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The equations governing the propagation of inertia-gravity waves in
geophysical fluid flows are discretized on the A, B, C, and D grids
according to the classical forward-backward on time and centered on
space (FBTCS) numerical scheme. The von Neumann stability analysis
is performed and it is shown that the stability condition of the inertia-
gravity waves scheme is more restrictive, at least by a factor of \/f than
that concerning pure gravity waves, whatever the magnitude of the
Coriolis parameter. Finally, the general necessary and sufficient stability
condition is derived for the A, B and C grids, while, on the D grid, the
stability condition has been obtained only in particular cases. © 1983
Academic Press, Inc.

1. INTRODUCTION

Large scale atmospheric and oceanic motions roughly
obey the geostrophic equilibrium. When imbalances occur,
the geostrophic balance is restored by means of inertia-
gravity waves (Rossby [14, 15]; Cahn [5]; Obukhov [137];
Washington [22]; Blumen [4]; Schoenstadt [17]; Hsieh
and Gill [7]). The dynamics of tides and storm surges are
dominated by the propagation of external inertia-gravity
waves, which are related to the motion of the sea surface. In
strongly stratified seas, one also considers the displacement
of density surfaces, which leads to internal inertia-gravity
waves. The propagation of inertia-gravity waves, be they
external or internal, is thus a central issue to many
geophysical fluid models. Hence, it is of highest importance
that the numerical scheme utilized be able to properly
represent the propagation of those waves.

The external linear inertia-gravity waves, also called
Poincaré waves, are governed by the following dimen-
sionless equations,

6_?1+5_H+@=0,

1
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where ¢ is the time, » and v are horizontal velocity
components in the x and y direction, respectively, and 5
is the sea surface elevation. The characteristic length, L, and
time, T, used in the derivation of the dimensionless variables
obey

L?=ghT?, (4)
where g is the gravitational acceleration and 4 is the

unperturbed depth of the sea, supposed to be constant. The
velocity scale, U, and the elevation scale, E, satisfy

_hU?
—

E’ (5)

In addition,fbcing the Coriolis parameter, fis defined to be
f=JT

so that the pure gravity waves correspond to f = 0.

The governing equations of internal inertia-gravity waves
are similar to (1)-(3), except that 4, u, v, and n are to be
interpreted as equivalent quantities related.to the particular
internal mode considered (LeBlond and Mysak [10]).

Various discretized forms of (1)-(3) have been examined
(Winninghoff [23]; Schoenstadt and Williams [16];
Arakawa and Lamb [1]; Schoenstadt [17]; Schoenstadt
[18]; Batteen and Han [2]). Those studies focus on the
space differencing aspects. When time differencing is also
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considered, it is customary to restrict the analysis to pure
gravity waves (/= 0). In this case, the stability conditions of
the numerical scheme are readily obtained.

In the present article, on the example of a simple
time-space differencing scheme, we show that the stability
condition of the scheme representing the propagation of
inertia-gravity waves is far more constraining than that of
the pure gravity waves scheme. Indeed, the limit as f — 0 of
the stability conditions is not equal to the stability condition
when f=0.

It is worth pointing out that only very few authors
have drawn attention to similar numerical problems. One
may, however, mention Kasahara [9], Thacker [20, 21],
Cushman-Roisin [6], or Beckers [3]. Interestingly enough,
Thacker [20, 21] found a finite element scheme condi-
tionally stable for pure gravity waves and unconditionally
unstable whenever the Coriolis force is introduced.

2. THE FBTCS NUMERICAL SCHEME

Winninghoff [23] has shown that the numerical
propagation of Poincaré waves strongly depends on the dis-
tribution of &, v, and n over the grid points. Here, four types
of numerical lattices are studied, namely the A, B, C, and D
grids, according to Arakawa’s classification (Arakawa and
Lamb [1]) (Fig. 1). Using the following notations,

Ay pom,=alt=n,4t, x=n_4x, y=n, Ay), (7)
(6.a),, = {al(n.+3) 4x] —al(n,—}) 4x]}/4x, (8)
(@),,={al(n.+3) 4x]+al(n,—3) 4x]}/2, (9)
the FBTCS scheme reads
A-grid,
(0 a,+ 172.n0me + (0@ ), 1, + (87 Vp pn, = 0
(5;u)n,+ /2,030y —f"n,ﬂ,n,...,.
= ~(0.7 Yn, 4 1, myumy (10)
(6V)n, + /2., + Sl 4 | _5ompm,
= (8, s memy
B-grid,
B+ 2.men, F (08 Y, + (8,7 )5, 0, =0
(0, )n 4 12 me+ v2ome+ 172 — SV 1, n +1/2omy+ 12
= —(6.7" )n + tumet 172m 4+ 112 (11)

(009 )n, 4 1/2.me+ 12m+ 122+ S¥hn 44—+ 2.my+ 172

=t .
= —(3,7 )n,+1.n_f+w2.nv+ /23
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FIG. 1. Spatial distribution of the variables (#, u, v) on the A, B, C,
and D grids. The space density of the discrete variables is equal on all of
the grids.

C-grid,
((sf ")n,+ L2y + (6\' u]rr,.n.-.rr. * (é‘rv)n,..n‘.-‘n,, = 0

X

(5lu)rr,+ L2+ 1/2,m, = Vn',+1,n,,+ 1/2,n,

= (dtq)n, + Loy + 1/2.n,

X
((S,V),,{_‘_ V2nen + 172 +-ﬁ:n-.‘+ 1—s.ngn.+ 172

(12)

= —(0,M)a, 4 timeun, 4 1725
D-grid
(O, + 12.memy + (O™ ) g, + (6,7 ) . =0
(6,4)m, + Vanem+ 12— JVa e nyony 4+ 172
= “(5.7’?'“),.,4- Longng+1/2 (13)

xy
(5"’)"'*' U2nc+ 12,0y +ﬂ’!;’+ I —sny+1/2.n,

i g “
- (5;'7 )r!, + 1A+ 1/2ns

where s is zero or one according to whether n, is even or
odd.
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The centered space differencing in (10)—(13) is equivalent
to that of Arakawa and Lamb [ 1], while the time stepping
of the gravity wave part is similar to the forward-backward
scheme (Mesinger and Arakawa [12]). One prevents the
Coriolis force from generating mechanical power by a
simple technique stemming from Sielecki [19] and adapt-
ing it to ensure symmetry in the x and y directions. The dis-
cretized time derivatives may be regarded as forward or
backward, depending on the term one is considering. The
name FBTCS is therefore suggested for the above schemes:
forward-backward on time and centered on space.

The von Neumann stability analysis is now applied to the
discretized equations (10)—(13). First, one defines a spatially
periodic solution

] &(1)
=1 W) |eVorrhenioy pAmBtnil) (1)
v ¥ (1)

where 6 and 8, are related to the wavenumbers k.and k,
by 0<20,=k . dx<n and 0<26, =k, 4y <n. Next, this
periodic solution (14) is introduced into the discretized
equations (10)-(13), leading for each grid to the expression

AX, 1+ B,x, =0, s=0, 1 (15)
Since the time discretization of the Coriolis terms varies
according to the value of 5, the amplification matrix of the
scheme must be built over two time steps. For the A, B, ¢,
and D grids, one then obtains

Xon, = (A7 'B1 Ag 'By)" %, (16)

and
Xom+1=(dg 'BoA['B))" x,. (17)

Finally, one may thus define two amplification matrices:

H10=A1_lBlAr;lBo’
Hy =A,'ByAT'B,.

(18)
(19)

Calculating the elements of H,, and H,, is, in principle,

TABLE I
Definition of &, £, £, and ¢, for grids A, B, C, and D

Grid « 2 §u/e ¢le}
A 1 4 sin?28, sin® 28,
B 1 1 sin” 0, cos? 0, sin? @, cos? 6,
C [cos @, cos 0, | 1 sin? ), sin @,
D [cos 0, cos 0, 1 alsin? ), a’sin’ 0,

straightforward. However, it turns out to demand lengthy
algebraic manipulations, which we performed by means of
a symbolic computations software.

It must be pointed out that H, and Hy,, although non-
equal, have the same eigenvalues, hereafter denoted p. As
the time-independent geostrophic motion is a possible solu-
tion to (10}-(13), one eigenvalue will be unity. In fact, for
each grid, the characteristic equation of either H 10 O Hg,
may be factorized as

(p=1)(=p*+2bp—1)=0. (20)
Equations (1)-(3) contain no phenomena growing in time.
This implies that the von Neumann stability condition is

lpl <1 (21)
or, equivalently,
~FLhE] (22)
Upon defining
o (23)
(eore) = (4 j—:) (24)
and
E=E 48 (E.£,30), (25)
b reads
b=1isg—¥)—§—z¢3az[4‘f—-‘§i+u} (26)
% &% Cx

where «, £, £, and £, are given in Table I.
We now have to find the constraints on ¢, c,, and ¢, that
ensure (22).

3. SIMPLE NECESSARY STABILITY CONDITIONS

Pure inertia oscillations correspond to infinitely long
waves, 8, =6, =0. In this case, the space derivatives vanish
and we obviously find the same stability condition for all of
the grids:

<1 (27)
Putting ¢ =0 yields the classical pure gravity waves

problem, widely analysed for a large variety of schemes,
including ours (e.g., Janjic [8], Schoenstadt and Williams
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TABLE I

Summary of the von Neumann Stability Conditions Establishes in the Present Article

Pure gravity waves

Inertia-gravity waves

Inertia
Grid oscillations ¢, =c¢=¢, o #Fe, C,=cC=c, c.#c,
5 14218l —¢? 29— gl /8 + (1 — ¢°)sin’ 28
A gl g2 cl+cigd ) Zielg —s
< ks 4— g2 Rt 6y 1 —¢sin® fcos® B
where
2
. e
SIN- ) = — 3
) ﬁ sl o 2
, 1— 2 oz fs
B <1 gl A ik 23, et eig 2¢
C <1 gl e2yelgl <l $i<i
and and
('15% c'f+(‘(’€,§
S v v b I—x ;
D pigt igd el ;<4 ¢'<5 min l:’l_zlﬂ_] Unknown in general
and osxst | 2 (1l —a)2—x|g|) L'i“'ig% if ¢1=l
¥ Sl 21+ /1 —¢H)2ife, =0
(ex+ci) <l feecisb ce€3(l+ ¢°)ife,

55
27ci ¢}

Note. All conditions are necessary and sufficient. However, criteria for pure inertia oscillations and pure gravity waves may be
considered necessary conditions for the inertia-gravity waves problem. The ¢?>< 1 condition is implicitly contained in all of the

conditions of the rightmost two columns, except those of the C grid.

[16], Mesinger [11], Mesinger and Arakawa [12]). In
this case, condition (22) immediately leads to the necessary
and sufficient stability condition

£, (28)

which is easily translated into constraints on ¢, and ¢, in
Table II. Only the lesser known D-grid stability analysis is

given in Appendix I.
When neither ¢ nor 8, nor 8, are zero, it is clear that for
& — £,/2 one has

5L,
5

b= —1—8a24? : (29)
*

Numerical stability of inertia-gravity waves schemes thus
necessitates
x£,/2 (30)

which means that the maximum admissible time step is, at
most, equal to that of pure gravity waves divided by a factor
of \/5 This holds true whatever the value of f, provided
f#0!

Inequalities (27) and (30) are thus necessary stability
conditions for the Poincaré waves scheme.

4. GRAPHICAL INTERPRETATION

According to Eq. (26), & is a quadratic function of £, and
¢»- The fact that the stability constraint for ¢ = 0 is different
from that found for ¢* — 0 stems from a singular perturba-
tion problem that arises because ¢ is a multiplicative factor
of £, ¢, which is one of the highest degree terms of (26). A
graphical interpretation, however, turns out to be more
striking and also proves to be a helpful guide line in
the determination of the necessary and sufficient stability
conditions. 7 :

Given a fixed value of # and a, (&, §,) describes an
elliptical path in the £, ¢, -space. By varying b, one obtains
concentric ellipses whose axes grow as b increases. Indeed,
the ellipse center is located at

£L(2—a??)

(Eer ) =g (1, 1) (31)
The minor axis,
_ E* 20y
e—m-)\/S(l+b}+2(l—b)a¢, (32)

lies on the symmetry axis ¢, = ¢,.- The existence of this sym-
metry axis will be the underlying basis of much of the
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FIG. 2. Stability and instability (hatched) regions for 0 < ¢? < 1 (a) and ¢ =0 (b).

following discussion. Intersections of the b= —1 ellipse with
¢, =0 and with symmetry line £, = ¢, are, respectively, at

fon =2 (24097~ 1£D)], (33)
xalg)
A PETITITE (34)

The above ellipse features are illustrated in Fig. 2a.
According to the stability criterion (22), the subspace
£.,&,20 is divided into three arcas, A_, Ag=Agu A4},
and A, corresponding to b< —1,—1<b<1, and 1<b
(Fig. 2a). The stability conditions must be such that (¢, £,)
always lies in A4,. Since ¢, £, may vary—not necessarily
independently—from 0 to ¢, c2, respectively, it is clear that
(€., &,) cannot come into AZ without crossing A _. Hence,
the actual stability constraint must force (£,, £,) to remain
within A4). When ¢ =0, the characteristic values (Eq. (32),
(33), and (34)) of the b= —1 ellipse indicate that this ellipse
transforms to a straight line so that A _ vanishes, which
implies that the stability area is then A,, instead of A4 only
(Fig. 2b). This “jump” of the stability line explains easily the
fact that the stability condition changes with a discontinuity

when f =0 or f#0. The factor \/2 is also readily under-
stood.

5. NECESSARY AND SUFFICIENT
STABILITY CONDITIONS

The stability constraints derived below are collected in
the two rightmost columns of Table II.

5.1. A-Grid
Let

(ce. ) =c(cos B, sin ff), 0 p<n/2, (35)
In Table I, it can be seen that £, and ¢, may vary inde-
pendently, so that ¢? = max,_,, (&, +¢,). As explained in
Section 4, numerical stability requires that point (£, ¢,)
remains in the 4, area, which means that (£, &,) must be
“beneath” the curve corresponding to b= —1 (see Fig. 3).

This may be expressed as

SR I P (36)
Introducing (35) into (26) with b= —1, (36) gives
42 3 3y o2
R el U VL S Ll UG JEPN

1 —¢?sin? B cos’

5.2. B-Grid

In this case, £, and &, are both functions of 6 and 6,.
According to Table I, the expressions defining £, and &,
combine to give

5—"2’=(l ) é—;)(l-sinz 8.),

W 3
ey sin 6, ¢ (2%

X

which can be viewed as a family of segments of a line having
their ends on the ¢ and ¢, axes and depending on the
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FIG. 3. Stability condition for grid A.

parameter sin® 8. The envelope curve is readily determined
to be

e i

(39)

Numerical stability simply requires that the envelope
curve (39) lie in A, (Fig. 4). Examining the intersections of

&=§
&
L
E-'y “ b<-1
Ve
VeS8
S +§,ﬁ_\"’l
0
-
0 <
&,

FIG. 4. Stability condition for grid B,
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(39) with the £ and £, axes, leads to a necessary stability
condition,

1—¢*
¢, c‘f.séﬂ‘_ = :

3 (40)

Since the envelope curve (39) always lies “beneath” the
curve

\/E'_‘ \/é_-" =1, (41)

max(c,) max(c,) h

it follows that (40) is also a sufficient stability condition
because

(42)

does not enter the A _ region. This is readily demonstrated.

5.3. C-Grid

Here, the features of the ellipses are functions of (6., 8,)
through a (Table I). When o — 0, (31)-(34) show that the
b= —1 ellipse transforms to the segment of a line

Eet+é=¢=1, (43)

which immediately gives rise to the following necessary
stability condition:

(44)

Nm=

2+l

This result may also be derived from (30).

Surprisingly enough, inequality (44), along with (27), is
also a sufficient stability condition! To prove this statement,
the graphical interpretation used so far is replaced by
another method:

First, we define

citci=1(1-¢), (45)
C2

i, <u< 4
iy o el )
U=cos?f,, 0<U<I (47)
V=cos?8,, V<L (48)

Next, we write b in terms of the above variables,

b= —1+42(by+b,e+ b,e?), (49)
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where

bo=—¢*UV[p+(1—-p)VI[(1 —p)+pU]

+UV[p UV + (1 —p) /VIUD, (50)
by= —¢*UVu(1 = U)+ (1 —p)1—V)
=2u(1 = p)(1 = UY1 - F)]
p 1=y
+2UV[F,+T:|[[1(1-—U)
+(1=p)(1 =M1, (1)
by= —¢*UV(1 ~U)1~ V) u(1 —p)
+{1—-UN1-YV)
x[pe /(1 =U)(1=V)+ (1 —p) /(1 =V)/(1-U)]
(52)
Finally, we show that
bo=0, b,20, 5,20, (53)
provided ¢*< 1.
To do so, it is useful to note that
# l-—up
*I;;+—"I7'".>zl, (54)
~p(1=U)+(L—p)(1-F)
+2p(1—p)(1 -U)(1 = V)
Z2—u(l-0)+ {1 —-p)1-¥), (53)
s 1]l —U)(1— K]+ (L= fi)f (1~ V{1 —~T])
=2/ u(l —u). (56)

By introducing (54) and (55) into (51), bearing in mind that
#2< 1, it is seen that b, = 0. Similarly, inequalities (27) and
(56) imply that b, > 0. Turning now to by, it is sufficient to
show that

[u+ (1 =) VIL( = p)+uU]

<[uJUWV+(—p)/V/UT (57)
or, equivalently,
v
a(U, V)=[u2(—;+2u(l—u)+ (1 —#)2(—]]
—[e+(1=p)VI[(1—p)+pU]20. (58)
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The location of the minimum of a(U, V') satisfies

%=”—;—(1*#)2§5—#[u+(1fﬂ)V]=0
da LU (1 (59)
7= H ot —(=ml—p)+pU]=0,
implying

WU+ 2u(l—pu) UV + (1 -pu)? V=0, (60)

which cannot be verified in the interior of the domain of
definition. Thus, the local extrema may be found only on the
boundary of the domain defined by (47), (48). For sym-
metry reasons, we will analyse only thecase U=0or U= 1.
For U=0, (58) is obviously satisfied. For /=1 we have

a(l, V)=-E[p(l—V)2+ V(1-¥)120  (61)

and, thus, b, 0.

From (49) and (53) it is thus seen that b= —1 and that
the maximum of b corresponds to g¢=1. In this case
b=1-2¢*UV <1 and condition (22) holds true.

54. D-Grid

In Table I, one may see that, from the features of the
b= —1 ellipse, £, and £, depend upon a. For a particular
value of a, (¢,, ¢, ) describes a hyperbola, the equation of
which reads
(62)

(gt~ E e ot~ J=c ottt

To ensure numerical stability, one must prevent the
above hyperbola from penetrating into the 4_ region
(Fig. 5). Here, only the case ¢,=c=c¢, is thoroughly
examined. Accordingly, the {,=¢, line is ‘a symmetry axis
for both the ellipses (26) and hyperbolas (62). In order to
avoid having the hyperbolas enter into the 4 _ zone, we
must ensure that the b= —1 ellipse and the hyperbola
corresponding to a given value of « have, at most, a
tangency point; this tangency point inevitably is on the
symmetry axis. The intersection of the hyperbola with the
symmetry axis is at

E=E=olc}(1—a), (63)
Thus, the stability condition is
2031 _ ot gl
a’c’(1 a}géi‘”*2(2—al¢|) (64)
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FIG. 5. Stability condition for grid D withc, =c=¢,.
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} (65)

which is plotted in Fig. 6. The upper limit ¢Z_ admits the
following asymptotic expansions:

Cim=TF— T4l -8 ¢*— % 161°— &5 ¢° + O(4°),

|8l <1, (66)

=i+ +32 -1+ -y + 2205+ O(y),
y=/1— gl <l (67)

If ¢ =1, the necessary and sufficient stability condition
(Appendix IT) is
o<, (68)
which matches (67) whenc,=c=c,.
Finally, for ¢, =0,

i1+ /1—¢2)

is the necessary and sufficient stability condition, consistent
with (68) and (30).

It is worth pointing out an important difference between
the A and B grids, on the one hand, and the C and D grids,
on the other hand. When ¢* = 1, numerical stability requires
¢, =0=c, for the former, while c, c, may be nonzero for

(69)
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FIG. 6. [sotropic stability condition ¢} (4?) for grid D (dashed and
dotted lines are the asymptotic expansions).

the latter. This discrepancy stems from the four-points
averaging of the velocity that one performs in the expression
of the Coriolis force on the C and D grids.

6. DISCUSSION

In many descriptions of geophysical fluid models, it is
stated that the stability condition of the complete numerical
scheme is roughly given by that of the pure gravity waves
propagation. We have shown that, at least for a simple
FBTCS discretization, this view is not correct.

Many geophysical fluid models allow the propagation of
inertia-gravity waves. The FBTCS discretization is very
popular. One may thus wonder why the inadequacy of
the pure gravity waves stability criterion has not been
extensively reported so far. Three basic reasons may be put
forward.

First, it is customary to apply a “security factor” on the
maximum allowable time step derived from a simple
stability criterion. As a consequence one may choose a time
step that, by chance, satisfies the more restrictive stability
requirement for the propagation of inertia-gravity waves.

Second, analytical and numerical calculations show that
the most unstable modes are short wavelength modes, but
not the 24x mode. The dissipation present in most models
is generally of Laplacian or bi-Laplacian type, which means
that the damping is more important on the short
wavelength modes. It is thus possible that the dissipation
term counterbalances the destabilizing effect of the Coriolis
force.

Finally, one must bear in mind that, because of the
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discrete nature of the numerical scheme, not all the
wavelengths are permitted. Equivalently, one may not con-
sider that all 6, 8, correspond to modes actually allowed
by the grid. Indeed, numerical calculations show that the
instability domain consists of narrow bands in the 8, 8,
space. The probability that a given grid does not represent
the unstable modes is thus not negligible, so avoiding the
occurrence of the instability. In (c,, ¢,) space, for a given ¢,
depending on the number of grid points and thus on the
discrete values of 6, 8, represented by the grid, there are
indeed stability regions, where normally the scheme should
be unstable. This is due to the fact that the actual grid does
not resolve these unstable modes. Only when the number of
grid points increases, these stability regions disappear and
the analytical stability condition is verified everywhere.

APPENDIX I: PURE GRAVITY WAVE STABILITY
CONDITION FOR THE D GRID

The stability condition is £ < £, = 1, but one has to trans-
late this condition into conditions on ¢, ¢,, and ¢. To do
this, we have to calculate the maximum of £(8,, 6,). The
extrema are found for

o¢
a8,

=2cos 8, sin 8, cos’ 0,

x {ct—2cisin® B, —clsin’0,} =0

(A.1)

b

3 Bg X =2cos f,sin §, cos? 8,

x {c2—2c}sin’*8,—c2sin?8,} =0.

It is immediately seen that 8. =m/2 or 6, =n/2 correspond
to the minima of . Local maxima are at

sin?0,=0, sin*0,=3, - f=jc, (A.2)
sin@,=4%, sin*6,=0, — &=1ic?, (A3)
2c2—¢? 2ci—¢2
smzf?‘—j—ci-’-, sin’ 8, = T "
2 243 '
_lei+e) '
Bres
The £ <1 condition is thus satisfied if and only if
c2g4,
i< 4,
(A.5)

(c2+c?)?
cic?

because the latter condition applies only if the roots found
for sin” f, and sin? 8, in (A.4) are positive.

<27 if g 2r:_,2, <4c?
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APPENDIX II: NECESSARY AND SUFFICIENT
STABILITY CONDITION FOR THE D GRID
WITH ¢*=1

When ¢° = 1, the numerical scheme is stable if and only if
2 <3, ¢} < 3. The demonstration is outlined. We define

er=1{1=g,), (A.6)
ci=5(1-¢g,), (A7)
and we rewrite b as
b= —142[by+b,. e, + by, e,
+by e+ by 8l + b, 6.8,], (AB)
where
by = —cos® B cos® . sin> 6, sin” 0,
+cos® 8, cos* 0,(sin” 6, +sin* 6,)
x (1+sin* 0, +sin®8,) —-cos? 0, cos? 0,
x(1+2sin’@,+2sin0,)+1, (A.9)

by, =cos” 6, cos? §,sin* 6,[2+cos* B, cos* 0, sin> B,
—2cos? 0, cos® 0,(sin” 0, +sin%6,)
(A.10)

by, =cos 8, cos® 0, sin>6,[2+cos* 0, cos* 0, sin? 9,

—cos® 6, cos? 8, ],

—2cos 0, cos® 8,(sin* @, +sin’4,)

—cos? f . cos? @, ], (A.11)
by, =cos* 8, cos* @, sin* @, (A.12)
by, =cos* 0, cos* 0, sin 4, (A.13)
b, =cos* 8, cos 0, sin’ @, sin” §,(2 — cos? B, cos? 4,).
(A.14)
One may show that

by 20, b..20, by, 20,
& : (A.15)

b 20, 5,20, b, >0,

wich implies that 5> 1 when ¢, >0, £, >0. Furthermore,
when (e, e,)=(1,1), we recover the pure inertia wave
scheme, where we have already demonstrated that 5 < 1.
Inequality (68) is thus the stability condition for ¢ = 1.
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