 

community composition and, hence, can be linked to predator-prey relationships 

(Malzahn et al., 2010; Philippart et al., 2007; Schoo et al., 2009) and an increased 

risk of HAB development (Heil et al., 2007; Hodgkiss and Ho, 1997; Lagus, 2004). 

The change from diatoms to potentially harmful non-siliceous phytoplankton groups 

(e.g. cyanobacteria, dinoflagellates) has, for instance, been linked to shifting N:Si or 

P:Si ratios in both laboratory and field studies (Graneli et al., 1999; Officer and 

Ryther, 1980; Paerl et al., 2014; Radach et al., 1990; Riegman et al., 1992; Roberts, 

2003; Schöllhorn and Granéli, 1996; Smayda, 1989; Sommer, 1994). Nevertheless, 

there is no real evidence that the N:Si or P:Si ratio promotes harmful species per se 

(Davidson et al., 2012; Gilpin et al., 2004). In fact, no ecological theory supports the 

notion that nutrient ratios may select between species with closely resembling 

nutrient requirements.  
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Inspired by the success of the N:Si ratio, the increase in dinoflagellate blooms is 

frequently attributed to the recent changes in the N:P ratio (Glibert et al., 2012; 

Handy et al., 2008; Heisler et al., 2008; Hodgkiss and Ho, 1997; Li et al., 2009). 

While understandably attractive, this approach may be dysfunctional in HAB ecology. 

While nutrient stoichiometry certainly affects the top-down control of HABs, through 

changes in the nutritional quality or toxin production (Granéli and Flynn, 2006; 

Malzahn et al., 2010; Philippart et al., 2007; Schoo et al., 2009), its role in bottom-up 

control appears to be limited at best (Davidson et al., 2012; Flynn, 2010). There is, 

however, a lack of experimental studies that use mixed cultures to grow co-existing 

species under various environmental conditions. Now, as HABs stand to gain from 

global change, this hampers our understanding of the current and future effect of 

nutrient stoichiometry on interspecific competition (Wells et al., 2015). 

Here, we performed a growth experiment of 300 cultures to explore the effect of 

nutrient stoichiometry on the performance of four common North Sea dinoflagellates, 

and the competition between them. To this end, two non-toxic species: P. micans 

Ehrenberg 1834 and Scrippsiella trochoidea (Stein) Loeblich III 1976 and two toxic 

species: the benthic Prorocentrum lima (Ehrenberg) F. Stein 1878 and the pelagic 

Protoceratium reticulatum (Claparède & Lachmann) Bütschli 1885 were grown at ten 

N:P ratios, ranging between 8 and 24, and two temperatures: 20°C and 24°C. Cell 

counts and nutrient measurements were used to determine growth rates, nutrient cell 

quota and the presumed internal N:P ratio of each species. Intracellular toxin 

concentrations were detected through ultra-high-performance liquid chromatography 

coupled to high-resolution Orbitrap mass spectrometry (UHPLC-MS). 

 

2. Material & Methods 

2.1 Algal cultures 

Prorocentrum lima (CCAP1136/9) and P. micans (CCAP1136/20) were bought at 

the Culture Collection of Algae and Protozoa (Oban, Scotland), while Protoceratium 

reticulatum (SCCAP K-1478) came from the Scandinavian Culture Collection of 

Algae and Protozoa (Copenhagen, Denmark). Scrippsiella trochoidea was taken from 

the Belgian Part of the North Sea (BPNS) and identified by electron microscopy 

(Vergucht et al., 2015). Algae were grown in L1 medium (32 PSU, pH 8), prepared 

with artificial seawater (Instant Oceantm, Belcopet, Belgium) as dictated by Guillard 

and Hargraves (1993). Stock cultures were grown at 20°C with a 12 h light-dark cycle 

(20-40 µmol m-2 s-1). Roughly 80% of the culture media was replaced every 2 weeks.  
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2.2 Experimental design 

Regular L1 medium contains 882 µM NO3- and 36.2 µM PO43-, or a N:P ratio of 24. 

To get media with different N:P ratios, the NO3- content of the recipe was changed. 

Other medium ingredients were added at the regular dose. Ten media were prepared 

(i.e. N:P 8, 10, 12, 13, 14, 15, 16, 18, 20, 24), centered around the mean N:P ratios 

of the BPNS. Monocultures of each dinoflagellate were made in each of the media by 

adding 100 cells ml-1 to Erlenmeyer flasks filled with 50 ml of medium. Mixed batch 

cultures were set up by adding 100 cells ml-1 of each species to 50 ml of a medium. 

Treatments were replicated six times: three flasks were grown at 20°C for 35 days, 

three were set at 24°C for 28 days. Both climate rooms had a 12-hour photoperiod of 

20±5 µmol m-2 s-1 (cool white light). Twice a week, 1 ml was taken from each flask, 

fixed with 100 µl of 12% formaldehyde and counted with a Sedgewick-Rafter 

counting chamber and a Nikon TMS-F light microscope (10x10). In addition to the 

initial media (day 0), 7 ml samples were taken on day 14 and day 28 for toxin and 

nutrient analyses. Replicates were pooled, filtered (Ø 0.2 µm) and measured with 

standard colorimetric tests for NO3- and PO43- (Hansen and Koroleff, 1999) using 

spectrophotometric kits (Merck Millipore, Darmstadt, Germany) and an Aquamate 

spectrophotometer (Thermo Scientific, San Jose, USA). 

 

2.3 Toxin analyses 

Additional 3 ml samples were taken on day 14 and day 28 for toxin analyses. 

Replicates were pooled and processed using the glass bead extraction method of 

Orellana et al. (2015). Analytical grade methanol (VWR, Leuven, Belgium), 0.5 mm 

glass beads (Thistle Scientific Ltd, Glasgow, UK) and Millex-GV 0.22 µm PVDF 

syringe filters (Millipore, Darmstadt, Germany) were used during this process. 

Certified reference material of okadaic acid (CRM-OA-c), 13-desmethyl spirolide C 

(CRM-SPX-1), azaspiracid-1 (CRM-AZA-1), yessotoxin (CRM-YTX) pectenotoxin-2 

(CRM-PTX-2) and dinophysistoxin-1 (CRM-DTX-1) were obtained from the Canadian 

National Research Council (Ottawa, Canada) to create a multitoxin standard. LC-MS 

grade methanol, acetonitrile, as well as Milli-Q water, were used for UHPLC-MS 

(Merck, Darmstadt, Germany). A Thermo Fisher Scientific (San Jose, CA, USA) 

UHPLC-MS consisting of an Accela UHPLC pump, an Accela Autosampler/Degasser 

and an ExactiveTM benchtop Orbitrap mass spectrometer was fitted with a Nucleodur 

C18 Gravity column (1.8 µm, 50x2 mm, Macherey-Nagel, Düren, Germany) and a 

heated electrospray ionization probe (HESI-II), operating in switching polarity mode. 

Instrument settings were adopted from Orellana et al. (2015). Quantification was 

based on 9-point calibration curves of the multitoxin standard.  
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2.4 Data treatment 

Cell densities were converted to biovolume (µm3) according to Olenina (2006). 

Next, logistic or exponential growth models were fitted to the data with the R package 

“nlstools” (Baty et al., 2015) to estimate growth rates (µ) and carrying capacities (K). 

Confidence intervals were obtained by Monte Carlo simulations. Then, nutrient quota 

(QN, QP) were calculated for each species. The required volume for nutrient analyses 

was met by pooling the samples of biological replicates (as detailed in section 2.2). 

Nutrient quota were, hence, calculated by dividing the amount of consumed nutrients 

– i.e. the initial concentrations [ ]d0 minus the residual concentrations [ ]d28 (mg.l-1) – 

by the mean cell density of day 28 ‹Nd28› (µm3 ml-1; Eq. 2.1-2.2). Using the molecular 

weights of phosphate and nitrate (Mw), the resulting quota were converted to moles, 

before being divided by each other to obtain the relative consumption of nutrients 

(RC; Eq. 2.3). Similarly, the toxin concentrations were measured on a pooled sample 

of biological replicates (ref. section 2.3). Toxin cell quota were, hence, calculated by 

dividing the toxin concentrations [TOX] (µg.l-1) by the mean culture density (cells.ml-1) 

of the respective day ‹N› to obtain toxin cell quota (QTox). 

    (2.1) QN =
[NO3

−]d0−[NO3
−]d28

〈Nd28〉
 

    (2.2) QP =
[PO4

3−]
d0

−[PO4
3−]

d28

〈Nd28〉
 

    (2.3) RC =
QN∗Mw(PO4

3−)

QP∗Mw(NO3
−)

 

    (2.4) QTox =
[TOX]d28

〈Nd28〉
 

Multiple regression with backward elimination was used to examine the effects of 

temperature (T) and nutrient stoichiometry (N:P) on the growth rates of each species. 

The initial model included a quadratic nutrient ratio term and an interaction between 

ratios and temperature to allow non-linear behaviour (Eq. 2.5). Non-significant terms 

were eliminated one by one using a Bonferroni-adjusted stepwise approach to control 

the overall type I error (ref. Perrett et al., 2006). Common (CCC) and unique (UCC) 

commonality coefficients were used to determine the contribution of each predictor to 

the overall R², a proxy of effect size, using the R package “yhat” (Nimon et al., 2008). 

Similar regressions were used to investigate carrying capacities and toxin quota. 

   (2.5) µ = b0 + b1 ∗ T + b2 ∗ N: P + b3 ∗ T ∗ NP + b4 ∗ (N: P)2 + ɛ 

In addition to F-tests, Mann-Whitney U (MWU) and Kruskal-Wallis H (KW) tests 

were used to compare growth rates, carrying capacities and cell quota after visually 

comparing the distributions. The Bonferroni correction was again used against the 

type I bias of k number of tests.  
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3. Results 

3.1 Monocultures 

Growth was observed in all treatments, but the cultures at 20°C had a remarkably 

longer lag phase than those at 24°C (Fig. A1-4). For this reason, none of the 20°C 

cultures reached stationary growth by the end of the experiment. The slow-growing, 

benthic P. lima never reached the plateau phase either. The data from all of these 

cultures was fitted with exponential growth models (Fig. 2.1). The three other species 

(i.e. P. micans, P. reticulatum and S. trochoidea) reached stationary growth at 24°C 

and, hence, were fitted with logistic growth models that estimate carrying capacities. 

These cultures also consumed sufficient nutrients to calculate cell quota (Table 2.1). 

Temperature affected the growth of all dinoflagellates (Fig. 2.2; MWU p < 0.001). 

Though most grew faster at 24°C (Table 2.1), P. lima grew slower (MWU p < 0.001). 

P. lima was also the only species to produce quantifiable amounts of toxins. Both the 

production of OA and DTX-1 concentrations increased at 24°C (MWU p < 0.001), but 

were unaffected by the N:P ratio (KW p > 0.05). Nutrient stoichiometry did not really 

affect the growth of P. lima either (Table 2.2). While the regression analysis suggests 

curvature (quadratic term p = 0.010; α = 0.013), the small contribution of the N:P ratio 

(p = 0.016; α = 0.013) was dwarfed by the effect of temperature. While the variable 

density data of P. lima produced uncertainty (R² = 0.60), the role of temperature was 

confirmed by the other species’ regressions which were markedly better (R² > 0.9). 

N:P ratios did not affect the growth rate of P. micans and S. trochoidea (p > 0.05). 

Still, temperature and N:P ratio interactively affected S. trochoidea and P. reticulatum 

(p < 0.01). Uniquely, the growth rate of P. reticulatum was influenced by the N:P ratio 

(p < 0.01), but no toxins were detected. The carrying capacities of P. micans and  

S. trochoidea were affected by the N:P ratio (F-test p < 0.001), which was not seen in 

P. reticulatum (F-test p = 0.03; α = 0.013). Similarly, the N:P ratio altered the N (+) 

and P (-) cell quota (QN, QP), as well as the relative consumption (RC), of P. micans 

and S. trochoidea, which was not seen in P. reticulatum (F-tests). P. micans and  

S. trochoidea also had similar carrying capacities (K; MWU p > 0.05), which were 

mostly lower than those of P. reticulatum (K; MWU p < 0.001). P. reticulatum needed 

significantly less P than its competitors (QP; MWU p < 0.001), but its N demand was 

similar to the QN of P. micans (QN; MWU p > 0.05). S. trochoidea had the highest QN 

(MWU p < 0.001), but its P demand was similar to that of P. micans (MWU p > 0.05). 

By virtue of its average nutrient quota, P. micans had the lowest relative consumption 

of nutrients (RC; MWU p < 0.01). P. reticulatum and S. trochoidea had similar relative 

consumptions (RC; MWU p > 0.05).  
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Table 2.1: The average growth rate, carrying capacity (K), and cell quota (QN, QP, QTOX) of 

P. lima (P.l.), P. micans (P.m.), P. reticulatum (P.r.) and S. trochoidea (S.t.) across all ratios. 

Parameter Species Temp Mean±SE (min-max) 

Growth rate (µ) P.l. 20°C 0.09±0.002 (0.07-0.11) day-1 

 P.l. 24°C 0.05±0.004 (0.02-0.11) day-1 

 P.m. 20°C 0.13±0.004 (0.09-0.19) day-1 

 P.m. 24°C 0.49±0.025 (0.31-0.61) day-1 

 P.r. 20°C 0.09±0.003 (0.07-0.13) day-1 

 P.r. 24°C 0.30±0.008 (0.23-0.37) day-1 

 S.t. 20°C 0.16±0.005 (0.10-0.22) day-1 

 S.t. 24°C 0.42±0.011 (0.30-0.55) day-1 

Carrying capacity (K) P.m. 24°C 0.53±0.03 (0.24-0.93) 109 µm3.ml-1 

 P.r. 24°C 0.80±0.06 (0.39-1.58) 109 µm3.ml-1 

 S.t. 24°C 0.44±0.02 (0.29-0.67) 109 µm3.ml-1 

Nitrogen cell quota (QN) P.m. 24°C 1.66±0.07 (0.85-2.53) 10-5 pg.µm-3 

 P.r. 24°C 1.63±0.08 (1.05-3.31) 10-5 pg.µm-3 

 S.t. 24°C 2.05±0.09 (1.37-3.27) 10-5 pg.µm-3 

Phosphorus cell quota (QP) P.m. 24°C 0.19±0.01 (0.10-0.36) 10-5 pg.µm-3 

 P.r. 24°C 0.13±0.01 (0.07-0.23) 10-5 pg.µm-3 

 S.t. 24°C 0.17±0.00 (0.12-0.22) 10-5 pg.µm-3 

Relative consumption (RC) P.m. 24°C 14.4±0.70 (7.55-18.5) N:P 

 P.r. 24°C 20.0±0.92 (12.1-29.7) N:P 

 S.t. 24°C 18.3±0.73 (13.1-24.9) N:P 

Toxin cell quota (QOA) P.l. 20°C 0.62±0.05 (0.22-1.33) pg.cell-1 

 P.l. 24°C 1.03±0.08 (0.46-1.80) pg.cell-1 

Toxin cell quota (QDTX-1) P.l. 20°C 0.71±0.06 (0.25-1.45) pg.cell-1 

 P.l. 24°C 1.24±0.09 (0.49-1.96) pg.cell-1 

All dinoflagellates were grown under similar conditions: an initial density of 100 cells.ml-1 and 
10 different N:P ratios between 8 and 24. Growth rate (µ) and carrying capacity (K) were 
estimated from exponential (20°C) or logistic equations (24°C). Cell quota and the relative 
consumption of nutrients (RC) were calculated as described in section 2.4. 
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Table 2.2: Regression coefficients of the backward selected multiple regression models, 

with unique (UCC), common (CCC) and total commonality coefficients (TCC) plus propability. 

Species  Coef. (pred.) Est.±SE UCC CCC TCC %R² p 
P. lima b0 (intercept) 0.32±0.03 / / / / <0.001 

R² = 0.5967 b1 (T) -94.4±10.4.10-4 0.5607 0.0000 0.5607 96.16 <0.001 

 b2 (N:P) -74.6±24.2.10-4 0.0418 -0.0342 0.0076 1.30 0.016 

 b3 (T*N:P) / / / / / >0.050 

 b4 (N:P²) 2.37±0.89.10-4 0.0490 -0.0342 0.0148 2.54 0.010 

P. micans b0 (intercept) -1.69±0.09 / / / / <0.001 

R² = 0.9039 b1 (T) 0.91±0.04.10-1 0.9055 0 0.9055 100 <0.001 

 b2 (N:P) / / / / / >0.050 

P. reticulatum b0 (intercept) -0.51±0.15 / / / / 0.001 

R² = 0.9258 b1 (T) 0.32±0.07.10-1 0.0287 0.8885 0.9172 91.62 <0.001 

 b2 (N:P) -0.29±0.09.10-1 0.0122 -0.0122 0.0000 0.00 0.003 

 b3 (T*N:P) 0.01±0.00.10-1 0.0124 0.0715 0.0839 8.38 0.003 

S. trochoidea b0 (intercept) -1.63±0.21 / / / / <0.001 

R² = 0.9119 b1 (T) 0.90±0.09.10-1 0.1444 0.7468 0.8912 96.10 <0.001 

 b2 (N:P) 0.33±0.13.10-1 0.0104 0.0047 0.0151 1.63 0.017 

 b3 (T*N:P) -0.01±0.00.10-1 0.0127 0.0083 0.0210 2.26 0.008 

 

3.2 Competition 

At 20°C, all dinoflagellates grew slower than their monocultures (MWU p < 0.001), 

and displayed a similarly long lag phase (Fig. 2.1; Fig A5-8). By the end of the study, 

all four species were still growing exponentially at similar concentrations. By contrast, 

the 24°C cultures were quickly dominated by P. micans in each of the 10 N:P ratios. 

In these cultures, the initial growth of S. trochoidea and P. reticulatum was slower 

than the monocultures (MWU p < 0.001), and came to a complete stop after 14 days. 

By contrast, P. lima grew faster than its 24°C monocultures (MWU p < 0.001) and 

grew for the entirety of the experiment. The toxin production, however, decreased 

from 0.58±0.31 pg OA.cell-1 and 0.66±0.36 pg DTX-1.cell-1 at day 14 – which is 

similar to the 20°C monocultures and 20°C mixed batch cultures (MWU p < 0.001) - 

to 0.19±0.12 pg OA.cell-1 and 0.20±0.14 pg DTX-1.cell-1 (MWU p < 0.01) at day 28. 

Once again, neither the toxin production of P. lima, nor the growth rates of the four 

dinoflagellates were affected by the N:P ratio (F-test p > 0.05) in the mixed cultures. 

The carrying capacities of P. micans again increased with the N:P ratio (KW p <0.01). 

The presence of competitors had no influence on the carrying capacity of P. micans 

(MWU p > 0.05). The nutrient indices, QN, QP and RC could, hence, not be discerned 

from those of the 24°C monocultures (F-tests). Consequently, these uptake indices 

are influenced by the N:P ratio as well (F-test p < 0.001). Overall, P. micans grew at 

about the same rate as it did in monoculture (MWU p > 0.05). 
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Figure 2.1: Culture growth at the Redfield ratio. Note the prolonged lag phase at 20°C. 

Cultures were fitted with either exponential or logistic growth models. Full lines represent the 

mean model prediction, dashed lines the 95% confidence interval. 
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Figure 2.2: The growth rates (µ), carrying capacities (K) and cell quota of cultures of each 

dinoflagellate across 10 N:P ratios. Cell quota of okadaic acid (OA) and dinophysistoxin-1 

(DTX-1) are expressed as pg.cell-1. Nitrogen (QN) and phosphorus cell quota (QP) are 

expressed as pg.µm-3. 
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4. Discussion 

Eutrophication has upset the biogeochemical balance of the marine environment. 

The perpetual changes in absolute and relative concentrations of macronutrients, 

such as phosphorus and nitrogen, have both been linked to the occurrence of HABs 

around the world (Glibert et al., 2014; Heisler et al., 2008). Yet, there is no evidence, 

nor an ecological theory, that suggests that changes in the relative availability of 

nutrients promotes HABs per se. According to Tilman’s resource ratio hypothesis, the 

interspecific competition for resources is only influenced by the ratio of nutrients 

when each competitor is strictly limited by a different resource (Tilman, 1977, 1980). 

In other words, competing phytoplankton species need to have sufficiently different 

resource requirements before nutrient stoichiometry can matter. The applicability of 

Tilman’s theory is obvious in the case of silicon, which is a key nutrient for diatoms 

but is not used by non-siliceous phytoplankton groups (Egge and Aksnes, 1992). 

Changing N:Si or P:Si ratios are, indeed, associated with shifts in the phytoplankton 

community (Roberts, 2003; Schöllhorn and Granéli, 1996; Sommer, 1994). Similarly, 

we have come to understand that the Redfield ratio is not an universal optimum for 

the growth of all phytoplankton (Klausmeier et al., 2004). As a result, large shifts in 

the N:P ratio can also be linked to the occurrence of blooms of cyanobacteria or 

prymnesiophytes such as Phaeocystis spp. (Paerl et al., 2014; Riegman et al., 1992). 

Yet, when looking at species with similar nutrient requirements like closely related 

dinoflagellate species, the N:P ratio is probably a dysfunctional and misleading metric 

(Davidson et al., 2012; Flynn, 2010). 

Here, we grew four dinoflagellates with diverse traits and evolutionary adaptations 

(e.g. benthic vs. pelagic, toxic vs. non-toxic, small vs. large cells) under various 

temperature and nutrient stoichiometry scenarios to investigate the role of N:P ratios 

in HAB development. While we based our range of N:P ratios on the on-going shift in 

the mean ratio of the BPNS (ref. Brion et al. 2004), we also need to acknowledge that 

extremer cases of N-limitation and P-limitation (e.g. 1:1 to 375:1) are known to occur 

(Burson et al., 2016; Conley et al., 2009; Elser et al., 2007). Overall, the N:P ratio 

had little effect on the competitive traits of our dinoflagellates. Potential effects of the 

external nutrient stoichiometry on growth rate either disappeared in mixed cultures, 

or failed to replicate at another temperature. The OA and DTX-1 production of P. lima 

was not susceptible to the changes in the nutrient ratio either. Observed effects on 

carrying capacities were related to the increased absolute availability of nitrate rather 

than the N:P ratios. As a result, the nutrient stoichiometry was not found to affect the 

competitive outcome of our mixed batch cultures. 
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4.1 Nutrient stoichiometry 

Unbalanced nutrient ratios affect the toxin production and the nutritional quality of 

algae, changing the likelihood of HAB development through effects on the top-down 

control of phytoplankton communities (Glibert et al., 2012; Hauss et al., 2012; 

Malzahn et al., 2010; Van de Waal et al., 2014). Moreover, it has been shown that 

HABs can sustaini themselves through mixotrophic and allelopathic interactions at 

non-Redfieldian ratios (Glibert et al., 2012; Heisler et al., 2008). There is, however, 

sizable doubt that the N:P ratio plays a key role in the bottom-up control of red tides 

(Davidson et al., 2012; Flynn, 2010). Experimental studies often find no relation 

between the growth of dinoflagellates and the relative availability of external nutrients 

(Chapter 3; Johansson and Granéli, 1999; John and Flynn, 2000; Li et al., 2012; 

Rhee, 1978; Varkitzi et al., 2010; this study). Cellular growth consumes intracellular 

reserves of nitrogen and phosphorus (Droop, 1974), that are taken up independently 

(Cembella et al., 1984; Dagenais-Bellefeuille and Morse, 2013). When the external 

nutrient supply is stoichiometrically unbalanced, cells alter their uptake efficiencies of 

each nutrient individually to maintain growth (Flynn, 2002; Klausmeier et al., 2007). 

Small changes in the N:P ratio are, hence, unlikely to affect interspecific competition 

(Flynn, 2010; Reynolds, 1999). 

Intracellular nutrient ratios cannot be used to predict competitive advantages either 

(Terry et al., 1985). As a biological bet-hedging strategy against temporal variations 

in the supply of resources, as well as to deny competing species access to nutrients, 

steady state populations usually assimilate excess amounts of non-limiting nutrients 

(de Mazancourt and Schwartz, 2012; Droop, 1974). Due to this luxury consumption, 

intracellular N:P ratios tend to mimic the external nutrient ratio at low growth rates, 

but converge on species-specific values once the nutrient reserves are depleted at 

high growth rates (Goldman et al., 1979; Klausmeier et al., 2004; Rhee, 1978). These 

intrinsic values are the basis of the homeostatic nature of the oceans’ N:P ratio. 

Under nutrient-replete conditions, the average intracellular N:P ratio of phytoplankton 

strives towards Redfield’s ratio (Klausmeier et al., 2008; Redfield, 1958). Interspecific 

variation of these intracellular ratios, as described by Klausmeier et al. (2004), can be 

linked to life-history traits. Recently, it was shown that these intracellular N:P ratios 

are derived from an innate balance between N-rich proteins and P-rich ribosmal RNA 

(Loladze and Elser, 2011). Crucially, this new insight reveals that N-limitation inhibits 

protein synthesis and, hence, may benefit ribosome rich (i.e. fast-growing) species, 

while P-limitation restricts RNA transcription which is better endured by long-lived, 

biomass-conserving species such as dinoflagellates. 
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In this study, we calculated the relative consumption of nutrients as a measure of 

the internal nutrient ratios. According to these calculated values, P. reticulatum was 

predominantly P-limited (RC > 16:1), which is supported by the absence of biomass 

responses to additional nitrate and the literature (Gallardo Rodríguez et al., 2009).  

P. micans, by contrast, was the only species with a relative consumption below 16:1 

(i.e. N-limited). Like Zhengbin et al. (2006) and Zheng-fang et al. (1995), we found 

that the stepwise addition of more nitrate (i.e. our N:P ratios) consistently increases 

the carrying capacity of P. micans. S. trochoidea, on the other hand, also increased 

its production at higher N:P ratios, despite appearing to be P-limited (i.e. RC > 16:1). 

A post-hoc analysis, in which we repeatedly used regression analyses after excluding 

the lowest N:P ratios in a stepwise manner, revealed that nitrate addition above 12:1 

no longer provoked a response in additional biomass. Because of this, we believe 

that S. trochoidea switched between N-limitation and P-limitation or light limitation 

throughout our nutrient series. In literature, this species is also believed to be mostly 

N-limited (Cooper et al., 2016; Hoins et al., 2016; Xiao-ming et al., 1999). The high 

nitrogen cell quota of S. trochoidea, that led to the RC values found here, could have 

resulted from intracellular storage of excess nutrients, but little is known about luxury 

consumption in this species.  

Luxury consumption is a major confounding factor when looking at the RC and the 

nutrient quota of algae. The uptake of excess nutrients by steady-state populations is 

in itself dependent on the external N:P ratio (Elrifi and Turpin, 1985), while the quota 

of non-steady-state populations may vary with the growth rate (Persson et al., 2010). 

As the 24°C cultures experienced both states, conclusions drawn from the RC or the 

nutrient quota should be interpreted with care. 

In the experiments presented here, we manipulated the N:P ratio of the standard 

L1 growth medium for dinoflagellates by decreasing the amount of nitrate which was 

added during the preparation steps. The reason behind this methodology is two-fold. 

The normal N:P ratio of L1 medium is 24. To obtain N:P ratios below 24 by changes 

in the phosphate concentration, we would need to add above standard levels of PO43- 

to the media, which could lead to phosphate precipitation in some of the treatments. 

By decreasing the nitrate concentrations instead, we can avoid this potential problem 

and mimic the current decrease in nitrogen concentrations in the natural environment 

(Fig. 1.7, p. 21). It should also be added that the alteration of nitrate concentrations is 

a common practice in literature (e.g. Zhengbin et al., 2006; Zheng-fang et al. 1995). 

Regardless of the literature, though, the results of this study suggest that the chosen 

approach would not matter for the individual performance of the algae. 

  



 

Nutrient stoichiometry 

 
 41 

 

4.2 Temperature 

As temperature affects most key physiological processes of phytoplankton cells 

(e.g. motility, germination, photosynthesis and nutrient uptake), higher temperatures 

are usually associated with faster growth (Eppley, 1972). Even though we expected 

to see faster growth at higher temperatures, the difference between both temperature 

treatments seems to be out of proportion. While the 24°C growth rates of P. micans, 

P. reticulatum and S. trochoidea were similar to those found in literature, the similarity 

disappeared at 20°C (ref. Lee et al., 2005; Paz et al., 2006; Peperzak, 2003). Overall, 

the growth rates at 20°C were too low. In addition, we observed that all 20°C cultures 

experienced a rather lengthy lag phase, indicative of some form of shared stress. 

This experimental artefact was probably caused by unintentionally handling the algae 

at elevated temperatures while starting the experiment. A a posteriori investigation 

revealed that the prolonged use of the laminar flow cabinet – as was needed to 

simultaneously start 300 cultures – increases the temperature by several degrees. 

For this reason, we believe that 24°C cultures may have had the chance to gradually 

adapt to their new temperature, while the 20°C cultures were abruptly brought back 

down to their initial temperature at the start, effectively heat-shocking the cells. Steps 

were taken to avoid this problem in follow-up experiments (e.g. Chapter 3). 

The light conditions used during the experiment could have enhanced the stress 

induced by the heat shock. Here, a restricted light intensity of 20±5 µmol m-2 s-1 was 

chosen to better mimic the light-limited conditions of the turbid waters of the BPNS. 

Between April and October, light penetrating the first 20 meters of the North Sea has 

an mean intensity of 75 µmol m-2 s-1 (Gröger et al., 2013). Beyond this euphotic zone, 

there is virtually no light (<1 µmol m-2 s-1 on average). As the water column of the 

North Sea is often fully mixed, the phytoplankton cells constantly move between the 

euphotic and aphotic zones. Without sufficiently strong compensatory adaptations to 

float or swim, and assuming a total water column depth of 30 to 40m, this means that 

North Sea phytoplankton is exposed to a mean light intensity of 37-50 µmol m-2 s-1. 

These values are, however, derived for the entire North Sea. Because of suspended 

particles in the water column and the strong presence of so-called “yellow substance” 

(i.e. colored dissolved organic matter) the Southern Bight of the North Sea is known 

to have a very high light attenuation (Neukermans et al., 2012; Warnock et al., 2012). 

For this reason, we reduced the light intensity even further. Note, however, that some 

HABs develop in thin subsurface layers in the euphotic zone during certain periods of 

low turbulence, where they will receive a higher intensity of light. 
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4.3 Growth and toxin production of P. lima 

Varkitzi et al. (2010) observed that P. lima produces OA at a fairly constant rate. 

Toxin quota are, hence, affected by the growth rate, as the intracellular toxins are 

“diluted” by divisions. This mechanism can clearly be seen in the results of this study. 

As the growth rate of P. lima decreased, e.g. the 20°C vs. 24°C monocultures, the 

toxin concentrations increased. The cellular concentrations of OA and DTX-1 were 

consistent with our work with this strain (chapter 5) as well as the available literature 

(Bravo et al., 2001; Koike et al., 1998; Nascimento et al., 2005; Vanucci et al., 2010). 

Remarkably, the growth-inhibition seen in 24°C monocultures was not observed in 

mixed cultures. In all likelihood, P. lima was able to benefit from the organic nutrients 

delivered by decaying pelagic competitors. The resulting changes in net growth may 

explain the difference in toxin content between day 14 and day 28. 

Several studies have found relations between nutrient ratios and toxin production 

(Béchemin et al., 1999; John and Flynn, 2000; Lim et al., 2010; Murata et al., 2006). 

These interactions are, for instance, well described in Alexandrium spp. that produce 

N-rich toxins such as saxitoxin and gonyautoxins. More recently, Varkitzi et al. (2010) 

proposed a similar link between the N:P ratio and the production of OA by P. lima. 

Here, we found no effect of nutrient stoichiometry on the production of toxins by this 

species. Based on our results, the proposed correlation between toxin content and 

the N:P ratio seems improbable. Contrary to STX, OA and DTX-1 molecules do not 

contain nitrogen or phosphorus atoms. We do, however, know that nutrient stress 

may increase the accumulation of toxins within this species (Vanucci et al., 2010). 

More often than not, though, authors working on the production and release of toxins 

under nutrient stress (or other environmental stress for that matter) fail to recognise 

and report the reduced growth rate of the producer as the key determining factor of 

the observed trends in toxicity (Davidson et al., 2014). 

 

4.4 Competition 

As growth rates were unaffected by nutrient stoichiometry, we found no variation in 

the outcome of the interspecific competition either. P. micans dominated all mixed 

batch cultures at 24°C. While this species produces allelochemicals (Ji et al., 2011), 

this was most likely achieved through sheer speed (Chapter 3). P. micans consumed 

nutrients at such a tremendous rate, that its performance was indistinguishable from 

its growth in monoculture. Its pelagic competitors S. trochoidea and P. reticulatum 

could, by contrast, only divide three to four times before running out of reserves. At 

that point (day 14), virtually all of the nutrients were already gone from the medium.  
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P. micans is a common, highly diversified dinoflagellate species (Dodge, 1975). 

Despite its remarkable competitiveness and ubiquitous occurrence across the globe, 

only a handful of P. micans blooms have ever been recorded. In part, these may be 

underreported as this species is often considered to be harmless or at least non-toxic 

(Glibert et al., 2012). High density blooms are, however, known to cause hypoxia with 

noticeable results (Pybus, 1990). It would be interesting to explore the processes that 

select against P. micans during the development of a toxic HAB in the same region. 

Top-down control needs to be the primary suspect, as some laboratory studies have 

shown that toxic dinoflagellates may enhance the grazing of copepods on P. micans 

(Barreiro et al., 2006; Guisande et al., 2002; Huntley et al., 1987). Alternatively, 

mixotrophy and the presence of other nitrogen sources (e.g. NH4+ and urea) may 

provide competing species with additional means to avoid competitive exclusion 

(Burkholder et al., 2008; Glibert et al., 2008; Hansen, 2011; Kudela et al., 2008a; 

Lomas and Glibert, 1999, 2000). 

 

5. Conclusions 

Harmful algal blooms are known to result from complex interactions between both 

bottom-up and top-down processes, but the importance of the external resource ratio 

hypothesis (i.e. bottom-up) might be exaggerated. Here, we show that the N:P ratio 

has no significant role in the competition between harmful and benign dinoflagellates. 

The observed nutrient imbalance of the BPNS will, therefore, not directly increase the 

risk of toxic HAB development. Like Flynn (2010) and Davidson (2012), we urge HAB 

ecologists to reconsider the use of external resource ratios as a reliable measure of 

eutrophication. While nutrient stoichiometry certainly has an important structuring role 

in the environment, it only functions when taxa are limited by different resources. 

Direct effects of resource ratios on taxa with closely resembling nutrient requirements 

are, hence, unlikely. However, to attain a holistic understanding of the importance of 

the N:P ratio for HAB development, much may still be learned about the indirect 

effects on trophic dynamics. 
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Abstract 

As global change takes hold of the world’s oceans, harmful algal blooms (HABs) 

are expected to change in frequency, scale and distribution. Anthropogenic changes 

in nutrient availability and water temperature are some of the main drivers of HABs. 

Yet, to date, it remains unclear how certain HAB species are able to outcompete 

similar non-HAB species during the development of blooms. Harmful dinoflagellates 

are thought to benefit from their ability to suppress or kill their competitors through 

allelopathy, but the function of allelochemicals during bloom initiation is still debated. 

Here, we set out to understand which factors and interactions determine the outcome 

of competition between three dinoflagellates under controlled laboratory conditions. 

To this end, co-occurring dinoflagellates of the North Sea (i.e. Alexandrium minutum, 

Prorocentrum micans and Protoceratium reticulatum) were cultured together in two 

large-scale multifactorial growth experiments. The outcome of competition and, thus, 

bloom development was studied under various scenarios: the first experiment used 

different macronutrient concentrations (0.1 to 100% of L1 medium) and N:P ratios  

(8, 16 and 24), while the second experiment varied the temperature (20°C vs. 24°C), 

N:P ratio (8 vs. 14) and initial species densities (0, 10 or 100 cells.ml-1). The resulting 

community dynamics of both experiments could then be accurately predicted by the 

nutrient uptake rates, conversion efficiencies and the maintenance requirements of 

each species through MacArthur’s resource competition model. As such, we found 

that the outcome of interspecific competition between dinoflagellates – in laboratory 

cultures - is mostly nutrient driven, leaving little room for allelopathy to play a vital role 

at pre-bloom concentrations. 
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1. Introduction 

Ever since a series of harmful algal blooms (HABs) in the 1960s and 1970s, 

researchers have tried to understand and predict the spatiotemporal dynamics of 

dinoflagellate blooms. At first, red tides were thought to be inherently unpredictable 

due to the dynamic nature of marine ecosystems and the vast number of functional 

properties (nutrient uptake rates, internal storage, pigment composition etc.) and 

adaptive strategies (cyst production, shape, motility, thin layer formation, etc.) of 

harmful dinoflagellates (Sweeney, 1975, 1978). Today, phytoplankton communities 

are known to be structured by nutrient competition, direct species interactions 

(grazing, allelopathy), abiotic variables (light, temperature, turbulence etc.) and 

stochasticity (Armstrong, 1979; Eppley, 1972; Huisman and Weissing, 1994; Legrand 

et al., 2003; Margalef, 1978; Richerson et al., 1970; Smayda, 2008; Tilman, 1977). 

Yet, while it is clear that these dynamic main factors need to come together to create 

“windows of opportunity” for HABs, little is still known about the relative importance of 

nutrient competition, allelopathy and stochasticity during the initiation of blooms 

(Granéli and Turner, 2006; Stoecker et al., 2008b; Wells et al., 2015). 

Ramon Margalef had observed that nutrient availability and the decay of turbulent 

energy are key to determine the succession of phytoplankton groups and, hence, the 

likelihood of bloom development (Margalef, 1978). In his “mandala”, red tides can 

develop when the nutrient availability is high and the turbulent energy is restricted. 

While this window of opportunity was recently improved through the addition of 

functional properties, demographic strategies and the inclusion of novel HAB species 

(e.g. Allen and Polimene, 2011; Balch, 2004; Glibert, 2016), neither the mandala nor 

the recent renditions overcame the non-deterministic nature of this conceptual model. 

Blooms often fail to develop despite seemingly ideal conditions. To date, we are still 

unable to predict how changes in the relative and absolute availability of nutrients will 

affect the risk of HABs in any given phytoplankton community. While both episodic 

and chronic eutrophication are known to promote HAB development, there is little 

evidence that nutrients select for HABs, as the nutrient preferences and uptake 

kinetics of HAB species are no different from those of related non-HAB species 

(Anderson et al., 2002; Heisler et al., 2008; Wells et al., 2015). Dinoflagellates are 

poor competitors for nutrients and, hence, at constant risk of competitive exclusion 

(Smayda, 1997). In part, this risk can be reduced by toxicity-mediated allelopathy, 

grazer deterrence and mixotrophy (Chakraborty et al., 2015; Crane and Grover, 

2010; Gross, 2003; Roy and Chattopadhyay, 2007). 
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Most dinoflagellates produce allelochemicals that cause nutrient leakage, inhibit 

photosynthesis, arrest cell-cycle progression, or affect other enzymatic activities of 

other algae (Granéli and Hansen, 2006; Legrand et al., 2003; Reigosa et al., 1999). 

The ability to suppress competitors gives a significant ecological advantage, and may 

be pivotal to maintain dinoflagellate blooms (Granéli et al., 2008a; Smayda, 1997). 

Most allelopathic effects are found at densities that typify well-developed HABs 

(Jonsson et al., 2009). Yet, to date, little is known about the importance of allelopathy 

during the initial stages of bloom development. While phytoplankton species are in a 

constant state of chaotic non-equilibrium, oscillating around an average density in a 

semi-random fashion due to weather-driven fluctuations and species interactions, the 

communities have a high degree of excitability. When some perturbation thresholds 

are exceeded, phytoplankton communities develop huge pulsed biomass responses 

(Truscott and Brindley, 1994). During these events, species dominance may depend 

upon the initial concentrations of each phytoplankter and, hence, predetermined by 

the presence of a holo- or meroplanktonic HAB inoculum (Granéli and Turner, 2006). 

Still, as blooms often fail to develop despite the presence of an inoculum, much could 

still be learned about this process (Smayda and Trainer, 2010). 

Few mixed batch culture studies have been able to separate nutrient competition 

(i.e. indirect interactions) from direct interactions such as allelopathy and mixotrophy. 

Here, we aim to improve our understanding of the competition between toxic and 

non-toxic dinoflagellates. Specifically, this study investigates whether initial densities 

may predetermine the outcome of interspecific competition between dinoflagellates 

under laboratory conditions (1), and whether conditions such as temperature, nutrient 

availability and nutrient stoichiometry may change this outcome (2). To this end, 

three North Sea dinoflagellates: the non-toxic Prorocentrum micans Ehrenberg 1834 

and the toxic Alexandrium minutum Halim 1960 and Protoceratium reticulatum 

(Claparède & Lachmann) Bütschli 1885 were grown in two multifactorial batch culture 

experiments: one which explores the effect of the N:P ratio (8, 16 and 24) and total 

nutrient availability (0.1 to 100% L1 medium), and one which uses two nutrient 

regimes (N:P ratio 8 or 14), two climate scenarios (20 and 24°C) and three initial 

starting densities (0, 10 and 100 cells.ml-1). MacArthur’s (1970) consumer resource 

model was then used to accurately predict the outcome of each competition – under 

every set of conditions - between these three species. 
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2. Material and Methods 

2.1 Algal cultures 

Prorocentrum micans (CCAP1136/20) was obtained from the Culture Collection of 

Algae and Protozoa (Oban, Scotland). Alexandrium minutum (SCCAP K-0993) and 

Protoceratium reticulatum (SCCAP K-1478) were bought from the Scandinavian 

Culture Collection of Algae & Protozoa (Copenhagen, Denmark). Each dinoflagellate 

was grown in L1 medium (32 PSU, pH 8), prepared from autoclaved Instant Oceantm 

artificial seawater (Belcopet, Belgium) as advised by Guillard and Hargraves (1993). 

Around 80% of the culture medium was replaced every 2 weeks. Stock cultures were 

grown at 20°C, with a 12 hour light-dark cycle (20-40 µmol m-2 s-1). Experiments were 

started from cultures in the exponential growth phase. Biovolumes were calculated 

using the methods of Olenina (2006). 

 

2.2 Experiment 1: Nutrient availability & stoichiometry 

To study the effect of nutrient stoichiometry and the availability of macronutrients 

on the interspecific competition between A. minutum, P. reticulatum and P. micans, 

L1 medium was prepared with nitrate and phosphate concentrations of four different 

orders of magnitude. These N and P concentrations matched with 0.1, 1, 10 or 100% 

of regular L1 medium and are hereafter called concentration factors (CF). In addition, 

the nitrate concentrations were modified to obtain three N:P ratios (8, 16 or 24) within 

each CF, resulting in twelve different media in total. Vitamins and trace elements 

were added at the regular dose of 100% L1 medium. In each of the twelve media, 

monocultures and a mixed batch culture of all three dinoflagellates were started by 

adding 100 cells.ml-1 (each) to 75 ml of medium placed in 100 ml Erlenmeyer flasks. 

Every treatment was replicated three times. Cultures were placed at 20 ± 1°C with a 

12-hour photoperiod of 33±6 µmol m-2 s-1 for 54 days. Twice a week, cell counts were 

made on 1 ml of each flask, fixed with 100 µl of 12% formaldehyde and stored at 4°C. 

Densities were determined with a Sedgewick-Rafter counting chamber and a Nikon 

TMS-F light microscope (40x). In addition, 2 ml samples of each replicate were taken, 

filtered, pooled and stored at 4°C in Eppendorf for subsequent nutrient analysis. 

Nitrate and phosphorus concentrations were determined with standard colorimetric 

methods using a QuAAtro Autoanalyzer (Hansen and Koroleff, 1999). 
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2.3 Experiment 2: Initial densities & temperature 

To investigate whether initial densities and temperature predetermine the outcome 

of competition between dinoflagellates, and provide support to the first experiment, 

another batch of L1 media was prepared. Now, nitrate levels were modified to obtain 

N:P ratios of 8 or 14 (the annual mean of the North Sea; Brion et al., 2004). Other L1 

constituents (phosphate, vitamins, trace elements) were added at the regular dose. 

Each of the three dinoflagellates (A. minutum, P. reticulatum and P. micans) were 

added at either 0, 10 or 100 cells.ml-1 to 50 ml cultures, which were placed in climate 

rooms at either 20 or 24°C. Three replicates were made of each of the 108 resulting 

treatments (27 initial community compositions, 2 nutrient regimes, 2 temperatures). 

Cultures were left to grow for 68 days with a 12h photoperiod of 20±10 µmol m-2 s-1. 

Cells were counted twice a week, as described in section 2.2. The initial nitrate and 

phosphorus concentrations (day 0) were verified by standard colorimetric methods 

using spectrophotometric test kits (Merck Millipore, Darmstadt, Germany) and an 

Aquamate spectrophotometer (Thermo Scientific, San Jose, USA). Additional nutrient 

analyses were performed near the middle (day 14) and end (day 28) of the growth by 

sampling and filtering 21 ml per treatment, split evenly across the three replicates. 

 

2.4 Data analyses and community modelling 

Growth rates (µ; d-1) and carrying capacities (K; µm3.ml-1) were obtained by fitting 

the cell count data (N(t)), converted to biovolume (µm3.ml-1), with exponential growth 

models (Eq. 3.1) or logistic growth models (Eq. 3.2) – based on whether the carrying 

capacity of the culture was reached - using the ‘nls package’ in R (Baty et al., 2015). 

 (3.1) N(t) = N0 ∙ (1 + µ)t  

 (3.2) N(t) =
N0∙K∙eµt

K+N0∙(eµt−1)
 

MacArthur's resource competition model for non-interacting resources was used to 

predict community dynamics in mixed cultures (MacArthur, 1970). In this model, n 

species interact by depleting common resources (Eq. 3.3-3.5). 

(3.3)
1

𝑁𝑖
 
𝑑𝑁𝑖

 𝑑𝑡
=  (𝐶𝑁,𝑖 · 𝑈𝑁,𝑖 · 𝑊𝑁,𝑖 + 𝐶𝑃,𝑖 · 𝑈𝑃,𝑖 · 𝑊𝑃,𝑖 − 𝑚𝑖) 

(3.4) 
dCN

dt
= −CN ∑ uN,i ∙ Ni

n

i=1

 

(3.5) 
dCP

dt
= −CP ∑ uP,i ∙ Ni

n

i=1
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Nitrogen (CN; mg.l-1) and phosphorus (CP; mg.l-1) concentrations are depleted by 

species i through nutrient uptake rates UN,i and UP,i (l.µm–3.d–1). Algal growth is 

achieved when the biomass production, performed at nutrient conversion efficiencies 

WN,i, and WP,i (µm3.mg-1), exceeds the maintenance requirement (m; d-1). Here, we 

assumed that growth was nitrogen limited (i.e. WP = 0) as the changes in phosphorus 

were much smaller than the depletion of nitrogen (Fig. B1-B6). The monoculture data 

of each species was used to estimate the remaining parameters. Due to the long lag 

phase of cultures at 20°C (Fig. B1 & B2), the first 10 days were removed during the 

data treatment of experiment 1. 

The mean average percentage error (MAPE) was used as an objective function for 

parameter estimation to ensure an equal fit of species densities when densities 

differed by several orders of magnitude. First, optimal parameters estimates were 

obtained using a simulated annealing algorithm. Next, credibility intervals were found 

using Markov chain Monte-Carlo simulations. To ensure fast parameter convergence, 

the parameter space was limited to a 50% deviation of the optimal parameter 

estimates. Convergence of the three parallel Markov chains was assessed with the 

Gelman-Rubin convergence criterion (Gelman and Rubin, 1992). Density predictions 

for monocultures and mixed cultures were obtained using 1000 Monte-Carlo 

simulation runs. Every run, parameters were randomly drawn from the posterior 

probability distributions. The global performance of the model was assessed by 

comparing the observed species densities to median predicted species densities. All 

calculations were done in R using the packages deSolve (Soetaert et al., 2010), 

abind (Plate and Heiberger, 2011), and GenSA (Xiang et al., 2013). 

 

3. Results 

3.1 Monoculture growth 

The magnitude of macronutrient concentrations, obtained by adding 1:10 fractions 

of the regular L1 nitrate and phosphate levels and called concentration factors (CF), 

affected the growth rates and carrying capacities of all three species. Growth rates 

were highest at CF10 which, according to the parameters of our MacArthur model, 

coincided with an increase in nutrient consumption rates, rather than changes in 

resource efficiency or maintenance requirements (Table 3.1; Table B1). As a result, 

the carrying capacities at CF10 were roughly a tenfold smaller than those at CF100. 

No exponential growth was, however, observed below CF10. Nutrient stoichiometry 

(i.e. N:P ratio) had little effect on the growth rate of each species (Table B1). Carrying 

capacities, on the other hand, increased with N:P ratios (Fig. B1 & B3). 
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Table 3.1: Performance of A. minutum, P. reticulatum and P. micans at various N:P ratios 

and temperatures across two large-scale, multifactorial batch culture experiments. 

*Dinoflagellates were grown in two experiments under similar conditions: 20°C, initial density 
of 100 cells.ml-1 and a N:P ratio of 16 (exp.1) vs. 14 (exp.2). In addition, a ten-fold decrease 
in absolute nutrient concentrations (CF10 vs. CF100; exp.1) and an increase in temperature 
(20°C vs 25°C; exp.2) were included. Growth rate (µ±SD) and carrying capacity (K±SD) were 
estimated from exponential (20°C; exp.1) or logistic equations. The uptake of nitrogen UN 
and phosphorus UP, nitrogen conversion efficiency WN and maintenance requirement m were 
based on MacArthur’s consumer-resource equations (ref. 2.4). 

  

 

µ 

(d-1) 

K 

(108
 µm3.ml–1) 

UN  

(10-7 l.µm–3.d-1) 

UP   

(10-7 l.µm–3.d-1) 

WN  

(108 µm3.mg–1) 

m 

(10-4 d-1) 

A. minutum       

Exp.1: CF10 0.32±0.01 1.36±0.02 23.5 19.8 1.74 0.06 

Exp.1: CF100 0.24±0.01 15.1±0.85 2.25 0.09 1.50 0.05 

Exp.2: 20°C 0.12±0.01 3.93±0.50 2.56 7.00 0.76 87.9 

Exp.2: 24°C 0.47±0.02 5.72±0.28 15.0 5.04 0.72 0.01 

P. reticulatum       

Exp.1: CF10 0.20±0.01 0.74±0.03 27.1 19.9 0.90 0.05 

Exp.1: CF100 0.16±0.01 9.43±0.90 2.24 0.13 1.02 0.05 

Exp.2: 20°C 0.07±0.01 0.49±0.09 1.86 4.60 0.93 505 

Exp.2: 24°C 0.25±0.01 6.34±0.46 3.76 8.14 1.10 9.00 

P. micans       

Exp.1: CF10 0.38±0.01 0.58±0.11 71.7 15.3 0.70 0.04 

Exp.1: CF100 0.28±0.01 4.23±0.11 7.50 0.12 0.53 0.05 

Exp.2: 20°C 0.12±0.01 3.40±0.25 4.40 21.7 0.55 392 

Exp.2: 24°C 0.59±0.07 2.98±0.22 17.3 37.3 0.43 3.13 
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As different N:P ratios were obtained by adjusting the nitrate concentration, the 

link between N:P ratios and carrying capacities supports the underlying assumption 

that our cultures are predominantly nitrogen-limited (see section 2.4). Growth rates 

and nitrogen consumption rates increased with temperature (Table 3.1; Table B2). 

20°C growth rates were slightly lower in the first experiment, which could be related 

to the light conditions (see methods). During the second experiment, no growth was 

observed in the P. reticulatum cultures with an initial density of 10 cells.ml-1 (Fig B3). 

The parameter distributions of the monocultures with 100 cells.ml-1 were therefore 

used to predict the community dynamics of this species. 

 

3.2 Community dynamics 

MacArthur’s resource competition model, tailored to nitrogen, explained 89% of 

the variation in density data of the first experiment, and 72% (20°C) and 90% (24°C) 

of the variation in the second experiment (Fig. 3.2). P. micans had the highest growth 

rate and nitrogen consumption rate under all abiotic conditions (Table 3.1; Table B2), 

and dominated 54 out of the 64 cultures to which it was added. A. minutum had the 

highest nutrient conversion efficiency and, hence, the highest carrying capacities of 

all three species (Table 3.1). A. minutum outcompeted P. micans when started at a 

numerical advantage (i.e. 100 vs. 10 cells.ml-1; Fig B4&5 1:2; Fig B6 1:1:2 & 1:2:2). 

P. reticulatum is the weakest competitor, but it is nonetheless able to produce higher 

densities when given higher initial start densities than its competitors. 

 

Figure 3.1: Example of the application of our MacArthur’s consumer-resource model. 

Parameterisation was optimized on monocultures of A. minutum (A), P. reticulatum (B) and 

P. micans (C) and used to predict multispecies competition (D). Full lines represent the mean 

prediction, dashed lines the 95% confidence interval. All species were added at 100 cells.ml-1 

under a N/P ratio of 14 and 24°C (experiment 2). Complete set of graphs in Figures B1-B6. 
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Figure 3.2: Evaluation of MacArthur’s consumer-resource model applied to the mixed 

batch cultures of the first (A) and second experiment (B) of this study. Each species is 

represented by a unique colour. In (B), triangles represent mixtures of two species while dots 

represent cultures with all three species. 

 

4. Discussion 

Interspecific competition between HAB and non-HAB species is understudied 

(Wells et al., 2015). Even though we identified several processes that may determine 

HAB development (e.g. grazer resistance, nutrient competition, allelopathy), we still 

need to understand the relative importance of these elements during all stages of a 

bloom cycle. While many studies have investigated the physiological responses of 

individual HAB species to environmental conditions, few have added environmental 

variability when looking at interactions between two or more species. Here, we show 

that temperature and nutrient availability affect communities through direct effects on 

the nutrient competition, which is the key determinant of bloom development in mixed 

cultures of dinoflagellates. We also show that small competitive differences can be 

overcome through changes in the the relative initial densities. 

 

4.1 Nutrient availability, nutrient stoichiometry & temperature 

Anthropogenic nitrogen and phosphorus inputs are linked to the global increase in 

frequency and severity of marine HABs (Anderson et al., 2012; Hallegraeff, 1993). 

Cultural eutrophication is found in nearly all long-term coastal monitoring records 

(Brush, 2008; Clarke et al., 2006; Cloern, 2001). The excess availability of nutrients 

affects the interspecific competition of phytoplankton, enabling the proliferation of one 

or more species (Anderson et al., 2002; Davidson et al., 2014; Granéli et al., 2008b; 

Heisler et al., 2008; Hodgkiss and Ho, 1997; Paerl et al., 2014). There is, however, 

doubt that eutrophication favours HABs per se, as the nutrient requirements of 

harmful algae are no different from those of non-HAB species (Wells et al., 2015).  
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Here, the availability of nitrate and phosphate – varied as a percentage of regular 

L1 medium concentrations (i.e. concentration factors or CFs) – had a clear effect on 

the performance of each species, changing the growth rates and carrying capacities 

through the nutrient uptake rates and nitrogen conversion efficiencies (Table 3.1), 

which was expected as N-limitation is known to upregulate nitrogen transporters 

(Sciandra, 1991; Zhuang et al., 2015). Regardless, CFs did not alter the competition 

between our dinoflagellates, as each dinoflagellate responded in a similar fashion. 

Likewise, the N:P ratio did not influence species dominance, as it had no influence on 

the growth rate of all species despite small changes in nitrogen uptake rate (UN) and 

nitrogen conversion efficiency (WN; Table B1). 

Temperature determines the growth rate as well as key physiological processes 

(e.g. motility, germination, photosynthesis, nutrient uptake) of algae (Eppley, 1972) 

and is, hence, a key determinant of HAB development. Here, higher temperatures 

were associated with higher growth rates and improved nitrogen consumption rates 

(Table 3.1, Table B2), though some parameter estimates were biologically impossible 

(e.g. Table B2 P. micans NP 14 20°C: WN 4.72 vs. 0.55.108 µm3.mg-1) due to the 

limited resolution of the nutrient data. Overall, though, temperature did not change 

the outcome of our communities, as all species had similar responses to this change. 

In situ, however, climate change is expected to broaden the windows of opportunity 

for HABs (Smayda and Smayda, 2015; Wells et al., 2015), as most algae live outside 

their optimal temperature niche (Karentz and Smayda, 1984, 1998). 

 

4.2 Stochasticity, allelopathy & community dynamics 

Apart from nutrient availability, temperature and other environmental conditions, 

phytoplankton communities are structured by species interactions and stochasticity 

(Armstrong, 1979; Eppley, 1972; Huisman and Weissing, 1994; Legrand et al., 2003; 

Margalef, 1978; Richerson et al., 1970; Smayda, 2008; Tilman, 1977). As HA often 

compete poorly for nutrients, toxin-mediated interactions such as grazer deterrence 

and allelopathy are often seen as the key to HAB development. Yet, while allelopathy 

is commonly believed to give a competitive advantage during bloom development 

(Cembella, 2003; Legrand et al., 2003), this may require inhibitory effects which are 

disproportional to the likelihood of cell-cell interactions and the concentrations of 

toxins at low densities (Jonsson et al., 2009). To date, however, there is a substantial 

lack of experimental evidence for exclude either hypothesis. 
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All of the dinoflagellates used here (A. minutum, P. micans and P. reticulatum) 

have been shown to produce allelochemicals which reduce the fitness of other algae 

(Arzul et al., 1999; Fistarol et al., 2004; Ji et al., 2011; Sala-Pérez et al., 2016). 

Despite of this, we managed to accurately predict the dynamics of each community 

using only the nutrient consumption rates, conversion efficiencies and maintenance 

requirements of monocultures (Fig 3.2). While the inclusion of allelopathic interaction 

terms may mathematically improve the model even further, there is little biological 

sense to do this exercise. During the initial stages of the mixed cultures, the growth 

of each species is near identical to their performance in monoculture for all nutrient 

(CF & N:P ratio) and temperature scenarios. While initial densities had little effect on 

the parameter estimates (Tables B1 & B2), they could change species dominance 

(e.g. mixtures of A. minutum and P. micans), which demonstrates the importance of a 

sufficient holo- or meroplanktonic inoculum to seed HABs (Granéli and Turner, 2006). 

Still, allelochemicals are common in HA (Granéli et al., 2008a; Legrand et al., 2003). 

Based on our results, the prevailing species is first decided by nutrient competition, 

which does allow slow species to outcompete faster species when given a head start, 

before densities are reached where allelopathic interactions start to play a vital role. 

Allelopathy may, however, be used to maintain established blooms and prevent the 

long-term competitive exclusion of HA within a given phytoplankton community 

(Chakraborty et al., 2015; Granéli et al., 2008a; Jonsson et al., 2009; Lewis, 1986; 

Roy, 2009; Roy and Chattopadhyay, 2007; Smayda, 1997; Solé et al., 2005). 

 

4.3 Remarks & recommendations 

Due to the static nature of controlled laboratory conditions and the lack of grazing 

(mixotrophy and zooplankton) in this experiment, it is clear that competitive outcome 

of our experiments do not necessarily represent the dynamics of similar assemblages 

in the wild. It is, for instance, known that P. micans is readily consumed by copepods 

(Gill and Harris, 1987; Guisande et al., 2002) which can increase their uptake rates 

after exposure to grazer deterrents released by both A. minutum and P. reticulatum 

(Barreiro et al., 2006; Guisande et al., 2002; Huntley et al., 1987). Mixotrophy is also 

a crucial mechanism to attain higher growth rates under nutrient limited conditions 

(Burkholder et al., 2008). Moreover, it is known that most HAB species prefer NH4+ 

and urea (Glibert et al., 2008; Kudela et al., 2008a; Lomas and Glibert, 1999, 2000; 

Zielinski et al., 2011). While nitrate is most common in marine ecosystems, and the 

uptake rates of NO3-, NH4+ and urea rarely differ by more than a factor 3 in laboratory 

cultures (Chang et al., 1995; Fan et al., 2003; Kudela et al., 2008b; Smayda, 1997), 

the inclusion of nutrient variation into the design is still recommended.  
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This study uses a simple model, which requires a minimum of density and nutrient 

data to accurately predict the competition in exponentially growing mixed cultures of 

dinoflagellates. However, the utility of the model is limited to the initial growth phase. 

Due to its underlying assumptions, this model is ill suited to investigate quiescence 

and transient growth dynamics. Here, the model is already prone to underestimate 

densities when nutrient concentrations were rapidly declining. Dinoflagellates are 

known to “luxury consume”, storing nutrients in intracellularly for times of deficiency 

(Cembella et al., 1984; Dortch et al., 1984). Growth is, in fact, based on the internal 

concentration of nutrients (Droop, 1974). Yet, as the model coupled growth to media 

concentrations, the densities cannot increase in the absence of external nutrients. 

Future work may resolve this, by coupling growth to internal nutrient concentrations 

that are replenished through the uptake of external nutrients (John and Flynn, 2000). 

This, however, requires data on the internal nutrient concentrations of each species, 

which need to be measured. Future experiments can also extend the experiments 

passed the stationary phase. To the best of our knowledge, no studies have recorded 

allelopathic interactions throughout the entire bloom cycle. 

 

5. Conclusions 

Despite decades of experimental research, we were still unable to unravel the key 

mechanisms behind interspecific competition in mixed cultures of dinoflagellates. 

Crucially, this hampers our understanding of the importance of resource competition, 

allelopathy and mixotrophy, which undermines our ability to forecast the risk of HABs 

in changing environments like the North Sea. By analysing the growth of mixed batch 

cultures, this study demonstrates that nutrient competition and not allelopathy is the 

driving force behind the interspecific competition between dinoflagellates. In addition, 

this study demonstrates how the relative densities of competing algae and, hence, 

seed beds can initiate blooms, and shows how abiotic variability e.g. temperature, 

nutrient stoichiometry and nutrient availability can affect HABs through changes in 

resource uptake rates and resource efficiencies. This study provides further support 

to the opinions of Davidson et al. (2012) and Flynn (2010), i.e. that summer nutrient 

concentrations should be favoured over nutrient ratios, as the latter provides little to 

no information about the risk of HABs. To validate this study, we recommend using 

monitoring data to predict HAB development with nutrient consumption and grazing 

pressure alone. To this end, the work of Sourisseau et al. (2017) - that predicts the 

interannual variability of HABs in a French estuary using only nutrient competition 

and abiotic forcing – may provide a solid basis for future work. 
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The absorption, distribution, metabolization and excretion of 

two major groups of marine toxins by adult blue mussels 
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Abstract 

Lipophilic marine biotoxins (LMBT) are produced by several cosmopolitan algae, 

e.g. Dinophysis spp., Prorocentrum spp., Alexandrium spp. and Protoceratium spp., 

which may become more abundant due to global change. The most common vector 

of lipophilic marine biotoxins (LMBT) to humans is seafood. Shellfish are particularly 

important, as they can quickly accumulate LMBT and create esterified metabolites. 

Yet, despite risks to human health, little is known about the absorption, distribution, 

metabolization and excretion (ADME) of LMBT in shellfish. With the emergent mussel 

farming projects inside the Belgian EEZ, this information is needed to reduce the risk 

of shellfish poisoning in consumers and prevent the destruction of the new produce. 

For this reason, this study investigates the ADME kinetics of two groups of LMBT - 

okadaic acid analogues (OA) and spirolides (SPXs) - in Mytilus edulis. To this end, 

adult blue mussels were exposed to two of their respective producers, the harmful 

dinoflagellates Alexandrium ostenfeldii and Prorocentrum lima, in either a single or 

combined two-week laboratory exposure. At the same time, mussels were exposed 

to the natural concentrations of toxic phytoplankton in Ostend harbour (Belgium). 

During both experiments, the toxin profiles of the mussel tissues were recorded by 

ultra-high performance liquid chromatography coupled to high-resolution Orbitrap 

mass spectrometry (UHPLC-HR-Orbitrap MS). Overall, both experiments found a 

rapid accumulation of OA analogues and SPXs in the visceral tissues of M. edulis. 

Biotransformation of multiple toxins, in particular of the OA analogues, occurred in 

less than 3 days. Within 15 days of exposure, some fatty esters such as 14:1 DTX-2, 

14:0 OA and 16:2 OA were found at concentrations up to 80 μg/kg-1, exceeding the 

EU regulatory limit for OA analogues by a large margin. This, hence, demonstrates 

the potential risk that seafood exposed to mixtures of LMBT poses to human health 

and urges research into the toxicological effects of LMBT mixtures. 
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1. Introduction 

Harmful algal blooms have increased in frequency and intensity on a global scale. 

Blooms of potentially toxic dinoflagellates such as Dinophysis spp., Alexandrium spp. 

and Prorocentrum spp. have become more prevalent due to regional climate change 

(Anderson et al., 2012; Hallegraeff, 2010). During certain “windows of opportunity”, 

i.e. specific and often unknown combinations of ideal biotic and abiotic conditions, 

these species bloom, which entails enormous economic costs in the aquaculture, 

tourism and, crucially, public health sectors (Hoagland et al., 2002; Shumway, 1990). 

A significant fraction of this impact is caused by the toxins that these cosmopolitan 

microalgae produce. Lipophilic marine biotoxins (LMBT), e.g. azaspiracid (AZA), 

yessotoxins (YTX), spirolides (SPX), okadaic acid (OA) and dinophysistoxins (DTX), 

readily accumulate in marine biota and create a risk for severe human poisoning 

(FAO, 2004; Lawrence et al., 2011). To prevent human poisoning incidences, most 

European countries (Portugal, Ireland, UK, Denmark, France, the Netherlands, etc.) 

set up costly, extensive routine monitoring programs which screen edible shellfish, 

phytoplankton and other biota for LMBT. 

Two toxin groups of particular interest are OA analogues and SPXs. OA is related 

to diarrhetic shellfish poisoning (DSP), the most common type of seafood poisoning 

(Reguera et al., 2014). It is produced by Dinophysis spp and Prorocentrum spp., two 

well-spread genera of dinoflagellates. Its mode of action is well-known. It is a potent 

phosphatase inhibitor which causes inflammation of the intestinal tract and diarrhoea. 

For this reason, the amount of OA in seafood is checked against legal limits for safe 

consumption by institutions such as the Food and Drug Administration (FDA) and the 

European Food Safety Authority (EFSA). SPXs, on the other hand, are produced by 

Alexandrium ostenfeldii, i.e. another cosmopolitan species (Cembella et al., 2000). 

Despite recent reports of high concentrations in shellfish, little is known about SPXs. 

While SPXs are highly neurotoxic in mice, where they are able to cross the protective 

blood-brain barrier, no human illness has ever been associated with spirolid ingestion 

(Alonso et al., 2013; Sleno et al., 2004). Still, the lack of a known effect on humans 

can result from the poor recognition and underreporting of moderately adverse health 

conditions such as gastric distress and tachycardia (Daneshian et al., 2013). There is 

mounting evidence that SPXs inhibit muscarinic acetylcholine receptors and activate 

transmembrane calcium channels which disrupt human neuroblastoma cells in vitro 

(Kantiani et al., 2010; Munday et al., 2011; Wandscheer et al., 2010). The absence of 

regulatory limits for safe consumption should, hence, be seen as a severe risk for 

acute and chronic intoxications.  
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The lack of knowledge on the occurrence and effects of toxin mixtures poses another 

risk towards the health of human consumers. As the mouse bioassay was replaced 

by liquid chromatography coupled to mass spectrometry (LC-MS) as the principle 

monitoring tool for LMBT in European shellfish (Commission Regulation No 15/2011), 

unknown toxins and synergistic mixture toxicity below regulatory levels are effectively 

undetectable. Still, the use of powerful analytical tools such as LC-MS has greatly 

improved our detection of LMBT and LMBT metabolites in all kinds of matrices. 

Through this approach, more than 50 OA analogues have been found in natural 

phytoplankton communities (Díaz et al., 2013; Vale and Sampayo, 2002), cultures of 

Prorocentrum lima and Dinophysis spp. (Bravo et al., 2001; Nascimento et al., 2005; 

Nielsen et al., 2013; Suzuki et al., 2009; Vale et al., 2009) and higher-order 

organisms (Orellana et al., 2017; Trainer et al., 2013; Vale and Sampayo, 2002). 

Similarly, over 16 SPX esters have been described from toxic strains of A. ostenfeldii 

(Almandoz et al., 2014; Cembella et al., 2000; Kremp et al., 2014; Medhioub et al., 

2011; Salgado et al., 2015; Tillmann et al., 2014), and the tissues of other marine life 

(García-Altares et al., 2014; Medhioub et al., 2012; Orellana et al., 2017; Rundberget 

et al., 2011; Silva et al., 2013). Now, the next step in the detection and quantification 

of LMBT and LMBT metabolites, is the use of high-resolution mass spectrometry 

(HRMS) to explore the absorption, distribution, metabolization and excretion (ADME) 

of marine toxins in seafood upon HAB exposure. 

Despite the substantial amount of available literature on the occurrence and 

effects of LMBT in shellfish, surprisingly little is still known on ADME processes of 

marine toxins in common shellfish species. Usually, this knowledge gap results from 

the inability to reliably identify or (accurately) quantify the amount of absorbed and 

metabolized LMBT. High-resolution mass spectrometry (HRMS) is a promising new 

instrument to explore the ADME kinetics of marine toxins in seafood. This technique 

has already been used successfully on shellfish and algae (Domènech et al., 2014; 

García-Altares et al., 2014; Gerssen et al., 2011; Orellana et al., 2014, 2015). Now, 

we use this promising technique to study ADME processes of lipophilic marine toxins 

in a keystone species. To the best of our knowledge, this is the first study to expose 

blue mussels M. edulis to A. ostenfeldii and P. lima in a mixed exposure experiment 

to study the ADME of OA and SPXs through state-of-the-art LC-HRMS analyses. In 

addition, this study demonstrates through fieldwork that similar processes occur 

when mussels are exposed to the natural phytoplankton of the Belgian Part of the 

North Sea (BPNS), an understudied area in the North Sea region. 
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2. Material and Methods  

2.1 Chemicals and standards  

A multitoxin standard was made from several certified reference materials, i.e. OA 

(CRM-OA-c 14.3 ± 1.5 µg ml-1), DTX-1 (CRM-DTX-1 15.1 ± 1.1 µg ml-1), PTX-2 

(CRM-PTX-2 8.6 ± 0.3 µg mL-1), AZA-1 (CRM-AZA-1 1.24 ± 0.07 µg ml-1), 13-SPX C 

(CRM-SPX-1 7.0 ± 0.4 µg ml-1), and YTX (CRM-YTX 5.6 ± 0.3 µg ml-1), as described 

in detail by Orellana et al. (2015). All certified reference materials were obtained from 

the National Research Council (Institute for Marine Bioscience, Halifax, Canada). 

Analytical grade solvents (for extractions) and LC-MS grade solvents for UHPLC-MS 

applications were obtained from VWR International (Merck, Darmstadt, Germany). 

Ultrapure water was made in-house by means of a Milli-Q water purification system 

(VWR International, West Chester, Pennsylvania, USA). Millex-GV syringe filters 

(PVDF 0.22 µm) were obtained from Millipore (Merck, Darmstadt, Germany) and 

glass beads of 0.5 mm were purchased from Thistle Scientific Ltd. (Glasgow, UK). 

 

2.2 Algal cultures 

Alexandrium ostenfeldii (CCAP 1119/45), Prorocentrum micans (CCAP 1136/20) 

and P. lima (CCAP 1136/9) were obtained from the Culture Collection of Algae and 

Protozoa (Scottish Marine Institute, Oban, UK). In addition to these dinoflagellates, 

in-house strains of the nutritional algae Tetraselmis suecica and Isochrysis galbana 

were kindly provided by the Laboratory of Aquaculture and Artemia Reference center 

(Ghent University, Belgium). All of these algae were grown in L1 medium, prepared 

from autoclaved and filtered seawater (30 ± 2 PSU; pH 8.0 ± 0.5) from the Belgian 

part of the North Sea (BPNS) in accordance with Guillard and Hargraves (1993). 

Prorocentrum spp. and A. ostenfeldii were grown in 500 ml Erlenmeyer flasks, while 

T. suecica and I. galbana were cultured in bags of 5 litre. Both the Erlenmeyer flasks 

and the bags were placed in the same room, which had a constant temperature of 

20±1.0 °C and a 12:12 h irradiance of 100 μmol m-2 s-1. The growth of stock cultures 

was monitored through frequent cell counts, which were performed frequently using a 

Sedgewick-Rafter counting cell and an inverted microscope (40x). Cultures were 

harvested semi-continuously during the late-log or early-stationary phase for feeding 

M. edulis and for performing toxin analysis. 

  



 

Chapter 4 

 
64   

 

2.3 Mussel culture and depuration  

Two months before carrying out the experiments, wild adult mussels (M. edulis) 

were picked from breakwaters along the BPNS, cleaned by hand and placed in a 

recirculating, filtered aquarium (15°C, 32 PSU) in the laboratory. During this time, 

mussels could depurate any toxins that may have accumulated during their time in 

the sea. To keep them healthy, they were fed daily ad libitum with a commercial algal 

paste (Shellfish Diet 1800®, Varicon Aqua Solution, UK). The artificial seawater of 

the tank (Instant OceanTM, Belcopet, Belgium) was replaced on a weekly basis. 

 

2.4 Experimental design 

2.4.1 Artificial exposure 

After the depuration period, 280 mussels were randomly distributed into nine 30l 

glass aquaria, i.e. around 30 animals per aquarium. Mussels were constantly fed with 

either A. ostenfeldii, P. lima or both simultaneously during 15 days. Each of the three 

treatments was carried out in triplicate during this experiment. To ensure a realistic 

scenario, i.e. there are nutritious non-HAB algae present during natural algal blooms, 

two non-toxin producers (T. suecica and I. galbana) were continuously added to the 

aquaria as well. A concentration of 2 x 102 cells ml-1 was added to the mussels by a 

regimen of 8 automated-feedings per day, using fully automated peristaltic pumps 

(Ismatec SA, Switzerland). As a control treatment, two aquaria were added in which 

the mussels were only fed with T. suecica and I. galbana. Samples of mussels were 

collected on days 3, 5, 10 and 15 of the exposure to the experimental treatments. At 

each time, 7 or 8 mussels were removed from the aquaria. Additionally, faeces and 

pseudofaeces (mix) and water samples were collected during harvest days. 

 

2.4.2 Field study 

A North Sea field study was conducted in Ostend harbour and the adjacent sluice 

dock called the “Spuikom” (51.226328, 2.931137) during July 2015. 160 depurated 

mussels were placed into 8 cages, i.e. 20 mussels per cage, at different stations 

around the harbour. Similar to the lab study, five mussels were collected from each 

cage on day 3, 5, 10 and 15 for toxin analysis. 
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2.5 Toxin extraction 

2.5.1 Pre-treatment 

Samples of the stock cultures of the dinoflagellates were treated as described by 

Orellana et al. (2015). Samples were poured into PVC tubes with a 10 µm nylon net 

filter at the bottom, and washed with ultrapure water to remove salts. The filters were 

subsequently placed into a centrifuge tube and backwashed with 3 mL of methanol. 

A similar procedure was used for the (pseudo)faeces, but the mesh size was adapted 

to 80 µm. Mussel meat samples were treated as described by Orellana et al. (2014), 

but the method was adapted to separate visceral and non-visceral tissues. In short, 

the in and outside of the shells was rinsed with ultrapure water to remove any debris. 

Next, mussels were removed from the shell and left to drain on a 100 µm sieve. The 

visceral (hepatopancreas) and non-visceral tissues (gills, mantle, gonads etc.) were 

then carefully dissected and weighed. 

 

2.5.2 Water and culture media 

Solid phase extraction (SPE) protocols were adopted from De Rijcke et al. (2015) 

(ref. chapter 6) to determine concentrations of toxins in watery phases. This method 

was used on both the culture media of P. lima and A. ostenfeldii, as well as the water 

samples taken from the experiment to determine concentrations of toxins eliminated 

from mussels. Samples of 2 mL were placed preconditioned Strata-X polymeric 

reversed phase cartridges (100 mg / 3 mL; Phenomenex, Utrecht, the Netherlands). 

Each column was washed with 8 mL of ultrapure water and subsequently eluted with 

2 ml of 70% acetonitrile. Extracts were then reduced to 1 ml under a gentle stream of 

nitrogen gas at 40°C, transferred to LC-MS vials and stored at −20°C until analysis. 

 

2.5.3 Algae and faeces 

As done by Orellana et al. (2015), intracellular toxins were extracted from algae by 

a repeated liquid-liquid phase extraction and simultaneous glass bead disruption. 

The method was adapted to faecal samples by adding a two minute homogenization 

step in a ultra turrax™ homogenizer (IKA, Staufen, Germany) prior to the start of the 

phytoplankton protocol. The resulting internal toxin extracts were dried at 40°C under 

a gentle stream of nitrogen at 40°C. The residues (1 ml) were transferred into vials 

and stored at −20°C prior to analysis. 
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2.5.4 Mussel tissues 

To extract toxins from the tissues of mussels, we adopted the extraction steps 

from Orellana et al. (2014). In short, 1 g of visceral or non-visceral tissue was placed 

in a centrifuge tube. Next, toxins were extracted with 3 ml of methanol by vortexing 

and centrifuging (12,000×g) for 3 min and 10 min, respectively. After the supernatant 

was removed, the entire extraction process was repeated two more times. The total 

extracted volume of 9 ml was again dried under a gentle stream of nitrogen at a 

temperature of 40°C until a residue of 1 mL could be transferred into a vial. 

 

2.6 UHPLC-HRMS 

Liquid chromatography used a Thermo Fisher Scientific Accela UHPLC pump, 

coupled to an Accela autosampler and degasser and fitted with a Nucleodur C18 

Gravity column (1.8 µm, 50x2 mm, Macherey-Nagel, Düren, Germany) for compoud 

segregation. Mass spectrometry occurred inside an ExactiveTM benchtop Orbitrap 

mass spectrometer (Thermo Scientific, San Jose, CA, USA), equipped with a heated 

electrospray ionization probe (HESI-II). The instrument was operated in switching 

polarity mode. All instrument settings were adopted from Orellana et al. (2015). 

The operational performance of the UHPLC-HRMS instrument was verified using a 

CRM mixture of OA, DTX-1, 13-SPX C, PTX-2, AZA-1, YTX and PTX-2 (section 2.1). 

Prior to the analyses of samples, these toxins were first identified by the mass and 

retention time of their respective certified standard solutions, and their identity was 

verified with the 13C/12C isotopic ion ratio (as recommended by CD 2002/657/EC). 

Peaks of toxins in experimental samples were compared to the listed CRM standard. 

After the identification of parent compound peaks, metabolites were identified using 

the Thermo ToxFinder software package and the work of Gerssen et al. (2011) and 

Torgersen et al. (2008). Based on the strong resemblance between newly detected 

metabolites and parent ions, and the excellent selectivity and separation the Orbitrap 

MS provides, metabolites were (semi)quantified using the HRMS response ratio. 
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3. Results and discussion 

3.1 Algal cultures 

The UHPLC-HRMS analyses revealed that OA, DTX-1, OA-D6, OA-D8 and OA-T9 

were present in both the intra- (n=10) and extracellular extracts (n=40) of P. lima 

(Table 4.1). All of these compounds were present in reasonably similar amounts, but 

the highest concentrations belonged to the parent toxins OA (9.5 ± 1.5 pg cell-1) and 

DTX-1 (7.1 ± 2.3 pg cell-1). OA-D8 could only be detected in the intracellular extract, 

not in the medium outside the cells. Early-stationary phase cultures of A. ostenfeldii 

contained 5 compounds. These were 13-desmethyl SPX C, SPX D, SPX F, SPX I 

and 27-hydroxy-13-desmethyl SPX C. The latter was only found in the culture media. 

The predominant toxins were 13-desmethyl SPX C and SPX D, with mean estimated 

concentrations of 5.6 ± 2.2 pg cell-1 and 3.2 ± 1.8 pg cell-1, respectively. 

 

Table 4.1 Intra- and extracellular compounds found in P. lima and A. ostenfeldii cultures 

(n=10) during the early-stationary phase. ND = not detected. 

Tentative 

identity* 

Elemental 

composition 

Measured 

mass (m/z) 

Mean intracellular 

concentration  

(pg cell-1) ± SD 

Mean extracellular 

concentration 

(µg l-1) ± SD 

P. lima     

OA C44H68O13 803.46088 9.5 ± 5.0 1.4 ± 1.1 

DTX-1 C45H70O13 817.47650 7.1 ± 3.3 1.5 ± 0.9 

OA-D6 C50H76O14 923.51605 3.2 ± 2.2 0.90 ± 0.7 

OA-D8 C52H80O14 951,54443 4.2 ± 2.0 ND 

OA-T9 C53H82O15 957.55944 6.1 ± 3.1 1.3 ± 1.1 

A. ostenfeldii     

SPX D C43H66NO7 708.48394 3.2 ± 1.8 0.11 ± 0.1 

SPX F C42H66NO7 697.48917 2.7 ± 1.4 0.19 ± 0.1 

SPX I C40H62NO6 653.46326 3.0 ± 1.6 0.18 ± 0.1 

13-SPX C C42H62NO7 693.45898 5.6 ± 2.2 0.21 ± 0.1 

27-OH-13-SPX C C42H61NO8 708.44592 ND 0.16 ± 0.1 

* OA = Okadaic acid, DTX-1 = Dinophysistoxin-1, OA-D6 = 5-hydroxy-2-methylene-pent-3-enyl okadaate, 

OA-D8 = 7-hydroxy-2-methyl-hepta-2,4-dienyl okadaate, OA-T9 = 5,7-dihydroxy-2,4-dimethylene-heptyl 

okadaate, 13-SPX C = 13-desmethyl spirolide C, 27-OH-13-SPX C = 27-hydroxy-13-desmethyl SPX C. 
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Table 4.2 Mean concentrations of SPX-related compounds in the tissues (n=14), faeces 

(n=10) and media (n=10) of mussels exposed to A. ostenfeldii or A. ostenfeldii and P. lima. 

Concentrations between brackets were found in the non-visceral tissues. Toxins with an 

asterisk were found in the cultures of A. ostenfeldii (ref. Table 4.1). Detailed identification 

steps are presented in supplementary tables C2 to C10. 

  A. ostenfeldii  Mixed exposure 

    Day 3 Day 5 Day 10 Day 15 
 

Day 3 Day 5 Day 10 Day 15 

(N
o

n
)-

v
is

c
e

ra
l 
ti

s
s
u

e
s
 (

µ
g

.k
g

-1
) 

SPX B - 0.63 - - 
 

- 2.52 - - 

SPX C - - - 1.14 
 

- - - - 

SPX D* 0.55 0.96 
1.26 

(0.56) 
3.03 

(1.45)  
3.43 1.25 

0.69 
(0.39) 

0.89 
(0.65) 

SPX E - 0.62 
1.65 

(0.75) 
1.34 

(1.21)  
- 0.95 - - 

SPX F* - - - 
1.56 

(1.15)  
- - - 1.56 

SPX H - - 1.15 - 
 

3.43 - - 1.03 

SPX I* - 0.66 
1.87 

(0.93) 
1.09 

(1.07)  
- 1.14 0.34 1.08 

13-SPX C* 0.7 - - 
1.89 

(1.15)  
- 0.58 - 

2.19 
(1.48) 

27-OH-13-SPX C* 0.69 - 0.31 
1.88 

(1.64)  
0.8 - 0.26 

5.2 
(2.86) 

27-O-13,19-SPX C - - 0.78 1.93 
 

1.99 - 0.47 0.73 

(P
s

e
u

d
o

)f
a

e
c

e
s
 (

µ
g

.k
g

-1
) 

SPX B - - - 0.41 
 

- 0.1 - - 

SPX C - - - 0.16 
 

- 0.15 1.16 1.83 

SPX D* 1.25 1.45 1.72 0.62 
 

1.61 1.37 1.84 1.77 

SPX E - - - 0.11 
 

- - - - 

SPX F* - 0.15 0.1 - 
 

- 0.24 0.23 0.79 

SPX H - 0.26 0.18 - 
 

- 0.36 0.16 0.93 

SPX I* - - - - 
 

- 0.28 0.47 - 

13-SPX C* 0.11 0.22 0.19 0.24 
 

1.1 1.25 1.16 1.83 

27-OH-13-SPX C* - - 0.11 0.13 
 

- - 0.15 - 

27-O-13,19-SPX C - 1.03 0.25 0.13 
 

- - 0.14 1.73 

W
a

te
r 

(µ
g

.l
1
) SPX D* - 1.89 1.96 1.88 

 
1.06 1.04 1.36 2.37 

SPX E - - - 0.11 
 

- - - 0.97 

13-SPX C* - 0.91 1.22 1.76 
 

1.13 1.56 1.25 3.58 

27-OH-13-SPX C* - - 0.69 0.6 
 

- - 3.45 3.76 

27-O-13,19-SPX C - - 0.84 0.71 
 

- - 1.77 3.84 
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3.2 Mussel physiology 

The mussels used in both experiments had an average length of 4.0 ± 0.5 cm and 

a mean whole body wet weight of 2.5 ± 0.5 g per individual. Prior to the experiments, 

depurated mussels (n=20) contained no toxins and appeared to be in good health. 

Approximately one hour after the start of the experiment, filtration and the production 

of faeces was observed in all treatments. During the course of the experiment, only 

one dead mussel was reported. After 15 days, no toxins were detected in the tissues 

of mussels which only fed on I. galbana and T. suecica in the control aquaria. 

 

3.3 Exposure to A. ostenfeldii 

From the start, the mussels accumulated SPX-related compounds in their 

digestive glands (Table 4.2). At first, these compounds were identical to those found 

in A. ostenfeldii (i.e. SPX D, 13-SPX C & 27-OH-13-SPX C; 0.55 to 0.7 µg.kg-1). 

Note, however, that 27-OH-13-SPX C was also formed as a metabolite (Figure 4.1). 

SPX D and 13-SPX C were found in the (pseudo)faeces at 1.25 and 0.11 µg.kg-1, 

respectively. While this may indicate that the mussels partially rejected toxic cells, it 

should be noted that A. ostenfeldii produces these toxins in rather similar quantities 

(3.2 and 5.6 pg.cell-1, respectively). As the faeces contained relatively little 13-SPX C, 

one of the toxins is involved in a preferential uptake or active excretion process that, 

based on the evolution of these toxins in the faeces and visceral tissues, continued 

throughout the experiment. No toxins were detected in the water column at this time. 

The first true metabolites, i.e. compounds which were not found in A. ostenfeldii, 

were detected when SPX B (0.63 µg.kg-1) and SPX E (0.62 µg.kg-1) appeared in the 

visceral tissues on day 5. At that time, metabolites (SPX H and 27-O-13,19-SPX C) 

first appeared in the faeces. Evidence of translocation was found later, when SPX D, 

SPX F, SPX I, 13-SPX C and 27-OH-13-SPX were detected in both the visceral and 

non-visceral tissues of M. edulis after 10 days. These compounds are all produced 

by A. ostenfeldii. SPX E was the only metabolite which was transported to the mantle 

and gonads. This SPX metabolite was also found in the faeces (0.11 µg.kg-1) and 

water column (0.11 µg.l-1). Other faecal metabolites included SPX B (0.41 µg.kg-1), 

SPX C (0.16 µg.kg-1) and 27-O-13,19-SPX C (0.13 µg.kg-1), of which only the latter 

was also present in the water column (0.71 µg.l-1). The highest concentrations in 

each of the several compartments were, however, always linked to compounds which 

are directly produced by A. ostenfeldii (e.g. SPX D, 13-SPX C and 27-OH-13-SPX C). 
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Table 4.3 Mean concentrations of OA-related compounds in the tissues (n=14), faeces 

(n=10, and media (n=10) of mussels exposed to P. lima or P. lima and A. ostenfeldii. 

Concentrations between brackets were found in the non-visceral tissues. Toxins with an 

asterisk were found in P. lima cultures (ref. Table 4.1). 

    P. lima 
 

Mixed exposure 

    Day 3 Day 5 Day 10 Day 15   Day 3 Day 5 Day 10 Day 15 

(N
o

n
)-

v
is

c
e

ra
l 
ti

s
s
u

e
s
 (

µ
g

.k
g

-1
) 

OA* 5.17 
9.12 

(4.83) 
12.05 
(8.64) 

9.77 
(3.55)  

5.97 
(1.27) 

3.88 
(2.24) 

5.57 
(4.25) 

7.64 
(3.84) 

DTX-1* 8.63 
11.81 
(6.56) 

15.13 
(4.45) 

13.21 
(7.24)  

8.04 
(6.67) 

6.31 
(3.93) 

10.03 
(3.75) 

15.61 
(7.03) 

OA-C3 3.39 - - - 
 

- - 3.15 - 
OA-D6* - - 5.3 - 

 
- - - - 

OA-D8* - - 10.85 
2.02 

(2.81)  
- - - 

2.82 
(1.67) 

OA-D10 - - - 
1.76 

(1.61)  
- - 2.57 

1.24 
(1.08) 

OA-T9* - - - 1.2  - - - - 

14:0 OA 5.35 2.55 
9.38 

(4.22) 
6.72 

 
- - 9.01 13.59 

14:3 OA 4.47 
10.44 
(6.39) 

11.17 
(7.87) 

3.26 
 

4.47 5.31 4.54 12.47 

15:0 OA - 13.4 26.5 67.33 
 

4.4 
4.82 

(2.02) 
7.57 

13.94 
(30.3) 

16:0 OA - 11.07 26.69 7.39 
 

3.84 
2.79 

(1.95) 
8.66 

22.94 
(19.89) 

16:1 OA - 
15.91 

(10.67) 
28.08 15.77 

 
- - 

8.96 
(3.83) 

14.26 
(11.29) 

16:2 OA 4.76 
35.2 

(23.24) 
126 

(59.08) 
49.81 

(35.39)  
8.59 

(3.34) 
3.65 

(2.89) 
28.6 

(17.25) 
- 

(12.21) 
17:1 OA - 5.11 2.08 - 

 
- - - 5.93 

18:1 OA - 13.92 3.58 
2.3 

(2.26)  
- - - - 

18:2 OA - 
19.95 

(13.57) 
14.77 
(9.78) 

4.77 
(3.91)  

- - 4.88 7.62 

18:4 OA - 16.87 28.08 3.41 
 

- - - 
36.35 

(11.99) 

20:5 OA 3.77 
10.25 
(7.21) 

14.77 
(10.29) 

4.3 
(3.9)  

4.4 
(1.05) 

- 
16.21 
(9.35) 

42.25 
(4.15) 

14:1 DTX-2 - - - - 
 

18.26 
(10.11) 

6.09 82.82 
13.82 
(6.32) 

F
a
e

c
e

s
 (

µ
g

.k
g

-1
) OA* - 0.47 0.79 1.58 

 
1.04 3.41 5.01 1.28 

DTX-1* - - - 0.36 
 

2.03 7.23 9.12 4.37 
OA-C3 - 0.34 0.34 1.23 

  
0.35 1.59 0.89 

OA-D8* - - - 0.55  - 0.23 0.27 0.23 
OA-T9* 6.12 37.23 41.24 22.89 

 
11.04 58.74 9.88 76.73 

14:3 OA - - - - 
 

- - - 0.36 
16:2 OA - 0.37 0.51 0.49 

 
- 0.36 0.58 0.25 

W
a

te
r 

(µ
g

.l
1
) OA* - 1.78 3.35 5.15 

 
0.74 1.22 4.22 4.32 

DTX-1* - - 1.43 2.83 
 

1.13 - 4.57 3.15 

OA-C3 - - - 0.53 
 

- - - 1.5 

OA-D6* - 1.12 1.52 3.22 
 

- 1.29 1.16 2.35 

OA-T9* 3.66 2.76 4.2 5.28 
 

2.15 2.63 4.57 5.82 

16:2 OA - - - - 
 

- 0.51 - - 



 

Toxin metabolization 

 
 71 

 

Figure 4.1 Potential biotransformation routes of known spirolides and SPX metabolites. 

Structures and reactions based on the work of Aasen et al. (2006), Cembella et al. (1999), 

Ciminiello et al. (2006, 2010), Guéret and Brimble, (2010), Hu et al. (2001), Hui et al. (2012), 

Molgó et al. (2007) and Roach et al. (2009).  
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3.4 Exposure to P. lima 

Throughout the experiment, 26 unique OA compounds were found in M. edulis 

(Full list in Table C2). The parent toxins, OA and DTX-1, accumulated in both mussel 

tissues, and were (to a lesser extent) also present in the (pseudo)faeces (Table 4.3). 

By contrast, high amounts of the triol ester OA-T9 – which was produced by P. lima 

in similar quantities as OA and DTX-1 (Table 4.1) – were found in the faeces, but not 

in the tissues. This either suggests a rapid absorption of OA and DTX-1, or an active 

excretion of OA-T9. Other esters, such OA-C3, OA-D6, OA-D8 and OA-D10 were 

intermittently present in the tissues. These compounds are produced by P. lima and 

were probably rapidly metabolized (ref. Figure 4.2) by the mussels. 

Biotransformation and translocation were observed throughout the experiment. 

From day 3, OA was coupled to fatty acids of varying length and degree of saturation 

(i.e. 14:0 to 20:5). The resulting acyl derivates - most notably 14:3, 15:0, 16:2, 18:2 

and 20:5 OA – accumulated strongly in both the visceral and non-visceral tissues, 

often reaching high concentrations (e.g. 16:2 OA 126 µg.kg-1). The most abundant 

fatty ester, 16:2 OA, was also found in the faeces. None of the metabolites were, 

however, detected in the water column. Both the number of OA-related compounds 

in the mussels and the concentrations of compounds peaked after 10 days of 

exposure. By contrast, the toxin diversity and concentrations went up in both the 

medium and the faeces at day 15. At the same time, the excretion of faecal OA-T9 

decreased. These results suggest a behavioural response – such as changes in the 

filtration rate or particle selection - to stress, but mortality was not observed. 

 

3.5 Mixed exposure to A. ostenfeldii and P. lima 

The initial accumulation of spirolides found in A. ostenfeldii (i.e. 27-OH-13-SPX C 

and especially SPX D) in the mixed exposure was generally higher than that of the 

single exposure, but 13-SPX C was absent (Table 4.2). In part, more 13-SPX C was 

excreted as the faecal concentrations were an order of magnitude higher than those 

found in the single exposure. The dissolved concentrations in the water column were 

higher as well. At the same time, this compound may have been metabolized 

towards 27-O-13,19-SPX C. Similarly, SPX I is excreted or transformed to SPX H. 

Overall, biotransformation appears faster in the mixed exposure. More metabolites 

were excreted via the faeces (e.g. SPX C, SPX H and 27-O-13,19-SPX C), and fewer 

compounds were translocated to the mantle and gonads. The few compounds which 

accumulated faster, i.e. 13-SPX C and 27-OH-13-SPX C, may originate from both the 

algae as well as metabolic processes.  
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Figure 4.2 The potential transformation of OA structures, based on the combined work of 

Cruz et al. (2006), Hu et al. (1992), Marr et al. (1992), Needham et al. (1995), Paz et al. 

(2007), Suárez-Gómez et al. (2001), Torgersen et al. (2008a), Vale (2008), Van Wagoner et 

al. (2014) and Wright et al. (1996). Molecular names in supplementary materials (Table C1). 
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Like SPXs, the mussels accumulated more toxins (OA and DTX-1) in their tissues 

while, at the same time, rejecting more food-based compounds through their faeces 

(OA, DTX-1, OA-T9; Table 4.3). Faecal deposits became richer in both diversity and 

quantity of compounds than the single exposure. The dissolved concentrations of 

compounds were often higher as well. Accumulated concentrations in visceral tissues 

were generally lower, and metabolites(e.g. 16:2 OA and 20:5 OA) appeared earlier. 

Again, the parental compounds were less translocated towards non-visceral tissues, 

but several metabolites were nonetheless detected. Remarkably, the predominant 

metabolite 16:2 OA of the single exposure was replaced by 14:1 DTX-2. This form of 

OA was never observed during the single exposure. 

 

3.6 Exposure to the natural conditions of Ostend harbour 

No toxins were initially found inside mussels of any station (Table 4.4). By day 5, 

however, the first compounds were detected in the visceral samples of M. edulis. 

These were all fatty esters of OA and DTX-2. The number and concentrations of OA 

metabolites increased until the end, reaching a maximum of 32.5 μg kg-1 for 14:0 OA 

in station 3, but the parent toxins were never detected. After 15 days, spirolides were 

found in the viscera of station 1 and 3. Likewise, day 15 revealed SPX metabolites, 

i.e. SPX H and 27-oxo-13,19-SPX C, without the detection of other spirolides. 

Virtually no compounds were detected in the non-visceral samples. 
 

Table 4.4 Compounds found in the (non)-visceral tissues of M. edulis, accumulated from 

Ostend harbour, Belgium. Detailed identification is presented in supplementary table C10. 

Day Tentative identity Formula Mean concentration (μg kg-1) Station 

5 
14:1 DTX-2 C58H92O14 6.0 ± 2.1 1 
14:0 OA C58H94O14 10.6 ± 4.3 3 
16:2 OA C60H94O14 4.1 ± 1.3 4 

10 

14:1 DTX-2 C58H92O14 24.1 ± 8.6 1 

14:0 OA C58H94O14 26.8 ± 9.1 3 

16:2 OA C60H94O14 9.8 ± 4.3 4 

17:1 OA C61H98O14 5.4 ± 1.2 3 

18:2 OA C62H98O14 8.1 ± 3.9 3 

15 

14:0 OA C58H94O14 26.8 ± 10.6 3 

14:1 DTX-2 C58H92O14 76.9 ± 14.2 (10.1 ± 4.3) 1 

15:0 OA C59H96O14 12.4 ± 4.3 4 

16:2 OA C60H94O14 26.9 ± 9.7 4 

18:2 OA C62H98O14 8.0 ± 4.1 3 

SPX H C40H60NO6 4.2 ± 1.4 1 

27-oxo-13,19-SPX C C41H58NO8 3.1 ± 1.5 1 
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4. Discussion 

Collaborative work recently revealed that OA- and SPX-related compounds are 

present in organisms, of different trophic levels, of the Belgian part of the North Sea 

(Orellana et al., 2017). Here, we present additional evidence that exposure to the 

natural phytoplankton of the BPNS leads to an accumulation of these two groups of 

toxins in mussels. As the commercial exploitation of mussels is set to recommence in 

this region in the near future, and this species is a major vector of toxins to humans, 

we aimed to elucidate the absorption, distribution, metabolization and excretion of 

these specific compounds in M. edulis. Mussels were shown to rapidly acquire and 

metabolize both toxins, leading to considerable accumulations of toxic compounds 

despite the active secretion of toxins and metabolites. In addition, we demonstrated  

– for the first time – that the simultaneous exposure to multiple toxins can affect 

metabolic pathways, leading to the creation and accumulation of different structures 

such as 14:1 DTX-2. 

Due to the relative ease of culturing and their extreme resilience to environmental 

stressors such as salinity, temperature and drought, mussels are one of the most 

cultured and consumed shellfish species around the world (Dame, 2011; FAO, 2012). 

Their ability to accumulate various pollutants (e.g. chemicals, plastics and toxins), 

often without physiological effects , makes them both an ideal bioindicator as well as 

a potential threat to human health (FAO, 2004; Ostapczuk et al., 1997; Tanabe et al., 

2000; Van Cauwenberghe et al., 2015). Regulatory limits were imposed to protect 

consumers as a result. These are, however, commonly based on acute toxic effects 

and, hence, do not account for chronic repeated exposure. As most people consume 

seafood on a regular basis, the presence of unregulated compounds and toxins 

below regulatory limits highlights the need for further investigation. 

Here, the blue mussel M. edulis – an common aquaculture species with a huge 

economic importance - was exposed to two toxin producing dinoflagellates, P. lima 

and A. ostenfeldii, to study the ADME of OA- and SPX-related structures. As blooms 

of both algae are rarely monospecific (e.g. Foden et al., 2005; Hakanen et al., 2012), 

mussels are able to nourish themselves on multiple phytoplankton species during 

natural blooms. Feeding on non-toxic phytoplankton improves the depuration rates of 

LMBT in bivalves (Blanco et al., 1997; Medhioub et al., 2012). For this reason, our 

mussels were fed with both toxic and non-toxic algae (i.e. I. galbana and T. suecica). 

Through this approach, mussels were actively feeding at all times, and virtually no 

mortality was seen throughout the experiment. 
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M. edulis accumulated OA-related structures faster than SPXs. To the best of our 

knowledge, this is the first study to compare the uptake kinetics of these toxin 

groups. While the difference is, in part, related to the difference in toxin production 

between these two dinoflagellates (Table 4.1), mussels may have also selected more 

strongly against A. ostenfeldii. Toxin accumulation is an energetically optimized, 

complex balance between food selection, adsorption and enzymatic transformations 

(Reguera et al., 2014; Ward and Shumway, 2004). Bivalves can adjust their filtration 

rates and egestion in response to HABs (Hégaret et al., 2007), but this response is 

specific for each algae and differs between bivalve species. Several authors have 

found intact cells of Alexandrium spp. and Prorocentrum spp. in the (pseudo-)faeces 

of bivalves, suggesting avoidance through selective feeding (Bauder et al., 2001; 

Galimany et al., 2008a; Medhioub et al., 2012; Romero-Geraldo et al., 2014). The 

higher accumulation of toxins in the mixed exposure suggests a shift in the balance 

between biotransformation and the particle selection and avoidance behaviour. 

Toxins accumulated predominantly in the digestive gland. After 15 days, visceral 

and non-visceral tissues contained a respective 73% and 27% of all OA on average. 

Similar results were found in bay scallops Argopecten irradians exposed to P. lima 

(Bauder et al., 2001), though our mussels accumulated more DSP toxins overall. 

SPXs, on the other hand, had a 61% (visceral) vs. 39% (non-visceral) distribution, 

which differs from the 83% vs. 17% found in Pacific oysters Crassostrea gigas 

exposed to A. ostenfeldii (Medhioub et al., 2012). Mytilus spp. and Crassostrea spp. 

are, however, known to have different avoidance behaviour towards harmful algae 

(Hégaret et al., 2007). The accumulation of 13-desmethyl spirolide C (13-SPX C) 

found here (i.e. 0.58–2.19 µg.kg-1) resembles the ranges found in natural Mytilus spp 

by Rundberget et al. (2011), Silva et al. (2013) and García-Altares et al. (2014): i.e. 

1.1-63 µg.kg-1, 0.5-3.9 µg.kg-1 and 2-16 µg.kg-1, respectively. 

The production rates of OA, DTX-1 and 13-SPX C were similar to those reported 

in literature (Bravo et al., 2001; Ciminiello et al., 2006; Medhioub et al., 2011; 

Nascimento et al., 2005). P. lima also produced diol and triol esters, which hydrolyse 

rapidly inside bivalves (Hu et al., 1992; Miles et al., 2006; Suárez-Gómez et al., 2005; 

Torgersen et al., 2008a). Little is, however, known about OA esters. Here, we provide 

the first proof of transient visceral accumulations of diol esters. Moreover, we found 

high deposits of OA-T9 (5-hydroperoxy-7-hydroxy-2,4-dimethylene-heptyl okadaate) 

in the faeces, that suggest that this triol ester is poorly absorbed or strongly excreted 

through mechanisms which are yet to be studied. Likewise, we found high amounts 

of 27-oxo-13,19-didesmethyl spirolide C in the faeces. This end-of-the-line metabolite 

may provide a previously unknown, alternative excretion route for SPXs. 
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The detoxification of xenobiotics (e.g. toxins) often starts with esterification by acyl 

transferase activity (Janer et al., 2004; Labadie et al., 2007; Rossignoli et al., 2011). 

The resulting fatty esters may then be oxidized (lipid peroxidation) to form insoluble 

lipofuscin granules which, together with the xenobiotic, are excreted via the faeces 

(Galimany et al., 2008a). For DSP toxins, fatty acids are attached to the 7-OH group 

of either OA and DTX-1 or, in rare cases, the terminal hydroxyl group of diol esters 

(Torgersen et al., 2008a). SPX esters can be formed by conjugating the 17-OH group 

of 20-methyl SPX G (Aasen et al., 2006), but this phase I metabolite first needs to be 

created by several CYP-mediated reactions (Bebianno et al., 2007; Guengerich, 

2001; Hui et al., 2012; Ortiz de Montellano and Nelson, 2011). During these steps a 

tetrahydropyran ring is formed which resembles the terminal spiroketal domain of OA. 

Other SPX transformations involve demethylation, a process needed to create DTX-2 

from OA. The structural similarity between the target sites of both toxins may enable 

CYPs of the SPX metabolism to interact with OA, and explain why 14:1 DTX-2 is only 

detected during the mixed exposure. 

After 3 days of exposure, acyl-OA esters were already used to excrete OA through 

the water and faeces, which was also observed by Rossignoli et al. (2011). Most OA 

esters were made from fatty acids (e.g. 16:0, 20:5) which are common in Mytilus spp. 

(Kluytmans et al., 1985; Leonardos and Lucas, 2000; Torgersen et al., 2008b). Some 

(e.g. 14:3 and 16:2) fatty acids are, however, rarely found in bivalves. Interestingly, 

14:3 is also involved in the detoxification of gymnodimine (de la Iglesia et al., 2013), 

another complex toxin, and is probably produced from 20:5 (Williard et al., 1998). 

16:2, on the other hand, is found in Cholorophyceae and may have been produced 

by I. galbana and T. suecica (Dunstan et al., 1992). Similar fatty esters of SPXs may 

reasonably be expected, but we were unable to confirm their presence. 

Bivalves rapidly accumulate several SPXs and DSP toxins, plus their metabolites, 

(Medhioub et al., 2012; Nielsen et al., 2016; Rossignoli et al., 2011; this study) but 

mixed or chronic toxicity effects of these compounds are unknown. Both antagonistic 

and synergistic interactions between OA and SPXs have been demonstrated in vitro 

(Dragunow et al., 2005; Ferron et al., 2016). As such, the transformation of mixtures 

will most likely affect the acute toxic effect of some compounds, e.g. SPX E, F and H 

(Hu et al., 1996; Roach et al., 2009). For other metabolites, like OA and SPX esters, 

biotransformation just delays the onset of symptoms while the human body reverses 

the biotransformation (Aasen et al., 2006; Couesnon et al., 2016; Doucet et al., 2007; 

Guéret and Brimble, 2010; Torgersen et al., 2005; Vale and Sampayo, 2002). While 

there is still much to be learned about these mixtures, the presence of metabolites 

should still be treated as a health risk to humans. 
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Here, we also demonstrated that metabolized toxins are present in M. edulis after 

exposure to the natural phytoplankton of Ostend harbour. These findings support our 

previous observations on OA- and SPX-related compounds in seafood of the BPNS 

(Orellana et al, 2017). Despite a few dubious incidences with HAB toxins in the past 

(cfr. the Belgica mussel story), these are the first studies to find toxin accumulation in 

shellfish of the BPNS. It is worth noting that we do not really know the effect of these 

mixtures on the health of human consumers. While most of the toxin concentrations 

were low, especially in the non-visceral tissues which are the bulk of the body, there 

is no telling how (positive or negative) the human body would react to these toxins. 

For all OA metabolites and esters, except DTX-2 which is roughly half as toxic as OA, 

it is known that they have the same toxicity as OA (Botana et al., 2017). As a result, it 

is common practice to sum their concentrations and compare them to the safe limit of 

80 µg.kg-1 (whole body). Looking at our concentrations, none of the stations came 

close to these levels. However, the single and mixed toxicity effects of SPXs are still 

largely unknown. Although SPXs are readily absorbed and redistributed to the central 

nervous system, where they inhibit nicotinic acetylcholine receptors, there is little 

evidence of oral toxicity (Bourne et al, 2010, Munday et al., 2011; Otero et al., 2012). 

As a result, the limits of safe consumption have not been designed for SPXs to date. 

Still, these compounds could increase the toxicity of other neurotoxins such as OA 

(Dragunow et al., 2005; Ferron et al., 2016), enhancing the risk towards consumers. 

Due to toxin monitoring by the “Federal Agency of the Safety of the Food Chain”, 

the regional food safety authority, shellfish poisoning is rare in Belgium. As a result, 

the public and general practitioners are unfamiliar with the risk of shellfish poisoning. 

While shellfish harvesting is forbidden, there is no enforcement of this law and people 

might still be tempted to harvest mussels from the Belgian beaches. In addition to the 

previous news items on the occurrence of PCBs, plastics and bacterial contaminants 

in the regional mussel populations, our research also shows that wild shellfish 

harvesting is ill advised. More crucially, though, our results demonstrate the need to 

closely monitor the new shellfish farming project in the BPNS. Because of the legal 

designation as the only offshore shellfish area, the phytoplankton of the windmill 

zone will need to be monitored. Here, though, we demonstrated toxin accumulation in 

the absence of a bloom. As the BPNS contains a wide variety of toxic dinoflagellates 

(ref. Table 1.3), complex toxin mixtures can be formed (ref. Orellana et al., 2017) 

which have unknown acute and chronic toxicity effects. This study, therefore, not only 

reports on the urgency to evaluate the possible effects of toxin mixtures on key stone 

species such as blue mussels, but it also highlights the need to evaluate the risk of 

these (unregulated) compounds to human health.  
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5. Conclusions 

M. edulis accumulates SPX and DSP toxins when exposed to natural and artificial 

toxic phytoplankton assemblages. Adult mussels assimilate, metabolize, translocate 

and excrete SPX- and OA-related chemicals when fed with A. ostenfeldii and P. lima. 

The simultaneous exposure to both algae increased the rate of nearly all processes. 

Lipid peroxidation was identified as a major excretion pathway, but other metabolites 

can provide alternatives for toxin depuration. In addition, we have found some toxins, 

e.g. SPX D and 5-hydroperoxy-7-hydroxy-2,4-dimethylene-heptyl okadaate, which 

are directly rejected or rapidly excreted through an unknown mechanism. To improve 

our understanding of the ADME processes in mussels, we would recommend future 

research to explore both this mechanism as well as the effect of abiotic variability on 

the different kinetics found in this study. 
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Bivalves in a changing environment: 

the effect of two common marine toxins, and their producers, 

on the survival and immunological resilience of mussel larvae 
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Abstract 

Harmful algal blooms (HABs) and marine diseases are both increasing in severity, 

frequency, and geographical scale around the world. As a result, bivalve populations 

are increasingly facing the combined threat of toxic algae and marine pathogens. 

Individually, both stressors are known to affect the recruitment of ecologically and 

economically important bivalve species. When combined, HABs and pathogens could 

further reduce the growth, viability and development of bivalve larvae. Yet, to date, 

little is known about the effects of HABs on the immunological resilience of bivalves. 

Here, we investigate whether two most common toxins of the North Sea influence the 

larval viability, development and innate immune response of blue mussel larvae. 

Embryos of Mytilus edulis were exposed (48h) to the toxic diatom Pseudo-nitzschia 

multiseries or the toxic dinoflagellate Prorocentrum lima. In addition to varying cellular 

densities, the larvae were also exposed to six different concentrations of their 

respective toxins: i.e. domoic acid (DA) and okadaic acid (OA). After 48 hours, OA 

was found to have significantly reduced the viability (p < 0.01) at concentrations as 

low as 37.8 µg.l-1. This toxicity was attributed to its ability to inhibit larval protein 

phosphatases in vitro (p < 0.001). While P. multiseries, P. lima, and DA did not have 

such an effect on the viability of the larvae, they increased the phenoloxidase (PO) 

innate immune activity of the mussel larvae. These results suggest that the innate 

immune response of even the earliest life stages of bivalves is susceptible to the 

presence of HABs. 
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1. Introduction 

Harmful algal blooms (HABs) are globally increasing in frequency, magnitude and 

scale due to shipping, natural dispersal, eutrophication, climate change, overfishing 

and aquaculture activities (Anderson et al., 2012). Harmful phytoplankton can cause 

significant economic and environmental losses through hypoxia, shading, physical 

disturbance, unpalatability and the production and release of potent marine toxins 

(Glibert et al., 2005; Granéli and Turner, 2006; Hoagland and Scatasta, 2006). These 

phycotoxins are readily accumulated by commercially important filter feeding bivalves 

(e.g. oysters, clams, mussels and scallops; FAO, 2004). As a result, toxic HABs pose 

a significant threat to both the food safety and the food security of mankind. Shellfish 

farming provides nearly a quarter of the global aquaculture production, equivalent to 

10% of the the world’s annual seafood production (FAO, 2012). Still, these numbers 

are expected to rise as the human population and, hence, the demand for (sea)food 

continues to grow (Speedy, 2003; UN, 2015). 

In addition to their economic value, bivalves are often keystone species of their 

respective habitats. They bioturbate sediment, create natural hard substrate reefs 

and play a major role in the bentho-pelagic coupling (Dame, 2011). Crucially, it has 

been shown that the collapse of bivalve populations can significantly increase the risk 

of HABs in certain coastal areas (Gobler and Sunda, 2006, 2012). Wild and cultured 

populations of these ecosystem engineers have a crucial thing in common. Both are 

dependent on the recruitment of “spat”, i.e. the settlement of pelagic veliger larvae 

(Lucas and Southgate, 2011; Seitz et al., 2001; Smaal, 2002). To start their life-cycle, 

i.e. before settling down as epi- or endobenthos, bivalves undergo an extended, 

highly dispersive larval phase. These early life stages are, however, characterized by 

a high interannual variation in abundance (Dame, 2011). Despite their economic and 

ecological importance, we do not fully understand which environmental conditions 

affect the larval viability of bivalves (Pronker et al., 2008). 

The earliest life-stages of bivalves are highly sensitive to abiotic stress (e.g. pH), 

chemical pollution and other environmental disturbances (ASTM, 2004). Pathogens 

such as Vibrio spp., in particular, are known to cause severe mortality among larvae 

(Paillard et al., 2004). Now, the evidence is mounting that HABs affect larvae as well 

(Bricelj et al., 2011; Jeong et al., 2004; Padilla et al., 2006; Rolton et al., 2014). Yet, 

little is known about the potential for mixed adverse effects between both stressors. 

As both harmful algae and marine pathogens may soon benefit from climate change 

(Burge et al., 2014; Vezzulli et al., 2016; Wells et al., 2015), their combined toxicity 

increasingly threatens bivalve populations.  
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The high availability of organic matter and detritus during algal blooms promotes 

the growth of associated bacterial communities (Buchan et al., 2014; Cole, 1982). 

While we do not fully understand the role and diversity of bacteria in HAB dynamics, 

it is clear that notorious pathogens such as Vibrio spp. are present in HAB associated 

communities (Eiler et al., 2006; Mourino-Perez et al., 2003; Simidu et al., 1971). Yet, 

little is still known about the mixed effect of HABs and pathogens on bivalve larvae. 

Despite evidence that HABs affects the number, shape and function of haemocytes 

in adult bivalves (Hégaret and Wikfors, 2005a, 2005b; Prado-Alvarez et al., 2013), 

not a single study to date has looked into the effect of HABs on the immunological 

resilience of bivalve larvae. 

To enhance our understanding of the impacts of HABs on bivalve populations, this 

study investigates whether two common North Sea toxins, and their producers, can 

affect the viability and innate immune response of blue mussel Mytilus edulis larvae. 

Domoic acid (DA) which is produced by the diatom genus Pseudo-nitzschia spp., and 

okadaic acid (OA) which is found during dinoflagellate blooms of Dinophysis spp. or 

Prorocentrum spp. are found around the world, and appear to be increasing globally 

(Hattenrath-Lehmann et al., 2013; Reguera et al., 2014; Trainer et al., 2012). Both 

DA and OA are genotoxic (Dizer et al., 2001; González-Romero et al., 2012) and are 

known to affect the early life stages of several invertebrates (Escoffier et al., 2007; 

Liu et al., 2007; Patel and Whitaker, 1991; Picard et al., 1989; Tiedeken et al., 2005). 

Yet, to date, no studies have assessed the impact of these toxins on the recruitment 

of bivalves. Moreover, not a single study has examined the phenoloxidase (PO) 

innate immune activity, which is known to respond to several anthropogenic stressors 

(Bado-Nilles et al., 2010; Ittoop et al., 2009; Luna-Acosta et al., 2011, 2012), and 

HAB exposure. Here, the common model organism M. edulis was used to investigate 

whether these types of toxic HABs can have an effect on the viability, development 

and PO activity of bivalve larvae. To this end, blue mussel embryos were exposed for 

48h to various concentrations of Pseudo-nitzschia multiseries, Prorocentrum lima 

and their respective toxins DA and OA. The results of this study include assessments 

of (1) the viability of the larvae, (2) the development of the embryos into veliger 

larvae, (3) the PO activity as an innate immunological response, and (4) the inhibition 

of larval protein phosphatase (PP) activity by OA.  

  



 

Acute toxicity 

 
 85 

 

2. Material and Methods  

2.1 Algal cultures and toxins 

Cultures of Pseudo-nitzschia multiseries (CCAP 1061/32) and Prorocentrum lima 

(CCAP 1136/9) were obtained from the Culture Collection of Algae and Protozoa 

(CCAP) in Oban, Scotland. A second strain of P. multiseries (CLN-47) was kindly 

provided by the Pacific Northwest Center for Human Health and Ocean Studies 

(University of Washington, Seattle, USA). f/2 medium (Guillard and Ryther, 1962) and 

L1 medium (Guillard and Hargraves, 1993), prepared from Instant Oceantm artificial 

seawater (Belcopet, Belgium) were used for P. multiseries and P. lima, respectively. 

Algae were grown semi-continuously by replacing 80% of the culture volume when 

needed. Algal densities were counted three times a week with a Sedgewick Rafter 

counting chamber (SPI supplies, West Chester, USA) to determine the growth phase. 

Experiments used cultures in the early stationary phase, i.e. when the toxin content is 

generally highest (Lelong et al., 2012; Nascimento et al., 2005). Toxin exposures 

used HPLC grade domoic acid (≥ 90%) (Sigma-Aldrich, Steinheim, Germany) and 

HPLC-grade okadaic acid (≥ 98%) (LC Laboratories, Woburn, USA), dissolved in 

100% ethanol and stored as suggested by the National Research Council of Canada: 

DA stocks (1 µg.l-1) were kept at 4°C while OA stocks (0.3 µg.l-1) were kept at -20°C. 

 

2.2 Spawning procedures 

Between March and April, i.e. the natural spawning season of Mytilus edulis, adult 

mussels of approximately 3 to 4 cm were collected from breakwaters on the Belgian 

North Sea coast. These were then transported on ice, hand cleaned and placed in a 

recirculating, filtered aquarium at a density of 2 individuals per litre (8°C, 34 PSU). 

Mussels were kept healthy with daily ad libitum additions of a commercial algal paste 

(Shellfish Diet 1800 ®, Varicon Aqua Solutions, UK) and weekly replenishments of 

the artificial seawater (Instant Oceantm, Belcopet, Belgium). Following the E724-98 

ASTM standard guideline for acute toxicity tests with bivalve embryos, spawning was 

induced by moving mussels between water baths of 18°C and 26°C (ASTM, 2004). 

Reproducing individuals were separated to isolate sperm and eggs. After checking 

the quality of these gametes, sperm and eggs were mixed to achieve a controlled 

fertilization. The resulting embryos were deemed suitable for a larval test when ≥80% 

of the eggs were fertilized (i.e. displayed a polar body). 
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2.3 Embryonic development test 

Tests were performed in accordance with the ASTM standard E724-98 (2004). 

Algal cultures were diluted with ASTM artificial seawater (34 PSU) to obtain six 

densities of P. multiseries (140 to 14,000 cells.ml-1) or P. lima (15 to 1500 cells.ml-1). 

The source culture of each algae was subjected to cellular toxin extraction (ref. 2.6). 

Purified toxins were diluted with ASTM artificial seawater to get six concentrations of 

domoic acid (25 to 800 µg.l-1) or okadaic acid (10 to 320 µg.l-1). Six 2 ml replicates of 

each dilution were placed in 24-well cell culture plates. The remainder was stored for 

toxin analysis. Control treatments included ASTM seawater and a solvent control of 

0.001% EtOH which is equivalent to the EtOH content of the highest toxin treatment 

(i.e. OA 320 µg.l-1). Embryonic tests were initiated by introducing approximately 160 

fertilized eggs (i.e. 10 µl of a dense egg suspension) to each well. The culture plates 

were then placed at 15°C in the dark. After 48h, 50 μl of formaldehyde was added to 

each well to terminate the assay. Inverse microscopy was used to determine larval 

viability and development: Veliger larvae with a closed D-shaped prodissoconch were 

scored as viable, while embryos with severe growth delays and malformations were 

seen as non-viable. Like Mottier et al. (2013), we distinguished “perfectly developed” 

larvae that are straight-hinged with well-rounded corners, from “viable imperfect” 

larvae with concave or convex hinges and more sharply defined corners (Fig. 5.1). 

 

Figure 5.1: Categories for the visual assessment of M. edulis larvae: (A) non-developed 

(B) misdeveloped or growth delayed (C) viable imperfect (D) perfectly developed veliger.  
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2.4 Phenoloxidase activity 

The transformation of L-3,4-dihydroxyphenylalanine (L-DOPA) to dopamine can be 

used to determine the phenoloxidase (PO) activity of tissues (Baruah et al., 2010). 

First, sufficient cellular material (> 0.1g) needed to be gained. To this end, five 200 ml 

replicates with 100,000 embryos each were exposed for 48 hours to environmentally 

relevant concentrations P. multiseries (1400 cells.ml-1) or P. lima (150 cells.ml-1) and 

the highest non-lethal concentrations of their toxins: 800 µg DA.l-1 or 150 µg OA.l-1. 

Exposures were performed at 15°C in the dark. After two days, larvae were collected 

on a 50 µm sieve, transferred to 2 ml centrifuge tubes, weighed, flash-frozen in liquid 

nitrogen and stored at -86°C. 

Before the PO analysis, a buffer was made (0.43% NaCl, 1.25 mM EDTA, 0.5% 

Tritontm X, 5 mM CaCl2) in which a 0.5 mM stock solution of L-DOPA was prepared 

(all chemicals from Sigma-Aldrich, Steinheim, Germany). Then, the mussel larvae 

were homogenized in buffer (10% w:w) using a pestle and stored overnight at 4°C. 

Debris was removed with 0.22 µm cellulose-acetate Spin-X® centrifuge tube filters 

(10,000 g, 20 min) the following day. Triplicate 20 µl aliquots of the resulting extracts 

were placed in a 96-well tissue culture plate with 200 µl of the L-DOPA solution. 

Blank buffer samples were added to assess the non-enzymatic dopamine production. 

The culture plates were dark-incubated at 30°C and the absorbance (λ = 490 nm) 

was measured three times a day during the next 48 hours using a Thermo Multiskan 

Ascent 96/384-well spectrophotometer (Thermo Scientific, San Jose, CA, USA). 

 

2.5 Protein Phosphatase activity 

The dephosphorylation of p-nitrophenylphosphate (pNPP) to p-nitrophenol is used 

to measure the protein phosphatase activity of tissues (Takai and Mieskes (1991). As 

before (see above), 10 times 100,000 embryos were cultured, collected, weighed and 

stored. Larvae were pulverized by hand with a pestle in 350 µl of a Tris-EDTA buffer 

(pH 8-8.5) containing 1 µM phenylmethanesulfonylfluoride and 11.7 µM leupeptine. 

Cellular debris was removed using 0.22 µm cellulose-acetate Spin-X® centrifuge 

tube filters (10,000 g, 20 min). Triplicate 100 µl aliquots of each sample were placed 

in a 96-well tissue culture plate and 50 µl of 20 mM pNPP disodium salt hexahydrate 

(Sigma-Aldrich, Steinheim, Germany) in buffer was added. Five biological replicates 

were spiked with 8.5 ng OA in 20 µl buffer, resulting in a final ambient concentration 

of 50 µg OA.l-1. The other five biological replicates were spiked with blank buffer as a 

control. PP activity was measured at 5-minute intervals for two hours with the Thermo 

Multiskan Ascent 96/384-well spectrophotometer (λ = 405 nm).  
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2.6 UHPLC-MS/MS analysis 

The protocols of Bravo et al. (2001) and Cerino et al. (2005) were used to extract 

the intracellular and extracellular toxins of the early stationary phase cultures of 

Pseudo-nitzschia multiseries and Prorocentrum lima, respectively. DA samples were 

purified by solid phase extraction on Strata-X polymeric reversed phase cartridges 

(33 µm, 100 mg / 3 ml) (Phenomenex, Utrecht, the Netherlands) using the acidic 

procedure of Wang et al. (2007). Likewise, a new solid phase extraction method was 

developed to isolate dissolved OA: The same Strata-X (33 µm, 100 mg / 3 ml) 

polymeric reversed phase cartridges were conditioned and washed with 3 ml of 70% 

acetonitrile (ACN) and 3 ml ultrapure water before passing 2 ml of OA samples over 

the column. Salts were then removed with 8 ml of ultrapure water and the absorbed 

toxins were eluted with 2 ml of 70% ACN. 

All of the resulting toxin extracts were analysed by ultra-high performance liquid 

chromatography tandem mass spectrometry (UHPLC-MS/MS). Samples were put in 

an Accela Autosampler and Degasser, coupled to an Accela UHPLC pump fitted with 

an Acquity UPLC BEH C18 column (Ethylene Bridged Hybrid - 1.7 µm, 100x2.1 mm; 

Waters, Milford, MA, USA) for compound separation. Mass spectrometry was done 

by a TSQ Vantage mass analyser (Thermo Fisher Scientific, San Jose, USA), fitted 

with a heated electrospray ionisation (HESI-II) interface. The system was operated in 

the positive ion mode, using the operational parameters of the Community Reference 

Laboratory for Marine Biotoxins (CRLMB, 2009) and the work of Suzuki et al. (2009). 

Quantification was based on 8-point calibration curves of certified reference materials 

(CRM-OA-c and CRM-DA-f) from the National Research Council (Ottawa, Canada). 

 

2.7 Data analysis  

First, the larval viability and larval development were calculated for each replicate. 

Viability was defined as the sum of all viable larvae (perfect LD and imperfect LC), 

divided by the total number of larvae (Eq. 5.1). The development was determined as 

the fraction of imperfect larvae (Eq. 5.2). Based on the larval viability, the LC50 was 

calculated through the “drc” R package (Ritz and Streibig, 2005). Between-group 

comparisons were then made using non-parametric Mann-Whitney U (MWU) and 

Kruskall-Wallis (KW) tests after visually assessing the distribution of each group. 

    (5.1) V% =
(𝐿𝐶+𝐿𝐷)

(𝐿𝐴+𝐿𝐵+𝐿𝐶+𝐿𝐷)
 

    (5.2) D% =
𝐿𝐶

(𝐿𝐴+𝐿𝐵+𝐿𝐶+𝐿𝐷)
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To determine the enzymatic PO activity, the average optical density of the blank 

samples – which is caused by spontaneous, non-enzymatic dopamine production - 

was subtracted from the optical density of each sample for every time point (Eq. 5.3). 

Next, the increase in optical density over time (ΔOD) was determined by subtracting 

the initial optical density of samples (OD0) from all ensuing measurements (Eq. 5.5). 

Lastly, the optical density was adjusted for mortality (m) as dead larvae are expected 

to contribute to the weight of the samples, but not the signal of the immune response. 

Outliers resulting from human error were removed. Treatments were compared by a 

one-factor ANOVA with unequal sample size. Pairwise group comparisons used the 

Least Significant Differences test (LSD). 

    (5.3) OD𝑡 = 𝑂𝐷𝑠𝑎𝑚𝑝𝑙𝑒,𝑡 − 〈𝑂𝐷〉𝑏𝑙𝑎𝑛𝑘,𝑡 

    (5.4) ∆OD = 𝑂𝐷𝑡 − 𝑂𝐷0 

    (5.4) ∆OD𝑎 =
∆OD

(1−𝑚)
 

 

PP activity (ΔOD.g-1) was standardized by calculating the dividing the average 

increase in optical density (ΔOD; Eq. 5.4) by the wet weight of the sample (Eq. 5.6). 

This was done for each time-interval, creating two time series of PP activity: one with 

OA and one without OA. The slopes of the fit lines were compared using the t-test 

method of Andrade and Estévez-Pérez (2014). 

    (5.5) ∆OD𝑔 =
𝑂𝐷𝑡−𝑂𝐷0

𝑊
 

 

 

3. Results 

3.1 Algal growth and toxin production 

The two strains of Pseudo-nitzschia multiseries entered the stationary phase at 

cell densities of 255,000 cells.ml-1 (CLN-47) and 261,000 cells.ml-1 (CCAP 1061/32). 

At this point, CLN-47 produced more toxins than CCAP 1061/32: 0.06 pg.cell-1 versus 

0.02 pg.cell-1 intracellular and 81.6 µg.l-1 (0.32 pg.cell-1) vs. 24.0 µg.l-1 (0.09 pg.cell-1) 

extracellular DA. Prorocentrum lima reached a density of 62,000 cells.ml-1 during the 

stationary phase. At this point, 13.3 µg.l-1 OA (equivalent to 0.2 pg.cell-1) was 

detected in the medium while 1.2 pg intracellular OA.cell-1 was detected. Based on 

these results, the extracellular amount of toxins was calculated for each exposure to 

algae (Table 5.1). In addition, P. lima was found to produce non-quantifiable amounts 

of dinophysistoxin-1 using the ToxID software (Thermo Scientific, San Jose, USA).  
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Table 5.1: An overview of the exposure conditions of the embryonic development test. 

Nominal and measured toxin concentrations (µg.l-1) as well as the cell density and equivalent 

toxin concentration, calculated from the measured production per cell, are shown. 

Treatment Concentrations 

Domoic acid - nominal   25 50 100 200 400 800 µg.l-1 
  DA - UHPLC-MS verified 18.1 49.3 109.0 214.0 466.4 723.7 µg.l-1 
P. multiseries CCAP 1061/32 140 700 1400 7000 14000   cells.ml-1 
  Eq. extracellular DA   0.01 0.06 0.13 0.64 1.29   µg.l-1 
P. multiseries CLN-47   140 700 1400 7000 14000   cells.ml-1 
  Eq. extracellular DA   0.04 0.22 0.45 2.24 4.48   µg.l-1 
  

  
      

Okadaic acid - nominal   10 20 40 80 16 320 µg.l-1 
  OA - UHPLC-MS verified 10.9 19.5 37.8 79.5 162.5 345.2 µg.l-1 
P. lima 

 
  15 75 150 750 1500   cells.ml-1 

  Eq. extracellular OA   0.00 0.02 0.03 0.16 0.32   µg.l-1 

 

 

Figure 5.2: Fraction of viable (left) and misdeveloped (right) M. edulis larvae, exposed for 

48h to okadaic acid (top) or domoic acid (bottom). OA significantly reduced both indicators. 

Toxin concentrations were determined by UHPLC-MS/MS. 
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3.2 Embryonic development and viability of D-larvae 

None of the P. multiseries (up to 14,000 cells.ml-1), P. lima (up to 1500 cells.ml-1) 

or DA treatments (up to 723.6 µg.l-1) had an effect on the viability of Mytilus edulis. 

OA, on the other hand, significantly reduced the viability of M. edulis veliger larvae 

(KW p < 0.001; Fig. 5.2) at concentrations greater than 19.5 µg.l-1 (MWU p < 0.01). 

0.001% ethanol (equivalent to the 320 µg.l-1 OA treatment) did not affect the larvae. 

The LC50 of OA was 242.4 ± 8.1 µg.l-1 for viability and 93.5 ± 19.5 µg.l-1 for the larval 

development. None of the other treatments affected the larval development (Fig. 5.3). 

 

 

Figure 5.3: Fraction of viable (left) and misdeveloped (right) M. edulis larvae, after a 48h 

exposure to P. multiseries (CCAP1061/32; top and CLN-47; middle) or P. lima (bottom). 

None of the treatments had a significant effect.  
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3.3 Phenoloxidase and protein phosphatase activity 

Bloom densities of both strains of P. multiseries (cf. above) triggered an increase 

in larval PO activity during the first 22 h of the enzyme assay (Fig. 5.4: LSD p < 0.01). 

Likewise, a 48h exposure to P. lima (150 cells.ml-1) induced a significant increase in 

larval PO activity during the first hours of the PO assay (LSD p < 0.05). In addition, 

we found a difference in response to the two strains of P. multiseries (LSD p < 0.05). 

By contrast, the PO activity i.e. the mortality adjusted optical density (ΔODa) of both 

the DA (623.2 µg.l-1) and the OA (146.9 µg.l-1) treatment were similar to the control. 

However, we found that the PP activity of larval enzyme extracts could be inhibited 

by 42% by 50 µg.l-1 OA (Fig. 5.5: significantly different slopes p < 0.001). 

 

 

Figure 5.4: Phenoloxidase immune activity of veliger larvae - quantified by changes in the 

optical density (λabs = 490nm) of extracts due to the production of dopamine and adjusted for 

larval mortality (ΔODa±SE) - after 48h of in vivo exposure to okadaic acid (146.9 µg.l-1 OA), 

domoic acid (623.2 µg.l-1 DA), P. lima (150 cells.ml-1) and P. multiseries (1400 cells.ml-1). The 

live algae significantly increased the PO activity, which was not observed for either toxin.  
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Figure 5.5: Protein phosphatase activity of enzyme extracts of veliger larvae. On average, 

the control extracts (black) produced 42% more p-nitrophenol than extracts with 50 µg.l-1 OA 

(blue). The in vitro PP activity was expressed as the optical density increase (λabs = 405nm) 

over time per unit wet weight (g) of the tissue (mean ΔOD.g-1 ±SD). 

 

4. Discussion 

This study is the first to explore whether DA and OA, two common marine toxins, 

pose a significant threat to the recruitment of wild and cultured bivalves. In addition, 

this study provides the first evidence that harmful algae can induce responses of the 

phenoloxidase innate immune system. Overall, blooms of Pseudo-nitzschia spp. 

were of low concern as these algae, and their toxin DA, had no distinguishable effect 

on the development of M. edulis larvae. OA producing blooms of Prorocentrum spp. 

and Dinophysis spp., by contrast, could potentially affect the recruitment of bivalves, 

as environmentally relevant concentrations of OA were shown to decrease larval 

viability through the inhibition of protein phosphatase activity. Both P. multiseries and 

P. lima were found to trigger the larval phenoloxidase innate immune response. 

Pseudo-nitzschia multiseries is frequently observed at densities >1000 cells.ml-1 

(Orlova et al., 2008; Parsons et al., 2013; Stonik et al., 2011). Reports of natural DA 

concentrations are scarce, but range from 3 µg.l-1 to 136 µg.l-1 (Fawcett et al., 2007; 

Trainer et al., 2012, 2007). Crucially, DA production may vary between strains and is 

known to depend on environmental conditions (Mos, 2001; Trainer et al., 2012). 

Strain-dependency was also observed here. Despite identical culture conditions, the 

intra- and extracellular DA levels of CLN-47 exceeded those of the CCAP strain by 

nearly a factor four: 0.02 vs. 0.06 pg.cell-1 intracellular DA and 0.09 vs. 0.32 pg.cell-1 

extracellular DA. The toxin levels of both were, however, within the ranges found by 

Fuentes and Wikfors (2013): i.e. 0.01-1.5 pg.cell-1 and 0.01-2.9 pg.cell-1, respectively. 
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Experimental exposures to Pseudo-nitzschia multiseries (140 to 14,000 cells.ml-1) 

and DA (up to 723.6 µg.l-1) deliberately exceeded the environmental concentrations 

by a wide margin. Despite of this, no significant differences in the larval viability and 

development of M. edulis were found. Based on our results, it seems unlikely that 

blooms of Pseudo-nitzschia spp. affect the recruitment of bivalves. Liu et al. (2007), 

however, show that the viability, growth and development of king scallops larvae 

(Pecten maximus) can be reduced after a chronic exposure (28 days) to 30 µg l-1 DA. 

While the absence of such effects here could be associated with species-dependent 

sensitivity differences and the vast difference in exposure time, we are not convinced 

that persistent chronic exposure to DA is environmentally relevant. Pseudo-nitzschia 

blooms can, indeed, last for weeks but their densities exhibit high temporal variability 

(Liefer et al., 2009). As a result, DA levels are also likely to fluctuate noticeably as DA 

degrades rapidly in natural water matrices (Bouillon et al., 2006). 

Bloom densities of P. lima (15 to 1500 cells.ml-1) did not affect the viability and 

development of veliger larvae, despite an OA production which was similar to those 

found in literature (Bravo et al., 2001; Koike et al., 1998; Nascimento et al., 2005). 

However, we estimated that the highest simulated bloom of P. lima only produced 

0.32 µg.l-1 extracellular OA (Table 5.1) while significant acute OA toxicity, i.e. reduced 

larval viability, was only found at concentrations of 37.8 µg.l-1 and above (Fig. 5.2). 

The lack of a response is, hence, not surprising. While there are currently no known 

observational records of natural OA concentrations in the range needed for toxicity, 

we suspect that OA levels could reach the required concentrations for acute toxicity 

as Dinophysis blooms can reach densities between 480 cells.ml-1 and 1,300 cells.ml-1 

(Hattenrath-Lehmann et al., 2013; Heddenhorf, 2013; MacDonald, 1994) and 

produce between 10 to 100 pg OA.cell-1 (Andersen et al., 1996; Nielsen et al., 2013). 

As shown here, OA may inhibit protein phosphatases. 50 µg.l-1 reduces PP activity 

in larvae by nearly 50%, which is similar to what was observed in adult mussels 

(Svensson and Förlin, 1998). Protein phosphatases regulate gene transcription, 

cytoskeletal structuring, signal transduction, cellular movement, protein stability, the 

progression of the cell-cycle and apoptosis (Cohen, 2002). These are key processes 

during the successful division, rearrangement and differentiation of embryonic cells. 

Picard et al. (1989) already found that microinjections of OA arrest the development 

of starfish embryos. Subsequent work by Patel and Whitaker (1991) revealed that 

these injections prevent the reformation of nuclear envelopes during mitosis in sea 

urchin embryos. A similar mechanism may very well explain the acute OA toxicity 

observed in M. edulis embryos.  
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Phenoloxidases, which have antibacterial functions, are found in all life stages of 

Mytilus edulis (Coles and Pipe, 1994; Dyrynda et al., 1995; Luna-Acosta et al., 2011). 

While these immunological enzymes are most commonly found in adult haemocytes 

(Luna-González et al., 2003), it is known that embryonic cells - which are also able to 

perform phagocytosis to some extent - have a restricted level of PO activity as well 

(Dyrynda et al., 1995; Luna-González et al., 2003). Previous studies have shown that 

(chemical) stressors tend to reduce the PO activity of several marine organisms 

(Bado-Nilles et al., 2010; Ittoop et al., 2009; Luna-Acosta et al., 2011, 2012). Yet, 

here we demonstrate that P. multiseries (1400 cells.ml-1) and P. lima (150 cells.ml-1) 

increase the PO activity of mussel larvae (Fig 5.3). As these observations could not 

be related to their respective toxins, this effect could be related to the bacteria which 

are associated with the algal cultures. By contrast, DA exposure has been shown to 

increase the number of haemocytes in adult bivalves, while OA does no such thing 

(Dizer et al., 2001; Jones et al., 1995; Malagoli et al., 2008). 

HA may temper as well as aggravate the host-pathogen interactions in bivalves 

(da Silva et al., 2008; Hégaret et al., 2010; Lassudrie et al., 2015). The implications 

of an elevated larval PO activity are, however, largely unknown as the immunological 

role of larval PO is poorly understood. Two scenarios can be envisioned with bivalve 

larvae: HABs could ‘prime’ the prophenoloxidase cascade which would then increase 

the larval resilience to bacterial infections. Such an effect was, for instance, observed 

in heatshock protein Hsp70 fed nauplii larvae of the brine shrimp Artemia franciscana 

(Baruah et al., 2011). Alternatively, HABs may reduce the immunological resistance 

as the immune system is ‘overwhelmed’ or ‘depleted’. The energy allocation towards 

defensive responses may also affect other metabolic processes (e.g. growth) in such 

a manner that these short-term exposure experiments would neglect. 

In recent years, pathogens have caused substantial episodic mortality in both wild 

and cultured bivalve populations (Beaz-Hidalgo et al., 2010; Paillard et al., 2004). As 

both pathogens and harmful algae may benefit from global change in the future 

(Anderson et al., 2012; Burge et al., 2014), the combined pressure by both stressors 

will increasingly affect marine life at all trophic levels. Despite the growing evidence 

that HABs reduce bivalve recruitment (Bricelj et al., 2011; Jeong et al., 2004; Padilla 

et al., 2006; Rolton et al., 2014; Wikfors and Smolowitz, 1995), we still know little 

about the interaction between HABs and the immunological resilience of the earliest, 

most sensitive, life stages of bivalves. To accurately assess the risk of harmful algae, 

we should look beyond the short- or long-term effects of HAB exposure and consider 

including a known pathogen (eg. Vibrio spp.) into our experimental designs. 
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5. Conclusions 

Since the original publication of this research chapter, the toxicity of OA has been 

demonstrated independently in a multitude of cell types of Mytilus galloprovincialis 

(Prego-Faraldo et al., 2015, 2016). Given that OA is perhaps the longest known toxin 

in the world, with a near cosmopolitan distribution, the recent discovery of until now 

unknown genotoxic and cytotoxic effects of OA is troubling. It demonstrates the need 

for continued vigilance and experimental research of this type. As DSP is the most 

common shellfish poisoning type in the Southern Bight of the North Sea (Figure 1.8), 

these results could also have implications for the bivalve communities of the BPNS. 

With the growing spectrum of toxins and harmful species at our disposal, however, it 

is clear that we are not able to reliably predict the effect of HABs on bivalve stocks. 

To improve our knowledge on the effect of HABs on bivalves and bivalve recruitment, 

we will need more robust data on natural dissolved toxin concentrations to design 

enviromentally ecotoxicological studies of this type. For this reason, and to be able to 

fully comprehend whether HABs and their associated effects are truly increasing due 

to climate change, this study urges HAB monitoring programs to include both the 

density and the toxin production of the current harmful phytoplankton. 
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Abstract 

Harmful algal blooms (HABs) and marine pathogens - like Vibrio spp. – are 

increasingly common in coastal waters due to climate change. These stressors affect 

the growth, viability and development of bivalve larvae. Little is known, however, 

about the potential for interactive toxicity between these two concurrent stressors. 

While some mixed exposures have been performed with adult bivalves, no work has 

been done on larvae, which are generally more sensitive to environmental stressors. 

This study examines whether dinoflagellates and bacteria may interactively affect the 

viability and immunological resilience of blue mussel Mytilus edulis larvae. Embryos 

were exposed to ecologically relevant densities (100, 500, 2,500 & 12,500 cells.ml-1) 

of dinoflagellates (Alexandrium minutum, Alexandrium ostenfeldii, Karenia mikimotoi, 

Protoceratium reticulatum, Prorocentrum cordatum, P. lima or P. micans), a pathogen 

(Vibrio coralliilyticus/neptunius isolate or Vibrio splendidus; 105 CFU.ml-1), or both. 

After five days of exposure, significant (p < 0.05) adverse effects on the viability and 

development of the larvae were found for all dinoflagellates (except P. cordatum) and 

V. splendidus. Yet, despite their individual effects, no significant interactions were 

found between the pathogens and the dinoflagellates. The larval viability and the 

phenoloxidase innate immune system responded independently to each stressor, 

which may be related to a differential timing of the effects of HABs and pathogens. 
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1. Introduction 

Over the past decades, mankind has inadvertently altered the marine environment 

through overfishing, eutrophication, invasive species dispersal and global change. 

These changes have led to an increase in the frequency, scale and magnitude of 

harmful algal blooms (HABs), which can cause mass mortality amongst bivalves 

(Anderson et al., 2012; Shumway, 1990). Bivalve populations are key components of 

coastal communities (Dame, 2011; Gutiérrez et al., 2011). Through starvation, 

hypoxia, physical damage to vulnerable tissues (e.g. gills) or the accumulation of 

various marine toxins, HABs may kill bivalves. The associated loss of bioturbation, 

biogenic reefs and bentho-pelagic coupling upsets the biodiversity of multiple trophic 

levels. Moreover, these mortality events directly affect our food security as >10% of 

the global annual seafood production is derived from cultured molluscs (FAO, 2016). 

Both wild and cultured bivalve populations rely on the availability of wild larvae 

(Lucas and Southgate, 2011; Seitz et al., 2001; Smaal, 2002). These early life stages 

are sensitive to abiotic stress (ASTM Standard E724-98, 2012), bacterial infections 

(Paillard et al., 2004) and harmful algae (e.g. Bricelj et al., 2011; Jeong et al., 2004; 

Padilla et al., 2006; Rolton et al., 2014). Recently, it was shown that HABs may also 

affect the phenoloxidase activity (PO) - which has antibacterial functions in adult 

bivalves (Hellio et al., 2007; Luna-Acosta et al., 2011; Zhou et al., 2012) – of larvae, 

potentially increasing their susceptibility towards pathogenic bacteria (Chapter 5). 

Like HABs, pathogens are long known to cause mass mortality among bivalve stocks 

(Beaz-Hidalgo et al., 2010; Paillard et al., 2004; Shumway, 1990). In addition, these 

stressors are known to co-occur since the organic matter and detritus made by HABs 

promotes the growth of benign and pathogenic bacteria (Cole, 1982; Doucette, 1995; 

Eiler et al., 2006; Mourino-Perez et al., 2003; Simidu et al., 1971). In fact, pathogens 

and HABs may increasingly co-occur, since both will benefit from climate change 

(Anderson et al., 2012; Burge et al., 2014). Yet, despite all of this, little is known 

about the potential for interactive adverse effects between both stressors. 

To investigate the combined effect of HABs and pathogens, this study examined 

the individual and combined effects of these stressors on bivalve larvae. To this end, 

embryos of the blue mussel Mytilus edulis were exposed to various mixtures of (toxic) 

dinoflagellates (Alexandrium minutum, Alexandrium ostenfeldii, Karenia mikimotoi, 

Protoceratium reticulatum, Prorocentrum cordatum, P. lima or P. micans) and known 

pathogens (a Vibrio coralliilyticus/neptunius-like isolate or Vibrio splendidus). After 

five days of embryonic exposure, the larval viability, development and PO activity 

were all determined.  



 

Chapter 6 

 
100   

 

2. Material and Methods  

2.1 Algal cultures 

Dinoflagellates came from different sources: Prorocentrum lima (CCAP1136/9) 

and P. micans (CCAP1136/20) were supplied by the Culture Collection of Algae and 

Protozoa (Oban, Scotland, UK). Alexandrium ostenfeldii (CCMP1773) originated from 

the National Center for Marine Algae and Microbiota (East Boothbay, Maine, USA). 

A. minutum (SCCAP K-0993), Karenia mikimotoi (SCCAP K-0260), Protoceratium 

reticulatum (SCCAP K-1478) and Prorocentrum cordatum (SCCAP K-1501) were 

obtained from the Scandinavian Culture Collection of Algae and Protozoa 

(Copenhagen, Denmark). All these North Sea species were cultured in L1 medium 

(Guillard and Hargraves, 1993), prepared from filtered and autoclaved artificial 

seawater (32 PSU, pH 8; Instant Oceantm, Belcopet, Belgium). Batch cultures were 

maintained by replacing 80% of the medium every 2 weeks. Algae were grown at 

20°C with a light-dark cycle of 12 hours (300-600 µmol m-2 s-1) and culture growth 

was monitored by frequent cell counts using a Sedgewick Rafter counting chamber 

(SPI supplies, West Chester, USA) and a Nikon TMS-F light microscope (40x). All 

experiments were performed with cultures in the early stationary phase. 

 

2.2 Bacterial cultures 

Two known pathogens of bivalve larvae, i.e. Vibrio splendidus (EU358783) and a 

Vibrio coralliilyticus/neptunius-like isolate (EU358784) – further simply referred to as 

V. coralliilyticus - were isolated at the Glenhaven Aquaculture Center (New Zealand). 

These strains are known to infect and kill Greenshell mussel (Perna canalicus) larvae 

(Kesarcodi-Watson et al., 2009a). Bacterial stocks were frozen at -80°C in sterile 

Marine Broth 2216 (Difco, BD, New Jersey, USA) containing 30% glycerol. Before the 

experimental work, bacteria needed to be reactivated at 25°C by incubating 200 µl of 

bacterial stock with 10 ml of sterile Marine Broth in 50 ml falcon tubes on a shaker. 

This culturing procedure was repeated daily. Bacterial densities were counted with a 

Thermo Aquamate spectrophotometer (Thermo Fisher Scientific, San Jose, USA) 

operating at 550 nm using the method of Baruah et al. (2011). All procedures were 

performed in a Holten LaminAir laminar flow cabinet to prevent contamination 

(Thermo Fisher Scientific, San Jose, USA). 
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2.3 Viability and development 

Fecund mussels were collected from breakwaters near Middelkerke (Belgium) 

between January and May 2015. These were placed in a recirculating aquarium 

(8°C, 34 PSU), filled with artificial seawater (Instant Oceantm, Belcopet, Belgium) and 

fed ad libitum (± 10 µl.l-1) with Shellfish Diet 1800 (Varicon Aqua Solutions, UK). 

Spawning was induced, in accordance with the standard E724-98 ASTM guideline 

(ASTM, 2012), by moving the mussels between water baths of 18°C and 26°C. 

Sperm and eggs of multiple individuals were isolated, purified and combined in a 

single fertilization. Gamete quality was visually assessed throughout the subsequent 

hour. Embryos were used when ≥80% of the eggs had developed a polar body. 

 

2.4 Embryonic development test 

Sterile 24-well tissue culture plates were filled with 2 ml of ASTM artificial seawater 

containing 100, 500, 2,500 or 12,500 cells.ml-1 of one of seven dinoflagellate species 

(Alexandrium minutum, A. ostenfeldii, Karenia mikimotoi, Protoceratium reticulatum, 

Prorocentrum cordatum, P. lima or P. micans). Each series was made in threefold: 

once as single exposures, once with Vibrio coralliilyticus (105 CFU.ml-1) and once 

with Vibrio splendidus (105 CFU.ml-1). Each treatment was replicated six times. 

Control treatments included pure ASTM (i.e. 0 cells.ml-1 algae and no pathogens) 

and two single exposures to V. coralliilyticus or V. splendidus (105 CFU.ml-1). As 

recommended by ASTM (2004), additional replicates of the control (18) and the 

Vibrio control treatments (12) were made to potentially detect diminishing egg quality 

and quantity between the start, middle and end of the spiking process. Such patterns 

were not detected. Around 120 fertilized eggs were transferred to each well and the 

plates were incubated at 18°C with a light-dark cycle of 12h/12h. 

Short-term (48h) exposure assays with bivalve embryos typically determine the 

effect of stressors by the shape of the veliger larvae (ASTM, 2004). If the exposure is 

prolonged past 48 hours, however, dead but well-formed larvae are indistinguishable 

from healthy, D-shaped, veliger larvae (personal observations). For this reason, a 

staining procedure was developed and optimized in preliminary experiments. After 

four days, 25 µl of 2.4 mM methylene blue (10% EtOH) was added to all treatments. 

This dye stains actively filtering larvae while dead or moribund larvae are colourless. 

After five days, the development was halted with 25 µl of 30% formaldehyde. A 40x 

Oxion inverse light microscope (Euromex, Arnhem, The Netherlands) was used to 

distinguish and count the healthy (i.e. blue) veliger from larvae with compromised 

feeding (i.e. non-blue) and underdeveloped larvae (i.e. non-veliger). 
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2.5 Phenoloxidase activity 

Glass jars of 500 ml were filled with 200 ml ASTM seawater solutions containing 

one of six dinoflagellates (Alexandrium minutum, A. ostenfeldii, Karenia mikimotoi, 

Prorocentrum cordatum, P. lima or P. micans; 2,500 cells.ml-1). Of each, five single 

exposures and five replicates with Vibrio splendidus (105 CFU.mL-1) were prepared. 

V. coralliilyticus was excluded from this test based on earlier results (ref. section 3.1). 

Control treatments with pure ASTM or V. splendidus were also replicated five times. 

Around 100.000 embryos were added to each vessel before they were incubated at 

18°C, with a 12h light cycle. After five days, larvae were collected on a 37 µm sieve, 

flash-frozen in liquid nitrogen and stored at -86°C. Larval PO activity was determined 

by the transformation of L-3,4-dihydroxyphenylalanine to dopamine, as explained in 

chapter 5 (section 3.3). Three aliquots of each biological replicate were analysed. 

Over the course of 48 hours, the optical density of the samples was determined by a 

Thermo Multiskan Ascent 96/384-well spectrophotometer operating at 490 nm. 

 

2.6 Data analysis 

Due to cell lysis, conventional indices (cfr. chapter 5) were not appropriate here. 

Larval viability was, therefore, defined as the number of healthy (i.e. blue) veliger 

larvae divided by the average total number of larvae in the control treatment. Larval 

development was defined as the total number of veliger larvae (blue and non-blue) 

divided by the average total number of larvae in the control (Eq. 6.1 & 6.2). The larval 

viability and larval development were fitted with a three-parameter log-logistic model 

using the “drc” package of Ritz and Streibig (2005). Each dinoflagellate yielded three 

dose-responses: one without pathogens, one with Vibrio coralliilyticus and one with 

Vibrio splendidus. The estimated slope, EC50 and upper limit of these three models 

were then compared by means of a Z-test. 

    (6.1) V% =
𝐵

〈𝐵+𝑛𝐵+𝐷〉𝑐𝑜𝑛𝑡𝑟𝑜𝑙
 

    (6.2) D% =
𝐵+𝑛𝐵

〈𝐵+𝑛𝐵+𝐷〉𝑐𝑜𝑛𝑡𝑟𝑜𝑙
 

 

with V% and D% representing the viability and development rates, respectively. B, 

nB and m are the number of blue, non-blue and dead larvae of each replicate. 
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The enzymatic transformation of L-DOPA to dopamine was used to study the 

phenoloxidase activity. First, the average autoxidation of L-DOPA - determined from 

samples without enzymes - was subtracted from the optical densities of each sample. 

Then, the increase in optical density (ΔOD) was calculated for each sample, adjusted 

for mortality (m) based on the embryonic development test, and fitted to the following 

linear regression model (Eq. 6.3). 

(6.3) 
ODt − OD0

1 − m
= ∆ODm~ α[D] + β[V] + γ[D][V] + δt 

 

This basic linear regression model was first used for each dinoflagellate. In short, 

the mortality adjusted optical density (ΔODm) was expressed as a function of the 

presence-absence of a dinoflagellate [D], the presence-absence of V. splendidus [V], 

an interaction term between both [D]x[V] and time [t]. The Least Squares F-test was 

then used to remove non-significant parameters through backward elimination from 

the model of each dinoflagellate. The validity of the residual model was assessed by 

the F-statistic, the R-squared and the distribution of residuals. 

 

3. Results 

3.1 Development and viability of veliger larvae 

Non-exposed Mytilus edulis larvae were in good health after 5 days of growth, 

showing on average 85±12% larval development and 81±12% viability within the 

control treatment. Exposure to Vibrio coralliilyticus improved the larval development 

slightly (+6%; p < 0.05), but did not affect the larval viability (p > 0.05). V. splendidus, 

on the other hand, significantly decreased the larval viability (p < 0.001) - by 16.8% 

on average – but did not adversely affect the larval development (p > 0.05). All algae, 

except Prorocentrum cordatum, had significant adverse effects on the development 

(p < 0.001) and viability of M. edulis larvae (p < 0.05; Fig. 6.1). Alexandrium minutum, 

A. ostenfeldii and Protoceratium reticulatum, in particular, were observed to greatly 

reduce the number of larvae. Neither V. coralliilyticus nor V. splendidus affected the 

response to any of the dinoflagellates. The ECx estimates of the development and 

viability did not differ significantly (p > 0.05) between each of the three density series. 

The data of all three series (i.e. single exposure to algae and both series with Vibrio) 

were, therefore, pooled by dinoflagellate species to improve the ECx estimates 

(Table 5.2).  
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Table 6.1: Toxins and natural bloom concentrations of the dinoflagellates used here. 

Dinoflagellate Toxins 
Bloom 

concentration 
Reference(s) 

A. minutum 
STX; GTX 103-104 cells.ml-1 Ranston et al. (2007); Santos et al. (2014) 

A. ostenfeldii 
SPX or STX; 2.102 cells.ml-1 Hakanen et al. (2012) 

K. mikimotoi 
Gym-A; Gym-B 3.103 cells.ml-1 Silke et al. (2005) 

P. cordatum 
unknown 103-104 cells.ml-1 

Denardou-Queneherve et al. (1999); 
Tango et al. (2005) 

P. lima 
OA; DTX 102-104 cells.g-1 DW Foden et al. (2005) 

P. micans 
unknown 1.104 cells.ml-1 Pybus, (1990) 

P. reticulatum 
YTX 3. 102 cells.ml-1 Álvarez et al. (2011) 

 

 

Table 6.2: Estimates of ECx values (±SE) of each dinoflagellate, ranked by EC50, based 

on the development (DEV) and larval viability (VIA) of Mytilus edulis during a 5d sub-chronic 

embryonic development test. All values expressed as cells.ml-1. 

Strain  EC10 EC20 EC50 

Protoceratium reticulatum DEV 330 ± 139 416 ± 82 616 ± 128 

SCCAP K-1478 VIA 364 ± 321 431 ± 179 574 ± 224 

Alexandrium minutum DEV 449 ± 74 669 ± 74 1322 ± 109 

SCCAP K-0993 VIA 589 ± 133 825 ± 146 1,465 ± 153 

Alexandrium ostenfeldii DEV 2,091 ± 733 3,117 ± 849 6,169 ± 1,105 

CCMP1773 VIA 1,103 ± 433 1,817 ± 528 4,265 ± 774 

Prorocentrum micans DEV 1,621 ± 330 2,747 ± 418 6,767 ± 636 

CCAP1136/20 VIA 1,627 ± 392 2,655 ± 489 6,132 ± 763 

Prorocentrum lima DEV 2,569 ± 507 3,817 ± 575 7520 ± 657 

CCAP1136/9 VIA 2,657 ± 628 3,876 ± 708 7,392 ± 804 

Karenia mikimotoi DEV 9,783 ± 5,416 11,446 ± 2,307 14,969 ± 6,107 

SCCAP K-0260 VIA 9,749 ± 8,710 11,115 ± 4,703 13,907 ± 5,351 
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Figure 6.1: Dose-response curves of the larval viability of Mytilus edulis after five days of 

exposure to one of six dinoflagellates, one of two pathogens or both. 0 cells.ml-1 represents 

control treatments with and without the pathogens. Bars are mean±SE. Each dinoflagellate, 

and Vibrio splendidus (105 CFU.ml-1), had a significant effect on larval viability (p < 0.05). 
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Figure 6.2: The phenoloxidase activity of M. edulis larvae after 5 days of exposure to 

dinoflagellates (2.500 cells.ml-1), V. splendidus (105 CFU.ml-1), or both. Bars are mean±SE. 

All algae and V. splendidus had a significant effect on the immune response (p < 0.05). 

 

3.2 Phenoloxidase activity 

The measurement of phenoloxidase activity requires at least 0.1 g of tissue. Due 

to cell lysis (see section 3.1), this weight requirement was not met by samples of the 

A. minutum, A. ostenfeldii and P. reticulatum treatments. Two additional samples 

(one of the P. micans with V. splendidus treatment and one of the Karenia mikimotoi 

with V. splendidus treatment) did not meet the minimum weight either. All of the other 

remaining samples were processed and measured as described in section 2.4. 

Dinoflagellates caused species-specific responses (Figure 6.2). The larval PO activity 

increased significantly in the presence of both P. cordatum (p < 0.001; R² 0.83) and 

P. micans (p < 0.05; R² 0.79). By contrast, the larval PO activity was suppressed by 

K. mikimotoi (p < 0.001; R² 0.59) and P. lima (p < 0.001; R² 0.69). V. splendidus 

increased the PO activity in all treatments (p < 0.001). No significant interactions 

were observed between the HAB and V. splendidus exposures (p > 0.05).  
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4. Discussion 

Nearly all bivalve populations exhibit periodical mass mortality. These events are 

caused by multiple stressors like temperature, salinity, viruses, HABs and pathogens 

(Barbosa Solomieu et al., 2015; Beaz-Hidalgo et al., 2010; Bricelj et al., 2011; 

Burdon et al., 2014; Jeffries, 1982; Paillard et al., 2004). Despite of this, we know 

little about interactive effects between stressors like HABs and pathogenic bacteria 

(da Silva et al., 2008; De Rijcke et al., 2015; Hégaret et al., 2010). This study is the 

first to investigate whether pathogens and HABs affect the larval development of 

bivalves interactively. While novel species-dependent responses to both algae and 

pathogens were found, no significant combined effects were observed. Overall, the 

environmentally relevant concentrations of pathogens and dinoflagellates used here 

did not act synergistically on the development or viability of mussel larvae. Similarly, 

the phenoloxidase innate immune activity of the mussel larvae was shown to 

predominantly respond to individual stressors. Despite evidence that these stressors 

may interact both synergistically and antagonistically in adult bivalves, the results of 

this study suggest that pathogenic bacteria and harmful algae do not interact during 

the early development of Mytilus edulis. 

This is the first report of bivalve mortality, sensu lato, caused by P. reticulatum. 

Despite evidence that yessotoxin causes DNA fragmentation and induces apoptosis 

(e.g. Pérez-Gómez et al., 2006; Rubiolo et al., 2014), previous work on Pacific oyster 

C. gigas larvae did not find any mortality after exposure to P. reticulatum filtrates 

(Thompson et al., 1994). While it is conceivable that direct cell-cell interactions are 

needed to obtain toxicity, it should also be mentioned that Thompson et al. (1994) did 

not measure the yessotoxin production of their strain of P. reticulatum. Contrastingly, 

Alexandrium spp. are well known to affect the development of marine organisms 

(Garcia et al., 2010; Mu and Li, 2013; Yan et al., 2001). This is often attributed to the 

genetically fixed ability to produce saxitoxins (STX), spirolides (SPX) or goniodomins 

(Anderson et al., 1990). Here, A. minutum and A. ostenfeldii both had cytolytic effects 

on M. edulis eggs despite their different suite of toxins: A. minutum SCCAP K-0993 

has been shown to produce STX - which causes developmental abnormalities – 

while A. ostenfeldii CCMP1173 produces SPX (Bernardi Bif et al., 2013; Cembella et 

al., 2000; Hansen et al., 2003; Tian et al., 2014). While STX could potentially explain 

why A. minutum has a stronger effect on larvae than A. ostenfeldii, it does not clarify 

why A. ostenfeldii was toxic. Recently, however, a toxin-independent pathway was 

found in Alexandrium spp. which might be present in both our Alexandrium species 

(Basti et al., 2015b).  
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Like Stoecker et al. (2008a) before us, this study found no adverse effects of 

Prorocentrum cordatum on bivalve larvae. By contrast, Wikfors and Smolowitz (1995) 

did find an effect on Crassostrea virginica oyster larvae. P. cordatum is variably toxic 

and most strains are non-toxic (Glibert et al., 2012; Heil et al., 2005; Wikfors, 2005). 

Likewise, P. micans is considered to be non-toxic despite shellfish kills in the past 

(Horstman, 1981; Lee et al., 1989; Pinto and Silva, 1956; Reguera et al., 2014). Yet, 

here P. lima, P. micans and K. mikimotoi all reduced the larval viability of M. edulis. 

The results of this study, together with the work of Ji et al. (2011), suggest that the 

toxin production of P. micans needs to be reconsidered. Similarly, we urge other 

researchers to further unravel the toxicity of K. mikimotoi, which is superficially known 

to produce toxic compounds like gymnocins and haemolysins that are poorly 

understood (Chen et al., 2011; Satake et al., 2002, 2005; Yamasaki et al., 2004). 

Basti et al. (2015b) reported that K. mikimotoi affects the hatching of bivalve eggs at 

doses of 15.103 cells.ml-1. This dosage is similar to the ECx values reported here. 

HABs promote the growth of associated bacteria (Cole, 1982; Doucette, 1995). 

Vibrio spp., which can cause mortality among bivalves (Beaz-Hidalgo et al., 2010), 

has been linked to HABs in the past (Eiler et al., 2006; Mourino-Perez et al., 2003; 

Simidu et al., 1971). Here, V. splendidus (105 CFU.ml-1) reduced the larval viability of 

M. edulis while the V. coralliilyticus/neptunius-like isolate did not. These results are in 

accordance with the work of Kesarcodi-Watson et al. (2009b) who originally isolated 

these specific strains: V. splendidus affects Perna canaliculus larvae at 105 CFU.ml-1 

while V. coralliilyticus causes adverse effects at doses of 106 CFU.ml-1 and up. 

Similar effects of V. splendidus were reported by Jeffries (1982). 

While the response to HABs was species-specific - P. cordatum and P. micans 

increased the PO activity, while K. mikimotoi and P. lima reduced it – V. splendidus 

always induced the PO activity. Phenoloxidase responds to bacterial polysaccharides 

as it is involved in the opsonization and melanization of particles and, hence, mostly 

found in haemocytes (Luna-González et al., 2003; Thomas-Guyon et al., 2009). Still, 

embryos also possess PO (Dyrynda et al., 1995) but virtually no other studies have 

used PO activity, or larvae for that matter, to study the effect of HABs on bivalves. 

Because of this, we can only match our results to haemocyte responses. P. cordatum 

increases phagocytosis (Hégaret and Wikfors, 2005a, 2005b), though some studies 

found a downregulation (Hégaret et al., 2011) or no changes in haemocyte functions 

at all (Galimany et al., 2008b). The inhibition of PO by P. lima could be attributed to 

okadaic acid that reduces phagocytosis in haemocytes (Prado-Alvarez et al., 2013). 

K. mikimotoi, on the other hand, has no effect on haemocytes (Hégaret et al., 2011) 

and no studies have investigated the effects of P. micans. 
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None of the dinoflagellates changed the sensitivity of M. edulis to either pathogen, 

despite the demonstrated individual effects of both stressors. Regardless of the up or 

downwards regulation of PO by the algae, the larvae were still able to respond to 

pathogenic stress. This result implies that the viability, development and PO activity 

react independently to both stressors. During preliminary experiments, dinoflagellates 

caused larval mortality within the first 48 hours of exposure. Bacteria, per contra, 

were mostly observed to exert their adverse effects at the end of the exposure period 

(personal observations). Larvae are mostly infected by Vibrio spp. through ingestion 

(Kesarcodi-Watson et al., 2009a). The uptake of small particles (< 10 µm) starts 

during the second day of development, at which point the trochophore larva becomes 

encased in a protective prodissoconch (Sprung, 1984). As such, two-day-old veliger 

larvae may filter pathogens and dissolved toxins, but are no longer vulnerable to 

direct cell-contact with the much larger dinoflagellates. 

The concentrations of algal exudates are noticeably higher within 2 to 3 cell radii 

distance of a toxic cell, relative to the surrounding medium (Jonsson et al., 2009). 

Even if environmental concentrations are below inhibitory levels, larval toxicity may 

occur within these “chemical envelopes” when the local concentrations exceed the 

no-effect concentrations. The likelihood of encountering such a chemical envelope 

depends on the algal density, toxin production rate and the mobility of both the larvae 

and the algae (Jonsson et al., 2009). After 48 hours, the prodissoconch may act as a 

non-permeable barrier which shields larval cells during the brief instant both 

organisms collide. By the time the toxin molecules work their way around the shell 

through diffusion, both organisms will have separated by their combined swimming. 

At the same time, the dissolved toxin concentrations have likely decreased as labile 

toxins from the algal source cultures degraded over time (Granéli and Turner, 2006). 

Moreover, we believe that the larvae may have acclimatized to the presence of toxins 

through the activation of biotransformation and elimination pathways. All of these 

reasons can explain the lack of mixed adverse effects in the earliest life-stages. Yet, 

with the current state of knowledge, we are unable to pinpoint the exact reason for 

their remarkable tolerance. Lastly, we cannot exclude that combined and interactive 

effects may appear once the mussels are large enough to simultaneously take up 

pathogens and larger phytoplankton. 
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5. Conclusions 

Like Chapter 5, this study demonstrates that there are still a lot of unknown effects 

of HABs on bivalve populations. Specifically, we show that several dinoflagellates of 

the BPNS are able to reduce the viability of bivalve larvae at environmentally relevant 

bloom densities. Moreover, we show that HABs are able to induce immunological 

responses in the early life-stages of our model organism Mytilus edulis. Against our 

expectations, these changes did not increase the susceptibility of mussel larvae 

towards Vibrio spp. infections and, hence, does not inflate the risk of environmental 

damage by HABs or pathogens. Still, caution is advised as later life-stages may yet 

encounter mixed toxic effects of HABs and pathogens. To truly understand HABs and 

their myriad of effects on our coastal systems, more research into these “black swan” 

interactions is highly recommended. 
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1. Introduction 

The European Marine Strategy Framework Directive (2008/56/EC) encourages the 

development of new eutrophication indicators that include the nutrient concentrations 

of the water column (and ratios) as well as effects on the community composition and 

ecological function of the phytoplankton. Descriptor 5 of the EU MSFD explicitly tasks 

us to investigate the loss of biodiversity due to human-induced toxic algal blooms. 

Yet, to date, we know surprisingly little about the presence and effects of toxic algae 

within the Belgian territorial sea. For this reason, the main objective of this thesis 

was to assess whether the ongoing chances in the environmental conditions of the 

BPNS have an effect on the risk of toxic HABs. To address this objective, we first had 

to improve our understanding of HAB ecology through several research questions. 

Here, each of those research questions will be answered with reference to the work 

presented in this dissertation, as well as the current state of the literature. In addition, 

research recommendations will be provided alongside policy advice for the BPNS. 

 

2. Nutrient ratios and nutrient loads 

Do shifting N:P ratios affect the competitive traits of dinoflagellates? 

Coastal eutrophication changes the relative availability of growth-limiting nutrients, 

such as nitrogen and phosphorus, in systems all over the world (Martiny et al., 2014). 

Shifts in the N:P ratio are thought to increase the risk of (toxic) HAB development, 

but there is no substantial evidence that nutrient stoichiometry plays a key role in the 

bottom-up control of HABs (Davidson et al., 2012; Flynn, 2010). In chapters 2 and 3, 

we could, indeed, not demonstrate that the N:P ratio alters the competition between 

potentially harmful dinoflagellates. While variations in the N:P ratio did induce small 

changes in the nutrient uptake rates, we found no evidence that the growth rate was 

governed by nutrient stoichiometry. Later, i.e. chapter 3, it was shown that the growth 

rates are the product of nutrient uptake rates and nutrient conversion efficiencies, 

and that they are crucial during the initial bloom development stages. A small bloom 

inoculum may displace a more abundant species, if it is able to outcompete the other 

species through a higher growth rate. Once a bloom is established, allelopathy might 

release nutrients from competitors and maintain the bloom at hazardous densities. 

Toxin concentrations were also not affected by the N:P ratio. This, however, was only 

tested on a single toxic species, of which we know that the structures of its toxins do 

not contain nitrogen or phosphorus atoms. Overall, though, it seems unlikely that the 

N:P ratio has a noticeable direct effect on the risk of dinoflagellate blooms.  
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This research does, however, not exclude indirect effects of imbalanced nutrients 

on the food web. As the internal nutrient stoichiometry of phytoplankton often mimics 

the external nutrient ratio, extreme N:P ratios can reduce the nutritional value of all of 

the phytoplankton (Glibert et al., 2012). Primary consumers have to allocate energy 

towards the removal of the excess nutrient, which may affect their fitness and growth 

(Branco et al., 2010; Elser et al., 2003; Hauss et al., 2012; Schoo et al., 2009) and 

their value for higher trophic levels (Schoo et al., 2014; Vanni and McIntyre, 2016). 

The reduced fitness of grazers, combined with the recycling of excess nitrogen as 

ammonium favours HABs (Bronk et al., 2014; Glibert et al., 2014; Kang et al., 2015). 

The complex interactions between the bottom-up and top-down control of developing 

blooms was summarized by Sunda and Shertzer (2014). 

In Sunda and Shertzer's model (2014), every dinoflagellate bloom was preceded 

by one or more blooms of diatoms, whose growth rates were higher than those of the 

dinoflagellates at high nutrient levels, but were also more grazed by zooplankton. 

These pre-blooms reduced the available nutrients to low, growth rate-limiting levels 

and promoted the population growth of zooplankton. Toxic dinoflagellates then 

proliferated at the expense of the diatoms due to the low grazing mortality rates and 

their ability to grow at low nutrient levels. At this time, toxic HA can benefit from the 

ammonium released by zooplankton that graze on nutritionally imbalanced diatoms. 

As HAB densities increase, a positive feedback emerges. The number of diatoms 

decreases through the combined action of the nutrient limitation and grazers, while 

nutrient limited HA become even more toxic. Nutrient recycling diminishes, increasing 

the nutrient restriction even further and, hence, promoting the production of toxins. 

Allelopathic interactions are then able to release some nutrients from competitors, 

prolonging the quiescence phase of the established bloom. 

The developing field of ecological stoichiometry is still under considerable debate. 

A meta-analysis of datasets from the terrestrial, freshwater and marine environment 

found no effect of resource imbalance on the diversity and productivity of ecosystems 

(Lewandowska et al., 2016). Resource imbalance may even restrict nutrient recycling 

and provide stability to autotroph – herbivore systems instead (Striebel et al., 2009). 

In addition, it is not entirely known how this process relates to broad scale impacts, 

e.g. pollution, climate change and overfishing, which directly affect the fitness of 

grazer populations. More research into this emerging field is highly recommended. 

For experimental approaches, we encourage researchers to expand the range of N:P 

ratios to extremer cases. In addition, we recommend the inclusion of r-selected algal 

species, like Phaeocystis spp. which is still frequently used as an example of the 

structuring role of the N:P ratio   
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Do nutrient load reductions affect the competitive traits of dinoflagellates? 

As seen in chapter 3, where we found a near perfect linear relation between the 

carrying capacities of dinoflagellate cultures and the initial nutrient concentrations, 

the total availability of nitrogen and phosphorus directly affects the intensity of HABs 

(Anderson et al., 2002; Cloern, 2001). The accumulation of toxins, which enables the 

deterrence of grazers and the inhibition of competitors, can be avoided by decreasing 

the potential for biomass accumulation of an ecosystem. For most aquatic systems, 

this is best achieved by simultaneously reducing the nitrogen and phosphorus inputs 

(Conley et al., 2009; Paerl et al., 2014). This, however, should be done gradually as 

the longevity of phosphorus in aquatic systems (and sediments) is noticeably longer 

than that of nitrogen, creating the risk of upsetting the nutrient balance even further 

(Burson et al., 2016; Philippart et al., 2007). 

All of the fundamental work of this PhD dissertation was done using batch cultures 

of dinoflagellates. This approach affects our ability to predict the behaviour of 

dinoflagellates in natural systems. The growth of algae at low nutrient concentrations 

is difficult to simulate in these types of cultures. Moreover, we are aware that cultures 

are able to modify their pH which skews the interpretation of interspecific competition. 

It would be interesting to use a setup like Kayser (1979), i.e. a battery of turbidostats, 

that can replenish the medium (semi-)continuously. Such a system would allow us to 

stabilize the pH – also useful for simulating ocean acidification – and perform tests at 

environmentally relevant nutrient concentrations. Moreover, these types of systems 

would allow us to further our understanding of mixotrophy. It would be interesting to 

see whether dinoflagellates prefer to consume nutrients directly (autotrophic growth) 

or rather rely on their prey (heterotrophic growth) to gather scarce nutrients for them. 

Finally, it is worth repeating that we used nitrate as the only nitrogen source in all 

of the experiments. While the uptake of NO3-, NH4+ and urea is similar in lab cultures 

(Chang et al., 1995; Fan et al., 2003; Kudela et al., 2008b; Smayda, 1997), more 

reduced nitrogen forms may still promote HAB development (Glibert et al., 2014). 

Donald et al. (2013) have demonstrated how different nitrogen forms can change the 

community composition of natural phytoplankton assemblages. This type of research 

is worth pursuing further, as our work and that of Sourisseau et al. (2017) show that 

resource competition structures phytoplankton communities. To date, we are missing 

key data on the nutrient preferences and nutrient uptake rates of most HAB species, 

especially in direct comparison to non-HAB species (Wells et al., 2015). To estimate 

the likelihood of HABs in the future ocean chemical matrix, it is crucial to understand 

whether HA will be able to outcompete other species.  
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3. Climate change 

Will global change affect the competitive traits of dinoflagellates? 

In our studies, i.e. chapter 2 and 3, simulated climate change temperatures led to 

higher nutrient consumption rates and, hence, higher growth rates of dinoflagellates. 

The maximum attainable daily growth rate of marine phytoplankton is directly related 

to temperature (Bissinger et al., 2008; Eppley, 1972). As growth rates were shown to 

be a key parameter in the development of blooms, it is reasonable to expect that 

global change will affect the competition between HAB and non-HAB species. Yet, 

due to a lack of climate experiments with mixed cultures, we know little about the 

effect of climate change on the long-term composition of phytoplankton communities. 

An ocean basin-wide time series analysis recently revealed that dinoflagellates and 

copepods are closely tracking the velocity of climate change, measured as the rate of 

isotherm movement, and that diatoms are moving more slowly (Chivers et al., 2017). 

Differences in range shifts of each group appear to result from dissimilarities in niche 

plasticity which, counterintuitively, could locally enhance the HAB risk. Dinoflagellates 

are well adapted to high temperatures, their temperature range for optimal growth 

often exceeds 14°C (Fig 7.1), but diatoms cope even better (Chivers et al., 2017). 

This affects the timing and duration of spring blooms, creating trophic mismatches 

between the grazer populations and the abundance of toxic algae, and increasing the 

summer “window of opportunity” for HAB development (Wells et al., 2015). 

 

Figure 7.1: Ranking of HAB species by their optimal growth temperature (µm; black line). 
Grey lines are the 50% growth temperatures. Reproduced from Smayda and Smayda (2015).  
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In addition to the physiological effect of temperature on phytoplanktonic growth, 

climate change will promote the thermal stratification of coastal waters (IPCC, 2014) 

which enhances the risk of HABs (Gentien et al., 2005). Regional changes in the 

precipitation intensity, like the anticipated drier European summers with episodes of 

flooding (Christensen and Christensen, 2003), will pulse the riverine nutrient inputs 

and increase the stratification in salt-wedge estuaries even further. Stratification will 

increase the light penetration, especially in turbulent systems, which could magnify 

the potential biomass production of HABs (Häder et al., 2007). Changes in the flood 

and storm frequency will also increasingly help to overcome biogeographical barriers, 

and transport HA species to areas outside of their current range (Wells et al., 2015). 

All of these mechanisms start from the premise that HAB species are able to cope 

with ocean acidification. The average ocean surface pH is projected to decrease by 

0.3 to 0.4 units by the end of this century (Feely et al., 2004). While phytoplankton is 

generally well adapted to grow at low pH levels (Berge et al., 2010), the acidification 

will affect the energy requirements of carbon concentrating mechanisms as well as 

proton driven processes (e.g. mobility, membrane potential) in a species-specific way 

(Beardall et al., 2009; Beardall and Raven, 2004). On top of the changes in fitness, 

ocean acidification will change the chemical speciation of nutrients (Shi et al., 2010), 

change the toxicity of HA (e.g. Hattenrath-Lehmann et al., 2013) and redistribute the 

top-down control of HABs (Cripps et al., 2014; Waldbusser et al., 2015). Combined, 

these factors will reshape the competition between HAB and non-HAB species, while 

global change will affect all other trophic levels as well, reshaping the entire food web 

(Heuer and Grosell, 2014; Liu et al., 2010; Richardson and Gibbons, 2008). 

The uncertainties of climate and ocean science add up. While we have identified a 

long list of “known unknowns” about the effect of global change on HABs, we expect 

to find a lot of “black swans” or “unknown unknowns” in the future (Wells et al., 2015). 

Multifactorial experiments which combine nutrient competition with abiotic variability, 

preferably temperature, pH and nutrient sources, are urgently needed to improve our 

predictions of the future occurrence of HABs. At the same time, we need to do more 

retrospective analyses of long-term phytoplankton or cyst core datasets that reveal to 

which extent the phytoplankton was already changed by manmade climate change. 

Fundamental research, as was done here, also needs to have a stronger linkage to 

climate change research to improve our HAB monitoring and forecasting programs. 

This can, for instance, be done in a global context through the upcoming “globalHAB” 

research program of the Intergovernmental Panel on Harmful Algal Blooms of the 

Intergovernmental Oceanographic Commission of UNESCO. 
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4. Effects on keystone species 

Do toxic HABs affect populations of bivalve species? 

In chapters 4, 5 and 6, we investigated the various effects of toxic HAB exposure 

on the blue mussel Mytilus edulis. As expected, adult mussels were less sensitive to 

toxic HABs than their earlier life-stages (ref. A. ostenfeldii). As long as the dissolved 

oxygen concentrations are above the lethal limits, i.e. above the median lethal limit of 

1.4 mg O2.l-1 for bivalves (Vaquer-Sunyer and Duarte, 2008), adult bivalves cope well 

with toxic blooms. By modifying their respiratory and feeding behaviours, bivalves are 

able to minimize their contact with toxic phytoplankton (Hégaret et al., 2007). Delicate 

tissues are protected by closing the shell, reducing the movement of water through 

the animal, reducing the ingestion of particles, sorting the HA cells prior to ingestion 

or rejecting cells post-ingestion (Bardouil et al., 1996; Brillant and MacDonald, 2002; 

Galimany et al., 2008a; Hégaret et al., 2007; Matsuyama et al., 1997; Shumway and 

Cucci, 1987; Ward and Shumway, 2004; Wildish et al., 1998). Infiltration of toxins can 

activate the lipid peroxidation inside the lysosymes of hemocytes, forming insoluble 

lipofuchsin granules which are then transported across gastrointestinal epithelia by 

hemocytes for elimination in the faeces (Estrada et al., 2007; Galimany et al., 2008b). 

All these mechanisms are employed with species-specific intensities and efficiencies, 

which may vary with the exposure history of the population (Hégaret et al., 2007). 

While we have a decent understanding of the general (de)toxification mechanism, 

there is still plenty to be learned about the metabolization of HAB toxins by bivalves. 

In chapter 4, we used state-of-the-art analytical techniques to explore how mussels 

accumulate, metabolize, distribute, and excrete two common toxins. The results were 

consistent with the lipofuchsin-excretion pathway, and revealed interactions between 

the metabolic processing of both. To the best of our knowledge, this the first report of 

the creation of different metabolites by the concurrent exposure to multiple toxic HA. 

In addition, we also demonstrated that natural phytoplankton assemblages cause the 

accumulation of multiple toxins and metabolites in bivalves. Similar mixtures of toxins 

and metabolites were found in several wild animals of the North Sea, including crabs, 

shrimp and fish (Orellana et al., 2017). As food safety regulations are based on the 

acute toxicity effect of single compounds, the widespread occurrence of mixtures is a 

risk to human consumers. Exploring the mixed toxicity effects of realistic toxin 

mixtures is a highly recommended research priority. Research into the ADME kinetics 

of multiple toxins, inside different seafood species (incl. bivalves, crustaceans, fish), 

is equally needed to not only enhance our knowledge of the fate of marine toxins, but 

also to improve the regulatory limits of safe consumption. 
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From our results, as well as previous laboratory and field studies, we can conclude 

that toxic HABs have little effect on adult bivalves. Yet, in chapters 5 and 6 we found 

unknown toxic effects on the larval stages of M. edulis. As most bivalve populations 

rely on the natural availability of healthy larvae for the maintenance of their numbers, 

these adverse interactions could reduce the stock size of bivalves. For the European 

blue mussel species M. edulis and M. galloprovincialis, however, the threat of toxic 

blooms is negligible, as their main spawning period coincides with the spring blooms 

(Cáceres-Martıńez and Figueras, 1998; Seed, 1969). Larvae from secondary spawns 

in August or September are more likely to encounter toxic HABs, but the fate and 

importance of these opportunistic secondary spawns is still unknown (Gosling, 2003). 

Other bivalve species, e.g. the common cockle Cerastoderma edule, the soft-shell 

clam Mya arenaria or the invasive Japanese oyster Crassostrea gigas, do reproduce 

during the window of opportunity of dinoflagellate blooms (Philippart et al., 2014). 

The recruitment of the populations of these species may be threatened by the recent 

increase in HABs. While M. edulis is a good model organism for a variety of reasons, 

incl. a vast knowledge base, a sequenced genome and its remarkable resilience, 

comparative studies should be undertaken to relate the sensitivity of mussel larvae 

towards HABs to the sensitivities of other bivalve larvae. 

While no interactions between HABs and pathogens were found during the work of 

chapter 6, there is still a lot to be done on mixed toxicity effects of HA and bacteria. 

At the start of this PhD, a pilot study revealed that one dinoflagellate (K. mikimotoi) 

increased the susceptibility of adult mussels to pathogenic bacteria, leading to both 

tissue inflammation and a significant increase in PO activity (De Rijcke et al., 2013). 

While these results were not pursued further, they were in agreement with available 

literature on mixed effects of HABs and pathogens in bivalves (Hégaret et al., 2010). 

By aggravating host-microbial interactions, HA can have a poorly understood, indirect 

effect on bivalves. Studies into this mechanism would do well to look at the functional 

properties of the haemolymph system (e.g. Dyrynda et al., 2000) and the expression 

of vital antibacterial peptides such as defensines, myticins, mytilins and mytimycins 

(e.g. Mitta et al., 2000) in several species and life-stages of bivalves. Other relevant 

proteins are nitric oxide synthase, NADPH oxidase, myeloperoxidase and superoxide 

dismutase for oxidative stress defense, glutathion-S-transferase and CYP450 for 

detoxification, and dual-specificity phosphatases-2 or macrophage expressed 

protein-1 as immune markers. All of these markers can be detected at once with new 

genome-wide approaches, like the Myt-OME microarray. Overall, Chapters 4 to 6 

show just how little we know about the effects of HABs on high-value bivalve species 

such as M. edulis, and the extent of environmental changes caused by HAB events.  
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5. State of the BPNS 

What is the risk of HABs in the BPNS? 

To assess the risk of HAB development in the Southern Bight of the North Sea, we 

need to look at the presence of potentially harmful species, as well as the factors that 

enable HABs (i.e. the state of overfishing, eutrophication, stratification, grazing etc.). 

Out of all of the different marine regions that are affected by anthropogenic activities, 

which is virtually the entire ocean (97.7%), the North Sea may very well be the most 

severely impacted area in the world (Halpern et al., 2008, 2015). Worryingly, though, 

we often fail to appreciate its potential, as its former riches have long been forgotten. 

In part, this is due to the intergenerational ecological obliviousness which is known as 

the “shifting baseline syndrome” (Pauly, 1995). More unusual, though, is, the fact that 

we actually know very little about the natural state of the North Sea. 

As European settlers explored new parts of the world in the early modern period 

(i.e. 14-15th century), they frequently found extensive bivalve beds in coastal areas 

(Ford and Hamer, 2016; Ogburn et al., 2007). In all likelihood, huge oyster reefs once 

covered the bottom of the North Sea as well (Beck et al., 2011), providing shelter for 

various species as well as trapping the sediment and filtering out the phytoplankton 

(Grabowski and Peterson, 2007). As a result, the water was clear enough to support 

the growth of extensive seagrass beds. Olsen's Piscatorial Atlas of the North Sea, 

published in 1883, shows the last vestiges of these once abundant oyster reefs in the 

remotest areas of the North Sea, outside the operating range of traditional coastal 

fishing boats. At the time of its publication, most of the North Sea seabed had already 

been trawled for at least 500 years (Roberts, 2007). 

Based on zooarchaeological evidence, the European fishing industries expanded 

dramatically around 1000 AD (Barrett et al., 2004). Shortly after, the “wondyrechaun” 

– i.e. a primitive beam trawl – is first mentioned in written records. The device was so 

effective that a group of fishermen petitioned the British Parliament for a ban in 1376, 

stating that “the device runs so heavily over the ground, that it destroys the flowers of 

the land below water” (Roberts, 2007). Though bans were eventually implemented, 

fishing boats continued to trawl until the ban was revoked in 1863. Around this time, 

new ship designs emerged that could tow substantially larger nets, further increasing 

the effectiveness and destruction of the trawlers. Around the turn of the 20th century, 

steam powered trawlers were by far the most important component of the North Sea 

fishing fleet (Engelhard, 2008). As a result of the continued harvesting of oysters and 

cod by trawls, oyster reefs became functionally extinct in the North Sea by the 1950s 

(Airoldi and Beck, 2007).  
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The disappearance of benthic filter-feeders caused a net decrease in biofiltration, 

and enhanced the role of planktonic grazers. At the same time, it created a niche for 

opportunistic polychaetes and brittle stars, which are now still a major component of 

the benthic biomass (De Groot, 1984; Heip and Craeymeersch, 1995; Reise, 1982). 

All these changes were set in motion long before the Green Revolution. Interestingly, 

the Green revolution coincided with an extremely productive period of the North Sea, 

i.e. the “gadoid outburst” (1960-1980), during which the reproduction, spawning-stock 

biomass and landings of cod, haddock, saithe and whiting all increased dramatically 

(Cushing, 1984; Engelhard et al., 2014). These piscivorous species sustain their own 

populations by removing sprat, herring and mackerel that otherwise target their eggs 

(Cushing, 1980; Hjermann et al., 2013; Reid et al., 2001a). This feedback loop is part 

of a stable state or regime that was sustained for several decades. During this time, 

no changes in the abundance of zooplankton or phytoplankton were observed. 

In the 1980s, the gadoid outburst came to an abrupt end. Because of an intricate 

combination of large-scale weather patterns, e.g. the North Atlantic Oscillation (NAO) 

and the Atlantic Multidecadal Oscillation (AMO), anthropogenic climate change, and 

the atmospheric recovery following the eruption of El Chichón (that induced cooling), 

water temperatures rapidly increased in systems across the globe (Reid et al., 2016). 

In the North Sea, the warming caused an oceanic incursion onto the continental shelf 

that altered the nutrient conditions, and the phytoplankton and copepod communities 

(Alheit et al., 2005; Beaugrand et al., 2002; Reid et al., 2001b). The substitution of 

the dominant copepod Calanus finmarchicus by C. helgolandicus, in particular, led to 

trophic mismatches between the cod larvae and the peak abundance of their prey. 

Combined with the tremendous fishing pressure, the drop in recruitment success led 

to the rapid decline of cod, causing a predator-prey reversal between cod and herring 

which still hampers the recovery of cod today (Fauchald, 2010). 

The NAO+ period persisted between 1989 to 2000, evolving from an abrupt shift in 

the community composition to a long-term adjustment towards higher temperatures 

(Beaugrand et al., 2014). During the same period, eutrophication was identified as a 

key issue that affects both terrestrial surface waters and the North Sea (QSR, 1987), 

leading to legal restrictions (Urban Waste Water Directive and the Nitrates Directive) 

on nitrate and ammonia levels and voluntary reductions of phosphates in detergents 

(Blöch, 2001; Köhler, 2006). Yet, despite decreasing nutrients, the herring-dominated 

regime maintains higher chlorophyll levels than the previous, cod-dominated regime 

(McQuatters-Gollop et al., 2007; Fig. 7.2). This counterintuitive trend results from 

improvements to the turbidity of the water, allowing the light-limited phytoplankton to 

make better use of the available nutrients (Pätsch and Radach, 1997).  
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Because of all these ongoing environmental changes, the seasonal dynamics and 

community composition of the phytoplankton is changing. Long-term monitoring data 

show that the dinoflagellate to diatom ratio has shifted in favour of the dinoflagellates. 

Permanently mixed North Sea regions that are greatly influenced by river inputs now 

exhibit strong diatom-based spring blooms, which are followed by prolonged periods 

of Phaeocystis spp. blooms and a peak of dinoflagellates in late summer. In stratified 

North Sea areas, the spring blooms are succeeded by thermocline based flagellates, 

upper mixed layer picophytoplankton, and a peak in dinoflagellate abundance around 

late summer and early autumn (Hernández-Fariñas et al., 2014; Nohe et al., 2016; 

van Leeuwen et al., 2015). As a result of the increased abundance of dinoflagellates, 

the number HABs in regions adjacent to the BPNS has increased in the last decades 

(Figure 1.8; p. 23). Considering the list of harmful dinoflagellates found in the BPNS 

(Table 1.3; p. 22), the observed shift towards higher abundances of dinoflagellates 

inside North Sea phytoplankton assemblages also increases the current risk of HABs 

in the BPNS. Below, we propose a theoretical mechanism for toxic dinoflagellate 

bloom formation in the BPNS, based on the work of Margalef (1978), Messier (1994), 

Sunda and Shertzer (2014), and the observations of Lancelot et al. (2005). 

The variable availability of silicic acid, which originates from submerged volcanism, 

continental weathering, decaying terrestrial vegetation and anthropogenic activities 

(e.g. zeolith in detergents) (Dürr et al., 2011), shapes the phytoplanktonic succession 

in temperate coastal waters such as the BPNS and, hence, ultimately determines the 

risk of HAB development (Rousseau et al., 2002). During winter, the temperature and 

turbulence prevent significant phytoplankton growth, allowing the nitrate, phosphate, 

and silica concentrations to increase (ref. the void domain IV of Margalef’s mandala). 

When the light intensity and temperature starts to increase during spring, the diatoms 

develop a modest early spring bloom, which depletes the dissolved silicon availability 

and causes an exponential growth of the copepod populations (Lancelot et al., 2005). 

As the silicon depletion increases, the turbulence subsides (thermal stratification) and 

the light conditions improve, leading to the development of massive Phaeocystis spp. 

blooms that are sustained by silicon-devoid river inputs of nitrogen and phosphorus 

(Escaravage et al., 1995; Peperzak et al., 1998; Schoemann et al., 2005). During this 

entire second phase, i.e. domain I of the Mandala, the likelihood of toxic HABs is low. 

The slow-growing dinoflagellates are not able to effectively compete for nutrients with 

fast-growing algae such as diatoms and Phaeocystis spp. while, at the same time, 

contending with the size of the grazing pit created by the copepod abundance. Note, 

however, that this is entirely not the case for the toxic Pseudo-nitzschia spp. blooms, 

which are also known to occur in the BPNS (Andjelkovic et al., 2012). 
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While the Phaeocystis spp. blooms decrease the nutrient availability even further 

(Gypens et al., 2007; Lancelot et al., 2005; van Leeuwen et al., 2015), they also start 

to starve the zooplanktonic grazers (Gasparini et al., 2000; Nejstgaard et al., 2007). 

By the end of the Phaeocystis spp. bloom, which is usually around the end of May, 

Messier’s grazing pit has shrunk due to the decline in copepods, and the generated 

low nutrient levels favor long-lived, nutrient-efficient algae (like dinoflagellates) that 

may thrive by consuming the bacterio- and nanoplankton that grows on the decaying 

Phaeocystis cells (Rousseau et al., 2000). At this point, the “window of opportunity” 

for toxic dinoflagellate blooms in the BPNS might be open. These proposed 

interactions between Phaeocystis and HABs have, however, never been studied. 

It is vital to remember that HABs are only “optional” during windows of opportunity, 

and that the role of grazers is not straightforward. The heterotrophic dinoflagellates of 

the BPNS such as Gyrodinium spirale, Protoperidinium spp. and Noctiluca scintillans 

(Conrad, 1939; De Pauw, 1975; Louis and Petes, 1979; M’harzi, 1999; Müller, 2004) 

can, for instance, predate HA cells, but also vector toxins to higher trophic levels 

(Petitpas et al., 2014). Detritivores might slow down the microbial remineralization of 

nutrients, preventing diatom growth, but also consume the resting stages of HABs. 

The polychaetes, nematodes, bivalves and benthic copepods that now dominate the 

benthic communities of the BPNS might even prevent the development of HABs 

(Montresor et al., 2003; Persson and Rosenberg, 2003; Tsujino and Uchida, 2004). 

Little is, however, known about cyst beds in the BPNS. In the past, cyst identification 

required an expert taxonomist. With the advances in genetic techniques, though, we 

could reconstruct the current and past presence of dinoflagellates in the BPNS using 

the genetic material imbedded in sediment cores. This, however, would not yield any 

new data on the past and present presence of HA that overwinter as a vegetative cell 

(e.g. Karenia mikimotoi or Prorocentrum cordatum in the BPNS). 

In addition to the unknown effect of benthic detritivores on any present cyst beds, 

the role of consumers is complicated further by the nutrient stoichiometry. In the past, 

a lot of unwarranted credit was given to the supposed bottom-up effect of N:P ratios, 

and its mediating role during HAB development (Davidson et al., 2012; Flynn, 2010). 

The increase in Phaeocystis blooms in the BPNS was, for instance, also unrightfully 

linked to recent shifts in the N:P ratio (Lancelot et al., 2009; Riegman et al., 1992). 

Now, we understand that grazing on nutritionally imbalanced algae, that can mimic 

the external nutrient ratio, can enhance the nutrient recycling during blooms which 

prolongs the quiescence phase of a HAB top-down. Still, all of these complex species 

interactions may change in the future. 
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Considering how even moderate warming is predicted to affect the biodiversity of 

oceanic regions (Beaugrand et al., 2015), all of the seemingly small interactions that 

enable or inhibit HAB development are prone to change in ways that are beyond our 

comprehension (Wells et al., 2015). As the North Sea was identified as a hotspot of 

climate change (Holt et al., 2014), we should expect to see changes in the food web 

that will have repercussion for HABs. Yet, at the end of the day, we still know too little 

to accurately predict how each of the components of the North Sea food web will 

respond to climate change. Coupled to variations in the growth and distribution of 

grazers and phytoplankton, changes in the biogenic and chemical remineralization of 

nutrients will alter the timing of productivity, potentially causing trophic mismatches 

which may cascade through the food web, and change existing species interactions 

(e.g. nutrient competition, allelopathy, grazer deterrence) that, ultimately, all influence 

the current risk of HABs (Le Moigne et al., 2013; Segschneider and Bendtsen, 2013). 

Because of the uncertainty related to predictions, HAB experts have expressed the 

need to closely monitor agreed-upon reference sites for all ecosystem types instead. 

The Southern North Sea was put forward as one of five interesting sites to monitor 

the impacts of climate change on HABs in open coast systems (Wells et al., 2015). 

To facilitate investigations into the HAB-climate interactions, these “sentinel sites” 

should be equipped with the necessary – preferably automated - means to acquire 

physical, chemical and biological data on a regular, ideally daily, basis, as well as 

correspond to satellite ground-truthing sites for the Global Ocean Observing System, 

thereby facilitating the future development of algorithms for remotely monitoring HAB 

initiation and progression. 

While it is difficult to provide an unambiguous answer to the question of whether or 

not toxic HABs are common and possibly increasing in the BPNS, it is abundantly 

clear that HA toxins are already finding their way to the tissues of multiple organisms 

of different trophic levels of the BPNS (Andjelkovic et al., 2012; Orellana et al., 2017). 

As such, it would indeed be wise to develop our capacity to study the presence of 

HABs and toxins in the BPNS. While our work suggests that the on-going shifts in the 

nutrient stoichiometry have, in fact, not affected the risk of HABs in the BPNS, we are 

unable to track the indirect effects of nutrient stoichiometry throughout the food web. 

Likewise, our results suggest that the decreasing nutrient levels of the BPNS should 

reduce the size and intensity of blooms in the North Sea. Yet, if dinoflagellate blooms 

are currently light- rather than nutrient-limited, these future decline in nutrients might 

not reduce the risk of HABs at all, potentially threatening the recovery of bivalve beds 

and the success of new shellfish culture projects in the BPNS 
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Box 7.1 Risks towards shellfish farming in the BPNS 

In 1765, the brothers Jan and Pieter De Loose kicked off the farming of shellfish in 

Belgium when they built the first oyster farm in Ostende. Two hundred years later, 

the Belgian shellfish industry was blooming, exporting millions of “ostendaise” oysters 

to countries all across Europe. Soon after, though, the industry vanished because of 

the emergence of infectious oyster diseases and the outbreak of the World Wars 

(Steevens and Van Moerbeke, 2015). Ever since, no sizeable production of shellfish 

has occurred within the EEZ. Note, though, that one of the last attempts to restart the 

shellfish industry in our waters, i.e. the “Belgica mussel” in 2008, ran into problems 

when the national food safety agency found DSP concentrations in excess of the 

legal limit inside their mussels. 

Recently, two new aquaculture projects have started in the BPNS. The “EDULIS” 

project that wants to explore the possibility of growing mussels in suspended cultures 

between the offshore windmills, and the “Value at Sea” project that aims to establish 

an integrated multi-trophic aquaculture farm in front of Nieuwpoort. Shellfish of either 

project will need to be checked for toxins by our regional food safety agency, though 

this instance will only look at the toxins which have a well-known acute toxicity effect 

in consumers and, hence, have a legal limit (Table 7.1). All the other compounds that 

could be produced by toxic phytoplankton in the BPNS, like gymnodimins and SPXs, 

should pass through the inspection, and end up on the plate of human consumers. 

There is, hence, still a risk of chronic health effects of the monitored toxins, as well as 

unknown acute (mixed) toxicity effects of the emerging compounds. 

Table 7.1: Toxins which may threaten shellfish industries in the BPNS, and their legal limit 

cfr. the EU Regulation (EC) No 853/2004: Health standards for live bivalves. 

Toxins--- Producers in the BPNS EU Legal limit  

Domoic acid (DA) Pseudo-nitzschia seriata 20 mg.kg-1 whole body 

Azaspiracid (AZA) Azadinium spp.* 0.16 mg.kg-1 whole body 

Okadaic acid (OA) 
Pectenotoxins (PTX) 
Dinophysistoxins (DTX) 

Dinophysis acuta 
Dinophysis acuminata 
Dinophysis norvegica 
Dinophysis rotundata 
Prorocentrum lima 

0.16 mg.kg-1 whole body 

Saxitoxins (STX) Alexandrium ostenfeldii 0.8 mg.kg-1 whole body 

Yessotoxin (YTX) Protoceratium reticulatum  1 mg.kg-1 whole body 

* Azadinium spp. has not been observed in the BPNS (cfr. Table 1.3), but its toxins 

have been found in oysters and mussels from the BPNS (Orellana et al., 2017).  
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6. Policy-making 

Harmful algal blooms are a quintessential “wicked problem” for policy-makers. 

Wicked problems span across the ecological, social, economic, and political systems, 

and are set aside from traditional planning challenges due to their unique, complex 

and contentious character (Rittel and Webber, 1973). They are the symptom of other 

underlying problems and, hence, cannot be resolved independently. The process of 

solving a wicked problem matches the process of understanding its nature. Due to its 

multi-faceted, incremental nature, a wicked problem knows no true or false answers. 

Any implemented solution will, however, generate waves of consequences over an 

extended period of time. As we lack the opportunity for rigorous experimentation, and 

we have no way to predict all of the repercussions ahead of time, every attempt to fix 

wicked problems is consequential. They leave “irrevocable traces” that can outweigh 

the intended advantages of the solution. As a result, legislators dealing with wicked 

problems bear a huge responsibility for the consequences of the actions they take. 

Each of the three major drivers of the recent success of HABs - i.e. eutrophication, 

overfishing and climate change – should be seen as wicked problems on their own 

(Khan and Neis, 2010; Levin et al., 2007; Thornton et al., 2013). All of these issues 

need a coordinated, international approach to be “resolved”. Note, however, that the 

“solution” to any wicked problem is a “good enough” state. Policy-makers dealing 

with wicked problems can constantly do better, but they are constrained by external 

reasons (e.g. societal costs, time, feasibility). The need to balance ecological versus 

social and economic interests will determine the desired outcome of an intervention 

against a wicked problem. Discretionary decision-making may, however, impede the 

intervention against wicked problems over an extended period of time. 

The EU’s Common Fisheries Policy has largely failed to enhance the sustainability 

of fish stocks and their associated fisheries, because it was designed to function with 

discretionary decision-making (Khalilian et al., 2010). Likewise, the Paris agreement 

may fail, as the self-imposed actions by the nations imply an increase in temperature 

in excess of the agreed upon 2°C above the pre-industrial levels (Rogelj et al., 2016). 

Both of these issues demonstrate the danger of autoregulation of a shared resource, 

and should be addressed as they will continue to facilitate HABs in the near future. 

Eutrophication, however, was successfully tackled by the OSPAR convention, whose 

strategic goals are now part of the Marine Strategy Framework Directive. The coastal 

nutrient concentrations of the North Sea are gradually decreasing, though we still find 

severe eutrophication in certain regions (Burson et al., 2016; Claussen et al., 2009). 
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The nutrient concentrations of the Southern Bight of the North Sea are influenced 

by oceanic inputs and rivers such as the Scheldt, Seine, Meuse, Rhine and Thames 

(Gypens et al., 2007; Lacroix et al., 2004). Although the nutrient fluxes of these rivers 

are expected to decrease by 2050, largely due to the regional implementation of the 

Water framework Directive, the majority of these watersheds will probably still have a 

high potential for harmful algal blooms (Blaas and Kroeze, 2016). Despite the already 

substantial improvements in the water quality of the Scheldt over the last 30 years 

(ref. Passy et al., 2013), our regional policies should continue – and are continuing – 

to take steps towards the Good Environmental Status of our rivers and coastal areas. 

As the North Sea receives a large amount of nitrogen from atmospheric depositions 

(ref. Djambazov and Pericleous, 2015), the progress in improved water quality should 

be intertwined with reduced NOx emissions. As such, the MSFD GES criteria can be 

linked to the EU strategy on the adaptation to climate change. 

As part of the MSFD implementation, we should develop indicators to monitor the 

evolution of eutrophication within the Belgian EEZ. In addition to chlorophyll a and 

nutrient monitoring, the MSFD recommends the development of Quality Descriptors 

that can detect changes in the phytoplankton composition and occurrence of HA 

(Ferreira et al., 2011). With the development of a new Essential Ocean Variable on 

phytoplankton (Muller-Karger and Kudela, 2016), similar data will soon be needed to 

participate in the Global Ocean Observing System (GOOS) as well. Monitoring the 

diversity, abundance and toxicity of HA in the BPNS is, hence, not only relevant for 

our blue economy (e.g. food safety, regional productivity) and the assessment of 

international or EU legislations (i.e. ballast water, climate change and eutrophication), 

but also for our scientific participation in interdisciplinary international programs. 

Investing in the development of a comprehensible phytoplankton monitoring program, 

preferably using autonomous infrastructure, is therefore highly recommended. 

By coupling in situ sensors to remote sensing and hydrodynamic forecast models, 

a HAB warning system can be made. A pilot study (i.e. the ASIMUTH project) created 

an operational European HAB forecast system that combines the early detection of 

HABs with Lagrangian transport models (Davidson et al., 2016; Maguire et al., 2016). 

To date, no ecophysiological modelling has come close in terms of predictive value 

(Glibert et al., 2010; McGillicuddy, 2010). We should dedicate time and effort to join 

this EU-wide collaboration. A warning system improves the cost-effectiveness of our 

seafood safety program, reduces the economic impact on aquaculture, provides an 

estimate of the effect on the regional productivity, and allow us to deploy emergency 

measures like aeration, clay flocculation, surfactants, peroxide or algicidal bacteria 

and fungi in the future (Anderson et al., 2015 and references therein). 
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The development of a Belgian HAB warning system would require no investment 

in new equipment, as the required the tools are available, but are still uncoordinated. 

In short, the Remote Sensing and Ecosystem Modelling team of the Royal Belgian 

Institute of Natural Sciences (REMSEM) should adopt the optimized discrimination 

algorithms of Kurekin et al. (2014) to be able to separate blooms of Phaeocystis spp. 

from Karenia mikimotoi and other algal blooms in the turbid waters of the North Sea. 

If a Chl A peak is found, the MERIS and MODIS spectral bands are used to estimate 

the risk of a HAB. If a potential HAB is identified, its transport can be predicted using 

the OPTOS hydrodynamic model of Management Unit of the North Sea Mathematical 

Models (MUMM) of the Royal Belgian Institute of Natural Sciences. If the bloom is 

predicted to enter vulnerable areas (e.g. the shellfish area between the windmills), 

samples for species identification can be taken with the RV Simon Stevin. If a HAB 

species is present, a warning is issued to the farmers and the food safety agency. 

 

Box 7.2 Risks related to the masterplan “Vlaamse Baaien” 

To improve the coastal resilience against the challenges posed by climate change, 

e.g. sea level rise and the “thousand-year storm”, the Belgian government is mulling 

over a long-term masterplan called “Vlaamse Baaien” which could become a staple 

of the revised marine spatial plan (het Marien Ruimtelijk Plan) of the BPNS in 2020. 

The transition from a narrow strip of coast, which requires dykes and constant beach 

suppletions to keep its protection, to a wide coast with dunes, sandbanks and islands 

promises to combine the coastal defences with the production of sustainable energy, 

nature restoration, and improve the attractiveness of coastal tourism. If approved, the 

Flanders Bays project would drastically reshape the Flemish coast by 2100. 

The proposal contains 10 specific projects to reduce the vulnerability of the BPNS. 

Some of these projects - i.e. the extension of harbor walls, the raising of sandbanks, 

the creation of artificial lagoons on both sides of Zeebruges, and the construction of a 

multifunctional atoll – will increase the number of sheltered zones inside the BPNS. 

Because of the reduced hydrodynamic forcing in these new areas, stagnant water 

bodies along the entire coast will favor the growth of dinoflagellates, which are then 

seeded into the coastal zone. As shown here, the size of inocula can determine the 

outcome of competition. As a result, the Flanders Bay project might increase the risk 

of HABs in the future BPNS, an aspect that is currently overlooked during the design 

of these activities. Together with other on-going environmental changes to the BPNS, 

these “Blue growth” initiatives will influence the biodiversity in unknown ways and, 

hence, strengthen the need for a robust monitoring system of HABs in the future.  
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7. General conclusion 

Since the start of the Industrial Revolution, mankind’s activities have increasingly 

transgressed Earth’s self-regulating capacity, accelerating the environmental change 

which gradually pushes our planets system out of the stable state of the Holocene 

(Rockström et al., 2009). Overexploitation, eutrophication, ocean acidification, global 

warming, alien species introductions, chemical pollution and marine debris, are just a 

few of the challenges that are threatening the diversity and functioning of marine 

systems around the globe (Halpern et al., 2008). Among many other stressors of the 

environment, these impacts coincide with a global increase in harmful algal blooms, 

and an enhanced risk of HAB development in the North Sea. Yet, rather than being 

pessimistic about the future oceans, let us create a narrative of hope instead. 

After decades of stepwise improvements to the water quality of European rivers, 

the nutrient levels of the North Sea are gradually decreasing. While the North Sea is 

still caught in its herring-based regime, which allows a greater accumulation of algae, 

scientists are seeing the initial signs of recovery of the cod populations (ICES, 2016). 

In addition to improved catch quota, this upwards trend can be related to the rapidly 

growing EU network of de jure and de facto protected areas (e.g. windmills parks) 

(Moland et al., 2013). Besides the return of cod, we are also seeing pilot studies 

which are attempting to restore some of the lost bivalve reefs (e.g. Sas et al., 2016). 

These restoration projects – which have been hugely successful in the United States 

(Schulte et al., 2009) – could enhance the filtration potential of our coastal zone, and 

improve the coastal protection at the same time (Grabowski and Peterson, 2007). 

Their success may, however, be intertwined with the future of HABs. 

Some of the greatest potential for technological innovation and sustainable growth 

is found in the marine environment (Pauli, 2010). The predicted increase in economic 

activities inside coastal areas could affect the biodiversity in various ways. Future, 

large-scale developments like the “Vlaamse Baaien” will have a tremendous effect on 

our coastal ecosystems, and could enhance the risk of HABs even further. However, 

these projects also represent opportunities as well as incentives to improve the state 

of future oceans. They can contribute to the expansion of de facto protected areas 

that generate returns on both biodiversity and productivity, strengthen the resilience 

of coastal communities to climate change, and create unique chances for biological 

experimentation (cfr. reef restoration). Now, more than ever, marine scientists should 

join forces with legislators and entrepreneurs to envision an economic and ecologic 

future for the marine environment. The ocean is, after all, the greatest component of 

Spaceship Earth. The great unifier which affects us all. 
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Summary 

The growing need to feed the world’s population has led to significant advances in 

agricultural practices over the last 50 years. The Haber-Bosch process, in particular, 

enabled an intensification of the global fertilizer use, resulting in higher crop yields 

across the world. Yet, due to the inefficient incorporation of fertilizers into agricultural 

products, these nutrients led to significant environmental pollution and eutrophication. 

Fuelled by nutrient enriched runoff, rivers upset the biogeochemical balance of the 

marine environment, leading to a global increase in size, frequency and distribution 

of harmful algal blooms (HABs). During these events, a phytoplankton species is able 

to proliferate at the expense of others, causing severe harm to the environment 

through hypoxia, shading, physical disruption and the release of potent toxins. As a 

result, HABs are a severe threat to marine biodiversity as well as the safety and 

security of seafood. Now, with climate change looming over the horizon, scientists 

fear that HABs could become more prevalent in our future oceans. To date, however, 

there is a lack of experimental evidence that global change will affect HABs. 

Despite the implications for human health and ecosystem health, the link between 

eutrophication and HAB development is still not fully understood. Yet, while scientists 

are discussing the fundamental ecological importance of biological features such as 

toxicity, mixotrophy and allelopathy, we are slowly missing our opportunity to prevent 

a major escalation of HABs. For this reason, we urgently need to identify and employ 

model species in cross-validated, long-term multifactorial studies with co-occurring 

species to rapidly progress our understanding of HABs, and quantify the impact of 

HABs on the socioeconomic well-being of our species to persuade policy makers. 

During this PhD research, we tried to achieve both. 

Given our lack of knowledge on the occurrence of HABs in our own regional sea, 

the main objective of this thesis was to assess whether the ongoing changes in the 

environmental state of the Belgian Part of the North Sea (BPNS) have enhanced the 

risk of HAB development. In addition to regular sampling campaigns, we identified 

several knowledge gaps in the available literature that we first had to resolve in order 

to answer this main question. In particular, we needed to determine whether changes 

in the total or relative nutrient availability, both effects of eutrophication, affect the 

competitive traits of potentially harmful dinoflagellates. Next, we needed to verify that 

climate-change driven temperature increases would not affect these traits either. 

Lastly, we wondered if toxic dinoflagellates could have unknown mixed toxicity 

effects – by themselves or in together with marine pathogens - on keystone bivalve 

species like Mytilus edulis.  
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In chapter 2, we examined how the relative availability of nutrients – simulated by 

10 different additions of nitrate at constant phosphate concentrations - can affect the 

growth of dinoflagellates at two temperatures. To this end, we measured the density, 

nutrient concentrations and toxin production of 300 single and mixed cultures of 

Prorocentrum lima, P. micans, Protoceratium reticulatum and Scrippsiella trochoidea 

– four dinoflagellates commonly found in the BPNS – for well over a month. Overall, 

the external nutrient stoichiometry had little effect on the growth and toxin production 

of our species. As a result, the N:P ratio was found to have no structuring role in the 

competition between dinoflagellates with closely resembling nutrient requirements. 

For this reason, we urge HAB ecologists to reconsider the use of resource ratios as a 

reliable measure of eutrophication. The N:P ratio did, however, affect the carrying 

capacity of P. micans and S. trochoidea, leading to the suspicion that the competition 

was nitrogen driven, which was explored in the subsequent chapter. Climate change 

conditions were mostly found to accelerate the process. 

Chapter 3 explores how initial densities may shape the outcome of interspecific 

competition between dinoflagellates, and whether conditions such as temperature, 

nutrient availability and nutrient stoichiometry are able to change this outcome. Two 

large-scale culture experiments were set up using the common dinoflagellate species 

Alexandrium minutum, Prorocentrum micans and Protoceratium reticulatum. The first 

experiment applied different macronutrient concentrations (total nutrient availability) 

and multiple N:P ratios (relative nutrient availability) to verify the results of chapter 2. 

The second experiment varied the initial community compositions of the cultures by 

changing the relative species densities at the start, and included abiotic variability as 

different temperatures and N:P ratios. Again, we monitored the densities and nutrient 

levels of these 468 cultures for over a month. Then, we used mechanistic modelling 

based on MacArthur’s resource-consumer model to unravel the mechanisms behind 

the competition, and accurately predict the outcome of competition – under every set 

of conditions - between these three species. We found that the community dynamics 

could be predicted using only the nutrient uptake rates, conversion efficiencies and 

the maintenance requirements of each individual species. All these parameters were 

estimated from their performance in monocultures. Abiotic variability like temperature, 

nutrient stoichiometry and nutrient availability affected the parameter estimates, but 

did not change the underlying mechanism of the competition. Overall, this study 

demonstrated how initial densities may overturn the outcome of bloom development, 

giving credit to the importance of cyst beds in the marine environment, and shows 

that the pre-bloom competition between dinoflagellates is nutrient driven, illustrating 

the need to need to restrict the nutrient inputs into the North Sea.  
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In the second half of this dissertation, we looked at the effect of potentially harmful 

algae on the survival and reproduction of bivalves. To this end, we used the common 

blue mussel as a model organism, a true North Sea ecosystem engineer on its own. 

The recent success of HABs is partially associated with the global decline of coastal 

bivalve reefs. In addition to the loss of natural filtration, the disappearance of bivalve 

populations has increased the importance of planktonic grazers which tend to avoid 

toxic algae and, hence, enable HAB development. The future recovery of the bivalve 

reefs could, however, hinge on their ability to withstand HABs. 

In chapter 4, we investigated how the exposure to multiple toxic algae affects the 

feeding of adult mussels. In addition, we looked at the absorption, distribution, 

metabolization and excretion kinetics of their toxins. More specifically, we exposed 

adult mussels to the dinoflagellates Alexandrium ostenfeldii and Prorocentrum lima, 

in a single and combined two-week laboratory exposure. In parallel, mussels cages 

were left in the harbour of Ostend to study the accumulation of toxins under natural 

BPNS conditions. During both exposures, the toxin profiles were regularly recorded 

by ultra-high performance liquid chromatography coupled to high-resolution Orbitrap 

mass spectrometry (UHPLC-HR-Orbitrap MS). Both experiments revealed a rapid 

accumulation of okadaic acid, dinophysis toxins and spirolides in the visceral tissues 

of M. edulis. Worryingly, the simultaneous exposure to both algae increases the rate 

of the accumulation and metabolization processes, and led to the creation of different 

metabolized compounds. As such, this study mostly highlighted the need to evaluate 

the risk of mixtures of (unregulated) compounds to human health, and the improved 

monitoring of toxic phytoplankton inside the BPNS. 

Chapter 5 and 6 examined the effects of toxic HABs on the larvae of M. edulis, 

i.e. the most sensitive life-stage. In chapter 5, we first looked effect of domoic acid 

and okadaic acid – the most common toxins in European waters – on larval viability, 

development as well as innate immune responses. By exposing mussel embryos to 

various concentrations of dissolved toxins and their producers, the toxic diatom 

Pseudo-nitzschia multiseries and the dinoflagellate Prorocentrum lima, we found a 

previously unknown toxic effect of okadaic acid, which was attributed to its ability to 

inhibit larval protein phosphatase. P. multiseries, P. lima, and DA, on the other hand, 

increased the phenoloxidase innate immune activity of the larvae. This discovery was 

was cause for concern, as it could signify that HABs are affecting the immunological 

resilience of bivalve larvae. Considering that notorious pathogens, like Vibrio spp., 

have been found in close association with HABs, such an interaction would greatly 

enhance the effect of HABs on bivalve recruitment.  
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Since HABs and pathogens could both become more prevalent in the future, we 

further explored the interactive toxicity effects between these two stressors. During 

chapter 6, M. edulis larvae were exposed to various mixtures of dinoflagellates 

(Alexandrium minutum, A. ostenfeldii, Karenia mikimotoi, Protoceratium reticulatum, 

Prorocentrum cordatum, P. lima or P. micans) and two notorious bivalve pathogens 

(a Vibrio coralliilyticus/neptunius-like isolate or Vibrio splendidus). Again, the viability, 

development and immune response of the larvae was recorded. Yet, while we found 

several previously unknown toxicity effects of dinoflagellates, we found no compelling 

evidence of strong interactions between both stressors. Against all our expectations, 

none of the immunological responses to HABs increased the susceptibility of mussel 

larvae towards Vibrio spp. infections. Overall, we concluded that the main effects of 

each stressor is separated in time. Still, we believe that these interactions can occur 

at a later stage, once bivalves are large enough to consume pathogens and harmful 

dinoflagellates at the same time. As a result, the natural association between HABs 

and pathogens remains a concern. 

Coupled to a review of the current state of the North Sea in chapter 7, this work 

suggests that the risk of HABs in the region has increased over the last decades. 

While significant steps have been taken towards the reduction of nutrient loads in our 

coastal areas, there is a very real possibility that climate change will further enhance 

the occurrence of HABs in the North Sea. In addition to more research on the nutrient 

competition between co-occurring phytoplankton, and the potential for harmful effects 

on key stone bivalve species, we highly recommend the development of a coherent 

plankton monitoring network in our coastal zone. Such a system would not only allow 

us to study interactions between phytoplankton and zooplankton populations in situ, 

and improve our environmental assessment of the effects of HABs in the North Sea, 

but it could also provide a direct measure of the efficacy of nutrient legislation, a tool 

to fulfil our obligations towards the Marine Strategy Framework Directive, a system to 

improve the efficiency of our seafood monitoring strategy, and an early warning 

system which would benefit future Blue Growth activities. 
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Samenvatting 

Door de toenemende wereldbevolking groeit de wereldwijde vraag naar voedsel, 

wat leidt tot verbeterde landbouwpraktijken. Dankzij het Haber-Bosch proces is het 

gebruik van meststoffen sterk toegenomen in de afgelopen 50 jaar, met een hogere 

landbouwopbrengst tot gevolg. Door de inefficiënte opname van nutriënten door de 

gewassen, komt een groot deel van deze kunstmeststoffen terecht in het grond- en 

oppervlaktewater, wat eutrofiëring en milieuvervuiling veroorzaakt. De afgevloeide 

nutriënten komen via sloten, beken, kanalen en rivieren uiteindelijk in de zeeën en 

oceanen terecht, waar ze de chemische balans van het water verstoren. Dit proces 

heeft geleid tot een globale toename in het voorkomen van schadelijke algenbloei. 

Tijdens een schadelijke algenbloei (SAB) wordt het fytoplankton overwoekerd door 

cellen die, door middel van zuurstof vermindering (hypoxia), licht reductie, fysieke 

verstoring of krachtige gifstoffen, schade berokkenen aan het mariene ecosysteem. 

SAB is, met andere woorden, een bedreiging voor de biodiversiteit en productiviteit 

van de oceanen. Wetenschappers vrezen nu dat klimaatverandering de impact van 

SAB zal vergroten. Daar is tot op heden, echter, weinig experimenteel bewijs voor. 

Desondanks de gevolgen voor mens en dier, weten we verrassend weinig over de 

verbanden tussen SAB en eutrofiëring. Terwijl de wetenschappers nog druk aan het 

discussiëren zijn over het ecologisch belang van bepaalde eigenschappen van SAB, 

zoals toxiciteit, mixotrofie en allelopatie, verliezen we langzamerhand onze kans om 

een escalatie van SAB te vermijden. Als we beleidsmakers willen overtuigen van het 

(toekomstig) belang van schadelijke algen, moeten we dringend onze kennis over de 

ontwikkelingsprocessen van SAB verbeteren. Daarnaast moeten we een beter zicht 

krijgen op de socio-economische gevolgen van SAB. In dit proefschrift proberen we 

dit te bereiken aan de hand van verschillende multifactoriële langetermijnstudies met 

relevante modelorganismes. 

Gezien er vrij weinig gekend is over het voorkomen van schadelijke algen in het 

Belgisch deel van de Noordzee, was het doel van dit doctoraat om na te gaan of de 

veranderingen in de Noordzee het risico op SAB vergroot hebben. Naast regelmatige 

bemonsteringen van het zeewater, identificeerden we belangrijke ecologische vragen 

in de beschikbare literatuur die we dienden te beantwoorden in functie van ons doel. 

Zo was het nodig om te weten in welke mate de totale en relatieve beschikbaarheid, 

beide gewijzigd door eutrofiëring, een effect hebben op het competitief gedrag van 

schadelijke algen in het huidig en toekomstig klimaat van de Noordzee. Daarnaast 

zijn we nagegaan of schadelijke pantserwieren of dinoflagellaten het voorkomen van 

ziektes in sleutelsoorten als de mossel Mytilus edulis kunnen verhogen.  
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In hoofdstuk 2 werd door middel van verschillende toevoegingen van nitraat bij 

constante fosfaat concentraties nagegaan of de verhouding van stikstof tot fosfor een 

effect heeft op de groei van dinoflagellaten. Daarvoor werden 300 enkelvoudige en 

gemengde kweken van vier veelvoorkomende dinoflagellaten - Prorocentrum lima, 

P. micans, Protoceratium reticulatum en Scrippsiella trochoidea – geplaatst bij twee 

temperaturen (20°C en 24°C) en 10 verhoudingen van stikstof en fosfor. De densiteit, 

nutriënten concentraties en toxine productie werd gedurende een maand opgevolgd. 

Algemeen beschouwd, bleek uit dit experiment dat de N:P ratio weinig effect heeft op 

de groei en de toxine productie van dinoflagellaten. Deze veelbesproken parameter 

speelt dus geen structurerende rol tijdens de competitie tussen nauwverwante SAB 

soorten met gelijkaardige nutriëntenbehoeftes. Extra stikstof veroorzaakte veelal wel 

een verhoging in de densiteit van de algen. Hierdoor ontstond het vermoeden dat de 

competitie tussen SAB soorten stikstof-gedreven is. De ontwikkeling en competitie in 

de celculturen verliep meestal sneller bij hogere temperaturen. 

Hoofdstuk 3 verdiept zich in het mechanisme van de competitie tussen soorten, 

en onderzoekt hoe de initiële condities de SAB ontwikkeling kunnen beïnvloeden. 

Twee grote, multifactoriële kweekexperimenten werden gebruikt om na te gaan wat 

het effect van nutriënten concentraties, de N:P ratio, temperatuur en de densiteit van 

verschillende soorten is op de uitkomst van de competitie tussen de dinoflagellaten. 

Om de resultaten van hoofdstuk 2 te bevestigen, werden in het eerste experiment 

opnieuw drie Noordzee SAB soorten, nl. Alexandrium minutum, Prorocentrum micans 

en Protoceratium reticulatum, gekweekt bij verschillende nutriënten concentraties en 

N:P verhoudingen. In het tweede experiment varieerden we zowel de N:P ratio, als 

de temperatuur en de initiële samenstelling van de gemengde culturen. Tijdens beide 

experimenten werd opnieuw gekeken naar het verloop van het aantal cellen en de 

nutriënten concentraties. Vervolgens werd een bestaand mechanistisch groeimodel 

(MacArthur’s consumer-resource model) gebruikt om de uitkomst van de competitie, 

onder alle omstandigheden, te voorspellen aan de hand van de nutriëntenopname, 

omzettingsefficiëntie en onderhoudsbehoeftes van elke soort. Deze laatste werden 

bepaald aan de hand van monoculturen. Abiotische variantie zoals temperatuur, de 

N:P verhouding en de totale beschikbaarheid aan nutriënten hadden elk een invloed 

op deze parameters, maar veranderden niets aan het onderliggende mechanisme 

van de competitie. Competitie is nutriënten gedreven, waardoor variaties in de initiële 

densiteit van elke alg kan leiden tot een verschillende dominantie in de finale SAB. 

Met dit werk werden het belang van cysten en nutriënt concentraties in de Noordzee, 

en de preventieve maatregelen met betrekking tot beide, nogmaals onderstreept. 
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In het tweede deel van dit proefschrift werd gezocht naar onbekende directe en 

indirecte effecten van SAB op de overleving en reproductie van de gewone mossel, 

een ecologische en economische sleutelsoort van de Noordzee. Het recente succes 

van SAB in geassocieerd met het verdwijnen van de natuurlijke riffen van mosselen 

en oesters voor onze kust. Naast het verlies van biofiltratie, verhoogt dit namelijk het 

belang van planktonische grazers die zich niet voeden op toxische algen. Het herstel 

van deze riffen hangt samen met het toekomstig succes van SAB in de Noordzee. 

In hoofdstuk 4 werd onderzocht hoe de blootstelling aan meerdere giftige algen 

het voedingsgedrag van de mossel kan beïnvloeden. Daarbij werd gekeken naar de 

absorptie, distributie, metabolisatie en excretie van de toxines. Volwassen mosselen 

werden gedurende twee weken onder labo condities enkel of gelijktijdig blootgesteld 

aan Alexandrium ostenfeldii en Prorocentrum lima. Daarnaast werden mosselkooien 

in de haven van Oostende geplaatst, om de opname van toxines onder natuurlijke 

omstandigheden te bestuderen. Gedurende beide experimenten werden regelmatig 

toxine profielen geregistreerd met vloeistofchromatografie met massaspectrometrie. 

Zowel de natuurlijke blootstelling als de labo experimenten veroorzaakten een snelle 

toename in toxines (vnl. okadazuur, dinophysistoxines en spiroliden ) en de afgeleide 

metabolieten binnenin de mossel. Tijdens de gelijktijdige blootstelling aan de algen 

nam de accumulatiesnelheid toe, en werden zelf andere metabolieten gevonden. 

Mortaliteit werd echter niet waargenomen. Deze studie toont dus aan dat mengsels 

van ongereguleerde toxines voorkomen aan onze kust. Een verbeterde monitoring 

van schadelijke algen is dan ook aan te raden. 

Hoofdstukken 5 en 6 spitsen zich toe op de impact van giftige algen op de larven 

van de mossel. In hoofdstuk 5 onderzochten we eerst of de twee meest abundante 

toxines (domoizuur en okadazuur) en hun producenten, Pseudo-nitzschia multiseries 

en Prorocentrum lima, een effect hebben op de ontwikkeling, overleving en immuun 

activiteit van deze gevoelige levensstadia. Daar werd ontdekt dat okadazuur een 

onbekende toxiciteit vertoont in mossellarven, die we verbonden aan de inhibitie van 

fosfatase activiteit. Daarnaast werd waargenomen dat elke andere behandeling een 

immuunrespons veroorzaakte, waardoor het immuunsysteem van de larve mogelijk 

onderdrukt wordt. Dit laatste is zorgwekkend omdat mariene pathogenen reeds een 

ernstige bedreiging vormen voor mosselpopulaties. Vermits beruchte pathogenen als 

Vibrio spp. in nauwe associatie met SAB zijn waargenomen, kunnen deze interacties 

leiden tot een sterk vergrote impact van SAB op de productiviteit en stabiliteit van het 

ecosysteem. Daarom werden in het laatste hoofdstuk de mossel larven blootgesteld 

aan SAB en pathogenen tegelijk. 
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De klimaatverandering zal het voorkomen van zowel schadelijke algen als nefaste 

bacteriën sterk beïnvloeden. Hierdoor kunnen in de toekomst steeds vaker mengsels 

van deze stressoren opduiken in het mariene milieu. Om na te gaan wat de mogelijke 

gevolgen zijn natuurlijke schelpdierpopulaties, werden in hoofdstuk 6 mossellarven 

blootgesteld aan diverse giftige wieren (Alexandrium minutum, A. ostenfeldii, Karenia 

mikimotoi, Protoceratium reticulatum, Prorocentrum cordatum, P. lima of P. micans) 

en een pathogeen (a Vibrio coralliilyticus/neptunius-like isolate of Vibrio splendidus). 

De ontwikkeling, overleving en immuun respons van de mossel larven werd opnieuw 

geregistreerd. Daaruit bleek dat verscheidene pantserwieren een dusver ongekende 

impact hebben op de overleving van mossellarven maar, desondanks de individuele 

effecten van beide pathogenen, er geen sterkte interacties bestaan tussen deze twee 

stressoren. Ook het primitieve immuunsysteem kon onafhankelijk reageren op zowel 

de bacteriën als de toxische pantserwieren. Het algemeen besluit was dan ook dat er 

geen evidentie is voor sterke interacties tussen pathogenen en SAB in de larven van 

schelpdieren, omdat hun individuele effecten allicht een verschillende timing kennen. 

Desalniettemin vrezen we dat deze interacties toch een rol kunnen spelen zodra de 

mossel groot genoeg is om zich gelijktijdig te voeden op toxische algen en bacteriën. 

Gekoppeld aan een overzicht van de beschikbare literatuur in hoofdstuk 7, toont 

deze scriptie aan dat het risico van SAB in de Noordzee is toegenomen gedurende 

de laatste decennia. Hoewel er al grote stappen zijn genomen richting de verbetering 

van de oppervlaktewaterkwaliteit in België, is er nog steeds een reëel gevaar dat de 

klimaatverandering het voorkomen van SAB in de Noordzee zal bevorderen. Naast 

een voortzetting van het onderzoek naar de competitie in natuurlijk gemeenschappen 

van algen, raden we de verdere ontplooiing van een planktonmonitoring netwerk ten 

stelligste aan. Een autonoom monitoringsnetwerk laat ons toe om in situ interacties 

tussen planktonische grazers en fytoplanktonsoorten te bestuderen, verbetert onze 

inschatting van de frequentie en impact van SAB in onze kustwateren, vervult onze 

plicht aan Europese wetgeving zoals de Marine Strategy Framework Directive, geeft 

ons een maat voor de efficiëntie van de nationale nutriëntenwetgeving, en creëert 

een vroeg waarschuwingssysteem voor de toekomstige industriële activiteiten van de 

Blauwe economie. 
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Table B2: Parameter estimates of the second experiment with varying initial densities, 

N:P ratios and temperatures 

Uptake rates of nitrogen UN and phosphorus UP, conversion efficiency of nitrogen WN and the 

maintenance requirement m based on MacArthur’s consumer-resource model. No significant 

growth was observed for 10 cells.ml-1 P. reticulatum at 20°C (ref. Fig B3) 

. 

   
Initial 

density 
(cells.ml-1) 

UN 

(10-7 l.µm–3.d–1) 
UP 

(10-7 l.µm–3.d–1) 
WN 

(108 µm3.mg–1) 
m 

(d–1) 

A. minutum N:P 8 20°C 10 3.09 1.00 1.08 0.004 

   100 3.90 2.00 0.86 0.001 

  24°C 10 10.9 1.00 1.20 0.001 

   100 13.0 0.98 1.05 0.011 

 N:P 14 20°C 10 1.97 0.74 1.01 0.009 

   100 2.56 7.00 0.76 0.008 

  24°C 10 7.80 2.00 1.00 0.001 

   100 15.0 5.04 0.72 <0.001 

P. reticulatum N:P 8 20°C 10 NA NA NA NA 

   100 1.69 1.08 1.00 0.010 

  24°C 10 3.08 5.28 4.98 0.259 

   100 7.51 1.67 1.00 0.009 

 N:P 14 20°C 10 NA NA NA NA 

   100 1.86 4.60 0.93 0.051 

  24°C 10 4.73 10.3 1.15 0.001 

   100 3.76 8.14 1.10 0.008 

P. micans N:P 8 20°C 10 1.10 1.01 0.52 0.136 

   100 7.87 6.89 0.50 0.016 

  24°C 10 38.3 5.69 0.38 0.011 

   100 22.8 0.97 0.50 0.001 

 N:P 14 20°C 10 1.10 1.05 4.72 0.223 

   100 4.40 21.7 0.55 0.039 

  24°C 10 15.5 2.58 0.50 <0.001 

   100 17.3 37.3 0.43 <0.001 
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Figure B1: Densities and nutrients of monocultures of all species in the first experiment. 
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Figure B2: Nutrient and density data of mixed cultures of all three species, grown with 

different N:P ratios and macronutrient concentrations ( i.e. % dilutions of L1 medium called 

concentration factors), fitted with predictions of MacArthur’s resource competition model. 

Full lines represent the mean prediction, dashed lines are 95% confidence intervals. 
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Figure B4: Nutrient and density data of binary mixtures of three dinoflagellate species, 

grown at 20°C and two different N:P ratios (8 or 14). The ratio on the y-axis represent the 

respective initial densities of each species (1 = 10 cells.ml-1; 2 = 100 cells.ml-1). Full lines 

represent the mean predictions of MacArthur’s resource competition model, dashed lines 

are 95% confidence intervals. 
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Figure B5: Nutrient and density data of binary mixtures of three dinoflagellate species, 

grown at 24°C and two different N:P ratios (8 or 14). The ratio on the y-axis represent the 

respective initial densities of each species (1 = 10 cells.ml-1; 2 = 100 cells.ml-1). Full lines 

represent the mean predictions of MacArthur’s resource competition model, dashed lines 

are 95% confidence intervals. 
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Table C1: The abbreviations and official nomenclature for chemicals found in chapter 4. 

The abbreviated names for OA precursors are based on the number of carbon atoms and the 

number of double bonds in the cleavable chain. 

 

  

Abbreviation Chemical nomenclature 

OA Okadaic acid 

OA-C1 Methyl okadaate 

OA-C3 Norokadanone 

OA-D4 2-hydroxymethyl-allyl okadaate 

OA-D6 5-hydroxy-2-methylene-pent-3-enyl okadaate 

OA-D7a 6-hydroxy-2-methylene-hexa-4-enyl okadaate 

OA-D7b 6-hydroxy-2-methyl-hexa-2,4-dienyl okadaate 

OA-D8 7-hydroxy-2-methyl-hepta-2,4-dienyl okadaate 

OA-D9a 7-hydroxy-2-methyl-6-methylene-hept-2-enyl okadaate 

OA-D9b 7-hydroxy-4-methyl-2-methylene-hept-4-enyl okadaate 

OA-D9c 7-hydroxy-2,4-dimethyl-hepta-2,4-dienyl okadaate 

OA-T9 5-hydroperoxy-7-hydroxy-2,4-dimethylene-heptyl okadaate 

OA-D10 7-hydroxymethyl-2- methylene-octa-4,7-dienyl okadaate 

DTX-1 Dinophysistoxin-1 or 35(S)-methyl OA 

DTX-2 Dinophysistoxin-2 or 31-demethyl-35-methyl OA 

DTX-3 Various fatty esters (i.e. 7-O-Acyl derivates) of OA, DTX-1 and DTX-2 

13-SPX C 13-desmethyl spirolide C 

27-O-13,19-SPX C 27-oxo-13,19-didesmethyl spirolide C 

27-OH-13-SPX C 27-hydroxy-13-desmethyl spirolide C 



 

Annex C 

 
220  

T
a

b
le

 C
2

.1
 O

A
 r

e
la

te
d

 c
o

m
p

ou
nd

s 
fo

u
nd

 i
n

 t
he

 e
xt

ra
ct

s 
of

 m
u

ss
e

ls
 e

xp
o

se
d

 t
o

 P
. 

lim
a

 (
n
=

55
).

 T
h

e
 r

e
su

lts
 w

e
re

 o
b

ta
in

ed
 

th
ro

u
gh

 t
he

 T
o

xI
D

 s
of

tw
a

re
, 

u
si

n
g 

a
 m

in
im

u
m

 p
ea

k 
in

te
n

si
ty

 o
f 

10
00

 a
n

d
 a

 m
a

xi
m

u
m

 m
a

ss
 d

e
vi

at
io

n
 o

f 
5 

pp
m

. 
T

he
 id

e
n

tit
y 

of
 t

he
 

co
m

p
ou

nd
s 

w
a

s 
co

nf
irm

ed
 u

si
ng

 th
e

 13
C

/12
C

 is
ot

op
ic

 io
n

 r
a

tio
, a

cc
o

rd
in

g 
to

 th
e

 c
rit

e
ria

 d
e

sc
rib

e
d 

in
 C

D
 2

00
2

/6
57

/E
C

 (
20

02
).

 

3
 D

A
Y

S
 

  
  

  
  

  
  

  
  

  
  

E
le

m
en

ta
l 

co
m

po
si

tio
n 

R
T

 
(m

in
) 

M
ea

su
re

d 
m

as
s 

(m
/z

) 
E

rr
or

 
(%

) 
Io

n 
m

od
e 

T
he

or
et

ic
al

 
is

ot
op

e 
ra

tio
 

O
bs

er
ve

d 
is

ot
op

e 
ra

tio
 

V
ar

ia
tio

n 
(S

D
) 

T
en

ta
tiv

e 
id

en
tit

y 
M

ea
n 

es
tim

at
e 

(μ
g
.k

g-1
) 

T
is

su
e

 

C
44

H
68

O
13

 
1.

95
 

80
3.

46
23

4
 

4.
50

 
- 

47
.5

9 
46

.4
3 

9.
46

 
O

A
 

5.
17

 
vi

sc
er

al
  

C
45

H
70

O
13

 
2.

09
 

81
7.

47
71

7
 

3.
46

 
- 

48
.6

7 
48

.3
9 

10
.2

8 
D

T
X

-1
 

8.
63

 
vi

sc
er

al
  

C
58

H
94

O
14

 
3.

55
 

10
37

.6
56

62
 

2.
92

 
+

 
62

.7
3 

56
.5

5 
13

.1
8 

14
:0

 O
A

 
5.

35
 

vi
sc

er
al

  

C
58

H
88

O
14

 
3.

15
 

10
09

.6
25

24
 

0.
55

 
+

 
62

.7
3 

59
.2

2 
10

.5
1 

14
:3

 O
A

 
4.

47
 

vi
sc

er
al

  

C
60

H
94

O
14

 
3.

28
 

10
61

.6
57

0
 

3.
20

 
+

 
64

.8
9 

57
.4

4 
13

.4
5 

16
:2

 O
A

 
4.

76
 

vi
sc

er
al

  

C
64

H
96

O
14

 
3.

32
 

11
11

.6
73

58
 

3.
91

 
+

 
69

.2
2 

64
.0

2 
15

.2
0 

20
:5

 O
A

 
3.

77
 

vi
sc

er
al

  

C
43

H
66

O
11

 
3.

09
 

78
1.

45
14

8
 

2.
23

 
+

 
46

.5
1 

40
.3

1 
16

.2
0 

O
A

-C
3 

3.
39

 
vi

sc
er

al
  

C
48

H
74

O
14

 
4.

87
 

89
2.

53
79

0
 

-4
.2

3 
+

 
51

.9
2 

50
.2

3 
16

.1
4 

O
A

-D
4 

2.
50

 
vi

sc
er

al
  

5
 D

A
Y

S
 

  
  

  
  

  
  

  
  

  
  

C
44

H
68

O
13

 
1.

96
 

80
3.

46
19

8
 

4.
05

 
- 

47
.5

9 
44

.3
2 

13
.2

6 
O

A
 

9.
12

 
vi

sc
er

al
 

C
44

H
68

O
13

 
1.

97
 

80
3.

46
00

7
 

1.
68

 
- 

47
.5

9 
45

.8
6 

15
.6

5 
O

A
 

4.
83

 
N

on
-v

is
ce

ra
l 

C
45

H
70

O
13

 
2.

11
 

81
7.

47
68

7
 

3.
05

 
- 

48
.6

7 
47

.2
2 

9.
45

 
D

T
X

-1
 

11
.8

1 
vi

sc
er

al
 

C
45

H
70

O
13

 
2.

13
 

81
7.

47
48

8
 

0.
66

 
- 

48
.6

7 
47

.6
8 

14
.6

9 
D

T
X

-1
 

6.
56

 
N

on
-v

is
ce

ra
l 

C
58

H
94

O
14

 
2.

82
 

10
37

.6
56

59
 

3.
20

 
+

 
62

.7
3 

58
.6

1 
10

.1
2 

14
:0

 O
A

 
2.

55
 

vi
sc

er
al

 

C
58

H
88

O
14

 
3.

14
 

10
09

.6
25

08
 

0.
64

 
+

 
62

.7
3 

56
.7

4 
9.

99
 

14
:3

 O
A

 
10

.4
4 

vi
sc

er
al

 

C
58

H
88

O
14

 
3.

15
 

10
09

.6
25

29
 

0.
99

 
+

 
62

.7
3 

56
.7

5 
12

.1
0 

14
:3

 O
A

 
6.

39
 

N
on

-v
is

ce
ra

l 

C
59

H
96

O
14

 
3.

61
 

10
29

.6
86

16
 

-1
.0

8 
+

 
63

.8
1 

62
.3

7 
11

.4
4 

15
:0

 O
A

 
13

.4
0 

vi
sc

er
al

 

C
60

H
98

O
14

 
3.

73
 

10
65

.6
86

16
 

-0
.4

 
+

 
64

.8
9 

60
.7

7 
14

.1
2 

16
:0

 O
A

 
11

.0
7 

vi
sc

er
al

 

C
60

H
96

O
14

 
3.

55
 

10
63

.6
71

63
 

2.
25

 
+

 
64

.8
9 

61
.6

3 
13

.2
6 

16
:1

 O
A

 
15

.9
1 

vi
sc

er
al

 

C
60

H
96

O
14

 
3.

56
 

10
63

.6
70

73
 

1.
41

 
+

 
64

.8
9 

65
.4

6 
14

.2
9 

16
:1

 O
A

 
10

.6
7 

N
on

-v
is

ce
ra

l 

C
60

H
94

O
14

 
3.

70
 

10
61

.6
52

65
 

-0
.8

7 
+

 
64

.8
9 

59
.4

8 
9.

41
 

16
:2

 O
A

 
35

.2
0 

vi
sc

er
al

 

C
60

H
94

O
14

 
3.

73
 

10
61

.6
51

22
 

-2
.2

2 
+

 
64

.8
9 

66
.7

8 
14

.2
9 

16
:2

 O
A

 
23

.2
4 

N
on

-v
is

ce
ra

l 
C

61
H

98
O

14
 

3.
93

 
10

55
.7

01
66

 
-1

.2
 

+
 

65
.9

8 
57

.7
8 

10
.2

0 
17

:1
 O

A
 

5.
11

 
vi

sc
er

al
 

C
62

H
10

0O
14

 
3.

96
 

10
69

.7
20

0
 

1.
29

 
+

 
67

.0
6 

66
.5

7 
14

.4
9 

18
:1

 O
A

 
13

.9
2 

vi
sc

er
al

 

 



 

supporting information chapter 4 

 
 221 

  
T

a
b

le
 C

2
.2

 O
A

 r
e

la
te

d
 c

o
m

po
un

d
s 

fo
u

nd
 in

 th
e

 e
xt

ra
ct

s 
of

 m
u

ss
e

ls
 e

xp
o

se
d 

to
 P

. 
lim

a
 (

n
=

5
5

).
  

C
62

H
98

O
14

 
3.

61
 

10
67

.7
00

56
 

-2
.2

 
+

 
67

.0
6 

61
.2

4 
13

.1
2 

18
:2

 O
A

 
19

.9
5 

vi
sc

er
al

 

C
62

H
98

O
14

 
3.

61
 

10
67

.7
01

14
 

-1
.6

7 
+

 
67

.0
6 

66
.4

0 
15

.8
2 

18
:2

 O
A

 
13

.5
7 

N
on

-v
is

ce
ra

l 

C
62

H
94

O
14

 
3.

57
 

10
85

.6
55

15
 

1.
44

 
+

 
67

.0
6 

59
.3

1 
10

.7
5 

18
:4

 O
A

 
16

.8
7 

vi
sc

er
al

 

C
64

H
96

O
14

 
3.

27
 

11
11

.6
71

75
 

2.
26

 
+

 
69

.2
2 

62
.0

9 
14

.1
1 

20
:5

 O
A

 
10

.2
5 

vi
sc

er
al

 

C
64

H
96

O
14

 
3.

28
 

11
11

.6
69

55
 

0.
28

 
+

 
69

.2
2 

68
.2

7 
14

.1
3 

20
:5

 O
A

 
7.

21
 

N
on

-v
is

ce
ra

l 

C
66

H
98

O
14

 
3.

29
 

11
37

.6
80

05
 

-4
.2

4 
+

 
71

.3
8 

68
.4

6 
11

.9
2 

22
:6

 O
A

 
13

.7
1 

N
on

-v
is

ce
ra

l 

1
0
 D

A
Y

S
 

  
  

  
  

  
  

  
  

  
  

C
44

H
68

O
13

 
1.

96
 

80
3.

46
27

5
 

5.
01

 
- 

47
.5

9 
44

.3
2 

13
.2

6 
O

A
 

12
.0

5 
vi

sc
er

al
 

C
44

H
68

O
13

 
1.

98
 

80
3.

46
00

7
 

1.
68

 
- 

47
.5

9 
47

.0
5 

14
.9

3 
O

A
 

8.
64

 
N

on
-v

is
ce

ra
l 

C
45

H
70

O
13

 
2.

11
 

81
7.

47
54

4
 

1.
34

 
- 

48
.6

7 
47

.2
2 

15
.4

5 
D

T
X

-1
 

15
.1

3 
vi

sc
er

al
 

C
45

H
70

O
13

 
2.

11
 

81
7.

47
40

1
 

-0
.4

0 
- 

48
.6

7 
45

.6
7 

11
.4

5 
D

T
X

-1
 

4.
45

 
N

on
-v

is
ce

ra
l 

C
58

H
94

O
14

 
3.

61
 

10
37

.6
53

81
 

0.
22

 
+

 
62

.7
3 

57
.5

2 
15

.2
1 

14
:0

 O
A

 
9.

38
 

vi
sc

er
al

 

C
58

H
94

O
14

 
3.

61
 

10
37

.6
52

06
 

-1
.4

6 
+

 
62

.7
3 

59
.4

6 
15

.2
1 

14
:0

 O
A

 
4.

22
 

N
on

-v
is

ce
ra

l 

C
58

H
88

O
14

 
3.

13
 

10
09

.6
25

31
 

0.
62

 
+

 
62

.7
3 

60
.1

3 
12

.6
0 

14
:3

 O
A

 
11

.1
7 

vi
sc

er
al

 

C
58

H
88

O
14

 
3.

13
 

10
09

.6
26

24
 

1.
93

 
+

 
62

.7
3 

59
.0

6 
12

.6
0 

14
:3

 O
A

 
7.

87
 

N
on

-v
is

ce
ra

l 

C
59

H
96

O
14

 
3.

68
 

10
29

.6
84

81
 

-2
.3

9 
+

 
63

.8
1 

59
.7

5 
14

.0
6 

15
:0

 O
A

 
26

.5
0 

vi
sc

er
al

 

C
60

H
98

O
14

 
3.

77
 

10
65

.6
86

16
 

-0
.4

 
+

 
64

.8
9 

61
.4

3 
13

.4
6 

16
:0

 O
A

 
26

.6
9 

vi
sc

er
al

 
C

60
H

96
O

14
 

3.
59

 
10

63
.6

70
90

 
1.

57
 

+
 

64
,8

9 
60

.9
4 

13
.9

5 
16

:1
 O

A
 

28
.0

8 
vi

sc
er

al
 

C
60

H
94

O
14

 
3.

71
 

10
61

.6
54

71
 

1.
06

 
+

 
64

.8
9 

66
.2

3 
9.

34
 

16
:2

 O
A

 
12

6.
00

 
vi

sc
er

al
 

C
60

H
94

O
14

 
3.

71
 

10
61

.6
53

69
 

0.
10

 
+

 
64

.8
9 

61
.4

8 
10

.3
4 

16
:2

 O
A

 
59

.0
8 

N
on

-v
is

ce
ra

l 

C
61

H
98

O
14

 
3.

92
 

10
55

.7
01

13
 

-1
.1

0 
+

 
65

.9
8 

56
.2

4 
9.

74
 

17
:1

 O
A

 
2.

08
 

vi
sc

er
al

 

C
62

H
10

0O
14

 
3.

97
 

10
69

.7
19

65
 

1.
28

 
+

 
67

.0
6 

60
.9

5 
11

.1
1 

18
:1

 O
A

 
3.

58
 

vi
sc

er
al

 

C
62

H
98

O
14

 
3.

65
 

10
67

.7
02

86
 

-1
.9

 
+

 
67

.0
6 

59
.8

1 
10

.2
5 

18
:2

 O
A

 
14

.7
7 

vi
sc

er
al

 

C
62

H
98

O
14

 
3.

66
 

10
67

.7
06

80
 

3.
62

 
+

 
67

.0
6 

62
.4

9 
8.

26
 

18
:2

 O
A

 
9.

78
 

N
on

-v
is

ce
ra

l 

C
62

H
96

O
14

 
3.

79
 

10
65

.6
84

33
 

-2
.7

9 
+

 
67

.0
6 

61
.2

2 
15

.8
4 

18
:3

 O
A

 
20

.7
0 

vi
sc

er
al

 

C
62

H
94

O
14

 
3.

68
 

10
63

.6
70

90
 

-0
.6

8 
+

 
67

.0
6 

64
,4

4 
12

.6
2 

18
:4

 O
A

 
28

.0
8 

vi
sc

er
al

 

C
64

H
96

O
14

 
3.

77
 

11
11

.6
71

61
 

1.
50

 
+

 
69

.2
2 

58
.6

8 
10

.5
4 

20
:5

 O
A

 
14

.7
7 

vi
sc

er
al

 

C
64

H
96

O
14

 
3.

77
 

11
11

.6
73

83
 

2.
14

 
+

 
69

.2
2 

63
.8

5 
11

.7
6 

20
:5

 O
A

 
10

.2
9 

N
on

-v
is

ce
ra

l 

C
61

H
10

0O
14

 
4.

04
 

10
57

.7
17

9
 

-0
.6

4 
+

 
65

.9
8 

60
.1

2 
15

.8
6 

16
:0

 D
T

X
1 

7.
37

 
vi

sc
er

al
 

C
47

H
73

O
14

 
2.

94
 

86
0.

49
24

9
 

-0
,3

 
- 

50
.8

3 
48

.7
7 

12
.2

3 
27

-O
-a

ce
ty

l O
A

 
2.

08
 

vi
sc

er
al

 

 



 

Annex C 

 
222  

 
T

a
b

le
 C

2
.3

 O
A

 r
e

la
te

d
 c

o
m

po
un

d
s 

fo
u

nd
 in

 th
e

 e
xt

ra
ct

s 
of

 m
u

ss
e

ls
 e

xp
o

se
d 

to
 P

. 
lim

a
 (

n
=

5
5

).
  

C
54

H
82

O
14

 
2.

68
 

95
3.

56
25

6
 

-0
.6

5 
- 

58
.4

0 
50

.1
1 

13
.2

9 
O

A
-D

6 
5.

30
 

vi
sc

er
al

 

C
52

H
80

O
14

 
2.

66
 

92
7.

54
76

1
 

0.
08

 
- 

56
.2

4 
48

.2
7 

13
.6

6 
O

A
-D

8 
10

.8
5 

vi
sc

er
al

 

C
53

H
82

O
14

 
2.

74
 

94
3.

57
78

8
 

0.
15

 
+

 
57

.3
2 

50
.3

9 
9.

12
 

O
A

-D
9 

10
.9

4 
vi

sc
er

al
 

1
5
 D

A
Y

S
 

  
  

  
  

  
  

  
  

  
  

C
44

H
68

O
13

 
1.

94
 

80
3.

46
13

6
 

3.
20

 
- 

47
.5

9 
41

.8
8 

15
.3

6 
O

A
 

9.
77

 
V

ic
er

al
 

C
44

H
68

O
13

 
1.

95
 

80
3.

46
11

5
 

3.
13

 
- 

47
.5

9 
42

.3
2 

11
.8

2 
O

A
 

3.
55

 
N

on
-v

is
ce

ra
l 

C
45

H
70

O
13

 
2.

11
 

81
7.

47
60

1
 

2.
01

 
- 

48
.6

7 
47

.7
6 

12
.4

5 
D

T
X

-1
 

13
.2

1 
V

ic
er

al
 

C
45

H
70

O
13

 
2.

12
 

81
7.

47
60

7
 

2.
07

 
- 

48
.6

7 
45

.2
9 

13
.1

3 
D

T
X

-1
 

7.
24

 
no

n-
vi

sc
er

al
 

C
61

H
10

0O
14

 
4.

04
 

10
57

.7
19

60
 

0.
96

 
+

 
65

.9
8 

61
.8

5 
14

.1
3 

16
:0

 D
T

X
1 

3.
70

 
V

ic
er

al
 

C
61

H
10

0O
14

 
3.

93
 

10
57

.7
19

36
 

0.
73

 
+

 
65

.9
8 

59
.4

6 
12

.2
1 

16
:0

 D
T

X
1 

3.
11

 
N

on
-v

is
ce

ra
l 

C
58

H
94

O
14

 
3.

61
 

10
37

.6
51

61
 

-1
.8

9 
+

 
62

.7
3 

58
.5

2 
14

.9
0 

14
:0

 O
A

 
6.

72
 

V
ic

er
al

 

C
58

H
88

O
14

 
3.

14
 

10
09

.6
23

17
 

-1
.4

9 
+

 
62

.7
3 

59
.0

3 
14

.2
2 

14
:3

 O
A

 
3.

26
 

V
ic

er
al

 

C
59

H
96

O
14

 
2.

34
 

10
27

.6
77

25
 

4.
39

 
+

 
63

.8
1 

56
.8

8 
9.

36
 

15
:0

 O
A

 
67

.3
3 

V
ic

er
al

 

C
60

H
98

O
14

 
3.

76
 

10
65

.6
81

27
 

-3
.3

8 
+

 
64

.8
9 

62
.7

8 
15

.6
3 

16
:0

 O
A

 
7.

39
 

V
ic

er
al

 

C
60

H
96

O
14

 
3.

58
 

10
63

.6
70

9
 

1.
57

 
+

 
64

,8
9 

61
.4

5 
10

.3
5 

16
:1

 O
A

 
15

.7
7 

V
ic

er
al

 

C
60

H
94

O
14

 
3.

71
 

10
61

.6
53

35
 

-0
.2

1 
+

 
64

.8
9 

59
.5

3 
13

.2
1 

16
:2

 O
A

 
49

.8
1 

V
ic

er
al

 

C
60

H
94

O
14

 
3.

69
 

10
61

.6
52

89
 

-0
.6

4 
+

 
64

.8
9 

60
.0

6 
14

.1
3 

16
:2

 O
A

 
35

.3
9 

N
on

-v
is

ce
ra

l 

C
62

H
10

0O
14

 
3.

95
 

10
69

.7
18

14
 

0.
41

 
+

 
67

.0
6 

61
.9

5 
15

.8
5 

18
:1

 O
A

 
2.

30
 

V
ic

er
al

 

C
62

H
10

0O
14

 
3.

95
 

10
69

.7
16

55
 

-1
.8

9 
+

 
67

.0
6 

60
.7

7 
14

.9
5 

18
:1

 O
A

 
2.

26
 

N
on

-v
is

ce
ra

l 

C
62

H
98

O
14

 
3.

72
 

10
65

.6
87

74
 

-0
.6

0 
+

 
67

.0
6 

59
.8

1 
12

.0
4 

18
:2

 O
A

 
4.

77
 

V
ic

er
al

 

C
62

H
98

O
14

 
3.

71
 

10
67

.7
00

74
 

-2
.0

5 
+

 
67

.0
6 

60
.8

1 
13

.1
6 

18
:2

 O
A

 
3.

91
 

N
on

-v
is

ce
ra

l 

C
62

H
94

O
14

 
3.

67
 

10
63

.6
70

90
 

-0
.6

8 
+

 
67

.0
6 

65
,3

4 
14

.4
4 

18
:4

 O
A

 
3.

41
 

V
ic

er
al

 

C
64

H
96

O
14

 
3.

75
 

11
11

.6
69

68
 

0.
40

 
+

 
69

.2
2 

66
.7

2 
14

.7
8 

20
:5

 O
A

 
4.

30
 

V
ic

er
al

 

C
64

H
96

O
14

 
3.

75
 

11
11

.6
68

22
 

-0
.9

0 
+

 
69

.2
2 

68
.7

2 
11

.5
6 

20
:5

 O
A

 
3.

90
 

N
on

-v
is

ce
ra

l 

C
53

H
82

O
15

 
2.

12
 

95
9.

57
22

7
 

-0
.3

9 
+

 
57

.3
2 

50
.0

8 
14

.7
 

O
A

-T
9 

1.
20

 
V

ic
er

al
 

C
52

H
80

O
14

 
4.

73
 

95
1.

54
00

4
 

-4
.1

9 
+

 
56

.2
4 

50
.2

9 
9.

33
 

O
A

-D
8 

2.
02

 
V

ic
er

al
 

C
52

H
80

O
14

 
2.

76
 

92
9.

56
10

4
 

-1
.1

1 
+

 
56

.2
4 

52
.7

7 
9.

21
 

O
A

-D
8 

2.
81

 
N

on
-v

is
ce

ra
l 

C
54

H
82

O
14

 
2.

78
 

95
3.

56
19

5
 

-1
.2

8 
- 

58
.4

0 
62

.8
5 

12
.6

6 
O

A
-D

10
 

1.
76

 
V

ic
er

al
 

C
54

H
82

O
14

 
2.

76
 

95
5.

57
64

2
 

-1
.3

7 
+

 
58

.4
0 

51
.1

3 
15

.6
6 

O
A

-D
10

 
1.

61
 

N
on

-v
is

ce
ra

l 

 



 

supporting information chapter 4 

 
 223 

  

T
a

b
le

 C
3

.1
 S

P
X

 r
e

la
te

d
 c

o
m

p
ou

nd
s 

fo
un

d
 i

n 
th

e
 e

xt
ra

ct
s 

of
 m

u
ss

e
ls

 e
xp

os
ed

 t
o

 A
. 

o
s
te

n
fe

ld
ii 

(n
=

57
).

 T
he

 r
e

su
lts

 w
e

re
 o

bt
a

in
e

d 

th
ro

u
gh

 t
he

 T
o

xI
D

 s
of

tw
a

re
, 

us
in

g
 a

 m
in

im
u

m
 p

e
a

k 
in

te
n

si
ty

 o
f 

10
0

0
 a

nd
 a

 m
a

xi
m

u
m

 m
a

ss
 d

ev
ia

tio
n

 o
f 

5
 p

p
m

. 
T

h
e

 i
d

en
tit

y 
of

 t
h

e 

co
m

p
ou

nd
s 

w
a

s 
co

nf
irm

ed
 u

si
ng

 th
e

 13
C

/12
C

 is
ot

op
ic

 io
n

 r
a

tio
, a

cc
o

rd
in

g 
to

 th
e

 c
rit

e
ria

 d
e

sc
rib

e
d 

in
 C

D
 2

00
2

/6
57

/E
C

 (
20

02
).

 

3
 D

A
Y

S
 

  
  

  
  

  
  

  
  

  
  

E
le

m
en

ta
l 

co
m

po
si

tio
n 

R
T

 
(m

in
) 

M
ea

su
re

d 
m

as
s 

(m
/z

) 
E

rr
or

 
(%

) 
Io

n 
m

od
e 

T
he

or
et

ic
al

 
is

ot
op

e 
ra

tio
 

O
bs

er
ve

d 
is

ot
op

e 
ra

tio
 

V
ar

ia
tio

n 
(S

D
) 

T
en

ta
tiv

e 
id

en
tit

y 
M

ea
n 

es
tim

at
e 

(μ
g
.k

g-1
) 

T
is

su
e

 

C
42

H
61

N
O

8 
4.

09
 

70
8.

44
51

3
 

-2
.6

2 
+

 
45

.4
3 

42
.0

7 
15

.8
6 

27
-O

H
-1

3-
S

P
X

 C
  

0.
69

 
V

is
ce

ra
l 

C
42

H
62

N
O

7 
3.

40
 

69
3.

45
86

2
 

-1
.8

4 
+

 
45

.4
3 

44
.1

8 
13

.3
1 

13
-S

P
X

 C
  

0.
70

 
V

is
ce

ra
l 

C
43

H
66

N
O

7 
3.

30
 

70
8.

48
62

1
 

3.
39

 
+

 
46

.5
1 

48
.9

1 
9.

02
 

S
pi

ro
lid

e 
D

 
0.

55
 

V
is

ce
ra

l 

5
 D

A
Y

S
 

  
  

  
  

  
  

  
  

  
  

C
42

H
64

N
O

7 
2.

35
 

71
6.

45
18

4
 

-3
.0

2 
+

 
45

.4
3 

44
.7

7 
12

.3
3 

S
pi

ro
lid

e 
B

 
0.

63
 

V
is

ce
ra

l 

C
43

H
66

N
O

7 
3.

30
 

70
8.

48
62

1
 

3.
39

 
+

 
46

.5
1 

48
.9

1 
15

.0
2 

S
pi

ro
lid

e 
D

 
0.

96
 

V
is

ce
ra

l 
C

42
H

64
N

O
8 

5.
82

 
72

8.
49

71
9

 
0.

23
 

+
 

45
.4

3 
46

.6
9 

15
.3

1 
S

pi
ro

lid
e 

E
 

0.
62

 
V

is
ce

ra
l 

C
40

H
62

N
O

6 
3.

42
 

65
1.

44
78

1
 

-4
.0

3 
- 

43
.2

6 
41

.5
5 

14
.2

8 
S

pi
ro

lid
e 

I 
0.

66
 

V
is

ce
ra

l 

1
0
 D

A
Y

S
 

  
  

  
  

  
  

  
  

  
  

C
43

H
66

N
O

7 
3.

30
 

70
8.

48
63

9
 

4.
24

 
+

 
46

.5
1 

48
.9

1 
14

.7
3 

S
pi

ro
lid

e 
D

 
1.

26
 

V
is

ce
ra

l 

C
43

H
66

N
O

7 
3.

30
 

70
8.

48
62

1
 

3.
39

 
+

 
46

.5
1 

46
.9

1 
10

.0
2 

S
pi

ro
lid

e 
D

 
0.

56
 

N
on

-v
is

ce
ra

l 

C
40

H
60

N
O

6 
4.

83
 

64
9.

43
15

8
 

-4
.9

4 
- 

43
.2

6 
42

.2
2 

16
.0

8 
S

pi
ro

lid
e 

H
 

1.
15

 
V

is
ce

ra
l 

C
42

H
61

N
O

8 
4.

09
 

70
8.

44
51

3
 

-2
.6

2 
+

 
45

.4
3 

42
.0

7 
15

.8
6 

27
-O

H
-1

3-
S

P
X

 C
  

0.
31

 
V

is
ce

ra
l 

C
41

H
58

N
O

8 
4.

15
 

69
3.

42
11

4
 

-3
.4

3 
+

 
44

.3
4 

44
.0

2 
14

.3
2 

27
-O

-1
3,

19
-S

P
X

 C
  

0.
78

 
V

is
ce

ra
l 

C
42

H
64

N
O

8 
5.

82
 

72
8.

49
71

9
 

0.
23

 
+

 
45

.4
3 

46
.6

9 
15

.3
1 

S
pi

ro
lid

e 
E

 
1.

65
 

V
is

ce
ra

l 

C
42

H
64

N
O

8 
5.

81
 

72
8.

49
80

6
 

1.
42

 
+

 
45

.4
3 

44
.4

5 
10

.3
9 

S
pi

ro
lid

e 
E

 
0.

75
 

N
on

-v
is

ce
ra

l 

C
40

H
62

N
O

6 
3.

42
 

65
1.

44
78

1
 

-4
.0

3 
- 

43
.2

6 
42

.5
5 

9.
28

 
S

pi
ro

lid
e 

I 
1.

87
 

V
is

ce
ra

l 

C
40

H
62

N
O

6 
3.

41
 

65
1.

44
84

5
 

-3
.0

5 
- 

43
.2

6 
41

.3
8 

15
.4

6 
S

pi
ro

lid
e 

I 
0.

93
 

N
on

-v
is

ce
ra

l 

 



 

Annex C 

 
224  

 

 

  

T
a

b
le

 C
3

.2
 S

P
X

 r
e

la
te

d 
co

m
p

ou
nd

s 
fo

un
d 

in
 th

e
 e

xt
ra

ct
s 

of
 m

u
ss

e
ls

 e
xp

o
se

d
 to

 A
. 
o

s
te

n
fe

ld
ii 

(n
=

57
).

 

1
5
 D

A
Y

S
 

  
  

  
  

  
  

  
  

  
  

C
42

H
62

N
O

7 
3.

42
 

69
3.

45
86

2
 

-1
.8

4 
+

 
45

.4
3 

44
.1

8 
15

.3
1 

13
-S

P
X

 C
  

1.
89

 
V

is
ce

ra
l 

C
42

H
62

N
O

7 
3.

42
 

69
3.

45
97

5
 

-0
.2

1 
+

 
45

.4
3 

45
.1

3 
16

.7
4 

13
-S

P
X

 C
  

1.
15

 
N

on
-v

is
ce

ra
l 

C
43

H
64

N
O

7 
5.

25
 

70
7.

47
57

1
 

0.
22

 
+

 
46

.5
1 

46
.1

3 
16

.3
8 

S
pi

ro
lid

e 
C

 
1.

14
 

V
is

ce
ra

l 

C
43

H
66

N
O

7 
3.

30
 

70
8.

48
62

1
 

3.
39

 
+

 
46

.5
1 

48
.9

1 
14

.0
2 

S
pi

ro
lid

e 
D

 
3.

03
 

V
is

ce
ra

l 

C
43

H
66

N
O

7 
3.

32
 

70
8.

48
54

7
 

2.
94

 
+

 
46

.5
1 

46
.5

3 
13

.2
8 

S
pi

ro
lid

e 
D

 
1.

45
 

N
on

-v
is

ce
ra

l 

C
42

H
64

N
O

8 
5.

82
 

72
8.

49
71

9
 

0.
23

 
+

 
45

.4
3 

46
.6

9 
14

.3
1 

S
pi

ro
lid

e 
E

 
1.

34
 

V
is

ce
ra

l 

C
42

H
64

N
O

8 
5.

81
 

72
8.

49
78

9
 

1.
19

 
+

 
45

.4
3 

44
.3

6 
16

.5
5 

S
pi

ro
lid

e 
E

 
1.

21
 

N
on

-v
is

ce
ra

l 

C
42

H
66

N
O

7 
3.

40
 

69
5.

47
38

8
 

-3
.9

8 
- 

45
.4

3 
46

.5
6 

11
.9

9 
S

pi
ro

lid
e 

F
 

1.
56

 
V

is
ce

ra
l 

C
42

H
66

N
O

7 
3.

41
 

69
5.

47
43

2
 

-3
.3

5 
- 

45
.4

3 
47

.1
3 

15
.1

2 
S

pi
ro

lid
e 

F
 

1.
15

 
N

on
-v

is
ce

ra
l 

C
40

H
62

N
O

6 
3.

42
 

65
1.

44
78

1
 

-4
.0

3 
- 

43
.2

6 
41

.5
5 

16
.2

8 
S

pi
ro

lid
e 

I 
1.

09
 

V
is

ce
ra

l 

C
40

H
62

N
O

6 
3.

43
 

65
1.

44
88

5
 

-2
.4

4 
- 

43
.2

6 
43

.7
8 

16
.7

7 
S

pi
ro

lid
e 

I 
1.

07
 

N
on

-v
is

ce
ra

l 

C
42

H
62

N
O

8 
4.

35
 

70
7.

43
70

7
 

-4
.5

2 
- 

45
.4

3 
44

.2
1 

12
.6

1 
27

-O
H

-1
3-

S
P

X
 C

  
1.

88
 

V
is

ce
ra

l 

C
42

H
62

N
O

8 
4.

35
 

70
8.

44
69

5
 

-0
,5

6 
- 

45
.4

3 
44

.9
5 

14
.6

1 
27

-O
H

-1
3-

S
P

X
 C

  
1.

64
 

N
on

-v
is

ce
ra

l 

C
41

H
58

N
O

8 
1.

99
 

71
0.

45
30

1
 

4.
12

 
+

 
44

.3
4 

41
.4

9 
13

.0
4 

27
-O

-1
3,

19
-S

P
X

 C
  

1.
93

 
V

is
ce

ra
l 

 



 

supporting information chapter 4 

 
 225 

  
T

a
b

le
 C

4
.1

 L
M

B
T

 f
ou

nd
 i

n 
th

e
 e

xt
ra

ct
s 

of
 m

u
ss

e
ls

 e
xp

os
ed

 t
o

 b
o

th
 A

. 
o

s
te

n
fe

ld
ii 

a
nd

 P
. 

lim
a
 (

n
=

58
).

 T
he

 r
e

su
lts

 w
e

re
 o

b
ta

in
ed

 

th
ro

u
gh

 t
he

 T
o

xI
D

 s
of

tw
a

re
, 

us
in

g
 a

 m
in

im
u

m
 p

e
a

k 
in

te
n

si
ty

 o
f 

10
0

0
 a

nd
 a

 m
a

xi
m

u
m

 m
a

ss
 d

ev
ia

tio
n

 o
f 

5
 p

p
m

. 
T

h
e

 i
d

en
tit

y 
of

 t
h

e 

co
m

p
ou

nd
s 

w
a

s 
co

nf
irm

ed
 u

si
ng

 th
e

 13
C

/12
C

 is
ot

op
ic

 io
n

 r
a

tio
, a

cc
o

rd
in

g 
to

 th
e

 c
rit

e
ria

 d
e

sc
rib

e
d 

in
 C

D
 2

00
2

/6
57

/E
C

 (
20

02
).

 

3
 D

A
Y

S
 

  
  

  
  

  
  

  
  

  
  

E
le

m
en

ta
l 

co
m

po
si

tio
n 

R
T

 
(m

in
) 

M
ea

su
re

d 
m

as
s 

(m
/z

) 
E

rr
or

 
(%

) 
Io

n 
m

od
e 

T
he

or
et

ic
al

 
is

ot
op

e 
ra

tio
 

O
bs

er
ve

d 
is

ot
op

e 
ra

tio
 

V
ar

ia
tio

n 
(S

D
) 

T
en

ta
tiv

e 
id

en
tit

y 
M

ea
n 

es
tim

at
e 

(μ
g
.k

g-1
) 

T
is

su
e

 

C
44

H
68

O
13

 
1.

95
 

80
3.

46
11

1
 

2.
97

 
- 

47
.5

9 
45

.7
5 

14
.0

7 
O

A
 

5.
97

 
V

is
ce

ra
l 

C
44

H
68

O
13

 
1.

93
 

80
3.

46
01

3
 

1.
75

 
- 

47
.5

9 
43

.7
6 

15
.1

3 
O

A
 

1.
27

 
N

on
-v

is
ce

ra
l 

C
45

H
70

O
13

 
2.

09
 

81
7.

47
65

1
 

2.
65

 
- 

48
.6

7 
44

.3
9 

13
.5

7 
D

T
X

-1
 

8.
04

 
V

is
ce

ra
l 

C
45

H
70

O
13

 
2.

08
 

81
7.

47
67

9
 

2.
96

 
- 

48
.6

7 
45

.1
2 

11
.2

5 
D

T
X

-1
 

6.
67

 
N

on
-v

is
ce

ra
l 

C
58

H
92

O
14

 
3.

65
 

10
13

.6
52

95
 

-2
.9

8 
+

 
62

.7
3 

64
.3

8 
13

.7
5 

14
:1

 D
T

X
-2

 
18

.2
6 

V
is

ce
ra

l 

C
58

H
92

O
14

 
3.

66
 

10
13

.6
51

23
 

-4
.6

8 
+

 
62

.7
3 

60
.4

3 
11

.8
4 

14
:1

 D
T

X
-2

 
10

.1
1 

N
on

-v
is

ce
ra

l 

C
58

H
88

O
14

 
3.

15
 

10
09

.6
26

32
 

2.
01

 
+

 
62

.7
3 

63
.0

5 
12

.4
3 

14
:3

 O
A

 
4.

47
 

V
is

ce
ra

l 

C
59

H
96

O
14

 
3.

61
 

10
29

.6
85

83
 

-1
.4

 
+

 
63

.8
1 

62
.3

7 
11

.4
4 

15
:0

 O
A

 
4.

40
 

V
is

ce
ra

l 

C
60

H
98

O
14

 
3.

73
 

10
65

.6
84

16
 

-0
,6

7 
+

 
64

.8
9 

61
.7

8 
16

.1
2 

16
:0

 O
A

 
3.

84
 

V
is

ce
ra

l 

C
60

H
94

O
14

 
3.

28
 

10
61

.6
55

61
 

1.
91

 
+

 
64

.8
9 

59
.2

3 
14

.4
5 

16
:2

 O
A

 
8.

59
 

V
is

ce
ra

l 

C
60

H
94

O
14

 
3.

29
 

10
61

.6
57

20
 

3.
40

 
+

 
64

.8
9 

61
.9

2 
9.

54
 

16
:2

 O
A

 
3.

34
 

N
on

-v
is

ce
ra

l 

C
64

H
96

O
14

 
3.

32
 

11
11

.6
72

48
 

2.
92

 
+

 
69

.2
2 

64
.1

5 
15

.2
0 

20
:5

 O
A

 
4.

40
 

V
is

ce
ra

l 

C
64

H
96

O
14

 
3.

32
 

11
11

.6
73

45
 

3.
79

 
+

 
69

.2
2 

66
.5

7 
14

.2
6 

20
:5

 O
A

 
1.

05
 

N
on

-v
is

ce
ra

l 

C
43

H
66

N
O

7 
3.

30
 

70
8.

48
59

1
 

3.
57

 
+

 
46

.5
1 

48
.9

3 
13

.0
2 

S
pi

ro
lid

e 
D

 
3.

43
 

V
is

ce
ra

l 

C
40

H
60

N
O

6 
4.

83
 

64
9.

43
39

4
 

1.
3 

- 
43

.2
6 

41
.9

3 
12

.7
8 

S
pi

ro
lid

e 
H

 
0.

63
 

V
is

ce
ra

l 

C
42

H
61

N
O

8 
4.

09
 

70
8.

44
79

1
 

1.
29

 
+

 
45

.4
3 

43
.2

8 
11

.8
6 

27
-O

H
-1

3-
S

P
X

 C
  

0.
80

 
V

is
ce

ra
l 

C
41

H
58

N
O

8 
4.

15
 

69
3.

42
11

4
 

-3
.4

3 
+

 
44

.3
4 

41
.8

3 
15

.3
2 

27
-O

-1
3,

19
-S

P
X

 C
  

1.
99

 
V

is
ce

ra
l 

5
 D

A
Y

S
 

  
  

  
  

  
  

  
  

  
  

C
44

H
68

O
13

 
1.

95
 

80
3.

46
20

1
 

4.
09

 
- 

47
.5

9 
45

.1
3 

12
.1

8 
O

A
 

3.
88

 
V

is
ce

ra
l 

C
44

H
68

O
13

 
1.

94
 

80
3.

46
19

8
 

4.
05

 
- 

47
.5

9 
43

.2
4 

12
.4

6 
O

A
 

2.
24

 
N

on
-v

is
ce

ra
l 

C
45

H
70

O
13

 
2.

09
 

81
7.

47
64

3
 

2.
55

 
- 

48
.6

7 
48

.3
9 

16
.2

8 
D

T
X

-1
 

6.
31

 
V

is
ce

ra
l 

C
45

H
70

O
13

 
2.

07
 

81
7.

47
50

7
 

0.
89

 
- 

48
.6

7 
45

.7
3 

13
.2

1 
D

T
X

-1
 

3.
93

 
N

on
-v

is
ce

ra
l 

C
58

H
92

O
14

 
3.

65
 

10
13

.6
52

95
 

-2
.9

8 
+

 
62

.7
3 

64
.4

8 
12

.3
7 

14
:1

 D
T

X
-2

 
6.

09
 

V
is

ce
ra

l 

 



 

Annex C 

 
226  

  

T
a

b
le

 C
4

.2
 L

M
B

T
 f

o
un

d 
in

 th
e

 e
xt

ra
ct

s 
of

 m
u

ss
e

ls
 e

xp
o

se
d

 to
 b

ot
h

 A
. 
o

s
te

n
fe

ld
ii 

a
nd

 P
. 

lim
a

 (
n

=
58

).
 

C
58

H
88

O
14

 
3.

15
 

10
09

.6
25

24
 

0.
55

 
+

 
62

.7
3 

60
.7

3 
14

.7
2 

14
:3

 O
A

 
5.

31
 

V
is

ce
ra

l 
C

59
H

96
O

14
 

3.
61

 
10

29
.6

86
16

 
-1

.0
8 

+
 

63
.8

1 
59

.3
7 

14
.4

4 
15

:0
 O

A
 

4.
82

 
V

is
ce

ra
l 

C
59

H
96

O
14

 
3.

60
 

10
29

.6
88

05
 

0.
74

 
+

 
63

.8
1 

58
.8

5 
14

.9
9 

15
:0

 O
A

 
2.

02
 

N
on

-v
is

ce
ra

l 

C
60

H
98

O
14

 
3.

73
 

10
65

.6
86

16
 

-0
.4

 
+

 
64

.8
9 

60
.7

7 
14

.1
2 

16
:0

 O
A

 
2.

79
 

V
is

ce
ra

l 

C
60

H
98

O
14

 
3.

71
 

10
65

.6
86

88
 

1.
87

 
+

 
64

.8
9 

59
.4

3 
16

.5
4 

16
:0

 O
A

 
1.

95
 

N
on

-v
is

ce
ra

l 

C
60

H
94

O
14

 
3.

28
 

10
61

.6
56

74
 

2.
97

 
+

 
64

.8
9 

57
.4

4 
13

.4
5 

16
:2

 O
A

 
3.

65
 

V
is

ce
ra

l 

C
60

H
94

O
14

 
3.

29
 

10
61

.6
55

12
 

1.
45

 
+

 
64

.8
9 

59
.9

6 
12

.0
1 

16
:2

 O
A

 
2.

89
 

N
on

-v
is

ce
ra

l 

C
42

H
62

N
O

7 
3.

41
 

69
3.

45
86

2
 

-1
.8

4 
+

 
45

.4
3 

44
.1

8 
16

.3
1 

13
-S

P
X

 C
  

0.
58

 
V

is
ce

ra
l 

C
42

H
64

N
O

7 
2.

35
 

71
6.

45
18

4
 

-3
.0

2 
+

 
45

.4
3 

44
.7

7 
15

.3
3 

S
pi

ro
lid

e 
B

 
2.

52
 

V
is

ce
ra

l 

C
43

H
66

N
O

7 
3.

30
 

70
8.

48
62

1
 

3.
39

 
+

 
46

.5
1 

48
.9

1 
11

.0
2 

S
pi

ro
lid

e 
D

 
1.

25
 

V
is

ce
ra

l 

C
43

H
66

N
O

7 
3.

32
 

70
8.

48
55

7
 

3.
09

 
+

 
46

.5
1 

42
.5

7 
10

.5
3 

S
pi

ro
lid

e 
D

 
1.

25
 

N
on

-v
is

ce
ra

l 

C
42

H
64

N
O

8 
5.

82
 

72
8.

49
71

9
 

0.
23

 
+

 
45

.4
3 

46
.6

9 
11

.1
4 

S
pi

ro
lid

e 
E

 
0.

95
 

V
is

ce
ra

l 

C
40

H
62

N
O

6 
3.

42
 

65
1.

44
78

1
 

-4
.0

3 
- 

43
.2

6 
41

.5
5 

15
.2

8 
S

pi
ro

lid
e 

I 
1.

14
 

V
is

ce
ra

l 

1
0
 D

A
Y

S
 

  
  

  
  

  
  

  
  

  
  

C
44

H
68

O
13

 
1.

95
 

80
3.

46
08

8
 

2.
68

 
- 

47
.5

9 
44

.9
7 

15
.4

6 
O

A
 

5.
57

 
V

is
ce

ra
l 

C
44

H
68

O
13

 
1.

97
 

80
3.

45
90

6
 

0.
42

 
- 

47
.5

9 
46

.4
4 

13
.1

8 
O

A
 

4.
25

 
N

on
-v

is
ce

ra
l 

C
45

H
70

O
13

 
2.

09
 

81
7.

47
50

9
 

0.
91

 
- 

48
.6

7 
46

.1
9 

11
.2

8 
D

T
X

-1
 

10
.0

3 
V

is
ce

ra
l 

C
45

H
70

O
13

 
2.

05
 

81
7.

47
66

4
 

2.
81

 
- 

48
.6

7 
46

.2
2 

10
.8

8 
D

T
X

-1
 

3.
75

 
N

on
-v

is
ce

ra
l 

C
61

H
10

0O
14

 
3.

93
 

10
57

.7
19

36
 

0,
73

 
+

 
65

.9
8 

59
.4

6 
12

.2
1 

16
:0

 D
T

X
1 

3.
02

 
V

is
ce

ra
l 

C
61

H
10

0O
14

 
3.

91
 

10
57

.7
19

03
 

0.
42

 
+

 
65

.9
8 

60
.8

9 
13

.1
5 

16
:0

 D
T

X
1 

1.
02

 
N

on
-v

is
ce

ra
l 

C
43

H
66

O
11

 
4.

46
 

78
1.

45
28

2
 

1.
35

 
+

 
46

.5
1 

44
.5

0 
12

.0
1 

O
A

-C
3 

3.
15

 
V

is
ce

ra
l 

C
58

H
94

O
14

 
3.

61
 

10
37

.6
51

61
 

-1
.8

9 
+

 
62

.7
3 

58
.5

2 
14

.9
0 

14
:0

 O
A

 
9.

01
 

V
is

ce
ra

l 
C

58
H

92
O

14
 

3.
59

 
10

13
.6

53
56

 
-2

.3
0 

+
 

62
.7

3 
66

.1
3 

13
.6

6 
14

:1
 D

T
X

-2
 

82
.8

2 
V

is
ce

ra
l 

C
58

H
88

O
14

 
3.

15
 

10
09

.6
25

24
 

0.
55

 
+

 
62

.7
3 

59
.2

2 
15

.5
1 

14
:3

 O
A

 
4.

54
 

V
is

ce
ra

l 

C
59

H
96

O
14

 
3.

61
 

10
29

.6
86

16
 

-1
.0

8 
+

 
63

.8
1 

62
.3

7 
9.

44
 

15
:0

 O
A

 
7.

57
 

V
is

ce
ra

l 

C
60

H
98

O
14

 
3.

73
 

10
65

.6
86

16
 

-0
.4

 
+

 
64

.8
9 

60
.7

7 
14

.1
2 

16
:0

 O
A

 
8.

66
 

V
is

ce
ra

l 

C
60

H
96

O
14

 
3.

55
 

10
63

.6
71

63
 

2.
25

 
+

 
64

.8
9 

61
.6

3 
16

.2
6 

16
:1

 O
A

 
8.

96
 

V
is

ce
ra

l 

 



 

supporting information chapter 4 

 
 227 

T
a

b
le

 C
4

.3
 L

M
B

T
 f

o
un

d 
in

 th
e

 e
xt

ra
ct

s 
of

 m
u

ss
e

ls
 e

xp
o

se
d

 to
 b

ot
h

 A
. 
o

s
te

n
fe

ld
ii 

a
nd

 P
. 

lim
a

 (
n

=
58

).
 

C
60

H
96

O
14

 
3.

54
 

10
63

.6
72

07
 

2.
67

 
+

 
64

.8
9 

59
.7

7 
13

.2
2 

16
:1

 O
A

 
3.

83
 

N
on

-v
is

ce
ra

l 

C
60

H
94

O
14

 
3.

26
 

10
61

.6
52

28
 

-1
.2

2 
+

 
64

.8
9 

59
.5

3 
13

.2
1 

16
:2

 O
A

 
28

.6
0 

V
is

ce
ra

l 

C
60

H
94

O
14

 
3.

27
 

10
61

.6
53

15
 

-0
.4

0 
+

 
64

.8
9 

59
.5

3 
10

.2
1 

16
:2

 O
A

 
17

.2
5 

N
on

-v
is

ce
ra

l 

C
62

H
98

O
14

 
3.

72
 

10
67

.7
02

86
 

-1
.9

 
+

 
67

.0
6 

59
.8

1 
13

.0
4 

18
:2

 O
A

 
4.

88
 

V
is

ce
ra

l 

C
64

H
96

O
14

 
3.

75
 

11
11

.6
69

68
 

0.
40

 
+

 
69

.2
2 

60
.7

2 
14

.7
8 

20
:5

 O
A

 
16

.2
1 

V
is

ce
ra

l 

C
64

H
96

O
14

 
3.

74
 

11
11

.6
69

08
 

-0
.1

3 
+

 
69

.2
2 

62
.5

7 
10

.6
8 

20
:5

 O
A

 
9.

35
 

N
on

-v
is

ce
ra

l 

C
54

H
82

O
14

 
2.

78
 

95
3.

56
19

5
 

-1
.2

8 
- 

58
.4

0 
62

.8
5 

14
.6

6 
O

A
-D

10
 

2.
57

 
V

is
ce

ra
l 

C
43

H
66

N
O

7 
3.

30
 

70
8.

48
62

1
 

3.
39

 
+

 
46

.5
1 

48
.9

1 
11

.0
2 

S
pi

ro
lid

e 
D

 
0.

69
 

V
is

ce
ra

l 

C
43

H
66

N
O

7 
3.

30
 

70
8.

48
62

1
 

3.
39

 
+

 
46

.5
1 

40
.4

5 
16

.8
5 

S
pi

ro
lid

e 
D

 
0.

39
 

N
on

-v
is

ce
ra

l 

C
42

H
61

N
O

8 
4.

09
 

70
8.

44
51

3
 

-2
.6

2 
+

 
45

.4
3 

42
.0

7 
15

.8
6 

27
-O

H
-1

3-
S

P
X

 C
  

0.
26

 
V

is
ce

ra
l 

C
41

H
58

N
O

8 
4.

15
 

69
3.

42
11

4
 

-3
.4

3 
+

 
44

.3
4 

44
.0

2 
16

.3
2 

27
-O

-1
3,

19
-S

P
X

 C
  

0.
47

 
V

is
ce

ra
l 

C
40

H
62

N
O

6 
3.

42
 

65
1.

44
78

1
 

-4
.0

3 
- 

43
.2

6 
41

.5
5 

11
.2

8 
S

pi
ro

lid
e 

I 
0.

34
 

V
is

ce
ra

l 

1
5
 D

A
Y

S
 

  
  

  
  

  
  

  
  

  
  

C
44

H
68

O
13

 
1.

95
 

80
3.

45
92

1
 

0.
61

 
- 

47
.5

9 
41

.4
3 

11
.4

6 
O

A
 

7.
64

 
V

is
ce

ra
l 

C
44

H
68

O
13

 
1.

93
 

80
3.

46
15

9
 

3.
57

 
- 

47
.5

9 
40

.1
4 

13
.3

4 
O

A
 

3.
84

 
N

on
-v

is
ce

ra
l 

C
45

H
70

O
13

 
2.

09
 

81
7.

47
66

2
 

2.
78

 
- 

48
.6

7 
50

.3
9 

15
.2

8 
D

T
X

-1
 

15
.6

1 
V

is
ce

ra
l 

C
45

H
70

O
13

 
2.

09
 

81
7.

47
40

8
 

-0
.3

1 
- 

48
.6

7 
43

.2
1 

12
.0

7 
D

T
X

-1
 

7.
03

 
N

on
-v

is
ce

ra
l 

C
61

H
10

0O
14

 
3.

93
 

10
57

.7
16

88
 

-1
.6

0 
+

 
65

.9
8 

59
.4

6 
16

.2
1 

16
:0

 D
T

X
1 

6.
45

 
V

is
ce

ra
l 

C
58

H
94

O
14

 
3.

61
 

10
37

.6
58

29
 

4.
53

 
+

 
62

.7
3 

58
.5

2 
14

.9
0 

14
:0

 O
A

 
13

.5
9 

V
is

ce
ra

l 

C
58

H
94

O
14

 
3.

60
 

10
37

.6
52

26
 

-1
.2

7 
+

 
62

.7
3 

59
.1

1 
15

.0
1 

14
:0

 O
A

 
7.

20
 

N
on

-v
is

ce
ra

l 

C
58

H
92

O
14

 
3.

59
 

10
13

.6
55

82
 

-0
.1

5 
+

 
62

.7
3 

66
.1

3 
13

.6
6 

14
:1

 D
T

X
-2

 
13

.8
2 

V
is

ce
ra

l 

C
58

H
92

O
14

 
3.

57
 

10
13

.6
56

21
 

-0
.2

2 
+

 
62

.7
3 

64
.1

3 
14

.6
8 

14
:1

 D
T

X
-2

 
6.

32
 

N
on

-v
is

ce
ra

l 

C
58

H
88

O
14

 
3.

15
 

10
09

.6
26

72
 

2.
40

 
+

 
62

.7
3 

59
.2

2 
13

.5
1 

14
:3

 O
A

 
12

.4
7 

V
is

ce
ra

l 

C
59

H
96

O
14

 
3.

60
 

10
29

.6
87

08
 

-0
.1

9 
+

 
63

.8
1 

62
.3

7 
15

.0
1 

15
:0

 O
A

 
13

.9
4 

V
is

ce
ra

l 

C
59

H
96

O
14

 
3.

61
 

10
29

.6
87

15
 

-1
.1

2 
+

 
63

.8
1 

64
.7

2 
14

.4
4 

15
:0

 O
A

 
30

.3
0 

N
on

-v
is

ce
ra

l 

C
60

H
98

O
14

 
3.

73
 

10
65

.6
87

76
 

2.
70

 
+

 
64

.8
9 

60
.7

7 
14

.1
2 

16
:0

 O
A

 
22

.9
4 

V
is

ce
ra

l 

C
60

H
98

O
14

 
3.

71
 

10
65

.6
86

93
 

1.
92

 
+

 
64

.8
9 

62
.7

7 
15

.9
6 

16
:0

 O
A

 
19

.8
9 

N
on

-v
is

ce
ra

l 

 



 

Annex C 

 
228  

  

T
a

b
le

 C
4

.4
 L

M
B

T
 f

o
un

d 
in

 th
e

 e
xt

ra
ct

s 
of

 m
u

ss
e

ls
 e

xp
o

se
d

 to
 b

ot
h

 A
. 
o

s
te

n
fe

ld
ii 

a
nd

 P
. 

lim
a

 (
n

=
58

).
 

C
60

H
96

O
14

 
3.

55
 

10
63

.6
71

05
 

1.
71

 
+

 
64

.8
9 

61
.6

3 
13

.2
6 

16
:1

 O
A

 
14

.2
6 

V
is

ce
ra

l 

C
60

H
96

O
14

 
3.

55
 

10
63

.6
71

03
 

1.
69

 
+

 
64

.8
9 

60
.2

3 
14

.0
8 

16
:1

 O
A

 
11

.2
9 

N
on

-v
is

ce
ra

l 

C
60

H
94

O
14

 
3.

71
 

10
39

.6
68

95
 

-2
.5

0 
+

 
64

.8
9 

59
.5

3 
10

.2
1 

16
:2

 O
A

 
12

.2
1 

N
on

-v
is

ce
ra

l 

C
61

H
98

O
14

 
3.

92
 

10
55

.7
01

13
 

-1
.1

 
+

 
65

.9
8 

56
.2

4 
9.

74
 

17
:1

 O
A

 
5.

93
 

V
is

ce
ra

l 

C
62

H
98

O
14

 
3.

72
 

10
65

.6
87

74
 

-0
.6

0 
+

 
67

.0
6 

59
.8

1 
10

.0
4 

18
:2

 O
A

 
7.

62
 

V
is

ce
ra

l 

C
62

H
94

O
14

 
3.

68
 

10
63

.6
70

90
 

-0
.6

8 
+

 
67

.0
6 

64
,4

4 
15

.3
5 

18
:4

 O
A

 
36

.3
5 

V
is

ce
ra

l 

C
62

H
94

O
14

 
3.

65
 

10
63

.6
67

92
 

-3
.4

8 
+

 
67

.0
6 

62
.4

2 
13

.1
2 

18
:4

 O
A

 
11

.9
9 

N
on

-v
is

ce
ra

l 

C
51

H
76

O
14

 
4.

70
 

91
3.

52
86

3
 

-2
.3

5 
+

 
55

.1
6 

49
.2

9 
15

.7
7 

D
T

X
-6

 
2.

87
 

V
is

ce
ra

l 
C

64
H

96
O

14
 

3.
75

 
11

11
.6

70
10

 
0.

78
 

+
 

69
.2

2 
60

.7
2 

14
.7

8 
20

:5
 O

A
 

42
.2

5 
V

is
ce

ra
l 

C
64

H
96

O
14

 
3.

76
 

11
11

.6
69

36
 

0.
11

 
+

 
69

.2
2 

63
.7

2 
13

.8
2 

20
:5

 O
A

 
4.

15
 

N
on

-v
is

ce
ra

l 

C
66

H
98

O
14

 
3.

33
 

11
37

.6
80

42
 

-3
.9

2 
+

 
71

.3
8 

74
.3

6 
10

.9
4 

22
:0

6 
O

A
 

15
.0

7 
V

is
ce

ra
l 

C
48

H
79

O
14

 
3.

67
 

89
8.

50
43

9
 

-0
.5

6 
+

 
51

.9
2 

49
.2

2 
11

.5
5 

27
-O

-A
c 

D
T

X
 1

 M
e 

 
4.

58
 

V
is

ce
ra

l 

C
52

H
80

O
14

 
2.

76
 

92
9.

56
10

4
 

-1
.1

1 
+

 
56

.2
4 

52
.7

7 
15

.0
7 

O
A

-D
8 

2.
82

 
V

is
ce

ra
l 

C
52

H
80

O
14

 
2.

77
 

92
9.

56
11

7
 

-1
.0

9 
+

 
56

.2
4 

53
.7

7 
14

.2
1 

O
A

-D
8 

1.
67

 
N

on
-v

is
ce

ra
l 

C
54

H
82

O
14

 
2.

78
 

95
3.

56
24

6
 

-0
.8

 
- 

58
.4

0 
62

.8
5 

13
.2

1 
O

A
-D

10
 

1.
24

 
V

is
ce

ra
l 

C
54

H
82

O
14

 
2.

79
 

95
3.

56
22

7
 

-0
.9

5 
- 

58
.4

0 
59

.3
5 

14
.6

6 
O

A
-D

10
 

1.
08

 
N

on
-v

is
ce

ra
l 

C
42

H
62

N
O

7 
3.

41
 

69
3.

45
76

4
 

-3
.2

5 
+

 
45

.4
3 

44
.6

7 
15

.0
8 

13
-S

P
X

 C
  

2.
19

 
V

is
ce

ra
l 

C
42

H
62

N
O

7 
3.

42
 

69
3.

45
96

3
 

-0
.3

8 
+

 
45

.4
3 

43
.1

8 
16

.3
1 

13
-S

P
X

 C
  

1.
48

 
N

on
-v

is
ce

ra
l 

C
43

H
66

N
O

7 
3.

30
 

70
8.

48
55

4
 

3.
04

 
+

 
46

.5
1 

48
.9

1 
13

.3
4 

S
pi

ro
lid

e 
D

 
0.

89
 

V
is

ce
ra

l 

C
43

H
66

N
O

7 
3.

31
 

70
8.

48
53

2
 

2.
73

 
+

 
46

.5
1 

47
.8

5 
15

.3
6 

S
pi

ro
lid

e 
D

 
0.

65
 

N
on

-v
is

ce
ra

l 

C
42

H
66

N
O

7 
3.

40
 

69
5.

47
51

8
 

-2
.1

1 
- 

45
.4

3 
46

.5
6 

14
.1

2 
S

pi
ro

lid
e 

F
 

1.
56

 
V

is
ce

ra
l 

C
40

H
60

N
O

6 
4.

83
 

64
9.

43
85

4
 

5.
77

 
- 

43
.2

6 
42

.2
2 

15
.0

8 
S

pi
ro

lid
e 

H
 

1.
03

 
V

is
ce

ra
l 

C
40

H
62

N
O

6 
3.

42
 

65
1.

44
82

1
 

-3
.4

2 
- 

43
.2

6 
41

.5
5 

14
.2

8 
S

pi
ro

lid
e 

I 
1.

08
 

V
is

ce
ra

l 

C
42

H
61

N
O

8 
4.

09
 

70
8.

44
63

4
 

-0
.9

1 
+

 
45

.4
3 

42
.0

7 
16

.8
6 

27
-O

H
-1

3-
S

P
X

 C
  

5.
20

 
V

is
ce

ra
l 

C
42

H
61

N
O

8 
4.

08
 

70
8.

44
68

4
 

-0
.2

1 
+

 
45

.4
3 

44
.8

2 
15

.4
3 

27
-O

H
-1

3-
S

P
X

 C
  

2.
86

 
N

on
-v

is
ce

ra
l 

C
41

H
58

N
O

8 
4.

15
 

69
3.

42
11

4
 

-3
.4

3 
+

 
44

.3
4 

44
.0

2 
16

.3
2 

27
-O

-1
3,

19
-S

P
X

 C
  

0.
73

 
V

is
ce

ra
l 

 



 

supporting information chapter 4 

 
 229 

  

T
a

b
le

 C
5

 O
A

 r
e

la
te

d
 c

o
m

p
ou

nd
s 

fo
u

nd
 in

 t
h

e
 f

a
ec

e
s 

an
d

 p
se

ud
of

ae
ce

s 
of

 m
u

ss
e

ls
 a

ft
e

r 
e

xp
o

su
re

 t
o

 P
. 

lim
a

 (
n

=
1

0
).

 T
h

e
 r

e
su

lts
 w

e
re

 

o
b

ta
in

e
d

 t
h

ro
u

gh
 t

h
e 

T
o

xI
D

 s
of

tw
a

re
, 

u
si

n
g

 a
 m

in
im

u
m

 p
ea

k 
in

te
n

si
ty

 o
f 

10
0

0
 a

nd
 a

 m
a

xi
m

u
m

 m
as

s 
d

e
vi

a
tio

n
 o

f 
5

 p
p

m
. 

T
h

e
 id

en
tit

y 
of

 

th
e 

co
m

p
ou

nd
s 

w
a

s 
co

nf
irm

e
d 

u
si

n
g

 th
e

 13
C

/12
C

 is
o

to
p

ic
 io

n
 r

at
io

, a
cc

o
rd

in
g

 to
 th

e 
cr

ite
ria

 d
es

cr
ib

ed
 in

 C
D

 2
0

02
/6

57
/E

C
 (

2
00

2
).

 

3
 D

A
Y

S
 

  
  

  
  

  
  

  
  

  
E

le
m

en
ta

l 
co

m
po

si
tio

n 
R

T
 

(m
in

) 
M

ea
su

re
d 

m
as

s 
(m

/z
) 

E
rr

or
 

(%
) 

Io
n 

m
od

e 
T

he
or

et
ic

al
 

is
ot

op
e 

ra
tio

 
O

bs
er

ve
d 

is
ot

op
e 

ra
tio

 
V

ar
ia

tio
n 

(S
D

) 
T

en
ta

tiv
e 

id
en

tit
y 

M
ea

n 
es

tim
at

e 
(μ
g
.k

g-1
) 

C
53

H
82

O
15

 
5.

57
 

98
1.

55
86

9
 

4.
24

 
+

 
57

.3
2 

59
.8

7 
12

.5
5 

O
A

-T
9 

6.
12

 

5
 D

A
Y

S
 

  
  

  
  

  
  

  
  

  

C
44

H
68

O
13

 
2.

04
 

80
3.

46
08

20
 

2.
61

 
- 

47
.5

9 
45

.8
5 

16
.7

5 
O

A
 

0.
47

 

C
60

H
94

O
14

 
3.

30
 

10
61

.6
57

45
 

3.
64

 
- 

64
.8

9 
66

.8
1 

12
.0

1 
16

:2
 O

A
 

0.
37

 

C
43

H
66

O
11

 
4.

43
 

78
1.

45
36

10
 

5,
34

 
+

 
46

.5
1 

48
.5

4 
15

.1
3 

O
A

-C
3 

0.
34

 

C
53

H
82

O
15

 
5.

58
 

98
1.

55
87

8
 

4.
26

 
+

 
57

.3
2 

59
.3

6 
14

.1
2 

O
A

-T
9 

37
.2

3 

1
0
 D

A
Y

S
 

 
 

 
 

 
 

 
 

 

C
44

H
68

O
13

 
2.

04
 

80
3.

46
07

8
 

2.
56

 
- 

47
.5

9 
44

.3
1 

11
.3

7 
O

A
 

0.
79

 

C
60

H
94

O
14

 
3.

29
 

10
61

.6
57

75
 

3.
92

 
- 

64
.8

9 
60

.6
4 

14
.3

4 
16

:2
 O

A
 

0.
51

 

C
43

H
66

O
11

 
4.

44
 

78
1.

44
86

7
 

1.
35

 
+

 
46

.5
1 

44
.5

0 
12

.0
1 

O
A

-C
3 

0.
34

 
C

53
H

82
O

15
 

5.
58

 
98

1.
55

75
0

 
2.

96
 

+
 

57
.3

2 
59

.3
3 

12
.0

3 
O

A
-T

9 
41

.2
4 

1
5
 D

A
Y

S
 

 
 

 
 

 
 

 
 

 

C
44

H
68

O
13

 
2.

04
 

80
3.

46
22

8
 

4.
43

 
- 

47
.5

9 
45

.6
5 

14
.1

3 
O

A
 

1.
58

 

C
45

H
70

O
13

 
2.

07
 

84
1.

47
18

0
 

1.
11

 
+

 
48

.6
7 

51
.3

9 
13

.3
1 

D
T

X
-1

 
0.

36
 

C
60

H
94

O
14

 
3.

31
 

10
61

.6
56

61
 

2.
85

 
- 

64
.8

9 
63

.7
5 

11
.2

3 
16

:2
 O

A
 

0.
49

 

C
43

H
66

O
11

 
4.

46
 

78
1.

45
28

2
 

1.
35

 
+

 
46

.5
1 

44
.5

0 
12

.0
1 

O
A

-C
3 

1.
23

 

C
52

H
80

O
14

 
3.

45
 

95
1.

54
54

7
 

1.
51

 
+

 
56

.2
4 

57
.4

8 
12

.0
2 

O
A

-D
8 

0.
55

 

C
53

H
82

O
15

 
5.

58
 

98
1.

55
84

7
 

3.
95

 
+

 
57

.3
2 

58
.3

3 
12

.0
3 

O
A

-T
9 

22
.8

9 

 



 

Annex C 

 
230  

  
T

a
b

le
 C

6
 S

P
X

 r
e

la
te

d
 c

o
m

p
ou

nd
s 

fo
un

d
 i

n
 t

h
e

 f
a

e
ce

s 
an

d
 p

se
u

do
fa

e
ce

s 
of

 m
u

ss
e

ls
 a

ft
e

r 
e

xp
os

u
re

 t
o

 A
. 

o
s
te

n
fe

ld
ii 

(n
=

10
).

 T
h

e 

re
su

lts
 w

e
re

 o
b

ta
in

ed
 t

h
ro

u
gh

 T
o

xI
D

, 
u

si
n

g
 a

 m
in

im
u

m
 p

ea
k 

in
te

n
si

ty
 o

f 
10

00
 a

n
d

 a
 m

a
xi

m
u

m
 m

as
s 

d
e

vi
a

tio
n

 o
f 

5
 p

p
m

. 
T

h
e 

id
en

tit
y 

of
 

th
e 

co
m

p
ou

nd
s 

w
a

s 
co

nf
irm

e
d 

u
si

n
g

 th
e

 13
C

/12
C

 is
o

to
p

ic
 io

n
 r

at
io

, a
cc

o
rd

in
g

 to
 th

e 
cr

ite
ria

 d
es

cr
ib

ed
 in

 C
D

 2
0

02
/6

57
/E

C
 (

2
00

2
).

 

3
 D

A
Y

S
 

  
  

  
  

  
  

  
  

  
E

le
m

en
ta

l 
co

m
po

si
tio

n 
R

T
 

(m
in

) 
M

ea
su

re
d 

m
as

s 
(m

/z
) 

E
rr

or
 

(%
) 

Io
n 

m
od

e 
T

he
or

et
ic

al
 

is
ot

op
e 

ra
tio

 
O

bs
er

ve
d 

is
ot

op
e 

ra
tio

 
V

ar
ia

tio
n 

(S
D

) 
T

en
ta

tiv
e 

id
en

tit
y 

M
ea

n 
es

tim
at

e 
(μ
g
.k

g-1
) 

C
42

H
62

N
O

7 
3.

40
 

69
3.

45
85

2
 

-1
.8

3 
+

 
45

.4
3 

44
.2

9 
11

.3
3 

13
-S

P
X

 C
 

0.
11

 

C
43

H
65

N
O

7 
3.

30
 

70
9.

49
94

0
 

1.
21

 
+

 
46

.5
1 

45
.1

6 
11

.8
3 

S
pi

ro
lid

e 
D

 
1.

25
 

5
 D

A
Y

S
 

 
 

 
 

 
 

 
 

 

C
42

H
62

N
O

7 
3.

42
 

69
3.

45
86

2
 

-1
.8

4 
+

 
45

.4
3 

44
.1

8 
11

.3
1 

13
-S

P
X

 C
 

0.
22

 

C
43

H
65

N
O

7 
3.

29
 

70
8.

48
03

1
 

1.
26

 
+

 
46

.5
1 

44
.6

7 
12

.0
1 

S
pi

ro
lid

e 
D

 
1.

45
 

C
42

H
66

N
O

7 
5.

14
 

69
5.

47
63

6
 

-4
.3

4 
- 

45
.4

3 
46

.1
4 

11
.2

8 
S

pi
ro

lid
e 

F
 

0.
15

 

C
40

H
60

N
O

6 
4.

88
 

64
9.

43
25

6
 

-3
.4

3 
- 

43
.2

6 
41

.7
2 

12
, 

56
 

S
pi

ro
lid

e 
H

 
0.

26
 

C
41

H
58

N
O

8 
2.

01
 

71
0.

45
32

5
 

4.
47

 
+

 
44

.3
4 

43
.5

6 
11

. 
31

 
27

-O
-1

3,
19

-S
P

X
 C

 
1.

03
 

1
0
 D

A
Y

S
 

 
 

 
 

 
 

 
 

 

C
42

H
62

N
O

7 
3.

41
 

69
3.

45
88

0
 

-1
.5

8 
+

 
45

.4
3 

43
.9

1 
12

.0
8 

13
-S

P
X

 C
 

0.
19

 

C
43

H
65

N
O

7 
3.

30
 

70
8.

48
01

7
 

-4
.5

3 
+

 
46

.5
1 

45
.5

9 
10

.1
2 

S
pi

ro
lid

e 
D

 
1.

72
 

C
42

H
66

N
O

7 
5.

14
 

69
5.

47
38

2
 

-4
.0

6 
- 

45
.4

3 
43

.9
3 

12
.6

4 
S

pi
ro

lid
e 

F
 

0.
10

 

C
40

H
60

N
O

6 
3.

42
 

65
1.

44
84

9
 

-1
.3

 
+

 
43

.2
6 

42
.2

9 
11

.1
5 

S
pi

ro
lid

e 
H

 
0.

18
 

C
42

H
61

N
O

8 
4.

09
 

70
8.

44
51

3
 

-2
.6

2 
+

 
45

.4
3 

42
.0

7 
12

.8
6 

27
-O

H
-1

3-
S

P
X

 C
 

0.
11

 

C
41

H
58

N
O

8 
4.

31
 

71
5.

40
63

1
 

1.
18

 
+

 
44

.3
4 

42
.0

4 
12

.3
8 

27
-O

-1
3,

19
-S

P
X

 C
 

0.
25

 

1
5
 D

A
Y

S
 

 
 

 
 

 
 

 
 

 

C
42

H
62

N
O

7 
3.

40
 

69
3.

45
65

4
 

-4
.8

4 
+

 
45

.4
3 

44
.1

9 
10

.3
2 

13
-S

P
X

 C
 

0.
24

 

C
42

H
64

N
O

7 
5.

56
 

71
7.

45
47

7
 

-3
.8

0 
+

 
45

.4
3 

42
.9

5 
13

.3
5 

S
pi

ro
lid

e 
B

 
0.

41
 

C
43

H
64

N
O

7 
4.

94
 

70
7.

47
38

2
 

-2
.4

4 
+

 
46

.5
1 

43
.7

3 
12

.2
2 

S
pi

ro
lid

e 
C

 
0.

16
 

C
43

H
65

N
O

7 
3.

30
 

70
8.

48
47

5
 

1.
93

 
+

 
46

.5
1 

47
.2

6 
11

.7
1 

S
pi

ro
lid

e 
D

 
0.

62
 

C
42

H
64

N
O

8 
5.

82
 

72
8.

49
71

9
 

0.
23

 
+

 
45

.4
3 

46
.6

9 
11

.3
1 

S
pi

ro
lid

e 
E

 
0.

11
 

C
42

H
61

N
O

8 
4.

11
 

70
8.

44
59

8
 

-1
.4

2 
+

 
45

.4
3 

44
.3

1 
12

.1
8 

27
-O

H
-1

3-
S

P
X

 C
 

0.
13

 

C
41

H
58

N
O

8 
4.

32
 

71
5.

40
80

2
 

3.
57

 
+

 
44

.3
4 

44
.3

9 
10

.0
1 

27
-O

-1
3,

19
-S

P
X

 C
 

0.
13

 

 



 

supporting information chapter 4 

 
 231 

  

T
a

b
le

 C
7

.1
 L

M
B

T
 f

o
un

d
 i

n
 t

he
 f

a
ec

e
s 

a
nd

 p
se

ud
of

a
e

ce
s 

of
 m

us
se

ls
 a

ft
e

r 
e

xp
o

su
re

 t
o

 A
. 

o
s
te

n
fe

ld
ii 

a
nd

 P
. 

lim
a

 (
n

=
1

0
).

 T
h

e 
re

su
lts

 

w
e

re
 o

b
ta

in
ed

 t
h

ro
ug

h
 T

o
xI

D
, 

u
si

n
g

 a
 m

in
im

u
m

 p
ea

k 
in

te
n

si
ty

 o
f 

10
00

 a
n

d
 a

 m
a

xi
m

u
m

 m
a

ss
 d

ev
ia

tio
n

 o
f 

5
 p

p
m

. 
T

h
e

 i
de

nt
ity

 o
f 

th
e

 

co
m

p
ou

nd
s 

w
a

s 
co

nf
irm

ed
 u

si
ng

 th
e

 13
C

/12
C

 is
ot

op
ic

 io
n

 r
a

tio
, a

cc
o

rd
in

g 
to

 th
e

 c
rit

e
ria

 d
e

sc
rib

e
d 

in
 C

D
 2

00
2

/6
57

/E
C

 (
20

02
).

 

3
 D

A
Y

S
 

 
 

 
 

 
 

 
 

 
E

le
m

en
ta

l 
co

m
po

si
tio

n 
R

T
 

(m
in

) 
M

ea
su

re
d 

m
as

s 
(m

/z
) 

E
rr

or
 

(%
) 

Io
n 

m
od

e 
T

he
or

et
ic

al
 

is
ot

op
e 

ra
tio

 
O

bs
er

ve
d 

is
ot

op
e 

ra
tio

 
V

ar
ia

tio
n 

(S
D

) 
T

en
ta

tiv
e 

id
en

tit
y 

M
ea

n 
es

tim
at

e 
(μ
g
.k

g-1
) 

C
44

H
68

O
13

 
1.

90
 

80
3.

46
19

5
 

4.
02

 
- 

47
.5

9 
46

.2
5 

11
.3

3 
O

A
 

1.
04

 

C
45

H
70

O
13

 
2.

04
 

81
7.

47
81

3
 

4.
59

 
- 

48
.6

7 
47

.5
3 

11
.1

4 
D

T
X

-1
 

2.
03

 

C
53

H
82

O
15

 
5.

06
 

98
1.

55
71

1
 

2.
56

 
+

 
57

.3
2 

57
.8

7 
10

.5
5 

O
A

-T
9 

11
.0

4 

C
42

H
62

N
O

7 
3.

41
 

69
3.

45
77

5
 

-3
.1

 
+

 
45

.4
3 

43
.5

9 
12

.1
1 

13
-S

P
X

 C
 

1.
10

 

C
43

H
65

N
O

7 
3.

33
 

70
8.

48
51

3
 

2.
47

 
+

 
46

.5
1 

46
.1

1 
10

.4
2 

S
pi

ro
lid

e 
D

 
1.

61
 

5
 D

A
Y

S
 

 
 

 
 

 
 

 
 

 

C
44

H
68

O
13

 
1.

89
 

80
3.

46
22

8
 

4.
43

 
- 

47
.5

9 
46

.4
8 

11
.1

2 
O

A
 

3.
41

 

C
45

H
70

O
13

 
2.

06
 

81
7.

47
72

9
 

3.
57

 
- 

48
.6

7 
48

.0
3 

10
.5

9 
D

T
X

-1
 

7.
23

 

C
60

H
94

O
14

 
5.

88
 

10
37

.6
59

06
 

1.
91

 
- 

64
.8

9 
62

.6
4 

14
.3

4 
16

:2
 O

A
 

0.
36

 

C
43

H
66

O
11

 
5.

79
 

75
9.

46
43

6
 

-4
.5

1 
+

 
46

.5
1 

42
.9

9 
13

.4
4 

O
A

-C
3 

0.
35

 

C
52

H
80

O
14

 
5.

15
 

92
7.

55
19

4
 

4.
75

 
- 

56
.2

4 
55

.4
9 

11
.2

2 
O

A
-D

8 
0.

23
 

C
53

H
82

O
15

 
5.

07
 

98
1.

55
79

8
 

3.
45

 
+

 
57

.3
2 

59
.1

2 
12

.2
3 

O
A

-T
9 

58
.7

4 

C
42

H
62

N
O

7 
3.

42
 

69
3.

45
80

7
 

-2
.6

3 
+

 
45

.4
3 

43
.5

9 
12

.1
1 

13
-S

P
X

 C
 

1.
25

 

C
42

H
64

N
O

7 
2.

35
 

71
6.

45
18

4
 

-3
.0

2 
+

 
45

.4
3 

44
.7

7 
11

.3
3 

S
pi

ro
lid

e 
B

 
0.

10
 

C
43

H
64

N
O

7 
5.

26
 

70
7.

47
26

0
 

-4
.1

6 
+

 
46

.5
1 

43
.1

1 
12

.4
1 

S
pi

ro
lid

e 
C

 
0.

15
 

C
43

H
65

N
O

7 
3.

31
 

70
8.

48
63

9
 

4.
24

 
+

 
46

.5
1 

46
.1

1 
10

.4
2 

S
pi

ro
lid

e 
D

 
1.

37
 

C
42

H
66

N
O

7 
5.

14
 

69
5.

47
39

4
 

-4
.3

4 
- 

45
.4

3 
46

.3
3 

11
.1

2 
S

pi
ro

lid
e 

F
 

0.
24

 

C
40

H
60

N
O

6 
4.

83
 

64
9.

43
15

8
 

-4
.9

4 
- 

43
.2

6 
42

.2
2 

12
.0

8 
S

pi
ro

lid
e 

H
 

0.
36

 

C
40

H
62

N
O

6 
3.

42
 

65
1.

44
78

1
 

-4
.0

3 
- 

43
.2

6 
41

.5
5 

12
.2

8 
S

pi
ro

lid
e 

I 
0.

28
 

1
0
 D

A
Y

S
 

 
 

 
 

 
 

 
 

 

C
42

H
62

N
O

7 
3.

41
 

69
3.

45
88

0
 

-1
.5

8 
+

 
45

.4
3 

43
.9

1 
12

.0
8 

13
-S

P
X

 C
 

0.
19

 

C
43

H
65

N
O

7 
3.

30
 

70
8.

48
01

7
 

-4
.5

3 
+

 
46

.5
1 

45
.5

9 
10

.1
2 

S
pi

ro
lid

e 
D

 
1.

72
 

 



 

Annex C 

 
232  

  
T

a
b

le
 C

7
.2

 L
M

B
T

 f
o

un
d 

in
 th

e
 fa

e
ce

s 
a

nd
 p

se
u

do
fa

e
ce

s 
of

 m
u

ss
e

ls
 a

ft
e

r 
e

xp
o

su
re

 to
 A

. 
o

s
te

n
fe

ld
ii 

a
nd

 P
. 

lim
a

 (
n=

10
).

 

C
60

H
94

O
14

 
5.

88
 

10
37

.6
58

57
 

1.
43

 
- 

64
.8

9 
62

.1
3 

12
.3

4 
16

:2
 O

A
 

0.
58

 

C
61

H
10

0O
14

 
5.

91
 

10
74

.7
40

84
 

-3
.9

9 
+

 
65

.9
8 

66
.7

7 
11

.2
1 

16
:0

 D
T

X
1 

1.
70

 

C
43

H
66

N
O

11
 

4.
41

 
78

1.
45

18
4

 
2.

70
 

+
 

46
.5

1 
46

.4
8 

10
.4

0 
O

A
-C

3 
1.

59
 

C
53

H
82

O
14

 
4.

68
 

94
1.

55
82

3
 

-5
.2

5 
- 

57
.3

2 
56

.8
8 

11
.5

5 
O

A
-D

9 
0.

90
 

C
52

H
80

O
14

 
3.

44
 

95
1.

54
43

7
 

0.
35

 
+

 
56

.2
4 

56
.8

8 
10

.6
4 

O
A

-D
8 

0.
27

 

C
53

H
82

O
15

 
5.

07
 

95
7.

56
03

6
 

2.
37

 
- 

57
.3

2 
58

.8
7 

11
.5

6 
O

A
-T

9 
9.

88
 

C
42

H
62

N
O

7 
3.

40
 

69
3.

45
86

8
 

-1
.7

5 
+

 
45

.4
3 

44
.1

0 
11

.3
3 

13
-S

P
X

 C
 

1.
16

 

C
43

H
64

N
O

7 
5.

25
 

70
7.

47
57

1
 

0.
22

 
+

 
46

.5
1 

46
.1

3 
10

.3
8 

S
pi

ro
lid

e 
C

 
1.

16
 

C
43

H
66

N
O

7 
3.

30
 

70
9.

49
06

0
 

-0
.8

4 
+

 
46

.5
1 

45
.0

8 
11

.4
2 

S
pi

ro
lid

e 
D

 
1,

84
 

C
42

H
66

N
O

7 
3.

40
 

69
5.

47
38

8
 

-3
.9

8 
- 

45
.4

3 
46

.5
6 

11
.1

2 
S

pi
ro

lid
e 

F
 

0,
23

 

C
40

H
60

N
O

6 
4.

85
 

64
9.

43
23

1
 

-3
.8

1 
- 

43
.2

6 
42

.3
3 

11
.0

9 
S

pi
ro

lid
e 

H
 

0.
16

 

C
40

H
62

N
O

6 
3.

42
 

65
1.

44
91

0
 

-2
.0

5 
- 

43
.2

6 
42

.1
5 

10
.1

1 
S

pi
ro

lid
e 

I 
0.

47
 

C
41

H
58

N
O

8 
4.

15
 

69
3.

42
11

4
 

-3
.4

3 
+

 
44

.3
4 

44
.0

2 
10

.3
2 

27
-O

-1
3,

19
-S

P
X

 C
 

0.
14

 

C
42

H
62

N
O

8 
4.

35
 

70
7.

43
70

7
 

-4
.5

2 
- 

45
.4

3 
44

.9
5 

10
.6

1 
27

-O
H

-1
3-

S
P

X
 C

 
0.

15
 

1
5
 D

A
Y

S
 

 
 

 
 

 
 

 
 

 

C
44

H
68

O
13

 
1.

89
 

80
3.

46
17

3
 

3.
74

 
- 

47
.5

9 
46

.6
6 

11
.1

7 
O

A
 

1.
28

 

C
45

H
70

O
13

 
2.

06
 

81
7.

47
77

8
 

4.
17

 
- 

48
.6

7 
47

.7
7 

11
.5

1 
D

T
X

-1
 

4.
37

 

C
61

H
10

0O
14

 
5.

87
 

10
74

.7
41

33
 

-3
.5

3 
+

 
65

.9
8 

62
,0

3 
13

,9
1 

16
:0

 D
T

X
1 

1.
46

 

C
58

H
88

O
14

 
5.

07
 

10
07

.6
13

95
 

3.
79

 
- 

62
.7

3 
63

.8
9 

11
.1

6 
14

:3
 O

A
 

0.
36

 

C
60

H
94

O
14

 
5.

89
 

10
37

.6
59

42
 

2.
25

 
- 

64
.8

9 
61

.8
4 

13
.0

5 
16

:2
 O

A
 

0.
25

 

C
43

H
66

N
O

11
 

4.
46

 
78

1.
44

95
8

 
-1

.9
1 

+
 

46
.5

1 
46

.2
8 

10
.3

0 
O

A
-C

3 
0.

89
 

C
53

H
82

O
15

 
5.

08
 

98
1.

55
60

3
 

1.
46

 
+

 
57

.3
2 

57
.5

6 
10

.2
4 

O
A

-T
9 

76
.7

3 

C
52

H
80

O
14

 
3.

44
 

95
1.

54
49

8
 

0.
99

 
+

 
56

.2
4 

55
.1

3 
11

.1
1 

O
A

-D
8 

0.
23

 

C
42

H
62

N
O

7 
3.

40
 

69
3.

45
72

1
 

-3
.8

7 
+

 
45

.4
3 

44
.7

9 
11

.3
6 

13
-S

P
X

 C
 

1.
83

 

C
43

H
64

N
O

7 
5.

25
 

70
7.

47
24

1
 

-4
.4

0 
+

 
46

.5
1 

44
.8

2 
12

.3
1 

S
pi

ro
lid

e 
C

 
0.

79
 

C
43

H
66

N
O

7 
3.

30
 

70
8.

48
62

1
 

3.
39

 
+

 
46

.5
1 

48
.9

1 
12

.0
2 

S
pi

ro
lid

e 
D

 
1.

77
 

C
42

H
66

N
O

7 
3.

38
 

69
5.

47
42

4
 

-3
.4

6 
- 

45
.4

3 
45

.7
8 

10
.3

5 
S

pi
ro

lid
e 

F
 

0.
79

 

C
40

H
60

N
O

6 
3.

40
 

65
1.

44
83

6
 

1.
50

 
+

 
43

.2
6 

42
.7

6 
11

,5
0 

S
pi

ro
lid

e 
H

 
0.

93
 

C
41

H
58

N
O

8 
1.

99
 

71
0.

45
3

 
4.

12
 

+
 

44
.3

4 
41

.4
9 

13
.0

4 
27

-O
-1

3,
19

-S
P

X
 C

 
1.

73
 

 



 

supporting information chapter 4 

 
 233 

  

T
a

b
le

 C
8

 O
A

 r
e

la
te

d
 c

o
m

p
ou

nd
s 

in
 t

he
 s

ea
w

a
te

r 
of

 m
u

ss
e

ls
 e

xp
o

se
d

 t
o

 P
. 

lim
a
 (

n
=

1
0

).
 T

h
e

 r
es

u
lts

 w
e

re
 o

b
ta

in
e

d
 t

h
ro

u
gh

 t
h

e
 T

o
xI

D
 

so
ft

w
a

re
 p

ro
g

ra
m

, 
u

si
n

g
 a

 m
in

im
u

m
 p

e
a

k 
in

te
n

si
ty

 o
f 

1
00

0
 a

nd
 a

 m
a

xi
m

u
m

 m
a

ss
 d

ev
ia

tio
n

 o
f 

5
 p

pm
. 

T
h

e
 id

e
n

tit
y 

of
 t

h
e

 c
o

m
p

ou
nd

s 
w

a
s 

co
nf

irm
ed

 u
si

ng
 th

e
 13

C
/12

C
 is

ot
op

ic
 io

n
 r

a
tio

, a
cc

or
d

in
g

 to
 th

e
 c

rit
e

ria
 d

e
sc

rib
e

d
 in

 C
D

 2
00

2
/6

57
/E

C
 (

2
0

02
).

 

3
 D

A
Y

S
 

  
  

  
  

  
  

  
  

  
E

le
m

en
ta

l 
co

m
po

si
tio

n 
R

T
 

(m
in

) 
M

ea
su

re
d 

m
as

s 
(m

/z
) 

E
rr

or
 

(%
) 

Io
n 

m
od

e 
T

he
or

et
ic

al
 

is
ot

op
e 

ra
tio

 
O

bs
er

ve
d 

is
ot

op
e 

ra
tio

 
V

ar
ia

tio
n 

(S
D

) 
T

en
ta

tiv
e 

id
en

tit
y 

M
ea

n 
es

tim
at

e 
(μ
g
.l

-1
) 

C
44

H
68

O
13

 
1.

89
 

80
3.

46
01

3
 

1.
75

 
- 

47
.5

9 
49

.3
6 

13
.7

5 
O

A
 

1.
64

 

C
53

H
82

O
15

 
5.

08
 

98
1.

55
65

3
 

1.
97

 
+

 
57

.3
2 

59
.3

3 
12

.0
3 

O
A

-T
9 

3.
66

 

5
 D

A
Y

S
 

 
 

 
 

 
 

 
 

 

C
44

H
68

O
13

 
1.

89
 

80
3.

45
74

5
 

-1
.5

8 
- 

47
.5

9 
49

.3
6 

13
.7

5 
O

A
 

1.
78

 

C
53

H
82

O
15

 
5.

08
 

98
1.

55
55

1
 

0.
93

 
+

 
57

.3
2 

59
.3

3 
12

.0
3 

O
A

-T
9 

2.
76

 

C
50

H
76

O
14

 
2.

95
 

92
3.

51
54

2
 

2.
89

 
+

 
54

.0
8 

52
.9

8 
12

.6
8 

O
A

-D
6 

1.
12

 

1
0
 D

A
Y

S
 

 
 

 
 

 
 

 
 

 

C
44

H
68

O
13

 
1.

89
 

80
3.

45
74

5
 

-1
.5

8 
- 

47
.5

9 
49

.3
6 

13
.7

5 
O

A
 

3.
35

 

C
45

H
70

O
13

 
2.

14
 

81
7.

47
26

7
 

-2
.0

4 
- 

48
.6

7 
49

.5
8 

12
.3

1 
D

T
X

-1
 

1.
43

 

C
53

H
82

O
15

 
5.

08
 

98
1.

55
55

1
 

0.
93

 
+

 
57

.3
2 

59
.3

3 
12

.0
3 

O
A

-T
9 

4.
20

 

C
50

H
76

O
14

 
2.

95
 

92
3.

51
54

2
 

2.
89

 
+

 
54

.0
8 

52
.9

8 
12

.6
8 

O
A

-D
6 

1.
52

 

1
5
 D

A
Y

S
 

 
 

 
 

 
 

 
 

 

C
44

H
68

O
13

 
2.

04
 

80
3.

46
11

5
 

3.
02

 
- 

47
.5

9 
46

.8
5 

16
.7

5 
O

A
 

5.
15

 

C
45

H
70

O
13

 
2.

14
 

81
7.

47
63

3
 

2.
43

 
- 

48
.6

7 
49

.5
8 

12
.3

1 
D

T
X

-1
 

2.
83

 

C
53

H
82

O
15

 
5.

08
 

98
1.

55
49

2
 

0.
33

 
+

 
57

.3
2 

59
.3

3 
12

.0
3 

O
A

-T
9 

5.
28

 

C
43

H
66

O
11

 
4.

46
 

78
1.

45
23

6
 

3.
36

 
+

 
46

.5
1 

44
.5

0 
12

.0
1 

O
A

-C
3 

0.
53

 

C
50

H
76

O
14

 
2.

95
 

92
3.

51
50

3
 

2.
46

 
+

 
54

.0
8 

52
.9

8 
12

.6
8 

O
A

-D
6 

3.
22

 

 



 

Annex C 

 
234  

  

T
a

b
le

 C
9

 S
P

X
 r

e
la

te
d

 c
o

m
po

un
d

s 
in

 t
h

e
 s

e
a

w
at

er
 o

f 
m

u
ss

e
ls

 e
xp

o
se

d
 t

o
 A

. 
o

s
te

n
fe

ld
ii 

(n
=

1
0

).
 T

he
 r

e
su

lts
 w

e
re

 o
b

ta
in

ed
 t

h
ro

u
gh

 t
he

 

T
o

xI
D

 s
o

ft
w

a
re

 p
ro

g
ra

m
, 

u
si

ng
 a

 m
in

im
u

m
 p

e
ak

 i
n

te
ns

ity
 o

f 
1

00
0

 a
n

d
 a

 m
a

xi
m

u
m

 m
a

ss
 d

e
vi

a
tio

n
 o

f 
5

 p
p

m
. 

T
h

e
 i

de
nt

ity
 o

f 
th

e 

co
m

p
ou

nd
s 

w
a

s 
co

nf
irm

ed
 u

si
ng

 th
e

 13
C

/12
C

 is
ot

op
ic

 io
n

 r
a

tio
, a

cc
o

rd
in

g 
to

 th
e

 c
rit

e
ria

 d
e

sc
rib

e
d 

in
 C

D
 2

00
2

/6
57

/E
C

 (
20

02
).

 

3
 D

A
Y

S
 

  
  

  
  

  
  

  
  

  
E

le
m

en
ta

l 
co

m
po

si
tio

n 
R

T
 

(m
in

) 
M

ea
su

re
d 

m
as

s 
(m

/z
) 

E
rr

or
 

(%
) 

Io
n 

m
od

e 
T

he
or

et
ic

al
 

is
ot

op
e 

ra
tio

 
O

bs
er

ve
d 

is
ot

op
e 

ra
tio

 
V

ar
ia

tio
n 

(S
D

) 
T

en
ta

tiv
e 

id
en

tit
y 

M
ea

n 
es

tim
at

e 
(μ
g
.l

-1
) 

N
A

 
- 

- 
- 

- 
- 

- 
- 

- 
- 

5
 D

A
Y

S
 

 
 

 
 

 
 

 
 

 

C
42

H
62

N
O

7 
3.

42
 

69
3.

45
86

2
 

-1
.8

4 
+

 
45

.4
3 

44
.1

8 
11

.3
1 

13
-S

P
X

 C
  

0.
91

 

C
43

H
66

N
O

7 
3.

29
 

70
8.

48
67

1
 

4.
70

 
+

 
46

.5
1 

44
.6

7 
12

.0
1 

S
P

X
 D

 
1.

89
 

1
0
 D

A
Y

S
 

 
 

 
 

 
 

 
 

 

C
42

H
62

N
O

7 
3.

42
 

69
3.

45
88

0
 

-1
.5

8 
+

 
45

.4
3 

43
.9

1 
12

.0
8 

13
-S

P
X

 C
  

1.
22

 

C
43

H
66

N
O

7 
3.

30
 

70
8.

48
07

5
 

-3
.7

1 
+

 
46

.5
1 

45
.0

9 
11

.1
2 

S
P

X
 D

 
1.

96
 

C
42

H
61

N
O

8 
4.

09
 

70
8.

44
51

3
 

-2
.6

2 
+

 
45

.4
3 

42
.0

7 
12

.8
6 

27
-O

H
-1

3-
S

P
X

 C
  

0.
69

 

C
41

H
58

N
O

8 
4.

31
 

71
5.

40
63

1
 

1.
18

 
+

 
44

.3
4 

42
.0

4 
12

.3
8 

27
-O

-1
3,

19
-S

P
X

 C
  

0.
84

 

1
5
 D

A
Y

S
 

 
 

 
 

 
 

 
 

 

C
42

H
62

N
O

7 
3.

41
 

69
3.

45
65

4
 

-4
.8

4 
+

 
45

.4
3 

44
.1

9 
11

.3
2 

13
-S

P
X

 C
  

1.
76

 

C
43

H
66

N
O

7 
3.

30
 

70
8.

48
55

1
 

3.
00

 
+

 
46

.5
1 

47
.2

6 
11

.7
1 

S
P

X
 D

 
1.

88
 

C
42

H
64

N
O

8 
5.

82
 

72
8.

49
71

9
 

0.
23

 
+

 
45

.4
3 

46
.6

9 
11

.3
1 

S
P

X
 E

 
0.

11
 

C
42

H
61

N
O

8 
4.

11
 

70
8.

44
59

8
 

-1
.4

2 
+

 
45

.4
3 

44
.3

1 
12

.1
8 

27
-O

H
-1

3-
S

P
X

 C
  

0.
60

 

C
41

H
58

N
O

8 
4.

32
 

71
5.

40
80

2
 

3.
57

 
+

 
44

.3
4 

44
.3

9 
10

.0
1 

27
-O

-1
3,

19
-S

P
X

 C
  

0.
71

 

 



 

supporting information chapter 4 

 
 235 

  

T
a

b
le

 C
1

0
.1

 L
M

B
T

 i
n

 t
h

e
 s

e
a

w
a

te
r 

of
 m

u
ss

e
ls

 e
xp

o
se

d
 t

o
 b

o
th

 A
. 

o
s
te

n
fe

ld
ii 

a
n

d
 P

. 
lim

a
 (

n
=

10
).

 T
h

e
 r

e
su

lts
 w

e
re

 o
b

ta
in

e
d

 t
h

ro
ug

h
 

th
e

 T
o

xI
D

 s
o

ft
w

a
re

 p
ro

g
ra

m
, 

u
si

n
g

 a
 m

in
im

u
m

 p
ea

k 
in

te
n

si
ty

 o
f 

10
00

 a
nd

 a
 m

a
xi

m
u

m
 m

a
ss

 d
e

vi
a

tio
n

 o
f 

5
 p

p
m

. 
T

he
 i

d
en

tit
y 

of
 t

he
 

co
m

p
ou

nd
s 

w
a

s 
co

nf
irm

ed
 u

si
ng

 th
e

 13
C

/12
C

 is
ot

op
ic

 io
n

 r
a

tio
, a

cc
o

rd
in

g 
to

 th
e

 c
rit

e
ria

 d
e

sc
rib

e
d 

in
 C

D
 2

00
2

/6
57

/E
C

 (
20

02
).

 

3
 D

A
Y

S
 

  
  

  
  

  
  

  
  

  
E

le
m

en
ta

l 
co

m
po

si
tio

n 
R

T
 

(m
in

) 
M

ea
su

re
d 

m
as

s 
(m

/z
) 

E
rr

or
 

(%
) 

Io
n 

m
od

e 
T

he
or

et
ic

al
 

is
ot

op
e 

ra
tio

 
O

bs
er

ve
d 

is
ot

op
e 

ra
tio

 
V

ar
ia

tio
n 

(S
D

) 
T

en
ta

tiv
e 

id
en

tit
y 

M
ea

n 
es

tim
at

e 
(μ
g
.l

-1
) 

C
44

H
68

O
13

 
1.

89
 

80
3.

46
00

6
 

1.
66

 
- 

47
.5

9 
48

.5
4 

14
.2

7 
O

A
 

0.
74

 

C
45

H
70

O
13

 
2.

04
 

81
7.

47
72

1
 

3.
51

 
- 

48
.6

7 
45

.8
3 

10
.1

1 
D

T
X

-1
 

1.
13

 

C
53

H
82

O
15

 
5.

08
 

98
1.

55
61

2
 

1.
55

 
+

 
57

.3
2 

53
.3

3 
12

.3
9 

O
A

-T
9 

2.
15

 

C
42

H
62

N
O

7 
3.

41
 

69
3.

46
12

8
 

1.
99

 
+

 
45

.4
3 

44
.1

7 
11

.3
1 

13
-S

P
X

 C
 

1.
13

 

C
43

H
65

N
O

7 
3.

29
 

70
8.

48
10

8
 

-3
.2

4 
+

 
46

.5
1 

43
.4

2 
8.

35
 

S
P

X
 D

 
1.

06
 

5
 D

A
Y

S
 

 
 

 
 

 
 

 
 

 

C
44

H
68

O
13

 
1.

89
 

80
3.

45
99

3
 

1.
50

 
- 

47
.5

9 
45

.3
6 

11
.5

 
O

A
 

1.
22

 

C
53

H
82

O
15

 
5.

08
 

98
1.

55
42

1
 

-0
.3

8 
+

 
57

.3
2 

54
.7

1 
10

.8
3 

O
A

-T
9 

2.
63

 

C
50

H
76

O
14

 
2.

95
 

92
3.

51
47

2
 

2.
15

 
+

 
54

.0
8 

50
.2

4 
7.

53
 

O
A

-D
6 

1.
29

 

C
60

H
94

O
14

 
3.

29
 

10
61

.6
56

16
 

2.
43

 
- 

64
.8

9 
63

.6
4 

12
.3

1 
16

:2
 O

A
 

0.
51

 

C
42

H
62

N
O

7 
3.

42
 

69
3.

45
74

5
 

-3
.5

3 
+

 
45

.4
3 

42
.1

8 
8.

53
 

13
-S

P
X

 C
 

1.
56

 

C
43

H
66

N
O

7 
3.

29
 

70
8.

48
12

4
 

-3
.0

2 
+

 
46

.5
1 

44
.3

1 
10

.0
1 

S
P

X
 D

 
1.

04
 

1
0
 D

A
Y

S
 

 
 

 
 

 
 

 
 

 

C
44

H
68

O
13

 
2.

04
 

80
3.

45
80

2
 

-0
.8

7 
- 

47
.5

9 
42

.3
7 

13
.0

3 
O

A
 

4.
22

 

C
45

H
70

O
13

 
2.

14
 

81
7.

47
40

7
 

-0
.3

3 
- 

48
.6

7 
45

.4
5 

6.
53

 
D

T
X

-1
 

4.
57

 

C
53

H
82

O
15

 
5.

08
 

98
1.

55
40

3
 

-0
.5

7 
+

 
57

.3
2 

54
.3

3 
11

.5
7 

O
A

-T
9 

4.
20

 

C
50

H
76

O
14

 
2.

95
 

92
3.

51
44

2
 

1.
80

 
+

 
54

.0
8 

50
.2

3 
9.

62
 

O
A

-D
6 

1.
16

 

C
42

H
62

N
O

7 
3.

41
 

69
3.

45
62

0
 

-5
.3

3 
+

 
45

.4
3 

42
.4

7 
14

.6
2 

13
-S

P
X

 C
 

1.
25

 

C
43

H
66

N
O

7 
3.

30
 

70
8.

48
47

1
 

1.
87

 
+

 
46

.5
1 

44
.4

2 
15

.1
1 

S
pi

ro
lid

e 
D

 
1.

36
 

C
42

H
61

N
O

8 
4.

09
 

70
8.

44
73

2
 

0.
46

 
+

 
45

.4
3 

42
.0

7 
8.

48
 

27
-O

H
-1

3-
S

P
X

 C
 

3.
45

 

C
41

H
58

N
O

8 
4.

31
 

71
5.

40
52

3
 

-0
.3

2 
+

 
44

.3
4 

41
.5

5 
11

. 
08

 
27

-O
-1

3,
19

-S
P

X
 C

 
1.

77
 

 



 

Annex C 

 
236  

  

T
a

b
le

 C
1
0

.2
 L

M
B

T
 in

 th
e

 s
ea

w
at

e
r 

of
 m

us
se

ls
 e

xp
o

se
d

 to
 b

ot
h 

A
. 
o

s
te

n
fe

ld
ii 

a
nd

 P
. 

lim
a

 (
n

=
10

).
 

1
5
 D

A
Y

S
 

 
 

 
 

 
 

 
 

 

C
44

H
68

O
13

 
2.

04
 

80
3.

46
12

6
 

3.
16

 
- 

47
.5

9 
45

.8
5 

15
.7

5 
O

A
 

4.
32

 

C
45

H
70

O
13

 
2.

14
 

81
7.

47
53

1
 

1.
18

 
- 

48
.6

7 
49

.5
8 

12
.3

1 
D

T
X

-1
 

3.
15

 

C
53

H
82

O
15

 
5.

08
 

98
1.

55
54

8
 

0.
90

 
+

 
57

.3
2 

59
.3

3 
12

.0
3 

O
A

-T
9 

5.
82

 

C
43

H
66

O
11

 
4.

46
 

78
1.

45
15

3
 

2.
30

 
+

 
46

.5
1 

44
.5

0 
12

.0
1 

O
A

-C
3 

1.
50

 

C
50

H
76

O
14

 
2.

95
 

92
3.

51
42

9
 

1.
66

 
+

 
54

.0
8 

52
.9

8 
12

.6
8 

O
A

-D
6 

2.
35

 

C
42

H
62

N
O

7 
3.

40
 

69
3.

45
74

0
 

-3
.6

0 
+

 
45

.4
3 

43
.1

2 
14

.1
6 

13
-S

P
X

 C
 

3.
58

 

C
43

H
66

N
O

7 
3.

30
 

70
8.

48
24

1
 

-1
.3

6 
+

 
46

.5
1 

42
.1

1 
7.

38
 

S
P

X
 D

 
2.

37
 

C
42

H
64

N
O

8 
5.

80
 

72
8.

49
68

6
 

-0
.2

1 
+

 
45

.4
3 

42
.1

6 
8.

11
 

S
P

X
 E

 
0.

97
 

C
42

H
61

N
O

8 
4.

12
 

70
8.

44
68

3
 

-0
.2

2 
+

 
45

.4
3 

42
.1

3 
11

.3
6 

27
-O

H
-1

3-
S

P
X

 C
 

3.
76

 

C
41

H
58

N
O

8 
4.

31
 

71
5.

40
77

2
 

3.
15

 
+

 
44

.3
4 

41
.6

9 
13

. 
56

 
27

-O
-1

3,
19

-S
P

X
 C

 
3.

84
 

 



 

supporting information chapter 4 

 
 237 

  

T
a

b
le

 C
1

1
.1

 L
M

B
T

 d
e

te
ct

e
d

 i
n

 f
ie

ld
 e

xp
o

se
d

 m
us

se
ls

 (
n

=
16

0
).

 T
h

e
 r

e
su

lts
 w

e
re

 o
b

ta
in

ed
 t

h
ro

ug
h 

th
e

 T
o

xI
D

 s
of

tw
a

re
 p

ro
g

ra
m

, 
us

in
g

 a
 

m
in

im
u

m
 p

ea
k 

in
te

n
si

ty
 o

f 
1

00
0

 a
nd

 a
 m

a
xi

m
u

m
 m

a
ss

 d
e

vi
a

tio
n

 o
f 

5
 p

p
m

. 
T

h
e

 id
en

tit
y 

of
 t

he
 c

o
m

p
ou

nd
s 

w
a

s 
co

nf
irm

e
d

 u
si

ng
 t

h
e

 13
C

/12
C

 

is
o

to
p

ic
 io

n
 r

at
io

, a
cc

o
rd

in
g

 to
 th

e 
cr

ite
ria

 d
e

sc
rib

ed
 in

 C
D

 2
00

2
/6

5
7/

E
C

 (
20

02
).

 

3
 D

A
Y

S
 

 
 

 
 

 
 

 
 

 
 

S
ta

tio
n 

E
le

m
en

ta
l 

co
m

po
si

tio
n 

R
T

 
(m

in
) 

M
ea

su
re

d 
m

as
s 

(m
/z

) 
E

rr
or

 
(%

) 
Io

n 
m

od
e 

T
he

or
et

ic
al

 
is

ot
op

e 
ra

tio
 

O
bs

er
ve

d 
is

ot
op

e 
ra

tio
 

S
D

 
T

en
ta

tiv
e 

id
en

tit
y 

M
ea

n 
es

tim
at

e 
(μ
g
.k
g

-1
) 

T
is

su
e

 

A
ll 

N
A

 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 

5
 D

A
Y

S
 

 
 

 
 

 
 

 
 

 
 

1
 

C
58

H
92

O
14

 
3.

65
 

10
13

.6
53

90
 

-1
.9

9 
+

 
62

.7
3 

63
.2

2 
13

.7
4 

14
:1

 D
T

X
-2

 
5.

98
 

V
is

ce
ra

l 
2
 

C
58

H
94

O
14

 
3.

61
 

10
37

.6
51

07
 

-2
.4

1 
+

 
62

.7
3 

58
.5

2 
4.

90
 

14
:0

 O
A

 
1.

34
 

V
is

ce
ra

l 
3
 

C
61

H
10

0O
14

 
3.

93
 

10
57

.7
19

02
 

0.
41

 
+

 
65

.9
8 

64
.4

6 
15

.6
3 

16
:0

 D
T

X
1 

1.
56

 
V

is
ce

ra
l 

 
C

58
H

94
O

14
 

3.
61

 
10

37
.6

50
97

 
-2

.5
1 

+
 

62
.7

3 
61

.5
2 

14
.8

1 
14

:0
 O

A
 

10
.5

6 
V

is
ce

ra
l 

4
 

C
60

H
94

O
14

 
3.

29
 

10
61

.6
55

47
 

1.
78

 
+

 
64

.8
9 

65
.2

1 
13

.4
5 

16
:2

 O
A

 
4.

08
 

V
is

ce
ra

l 
 

C
43

H
66

N
O

7 
3.

30
 

70
8.

48
40

9 
0.

87
 

+
 

46
.5

1 
47

.9
1 

12
.6

3 
S

pi
ro

lid
e 

D
 

1.
15

 
V

is
ce

ra
l 

1
0
 D

A
Y

S
 

 
 

 
 

 
 

 
 

 
 

1
 

C
45

H
70

O
13

 
2.

09
 

81
7.

47
54

4 
1.

29
 

- 
48

.6
7 

47
.6

5 
11

.1
3 

D
T

X
-1

 
1.

82
 

V
is

ce
ra

l 
 

C
58

H
92

O
14

 
3.

65
 

10
13

.6
51

54
 

-4
.3

8 
+

 
62

.7
3 

63
.4

8 
13

.2
1 

14
:1

 D
T

X
-2

 
24

.1
0 

V
is

ce
ra

l 
 

C
58

H
94

O
14

 
3.

61
 

10
37

.6
50

84
 

-2
.6

4 
+

 
62

.7
3 

62
.2

5 
14

.3
4 

14
:0

 O
A

 
3.

36
 

V
is

ce
ra

l 
 

C
47

H
70

O
15

 
3.

55
 

87
3.

46
29

4 
-1

.4
3 

+
 

50
.8

3 
51

.2
3 

12
.6

6 
P

T
X

-2
 

1.
06

 
V

is
ce

ra
l 

2
 

C
58

H
94

O
14

 
3.

61
 

10
37

.6
50

85
 

-2
.6

3 
+

 
62

.7
3 

58
.5

2 
4.

90
 

14
:0

 O
A

 
4.

86
 

V
is

ce
ra

l 
 

C
58

H
88

O
14

 
3.

15
 

10
09

.6
23

21
 

-1
.0

6 
+

 
62

.7
3 

59
.2

2 
3.

51
 

14
:3

 O
A

 
2.

51
 

V
is

ce
ra

l 
 

C
60

H
94

O
14

 
3.

28
 

10
61

.6
55

88
 

2.
16

 
+

 
64

.8
9 

57
.4

4 
7.

45
 

16
:2

 O
A

 
1.

71
 

V
is

ce
ra

l 
 

C
47

H
70

O
15

 
3.

55
 

87
3.

46
20

0 
-2

.5
 

+
 

50
.8

3 
56

.8
3 

6.
08

 
P

T
X

-2
 

1.
62

 
V

is
ce

ra
l 

3
 

C
61

H
10

0O
14

 
3.

93
 

10
57

.7
18

22
 

-0
.3

4 
+

 
65

.9
8 

59
.4

6 
6.

21
 

16
:0

 D
T

X
1 

1.
17

 
V

is
ce

ra
l 

 
C

58
H

94
O

14
 

3.
61

 
10

37
.6

51
13

 
-2

.3
6 

+
 

62
.7

3 
58

.5
2 

4.
90

 
14

:0
 O

A
 

26
.7

8 
V

is
ce

ra
l 

 
C

58
H

88
O

14
 

3.
14

 
10

09
.6

22
63

 
-1

.6
4 

+
 

62
.7

3 
59

.0
3 

4.
22

 
14

:3
 O

A
 

5.
92

 
V

is
ce

ra
l 

 
C

61
H

98
O

14
 

3.
92

 
10

55
.7

01
66

 
-1

.2
 

+
 

65
.9

8 
56

.2
4 

9.
74

 
17

:1
 O

A
 

5.
41

 
V

is
ce

ra
l 

 
C

62
H

98
O

14
 

3.
72

 
10

67
.7

02
98

 
-1

.7
 

+
 

67
.0

6 
59

.8
1 

7.
04

 
18

:2
 O

A
 

8.
02

 
V

is
ce

ra
l 

 
C

43
H

66
N

O
7 

3.
30

 
70

8.
48

58
1 

3.
42

 
+

 
46

.5
1 

48
.9

1 
2.

02
 

S
pi

ro
lid

e 
D

 
2.

06
 

V
is

ce
ra

l 

 



 

Annex C 

 
238  

 

  
T

a
b

le
 C

1
1

.2
 L

M
B

T
 d

e
te

ct
ed

 in
 f

ie
ld

 e
xp

o
se

d
 m

u
ss

e
ls

 (
n

=
1

60
).

 

4
 

C
59

H
96

O
14

 
3.

61
 

10
29

.6
87

71
 

0.
41

 
+

 
63

.8
1 

62
.3

7 
14

.2
8 

15
:0

 O
A

 
3.

87
 

V
is

ce
ra

l 
 

C
60

H
96

O
14

 
3.

55
 

10
63

.6
71

90
 

2.
51

 
+

 
64

.8
9 

63
.6

3 
13

.5
6 

16
:1

 O
A

 
4.

22
 

V
is

ce
ra

l 
 

C
60

H
94

O
14

 
3.

28
 

10
61

.6
56

82
 

3.
05

 
+

 
64

.8
9 

62
.1

1 
14

.0
9 

16
:2

 O
A

 
9.

82
 

V
is

ce
ra

l 
 

C
62

H
10

0O
14

 
3.

95
 

10
69

.7
19

87
 

1.
24

 
+

 
67

.0
6 

68
.5

3 
11

.8
8 

18
:1

 O
A

 
1.

85
 

V
is

ce
ra

l 
 

C
62

H
98

O
14

 
3.

72
 

10
67

.7
01

64
 

-1
,2

0 
+

 
67

.0
6 

66
.5

5 
12

.3
8 

18
:2

 O
A

 
4.

28
 

V
is

ce
ra

l 
 

C
64

H
96

O
14

 
3.

75
 

11
11

.6
69

71
 

0.
43

 
+

 
69

.2
2 

68
.2

3 
14

.2
8 

20
:5

 O
A

 
2.

60
 

V
is

ce
ra

l 
 

C
43

H
66

N
O

7 
3.

30
 

70
8.

48
51

1
 

2.
44

 
+

 
46

.5
1 

47
.4

6 
12

.0
2 

S
pi

ro
lid

e 
D

 
1.

32
 

V
is

ce
ra

l 
 

C
40

H
60

N
O

6 
4.

83
 

64
9.

43
35

8
 

-1
,8

6 
- 

43
.2

6 
42

.2
2 

12
.0

8 
S

pi
ro

lid
e 

H
 

1.
09

 
V

is
ce

ra
l 

 
C

42
H

61
N

O
8 

4.
09

 
70

8.
44

89
3

 
2.

73
 

+
 

45
.4

3 
44

.0
8 

15
.8

6 
27

-O
H

-1
3-

S
P

X
 C

  
1.

54
 

V
is

ce
ra

l 

1
5
 D

A
Y

S
 

 
 

 
 

 
 

 
 

 
 

1
 

C
45

H
70

O
13

 
2.

09
 

81
7.

47
78

2
 

4.
25

 
- 

48
.6

7 
48

.9
0 

10
.2

8 
D

T
X

-1
 

2.
57

 
V

is
ce

ra
l 

 
C

58
H

92
O

14
 

3.
65

 
10

13
.6

51
58

 
-4

.3
4 

+
 

62
.7

3 
63

.9
1 

13
.6

6 
14

:1
 D

T
X

-2
 

76
.9

1 
V

is
ce

ra
l 

 
C

58
H

92
O

14
 

3.
64

 
10

13
.6

53
80

 
0.

21
 

+
 

62
.7

3 
61

.8
7 

15
.2

9 
14

:1
 D

T
X

-2
 

10
.0

7 
N

on
-V

is
ce

ra
l 

 
C

58
H

94
O

14
 

3.
61

 
10

37
.6

52
72

 
-0

.8
2 

+
 

62
.7

3 
63

.5
2 

14
.9

0 
14

:0
 O

A
 

10
.7

6 
V

is
ce

ra
l 

 
C

58
H

88
O

14
 

3.
15

 
10

09
.6

24
48

 
0.

18
 

+
 

62
.7

3 
61

.2
2 

13
.2

2 
14

:3
 O

A
 

3.
54

 
V

is
ce

ra
l 

 
C

59
H

96
O

14
 

3.
61

 
10

29
.6

85
32

 
-1

.9
0 

+
 

63
.8

1 
62

.3
7 

11
.7

3 
15

:0
 O

A
 

11
.3

9 
V

is
ce

ra
l 

 
C

60
H

98
O

14
 

3.
73

 
10

65
.6

82
10

 
-2

,6
0 

+
 

64
.8

9 
63

.2
6 

14
.8

8 
16

:0
 O

A
 

4.
78

 
V

is
ce

ra
l 

 
C

60
H

94
O

14
 

3.
28

 
10

61
.6

54
85

 
1.

19
 

+
 

64
.8

9 
57

.4
4 

10
.6

4 
16

:2
 O

A
 

9.
65

 
V

is
ce

ra
l 

 
C

62
H

10
0O

14
 

3.
95

 
10

69
.7

19
51

 
1.

26
 

+
 

67
.0

6 
66

.5
6 

14
.9

5 
18

:1
 O

A
 

2.
86

 
V

is
ce

ra
l 

 
C

62
H

94
O

14
 

3.
68

 
10

63
.6

78
3

 
6.

27
 

+
 

67
.0

6 
65

,8
3 

11
.6

2 
18

:4
 O

A
 

4.
37

 
V

is
ce

ra
l 

 
C

47
H

70
O

15
 

3.
55

 
87

3.
46

42
9

 
0.

11
 

- 
50

.8
3 

51
.6

5 
14

.8
5 

P
T

X
-2

 
2.

41
 

V
is

ce
ra

l 
 

C
42

H
64

N
O

7 
2.

35
 

71
6.

45
21

4
 

-2
.9

2 
+

 
45

.4
3 

45
.9

7 
11

.1
0 

S
pi

ro
lid

e 
B

 
1.

40
 

V
is

ce
ra

l 
 

C
43

H
66

N
O

7 
3.

30
 

70
8.

48
51

7
 

2.
52

 
+

 
46

.5
1 

45
.1

2 
15

.3
6 

S
pi

ro
lid

e 
D

 
1.

89
 

V
is

ce
ra

l 
 

C
42

H
66

N
O

7 
3.

40
 

69
5.

47
45

7
 

-2
.9

9 
- 

45
.4

3 
44

.2
6 

13
.7

4 
S

pi
ro

lid
e 

F
 

1.
96

 
V

is
ce

ra
l 

 
C

40
H

60
N

O
6 

4.
83

 
65

1.
44

83
6

 
1.

50
 

- 
43

.2
6 

43
.7

1 
10

.3
2 

S
pi

ro
lid

e 
H

 
4.

22
 

V
is

ce
ra

l 
 

C
41

H
58

N
O

8 
4.

15
 

69
3.

42
11

4
 

-3
.4

3 
+

 
44

.3
4 

42
.6

8 
15

.3
2 

27
-O

-1
3,

19
-S

P
X

 C
  

3.
05

 
V

is
ce

ra
l 

 



 

supporting information chapter 4 

 
 239 

  

T
a

b
le

 C
1
1

.3
 L

M
B

T
 d

e
te

ct
ed

 in
 f

ie
ld

 e
xp

o
se

d
 m

u
ss

e
ls

 (
n

=
1

60
).

 

1
5
 D

A
Y

S
 

 
 

 
 

 
 

 
 

 
 

2
 

C
58

H
94

O
14

 
3.

61
 

10
37

.6
51

93
 

-1
.5

9 
+

 
62

.7
3 

58
.5

2 
4.

90
 

14
:0

 O
A

 
10

.7
6 

V
is

ce
ra

l 
 

C
58

H
88

O
14

 
3.

15
 

10
09

.6
25

16
 

0.
86

 
+

 
62

.7
3 

59
.2

2 
3.

51
 

14
:3

 O
A

 
3.

83
 

V
is

ce
ra

l 
 

C
60

H
94

O
14

 
3.

28
 

10
61

.6
55

61
 

1.
91

 
+

 
64

.8
9 

57
.4

4 
7.

45
 

16
:2

 O
A

 
3.

11
 

V
is

ce
ra

l 
 

C
52

H
80

O
14

 
2.

76
 

92
9.

56
28

2 
0.

79
 

+
 

56
.2

4 
52

.7
7 

9.
21

 
O

A
-D

8 
3.

40
 

V
is

ce
ra

l 
 

C
47

H
70

O
15

 
3.

55
 

87
3.

46
53

1 
1.

28
 

+
 

50
.8

3 
56

.8
3 

6.
08

 
P

T
X

-2
 

1.
88

 
V

is
ce

ra
l 

 
C

40
H

60
N

O
6 

4.
83

 
64

9.
43

39
6 

-1
.2

7 
- 

43
.2

6 
42

.2
2 

2.
08

 
S

pi
ro

lid
e 

H
 

1.
21

 
V

is
ce

ra
l 

 
C

43
H

66
N

O
7 

3.
30

 
70

8.
48

61
1 

3.
85

 
+

 
46

.5
1 

48
.9

1 
2.

02
 

S
pi

ro
lid

e 
D

 
1.

14
 

V
is

ce
ra

l 
3
 

C
61

H
10

0O
14

 
3.

93
 

10
57

.7
18

36
 

-0
.2

0 
+

 
65

.9
8 

64
.1

5 
13

.1
6 

16
:0

 D
T

X
1 

1.
17

 
V

is
ce

ra
l 

 
C

58
H

94
O

14
 

3.
61

 
10

37
.6

50
88

 
-2

.6
0 

+
 

62
.7

3 
61

.8
9 

13
.8

1 
14

:0
 O

A
 

26
.7

8 
V

is
ce

ra
l 

 
C

58
H

94
O

14
 

3.
60

 
10

37
.6

51
24

 
-2

.2
5 

+
 

62
.7

3 
60

.8
4 

11
.5

3 
14

:0
 O

A
 

5.
37

 
N

on
-v

is
ce

ra
l 

 
C

58
H

88
O

14
 

3.
14

 
10

09
.6

22
71

 
-1

.5
6 

+
 

62
.7

3 
60

.0
2 

14
.7

4 
14

:3
 O

A
 

5.
92

 
V

is
ce

ra
l 

 
C

61
H

98
O

14
 

3.
92

 
10

55
.7

01
21

 
-1

.0
5 

+
 

65
.9

8 
65

.2
7 

9.
74

 
17

:1
 O

A
 

5.
41

 
V

is
ce

ra
l 

 
C

62
H

98
O

14
 

3.
72

 
10

67
.7

02
51

 
-1

.6
7 

+
 

67
.0

6 
66

.4
6 

11
.0

4 
18

:2
 O

A
 

8.
02

 
V

is
ce

ra
l 

 
C

52
H

80
O

14
 

2.
76

 
92

9.
56

18
70

 
-0

.2
2 

+
 

56
.2

4 
54

.1
8 

9.
21

 
O

A
-D

8 
2.

48
 

V
is

ce
ra

l 
 

C
47

H
70

O
15

 
3.

55
 

87
3.

46
50

1 
0.

93
 

+
 

50
.8

3 
52

.5
7 

16
.1

4 
P

T
X

-2
 

4.
53

 
V

is
ce

ra
l 

 
C

47
H

72
O

15
 

4.
52

 
89

4.
52

16
6 

0.
93

 
+

 
50

.8
3 

51
.2

7 
12

.2
3 

P
T

X
sa

 1
 

2.
34

 
V

is
ce

ra
l 

 
C

47
H

69
N

O
14

 
4.

77
 

87
2.

48
01

2 
1.

19
 

+
 

50
.8

3 
50

.2
5 

11
.1

2 
A

Z
A

 1
6/

17
 

3.
31

 
V

is
ce

ra
l 

 
C

53
H

82
O

15
 

5.
08

 
98

1.
55

75
1 

2.
9 

+
 

57
.3

2 
58

.1
8 

12
.8

3 
O

A
-T

9 
2.

73
 

V
is

ce
ra

l 
 

C
42

H
64

N
O

7 
2.

35
 

71
6.

45
10

3 
0.

36
 

+
 

45
.4

3 
44

.2
8 

11
.5

7 
S

pi
ro

lid
e 

B
 

1.
39

 
V

is
ce

ra
l 

 
C

43
H

66
N

O
7 

3.
30

 
70

8.
48

60
1 

3.
71

 
+

 
46

.5
1 

48
.1

4 
15

.8
2 

S
pi

ro
lid

e 
D

 
2.

06
 

V
is

ce
ra

l 
 

C
42

H
64

N
O

8 
5.

82
 

72
8.

49
69

1 
-0

.1
5 

+
 

45
.4

3 
46

.0
6 

11
.5

1 
S

pi
ro

lid
e 

E
 

1.
87

 
V

is
ce

ra
l 

 
C

40
H

60
N

O
6 

4.
83

 
64

9.
43

33
7 

-2
.1

8 
- 

43
.2

6 
42

.1
0 

12
.0

8 
S

pi
ro

lid
e 

H
 

2.
85

 
V

is
ce

ra
l 

 
C

40
H

62
N

O
6 

3.
42

 
65

1.
44

72
1 

-4
.9

5 
- 

43
.2

6 
41

.5
4 

12
.4

7 
S

pi
ro

lid
e 

I 
1.

08
 

V
is

ce
ra

l 
 

C
42

H
61

N
O

8 
4.

09
 

70
8.

44
41

7 
-3

.9
8 

+
 

45
.4

3 
43

.9
7 

11
.3

9 
27

-O
H

-1
3-

S
P

X
 C

  
1.

95
 

V
is

ce
ra

l 
 

C
41

H
58

N
O

8 
1.

99
 

71
0.

45
32

1 
4.

41
 

+
 

44
.3

4 
43

.1
6 

13
.1

4 
27

-O
-1

3,
19

-S
P

X
 C

  
3.

75
 

V
is

ce
ra

l 

 



 

Annex C 

 
240  

 

T
a

b
le

 C
1
1

.4
 L

M
B

T
 d

e
te

ct
ed

 in
 f

ie
ld

 e
xp

o
se

d
 m

u
ss

e
ls

 (
n

=
1

60
).

 

1
5
 D

A
Y

S
 

 
 

 
 

 
 

 
 

 
 

4
 

C
58

H
88

O
14

 
3.

14
 

10
09

.6
24

98
 

0.
68

 
+

 
62

.7
3 

61
.4

7 
14

.2
2 

14
:3

 O
A

 
3.

69
 

V
is

ce
ra

l 
 

C
59

H
96

O
14

 
3.

61
 

10
29

.6
87

96
 

0.
66

 
+

 
63

.8
1 

62
.3

7 
11

.4
4 

15
:0

 O
A

 
12

.4
0 

V
is

ce
ra

l 
 

C
60

H
96

O
14

 
3.

55
 

10
63

.6
71

03
 

1.
69

 
+

 
64

.8
9 

63
.7

6 
13

.2
6 

16
:1

 O
A

 
11

.3
7 

V
is

ce
ra

l 
 

C
60

H
94

O
14

 
3.

28
 

10
61

.6
56

53
 

2.
77

 
+

 
64

.8
9 

62
.4

4 
15

.4
5 

16
:2

 O
A

 
26

.9
2 

V
is

ce
ra

l 
 

C
60

H
94

O
14

 
3.

29
 

10
61

.6
55

82
 

2.
10

 
+

 
64

.8
9 

62
.7

6 
12

.2
1 

16
:2

 O
A

 
4.

78
 

N
on

-v
is

ce
ra

l 
 

C
62

H
10

0O
14

 
3.

95
 

10
69

.7
19

71
 

1.
13

 
+

 
67

.0
6 

64
.7

7 
14

.9
5 

18
:1

 O
A

 
5.

21
 

V
is

ce
ra

l 
 

C
62

H
98

O
14

 
3.

72
 

10
67

.7
03

13
 

2.
27

 
+

 
67

.0
6 

64
.8

1 
16

.0
4 

18
:2

 O
A

 
5.

01
 

V
is

ce
ra

l 
 

C
62

H
94

O
14

 
3.

68
 

10
63

.6
71

30
 

-0
.3

1 
+

 
67

.0
6 

65
,4

4 
12

.6
2 

18
:4

 O
A

 
3.

12
 

V
is

ce
ra

l 
 

C
64

H
96

O
14

 
3.

75
 

11
11

.6
69

71
 

0.
43

 
+

 
69

.2
2 

65
.7

2 
14

.7
8 

20
:5

 O
A

 
4.

15
 

V
is

ce
ra

l 
 

C
64

H
96

O
14

 
3.

75
 

11
11

.6
69

71
 

0.
43

 
+

 
69

.2
2 

65
.7

2 
14

.7
8 

20
:5

 O
A

 
4.

15
 

V
is

ce
ra

l 
 

C
52

H
80

O
14

 
2.

76
 

92
9.

56
17

1
 

-0
.3

9 
+

 
56

.2
4 

53
.7

7 
15

.2
1 

O
A

-D
8 

2.
95

 
V

is
ce

ra
l 

 
C

54
H

82
O

14
 

2.
78

 
95

3.
56

52
2

 
2.

31
 

- 
58

.4
0 

60
.8

5 
14

.6
6 

O
A

-D
10

 
2.

54
 

V
is

ce
ra

l 
 

C
47

H
70

O
15

 
3.

55
 

87
3.

46
50

1
 

0.
93

 
+

 
50

.8
3 

53
.8

3 
16

.0
8 

P
T

X
-2

 
2.

18
 

V
is

ce
ra

l 
 

C
47

H
69

N
O

14
 

4.
76

 
87

2.
48

00
7

 
1.

11
 

+
 

50
.8

3 
49

.7
4 

10
.8

5 
A

Z
A

 1
6/

17
 

2.
81

 
V

is
ce

ra
l 

 
C

42
H

64
N

O
7
 

2.
35

 
71

6.
45

22
7

 
2.

09
 

+
 

45
,4

3 
44

,7
7 

11
.3

3 
S

pi
ro

lid
e 

B
 

1.
76

 
V

is
ce

ra
l 

 
C

43
H

66
N

O
7
 

3.
30

 
70

8.
48

44
2

 
1.

46
 

+
 

46
.5

1 
48

.9
1 

12
.0

2 
S

pi
ro

lid
e 

D
 

1.
58

 
V

is
ce

ra
l 

 
C

40
H

60
N

O
6
 

4.
83

 
64

9.
43

53
3

 
0.

83
 

- 
43

.2
6 

42
.2

2 
12

.0
8 

S
pi

ro
lid

e 
H

 
1.

23
 

V
is

ce
ra

l 
 

C
42

H
61

N
O

8
 

4.
09

 
70

8.
44

78
2

 
1.

17
 

+
 

45
.4

3 
42

.0
7 

12
.8

6 
27

-O
H

-1
3-

S
P

X
 C

  
2.

22
 

V
is

ce
ra

l 
 

C
41

H
58

N
O

8
 

1.
99

 
71

0.
45

30
1

 
4.

13
 

+
 

44
.3

4 
41

.4
9 

13
.0

4 
27

-O
-1

3,
19

-S
P

X
 C

  
1.

19
 

V
is

ce
ra

l 

 


