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Abstract—=Some aspects of the computation of the barotropic mode of a primitive equations,
rigid lid, global ocean model are reviewed in the perspective of data assimilation. It is shown that
“blending” the surface pressure predicted by the model and that obtained from altimetry is imprac-
ticable, since mass conservation must be enforced. By relaxing the momentum equation, however,
it is possible to take the measurements into account. A variational method, requiring that the per-
turbation to the momentum equation be minimal, is suggested. A Poisson equation is obtained for
the streamfunction—allowing evaluation of the transport—for which a noniterative solution method
is derived. The difference between the curl of the assimilated transport and that ensuing from the
model unconstrained by data is investigated, pointing to the role of the bathymetry and that of the
“implicitness” in the evaluation of the Coriolis acceleration. Finally, implications for altimetric data
assimilation of the elliptic nature of the rigid lid equations are presented, and a comparison with the
hyperbolic equations of a free surface model is outlined.
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1. INTRODUCTION

For altimeter data assimilation, more benefit is generally expected from converting elevation
data into density data pertaining to the interior of the ocean than from directly constraining
the evolution of the barotropic mode with altimetric measurements [1-2). This does not imply,
however, that the assimilation of surface elevation data into the barotropic mode of an ocean
model should not be attempted. Consider, for example, a World Ocean model: the flow in
the Antarctic Circumpolar Current (ACC) is much less “baroclinic” than anywhere else. Not
surprisingly, it is only in this area that the “barotropic component” of the ocean surface elevation
is significant relative to its “baroclinic” counterpart [3]. In view of the importance of the ACC,
it is clear that assimilation techniques for combining altimetric data and the barotropic mode
dynamics must not be ignored.

In a recent article, Pinardi et al. [3] reviewed, in the perspective of altimetric data assimilation,
several aspects of the computation of .he barotropic mode of a primitive equations, rigid lid,
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global ocean model. They considered a simple assimilation procedure consisting of “blending”
the altimetric measurement 7, and the elevation 7, predicted by the model when unconstrained
by data. They suggested forcing the barotropic mode momentum equation by an appropriate
linear combination of 7y and 7,

n=ang+(1-ao)im, 0<a<l, (1)

in the hope that the resulting barotropic velocity field would be closer to reality than that obtained
by ignoring data, i.e., by setting & =0 in (1).

As shown by Pinardi et al. [3], the method above is ill-designed, for the conservation of mass
precludes any modification of the ocean surface elevation in a rigid lid model. This conclusion,
though correct, stems from two rather restrictive hypotheses. First, it is assumed that the
barotropic continuity equation, stating that the transport must be divergenceless, has to be
rigorously enforced. Second, the barotropic momentum equation is considered exact. Lifting at
least one of those hypotheses would permit implementing an assimilation method based on the
simple blending formula (1). We feel that it might not be safe to violate the mass conservation—
even if an appropriate penalty function is introduced in the scope of a variational approach.
Thus, we would suggest disposing with the second condition. Accordingly, a variational method
is examined herein, the essence of which is to introduce minimal perturbation in the momentum
equation of the barotropic mode.

Although our conclusions somewhat contradict those of Pinardi et al. [3], they do not shed
criticism on their work, just because our standpoint is significantly different from theirs. On the
other hand, our discussion is mostly speculative, since no actual application is presented. As a
result, the aim of this note is solely to prompt discussion and, possibly, controversy on the way
to assimilate altimeter data into the barotropic mode of a rigid lid ocean model.

Before introducing our variational method, it is necessary to briefly recall how the equations
of the barotropic mode are established and why Pinardi et al. [3] found that an assimilation
procedure resting on (1) is impracticable.

2. BAROTROPIC MODE

As in most ocean models, the Boussinesq approximation and the hydrostatic equilibrium are

assumed valid.
The hydrostatic equilibrium equation reads

dp ‘
. 'a_z = —pg, (2)
where p, z, p, and g denote the pressure, the vertical coordinate (pointing upwards), the density,
and the gravitational acceleration, respectively. Hence, at time ¢ and location (x, ), the pressure
is given by .

i) =palt) +o [ ptxDds  -h<z<n, 3

z

where the sea surface elevation 7 is positive when the ocean surface is above the reference level
z = 0; p, represents the atmospheric pressure at sea level. Since 7 is usually much smaller than
the ocean depth h, and since |(p — po)/po| < 1 — po being an appropriate reference value of p—,
it is clear that expression (3) may be approximated by

0
p(t,x, 2) = pa(t, x) + pogn(t, x) + gf p(t, x, z) dz. (4)

The mass conservation over a water column requires

an _
E%—V-Ufo, (5)
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where V is the horizontal “gradient operator” and U denotes the transport, i.e., the depth-
integral of the horizontal velocity. If the first term in the left-hand side of (5) is small, the rigid
lid approximation may be called on, so that (5) simplifies to

V-U=o0. (6)

One may then consider that an impermeable, flat and rigid lid is placed at z = 0. If p,(¢,x)
represents the pressure exerted by the flow on this fixed boundary, the integration of (2) along

the vertical coordinate yields

0
ptx2) =p(t0)+9 [ stxds  —hsz<o ()

z

If the pressure computed in formula (4) is equivalent to that obtained in the framework of the
rigid lid approximation, then
Ps = Pa + pogm, (8)

which allows linking the altimetric data and the surface pressure.

The density p is computed from the equation of state once the temperature and the salinity
are known. The latter quantities are easily determined from the relevant evolution equations.
There is, however, no evolution equation available to determine p,. Thus, for the moment, the
pressure as expressed in relation (7) is defined up to a function of t and x.

Since p, is independent of the vertical coordinate, it is clear that it should be determined with
the help of the barotropic mode equations.

The horizontal pressure gradient force reads

lvp——Lv —ifovuxz)dz )
pﬂ p pu ps po 3 p ? ] ¥

which allows the barotropic momentum equation to be written as

ou h
“‘gt—‘{'ferU*_p_OVps"'E: (10)

where f and e, represent the Coriolis factor and the vertical unit vector, respectively; E collects
the depth-integral of the last term of (9), as well as advection, diffusion and bottom /surface stress
terms. Taking the divergence of (10), using (6), one obtains

V- [p—}:}Vps] =V (E- fe, x U). (11)

The latter formula is a Poisson equation for the surface pressure p,, pointing to the elliptic
nature of the barotropic mode equations of a rigid lid model.

As the present discussion is carried out at the conceptual level, it is not necessary to consider
the equations and their numerical discretization in their full complexity. However, some technical
details must be included, otherwise our work would be misleading and pointless.

3. SURFACE PRESSURE COMPUTATION

As Pinardi et al. (3], we envisage the modelling of the World Ocean. Therefore, the compu-
tational domain is assumed to be a closed basin, possibly containing I islands (Figure 1). It is,
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Figure 1. Schematic representation of the computational domain Q. The boundaries
(0 < i < I) are impermeable and n' denote their normal unit vectors. Here, it is
assumed that there are 3 islands in 2, ie., I = 3.

however, not essential to use spherical coordinates. .Our ocean is thus assumed to be located on
a flat Earth, and is described in the Cartesian coordinate system.

As emphasized by several authors, it is important that the Coriolis acceleration be discretized
with some degree of “implicitness” [4-6]. Accordingly, we consider the following time discretiza-
tion of the barotropic mode equations (6) and (10):

V.Ut =, (12)

yrntt -y w w h
T Y, xUM e, x U= ——VpIt + E", 13
At At At F o (13)

(1308 }}

with w = BFAL(0 < B < 1) and w + @ = fA#; superscript “n” is associated, in the usual way,
with the time discretization. The “implicitness” factor w is assumed constant in space.

Let
F" = U™ — e, x U™ + AtE™. (14)

Substituting the definition (14) into the momentum equation (13) yields

(1 +w?) Ut = —%ﬁ (1 - we,x)Vplit! + (1 —we, x)F™. (15)

Taking the divergence of the discretized equation (15) using (12), one obtains the discretized
counterpart of (11) [6]

V- [h(1 - we,x)Vpit!] = %V (1 — wex)F"]. (16)

A straightforward discretization of (11) would have led to a form very different, from (16). Hence,
the need to consider some of the numerical technicalities—as stated above.
The left-hand member of (16) may be developed as follows:

V- [h(1—we,x)Vpit] = hV2pit! 4 Vh- (1 — we, x) Vpith, (17)

clearly showing that (16) is elliptic. Thus, the time discretization used herein preserves the elliptic
nature of the problem.
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The computational domain only has impermeable boundaries. Thus, if n* is the normal to the
boundary segment (0 < ¢ < I) (Figure 1), with the help of (15), the impermeability conditions
n'- Um*! = 0 may be written as

. t
n*- [—%(l—wezx)v;p?“+(1—wezx)F"] =0, 0<i<1, (18)
0

which are Neumann boundary conditions for p»+1.

It must be stressed that relations (18) are not additional boundary conditions for the surface
pressure, for they stem from the need to satisfy the impermeability of the boundaries of the
domain of interest [7,8]. :

Equation (16) together with the boundary conditions (18) form an elliptic partial differential
problem, the solution of which is unique—up to an additive constant, which has actually no
practical importance. The unicity of the surface pressure implies that a simple “blending” as-
similation technique cannot work. This is readily seen. If Pyl represents the surface pressure
computed by the model as described above, and if p;‘,jl is the surface pressure derived from

altimeter data according to (8), one may re-define p*+!—in agreement with (1)—as
Pt =aplll + (1- o)l (19)

It is then tempting to introduce the above value of the surface pressure into momentum equa-
tion (13) so as to update the transport. But, doing so, one would obtain a field of Un+1 having
nonzero divergence, since it is only when p?t! = ptl ie, for @ = 0, thatV - U™+ = (.

Since we considered it inappropriate to relax the continuity equation (12}, it is only by relaxing
the momentum equation (13) itself that a simple procedure for using the “blended” surface
pressure (19) may be set up. Such a method is described below.

4. A VARIATIONAL METHOD

Even if the formulation of the barotropic momentum equation (10) is deemed satisfactory (i-e.,
if the parameterizations are well suited to the low under study), its discretized version (13), or
equivalently (15), encompasses several errors. There are errors stemming from the space and
time discretization. In addition, it must be realized that none of the model variable at instant
nAt, U™, p™, etc., is exact. Thus, to find the in situ value of UnH! with the help of (15), a term
corresponding to all these errors should be added to (13). As a result, the exact field of Un+!
would be given by

(1+w?)urt! = -—% (1 —we,x) VPt + (1 — we,x)F™ +r, (20)

where r represents the error affecting the right-hand member of (15). There is no way to ac-
curately determine r, except in very limited areas of space-time where in situ measurements of
Ut are available.

We are, however, not at a dead end. Instead, we adopt the following pragmatic approach.
We suggest taking advantage of the fact that perturbations to (15) must be taken into account
in order to improve the accuracy of the predicted field of transport. Accordingly, in (20), we
consider that p}*! is actually the “blended” pressure (19), in the hope that the pressure term,
and ultimately the modelled transport, be more accurate—than it would be by using p?}! alone.
This way, with r = 0, U™ would have nonzero divergence, as already shown. We then suggest
finding the smallest possible perturbation r ensuring that V- U™*! = (0. With such a practice,
r will not be equal to the error affecting the right-hand member of (15). However, since it is
generally impossible to evaluate this error, a reasonable option may be to call on the smallest
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possible perturbation to (15). To do so, we must define an appropriate measure of r over the
computational domain §2. It is suggested seeking the minimum of the following functional

2
1=/ a'T';,Td“ (21)
Q

under the constraint that V - Un+! = 0. To make sure that U™*! is indeed divergenceless, it is
convenient to define it with the help of a streamfunction P, i.e.,
U™t =e, x VY. (22)
Let U* be defined as
_ —(hAt)/ (po) (1 — we, x)Vpit! + (1 — we, x)F™

BE 1+ w? (23)
Combining (20)—(23), one has
I'= / L6l U“l2 dQ = f|V x Pe, + U*|* dQ. (24)
) Q

The minimum of J over % thus corresponds to the minimum of a global, quadratic measure of r.
Another interpretation is however possible. Indeed, U* may be regarded as the transport one
would obtain by using the “blended” pressure and without considering any perturbation to (15),
i.e., by setting r = 0. The transport U™*! achieving the minimum of J is thus the divergenceless

transport that is closest to U*.
Expressing that the first order variation of J must be zero, we obtain the following Euler-

Lagrange equation _

Vip=e, - (VxU*) inf, (25)
It is required that the water flux across the boundaries be zero. Accordingly, the streamfunction
is ascribed to constant values 4* on the boundaries, i.e.,

P = ¥, onTH0<i< ), (26)

where the constants ¥* are yet to be determined. Equation (25) is of elliptic nature, and thus
only allows one boundary condition on I'*. As a result, it is no longer possible to use no-slip

boundary conditions as is often done in B-grid ocean models.
It is easily shown that e, - (V x U™*+?) = V?4. Therefore, (25) simply states that U gmd

U* have the same curl.
Since adding a constant to the streamfunction 3 has no dynamical effect, one may set

¥ =0, (27)
without any loss of generality.

5. DISCUSSION

If there is no island in the domain of interest (I = 0), it is sufficient to solve (25) subject to

the boundary condition (27).

If there is at least one island (I > 1), there are I constants to be determined in such a way
that J be minimum. A brute force treatment of this minimum problem is likely to require an
iterative method in which the Poisson equation (25) will have to be solved several times. It is

however possible to avoid having recourse to an iterative technique.
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We write 9 as (see [9])

I
Y(x) = ¢(x) + Y da(x)¥, (28)
i=1
where ¢ is the solution to the following elliptic problem
V¥ =e,-(VxU*, inQ, (29)
¢=0, on I*(0<i< ), (30)

and where the functions ¢; verify, for 1 <i <1,

V3¢ =0, in Q, (31)
¢i =6, onTFO<k<I), (32)

with é;x = 1 if i = k, and 8;x = 0, otherwise. It is readily understood that definition (28) together
with the problems (29)—(30) and (31)—(32) lead to a value of the streamfunction that is equal to

that ensuing from the original problems (25)-(26).
Introducing (28) into (24), expressing that J must be minimum by requiring that

aJ ,
B_WZO’ 1<i<1], (33)

one obtains an algebraic system of I linear equations

I
) [[(V X drez) - (V x die,) dﬂJ U
k=1 Q
=-—f (V x e, +U") - (V x ¢;e,) df, 1<i<I. (34)
Q

Since the functions ¢; and the coefficients of 1* in the left-hand side of system (34) are indepen-
dent of U*, they may be calculated once and for all. As a consequence, at each time step, it is
necessary to solve only one Poisson equation—for determining (.

In its present state of elaboration, the noniterative method may present a serious drawback.
It is necessary to store I two-dimensional arrays containing the values of ¢i at all nodes of the
numerical grid, which may demand a prohibitively large amount of memory in a fine resolution
World Ocean model in which there can be hundreds, or even thousands, of islands—i.e., I may
be of order 10% or 10®. Fortunately, the right-hand member of (34) may be transformed into an
expression independent of ¢; (see [9]).

Upon setting
G =V xC(e, +U*, (35)

one may re-write the right-hand side of (34) as
—f (V x Ces +U*) - (V x die,) d = / [V (G X ¢ie) + dies - (Vx Q)] d2. (36)
Q 143

Equation (29) implies that V x G = 0. Thus, with the help of Gauss’ theorem, (36) simplifies to

I
_f (Vx (e, +U*) - (Vx die,) d2 = / n* . (G x ¢;e,) dT'*. (37)

0 k=1 f

MCM 20:1-G
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Since, by definition, ¢; = é;x on T*, one finally obtains

#](VxCez+U*)-(Vx¢iez) dﬂz/ui-(Gxez)dFi. (38)
Q ri

Hence, the system may now be cast into a form unlikely to cause storage problems, i.e.,

I
S| [ (Vxbie (7 xdies) | v = [ 219 x ces + U e ar (30

k=1 | o ré

It is now attempted to assess to what extent the transport U™*! ensuing from our assimi-
lation method is different from that the model unconstrained by data would predict, which we
denote UT;!.

For clarity, we write down UTF! and U* as

U™ = ah (1 — we, x) Vit + b(1 — we, x) F™, (40)
U* =gh(1 —we,;x)V [GP:-EI #(E — G)P?,"f;,l] +b(1 —we;x)F", (41)

with @ = —At/ [po (1 +w?)] and b =1/ (1 +w?), so that
U* =UM! + aah(l —we,x)V (p:jd'l —pltl). (42)
Since the curl of Un*! and that of U* are equal, relation (42) leads to

V x Urtl — v x U™ = aaVh x [(1 —we;x)V (P?,-gl _p?;ll)]

 ahov? (st — it e, (43)
which clearly shows that, in general, U™! is different from U™, which is the least to be
expected from the present assimilation method! It is thus through the interaction of the depth
gradient and the pressure gradient and through the implicit treatment of the Coriolis acceleration
that the “blending” of the model and surface pressure induces modifications into the curl of the
transport. .

If the right-hand side of (40) is zero at every location in 2—which is the case when the bottom
is flat and when w = 0, for example—then U™*! may still be different from UT;+!. Since p;"j;ll is
determined so that the divergence of U™ be zero, one may consider that U’,}.j'l derives from a

streamfunction, i.e.,
Ut = e, x Viim. (44)

With this definition, the equality of the curls of U™t! and UZ+! implies
Vi = V. (45)

If there is no island, the boundary condition applying to ¥ and %, are equivalent, i.e., ¥ =
¥m = 0 on T'0. Therefore, ¥ = ¥ in £, so that L Jieing— 6 s )

If there is at least one island, there is no reason to believe that ¥ and v, are equal on
(1 < i < I), so that 4 and ¥, are most probably different in Q. In this case, U"*! - Ut isa
divergenceless and irrotational vector field having zero normal component on the boundaries T

The present discussion would not be complete without a few words on the fundamental differ-
ence in the nature of the free surface and the rigid lid problems.
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The barotropic mode equations of the free surface problem, namely (5) and (10), are hyper-
bolic if the horizontal friction terms are neglected. (Since the latter terms are small and since
the boundary layers associated with them are usually disregarded in ocean models, neglecting
them is a reasonable assumption in the framework of a conceptual discussion.) According to the
hyperbolic nature of the problem, the ocean surface elevation and the two components of the
transport may be initialized independently. On the other hand, it is clear that an assimilation
method using the “blending” formula (1) may be interpreted as a re-initialization of 7 in the
course of the solution procedure of the model equations. Such a re-initialization is permitted by
the mathematical nature of the problem, and is thus unlikely to cause serious difficulties. This
does not mean that we believe that this kind of method should be preferred. It is only asserted
that this technique does not contradict any fundamental mathematical principle.

By contrast, (6) and (10), which govern the evolution of the rigid lid barotropic mode, are
elliptic, so that the influence of perturbations of every variable instantaneously affects the other
variables and is immediately felt in the whole domain of interest. This may prevent any in-
dependent initialization—or re-initialization—of the variables of the problem. Indeed, for the
problem under study, only one variable, the streamfunction from which U may be derived, may
be freely initialized. As we did not consider that data pertaining to 1) were available, it is thus
not surprising that the method proposed involves the simultaneous modification of all variables
of the problem. It is also little wonder that an elliptic partial differential problem forms the core
of our assimilation technique.

6. CONCLUSION

It must be stressed again that the present work, because of its theoretical and speculative
nature, cannot give any indication as to the usefulness of the assimilation method proposed.
For example, one may argue that the difference between U™*! and U™'! may be so large that
the deep ocean circulation will be severely perturbed, eventually leading to the generation of a
significant amount of spurious gravity waves [10].

It is clear that only numerical experiments will reveal the actual potential of our approach.

One advantage may already be highlighted: our method is rather simple, so that it is likely
to be much less computer expensive than more sophisticated techniques—which are, however,
probably more efficient. Nevertheless, devoting many computer resources to assimilation in the
barotropic mode is unlikely to be the best option, just because it is believed that more benefit may
be expected from assimilation pertaining to other components of the model. Therefore, a simple
and economical method may be sufficient for assimilating altimeter data into the barotropic mode
of a primitive equations, rigid lid, global ocean model.

REFERENCES

1. G.L. Mellor and T. Ezer, A Gulf Stream model and an altimetry assimilation scheme, J. Geophys. Res. 96,
8779-8795 (1991).

2. K. Haines, Dynamics and data assimilation in oceanography, In Data Assimilation: A New Tool for Mod-
elling the Ocean in a Global Change Perspective, Proceedings of a NATO Advanced Research Workshop,
Litge, May 5-8, 1993, (Edited by J.C.J. Nihoul) (submitted).

3. N. Pinardi, A. Rosati and R.C. Pacanowski, The sea surface pressure formulation of rigid lid models.
Implications for altimetric data assimilation studies, J. Mar. Syst. (submitted).

4. K. Bryan, A numerical method for the study of the circulation of the World Ocean, J. Comput. Phys. 4,
347-376 (1969). ’

5. A.J. Semtner, Jr., Finite-difference formulation of a World Ocean Model, In Advanced Physical Oceano-
graphic Numerical Modelling, (Edited by J.J. O'Brien), pp. 187-202, D. Reidel, Dordrecht, (1986).

6.. JK. Dukowicz, R.D. Smith and R.C. Malone, A reformulation and implementation of the Bryan-Cox-
Semtner ocean model on the Connection Machine, J. Atmos. Ocean. Technol. 10, 195-208 (1993).

7. P.M. Gresho and R.L. Sani, On pressure boundary conditions for the incompressible Navier-Stokes equations,
Int. J. Numer. Methods. Fluids 7, 1111-1145 (1987).



94 E. DELEERSNIJDER

8. E. Deleersnijder and J.-M. Campin, Du calcul de la position de la surface de l'océan dans un Modéle de
Circulation Générale, Contribution No. 70, Institut d’Astronomie et de Géophysique G. Lemaitre, Université
Catholique de Louvain, Louvain-la-Neuve, (1993).

9. J.M. Beckers, (personal communication).
10. K. Haines and N. Pinardi, (personal communication).



