
Texel, june 2019
NIOZ Royal Netherlands Ins�tute for Sea Research

Popula�on gene�c connec�vity of 
Limecola balthica between two 
loca�ons in the Western Scheldt
Pieternella C. Lu�khuizen and Tim Schellekens



1    Smart sediment population genetics                          Luttikhuizen & Schellekens 

 

 

Population genetic connectivity of 

Limecola balthica between two 

locations in the Western Scheldt 
 

Pieternella C. Luttikhuizen1 and Tim Schellekens2 

 
1Department of Coastal Systems, NIOZ Royal Netherlands Institute for Sea Research, and Utrecht 

University, Den Burg, The Netherlands; 2eCOAST Marine Research, Yerseke, the Netherlands 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Texel, June 2019 

NIOZ Koninklijk Nederlands Instituut voor Zeeonderzoek 



2    Smart sediment population genetics                          Luttikhuizen & Schellekens 

  



3    Smart sediment population genetics                          Luttikhuizen & Schellekens 

Contents	
Summary ............................................................................................................................ 4 

1.   Introduction ................................................................................................................... 5 

2.   Materials and methods .................................................................................................... 6 

3.   Results .......................................................................................................................... 7 

4.   Discussion ..................................................................................................................... 8 

5.   Acknowledgements ......................................................................................................... 9 

6.   Literature .................................................................................................................... 10 

7.   Tables ......................................................................................................................... 11 

8.   Figures ........................................................................................................................ 16 

9.   Supplement A: raw data ................................................................................................ 20 

 



4    Smart sediment population genetics                          Luttikhuizen & Schellekens 

Summary 
 

Two locations in the Western Scheldt were sampled for four age classes of the burrowing bivalve 

Limecola balthica (Linnaeus, 1758). The aim of the research was to determine whether sand 

nourishments and subsequent bivalve mortality may be expected to lead to extirpation or 

replenishment from nearby sources. The study locations were rich subtidal bivalve beds near 'De 

Kapellenbank' and 'De Suikerplaat'. The samples were examined for five genetic loci (microsatellites) 

and for the morphological character shell globosity. No genetic structure was observed, neither 

between the locations, nor among age groups or in some other, not previously defined way. Shell 

shape was found to show small statistical differences between locations. However, the distribution of 

the shape data was not uniform and therefore the biological relevance of these small potential 

differences cannot be stated. We conclude that genetic connectivity between the two locations is 

strong. This implies that, at evolutionary time scales, sufficient gene flow between the locations has 

occurred to maintain genetic and morphological similarity. The two locations may be connected by 

recruitment directly or indirectly. It is, however, possible that on ecological time scales gene flow is 

reduced or even absent ('Waples effect'). On the basis of these data there is no reason to assume 

that one location will not be recolonised from the other in case the population would be removed, 

e.g. because of dredging activities. The data cannot predict the time scale of recolonisation, which 

may theoretically be anything from years to millennia. 
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1.   Introduction 
 

The shipping lanes in the Western Scheldt are regularly dredged to ensure passage to the port of 

Antwerp. Dredged sediment in turn is used to create ecologically valuable sublitoral habitat in the 

Western Scheldt. To validate the assumption ecologically valuable habitat is indeed created, a 

biological monitoring campaign was designed to measure the effect of sediment nourishments on 

present and developing fauna.  

 

During the first monitoring event (March 2017) on a sublitoral nourishment site ('de Suikerplaat'), a 

previously unrecognised shellfish bed of high densities of Limecola balthica (Linnaeus, 1758) 

(formerly Macoma balthica) on and in clay sediment was discovered. Because of this discovery the 

sediment nourishment on this site was relocated to avoid suffocation of this shellfish bed. During 

subsequent samplings, research on the contours and vitality of this shellfish bed was performed 

(Figure 1). Because of both this research and investigation of historic data, it was established that 

this bed is not temporary, but has probably been there since at least 2012; recruits in every year 

class are found and the bed is able to withstand winter storms.  

 

The shellfish bed is habitat for many more species than locations outside the shellfish bed. It is 

therefore already ecologically valuable habitat in itself. The question arises whether nourishments 

from nearby  sediment might do it harm. Harm could be caused by direct suffocation (which was 

avoided this time by relocation of the nourishment) or indirectly by deteriorating living conditions 

(reduced light and food, higher concentrations of indigestible dissolved particulate matter, etc.). If 

nourishment would indeed harm the shellfish bed, it could be that the harm is indefinite and 

irreversible, or the harm is temporary or marginal and the bed is able to replenish itself with recruits. 

If the shellfish bed were to be completely suffocated, the recolonization of the site would completely 

depend on recruitment from other shellfish beds. If the bed were to be covered locally, but not to the 

full extent, it could be able to self-recruit or use another shellfish bed to recruit.  

 

During a monitoring event in 2016 another hotspot for L. balthica was discovered in the Western 

Scheldt on 'de Kapellenbank'. Although not as densely populated, this other shellfish bed could 

potentially replenish the bed on ‘de Suikerplaat’ after harm through coverage by nourishments. 

Whether replenishments from the other bed happened in the past, can be tested using genetic 

analysis.  

 

This text reports on the genetic analysis of and genetic relationships between the two shellfish bed 

locations. In addition, shell shape is analysed because, as is known from the Wadden Sea and the 

adjacent North Sea coastal zone, the globosity of shells may differ between habitats and is likely a 

local adaptation in those areas (Luttikhuizen et al. 2003). From these analyses we formulate a policy 

advice on the potential of (partial) nourishment of these shellfish beds. 
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2.   Materials and methods 
 

2.1. Samples 

 

Samples of Limecola balthica (Linnaeus, 1758) were taken from two subtidal locations, 'De 

Kapellenbank' (-11 m NAP) and 'De Suikerplaat' (-5 m NAP), in the Western Scheldt in March and 

October 2018 (Table 1). Age was determined by counting the number of growth rings on the shell. 

As the growing season of L. balthica is in spring and summer, samples taken in March are expected 

to have one ring fewer than those taken in October, given the same year of birth. Frequencies of 

years of birth were estimated for all samples and years of birth by taking random samples from size 

classes (Table 1); 2012-2015 were selected for genetic analysis. Per year per location, 20 individuals 

were analyzed except for Kapellenbank 2015, for which only 18 shells were available. Shell length, 

height and width were measured as in Luttikhuizen et al. (2003) to the nearest 0.01 mm with 

calipers (Supplement A). 

 

2.2 Molecular procedures 

 

From a piece of mantle tissue approximately 5 mm3 in size, total genomic DNA was extracted using a 

CTAB (cetyltrimethylammonium bromide) protocol modified from (Hoarau et al. 2002). Before DNA 

extraction, as much ethanol as possible was removed from the sample by dabbing on a clean piece of 

paper tissue. The sample was then digested overnight in a 2.0 mL microcentrifuge tube at 60°C in 

800 μL of CTAB buffer (100mM Tris HCl, 1.42 M NaCl, 20 mM EDTA, 2% CTAB) plus 20 μL proteinase 

K (20 mg/mL) and 2 μL of β-mercaptoethanol. Then 400 μL of chlorophorm/isoamyl alcohol (24:1) 

was added and mixed using a Bead Ruptor (Omni International) at 0.8 m/s for 10 min. After 

centrifuging at maximum speed for 10 min, 500 μL of the aqueous supernatent was transferred to a 

new 2.0 mL microcentrifuge tube and 400 μL of chlorophorm/isoamyl alcohol (24:1) was added. This 

was mixed using the Bead Ruptor at 0.8 m/s for 10 min and then centrifuged at maximum speed for 

10 min. 400 μL of the aqueous supernatant was transferred to a new 1.5 mL Eppendorf tube and an 

equal volume of ice-cold isopropanol was added. This was mixed using the Bead Ruptor at 0.8 m/s 

for 5 min, incubated at -20°C for 45 min and centrifuged at maximum speed for 20 min at 4°C. The 

isoporanol was then poured off and the pellet washed with 80% cold ethanol. After centrifuging at 

maximum speed for 10 min at 4°C, the ethanol was poured off and the pellet washed with 500 μL of 

70% cold ethanol. After centrifuging at maximum speed for 10 min at 4°C, the ethanol was poured 

off and the DNA pellet air-dried overnight at room temperature. The pellet was resuspended in 50 μL 

10mM Tris buffer by letting it stand for 2 h at room temperature. The concentration and quality of 

the DNA extracts were measured on a Nanodrop (Thermo Fisher Scientific). DNA extracts were 

stored at 2-8°C for a few weeks and at -20°C long-term. 

 

Five microsatellite loci were amplified from the DNA extracts: mbsat04, mbsat10, mbsat19, mbsat64 

and mbsat84 (Becquet et al. 2009; Table 2). Each polymerase chain reaction (PCR) consisted of 2 μL 

10X PCR buffer, 2 μM of each dNTP (2.5 μM), 0.4 μL bovine serum albumin (BSA), 0.2 μL forward 

primer (50 μM), 0.2 μL reverse primer (50 μM), 0.1 μL Biotherm+ DNA polymerase, 0.4 μL 

fluorescently labelled tail (50 μM, 5' end dye FAM or HEX with tail 5'-CACGACGTTGTAAAACGAC-3') 

and 1 μL 1:10 diluted DNA template in a final volume of 20 μL. PCR products were visualised on 2% 

TAE agarose gels. PCR reactions that failed to produce a visible band on the gel were repeated once 
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(N = 218). 1 μL of each succesful PCR products was mixed with 12 μL HiDi formamide and 0.4 μL 

Red 500 DNA size standard (Nimagen) and loaded onto 96-well sequencing plates. The plates were 

run on a capillary DNA sequencer (Applied Biosystems 3730 Genetic Analyzer) at Baseclear B.V. 

(Leiden, the Netherlands) for fragment analysis. Fragment lengths were scored from the 

electropherograms using the software Peak Scanner v1.0 (Applied Biosystems). Raw data are listed 

in Supplement A. 

 

2.3 Data analysis 

 

Frequency distributions of allele sizes were estimated and visualized using custom Python 3.7 code 

(Luttikhuizen 2019). Overall microsatellite variation was visualised in a principal coordinates analysis 

plot using GenAlEx 6.5 (Peakall & Smouse 2012). Descriptive genetic statistics were estimated in 

software package Arlequin version 3.5 (Excoffier & Lischer 2010). Analyses of MOlecular VAriance 

(AMOVA) were carried out, also in Arlequin, to test for differences among groups. This was done for 

one level of two groups (Kapellenbank versus Suikerplaat), one level of eight groups (four age 

groups for both locations) and in a two-level AMOVA (two locations with each four age groups 

nested). 

 

To explore the possibility of group structure without a priori group definitions, model-based 

clustering was performed using the software Structure version 2.3.4 (Pritchard et al. 2000). 

Simulations were run with a burnin time of 10,000 and 100,000 MCMC replications for 1 to 8 groups 

(K). 

 

Globosity of shells was compared between samples by taking the natural log of maximum shell 

length ('lnlen') and of shell width ('lnwid') and fitting a linear model to the lnwid data with origin as a 

categorical variable and lnlen as a covariate using the Python package Statsmodels version 0.9.0 

(Statsmodels Development Team 2019). Globosity is defined as shell width relative to shell length 

(Luttikhuizen et al. 2003). 

 

 

3.   Results 
 

During DNA extraction it was in many samples hard to get rid of all mucopolysaccharides present in 

the tissue, which is a well known issue in several marine organisms, including molluscs (Maeda et al. 

2013, Jaksch et al. 2016). This led to difficulties with PCR amplification in some cases, also after 

repeated DNA extraction with a different piece of tissue. This problem was most prominant in 

Suikerplaat samples from 2013 and 2014. From the total of 158 bivalves selected for analysis, 144 

were successfully genotyped for at least one microsatellite locus. The bivalves that failed to be 

sequenced are distributed randomly over all age groups and both locations, and therefore these 

missing data are not expected to influence the results. 

 

3.1 Genetic variation 

 

Allelic variation for the five microsatellite loci ranged from 7 alleles for mbsat10 to 22 alleles for 

mbsat19 (Table 2, Figure 2). Variability and allelic size ranges observed were similar to what was 
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originally reported by Becquet et al. (2009). Significant deviations from Hardy-Weinberg equilibrium 

in the form of shortages of heterozygotes were observed within both locations for all five loci (Table 

2). The same was observed within year classes for both locations, with the exception of 2012, 2013 

and 2014 at Kapellenbank for locus mbsat64, which displayed a heterozygote deficiency which was 

non-significant (Table 3). 

 

3.2 Analysis of genetic structure 

 

The principal coordinates analysis (PCoA) plot shows that the genetic variation found among the 

eight samples does not show a clear subgrouping, neither among the samples, nor between the 

locations, nor do the individuals form other clear groups (Figure 3). Similarly, the analyses of 

molecular variance (AMOVA) all show small and non-significant values for FST, FCT or FSC, the 

statistics for population structure (Table 4). No population subdivision is detected, when two 

locations are compared with age classes within locations are lumped (Table 4A: FST = 0.00214, n.s.), 

when the eight samples are compared among eachother (Table 4B: FST = -0.0011, n.s.), nor when 

two locations are compared with four nested age classes (Table 4C: between-group FCT = 0.00278, 

n.s.; among samples within groups FSC = -0.0027, n.s.)The large and significant inbreeding 

coefficients point once more to strong overall heterozygote deficits. 

 

The simulations run with Structure suggest that no group structure is present in the data, as the 

posterior probability of the data given the model and value of K (number of groups assumed) is 

highest when one group is assumed (Table 5). 

 

3.3 Analysis of shell shape 

 

Statistical analysis of globosity as a measure of shell shape shows that log shell width is strongly 

correlated with log shell length (Table 6, Figure 4), as expected. Furthermore, marginally significant 

effects can be seen of origin (additive effect, Suikerplaat versus Kapellenbank, P = 0.048) and of the 

interaction between log shell length and origin (interaction effect, P = 0.045) (Table 6). It can, 

however, be seen (Figure 4) that the size distributions of shells in the samples are not equal; shells 

sampled at Kapellenbank were on average smaller. In addition, the relationship between log length 

and log width does not appear to be fully linear (Figure 4). The statistical differences estimated 

would mean that shells are more globose at Suikerplaat when they are smaller, while they would 

become more globose at Kapellenbank as they grow larger. Because of the different size distributions 

of the samples, the biological significance of this effect cannot be inferred without more data, 

especially because the statistical significance is only marginal. 

 

 

4.   Discussion 
 

The data presented here suggest that there is no population subdivision present at the two locations 

studied in the Western Scheldt: Kapellenbank and Suikerplaat. There is no genetic difference 

between the locations nor among age groups. In addition, there is no population structure in a 

manner that is not related to either age or location. Also, the small statistical difference in shell 
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shape between the two locations is small and more likely to be the result of sampling effects than to 

have biological significance.  

 

From the absence of genetic and clear morphological differences we can infer that genetic 

connectivity between the two locations is strong. This means that, at the scale of evolutionary time 

scales, sufficient gene flow between the locations (directly or indirectly) has occurred to maintain 

genetic and morphological similarity. The two locations may be directly connected in the sense that 

recruits originate from parents at the other location, or indirectly if recruitment of both locations is 

from a common source or via stepping-stones. While it is possible that on ecological time scales gene 

flow is reduced or even absent (Waples 1998), it is nevertheless likely that gene flow between these 

locations is ongoing. This means that, with regard to population genetics, there is no reason to 

assume that one location will not be recolonised from the other in case the population would be 

removed, e.g. because of dredging activities. The data can, however, not predict the time scale of 

recolonisation, which may theoretically be anything from years to millennia. 

 

The variability in the microsatellite loci is high and displays a strong shortage of heterozygotes 

(Tables 2 and 3). These phenomena are both typical for marine molluscs and may be related to the 

presence of null alleles (Panova et al. 2008), which would not change the conclusion drawn of no 

population structure. Alternatively, population mixing might underlie the heterozygote deficit; if two 

or more non-panmictic populations are mixed into a sample, more heterozygotes would be seen than 

under random mating (the 'Wahlund effect'). A Wahlund effect is not likely in this case, for two 

reasons. First, the heterozygote deficit is present independent of the AMOVA design. If, for example, 

different age classes would constitute different populations, then FIS as a measure of heterozygote 

deficit would differ between AMOVA designs, which it does not (Table 4). Second, if population 

structure were present in the data in some other, unknown, way, this would be apparent from the 

Structure analysis. The Structure analysis, however, indicates that the most likely number of 

populations present given the data is a single one (Table 5). 

 

For the Wadden Sea and nearby North Sea region, it has been shown that L. balthica shells are more 

globose in the Wadden Sea (both subtidal and intertidal) than in the nearshore North Sea locations 

(only subtidal) where the species is also found (Luttikhuizen et al. 2003). The shells differ in 

globosity: the width of the shell relative to its length. North Sea shells are less globose than Wadden 

Sea shells. This difference has a genetic basis as demonstrated with a common garden experiment. 

The data presented here for two locations in the Western Scheldt, which differ in depth by 7 m but 

are both subtidal, do not show a clear globosity difference. The overall shell shape similarity thus 

adds to the inference from the microsatellite data that it seems likely that gene flow between the two 

locations is ongoing. 
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7.   Tables 
 

Table 1 – Sampling scheme of Limecola balthica in the Western Scheldt. In bold are the samples 

used for genetic analyses. Age class = number of growing seasons based on number of growth rings 

seen on the shell; Nest = estimated total number in sample; NDNA = number user for DNA extractions; 

Ngen = number genotyped for at least one locus; year = inferred year of birth. 

Age 

class 

Suikerplaat 

March 21 

2018 

 Kapellenbank

March 21 

2018

  Suikerplaat 

October 10 

2018 

  

 Nest year Nest NDNA(Ngen) year Nest NDNA(Ngen) year 

1 6 2017 0   0   

2 10 2016 5  2016 18  2017 

3 45 2015 16 18(17) 2015 29  2016 

4 93 2014 195 20(20) 2014 75 20(20) 2015

5 74 2013 284 20(19) 2013 737 20(15) 2014

6 0  96 20(20) 2012 275 20(15) 2013

7 0  0   32 20(18) 2012
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Table 2 – Microsatellite loci analysed for Limecola balthica. Each forward primer was preceeded at the 5' end by tail CACGACGTTGTAAAACGAC for 

fluorescent dye attachment. F = forward primer, R = reverse primer, Nall = total number of alleles observed; Ho = observed heterozygosity; He = 

expected heterozygosity; FIS = inbreeding coefficient; ** p < 0.00001; * p < 0.05.  

    Kapellenbank Suikerplaat 

 Primer sequences (5' to 3') Allelic size range (bp) Nall Ho He FIS p Ho He FIS p 

mbsat04 F: CTCATATCTTCACCCTAGA 

R: CCATTTCCTGTCATTAGCA 

410-452 21 0.41 0.91 0.55 ** 0.31 0.9 0.66 ** 

mbsat10 F: GGGTGTTGATGGGATAATA 

R: TGGGGGCTACGAATAAGT 

401-417 7 0.18 0.68 0.74 ** 0.13 0.61 0.79 ** 

mbsat19 F: TCTTCTTTATGTAGCGTGTT 

R: CCAGGGCGAGTTTTTCTT 

347-390 22 0.57 0.91 0.37 ** 0.5 0.91 0.45 ** 

mbsat64 F: ATAATTTGTGGGGTTGAGGT

R: GTTTCGAGTTTCGCAGTCA 

183-216 9 0.33 0.43 0.23 * 0.22 0.45 0.51 ** 

mbsat84 F: TATATCCCTTGATCGGTTT 

R: ACGTATGTTTTTGTCCATGT 

267-289 8 0.16 0.69 0.77 ** 0.1 0.68 0.85 ** 
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Table 3 - Genetic variation per sample for Limecola balthica from two locations in the Western Scheldt. 

Nall = number of alleles observed; Ho = observed heterozygosity; He = expected heterozygosity; FIS = 

inbreeding coefficient; probability that HO < HE ** P < 0.00001; * P < 0.05. 

Location Year of birth Locus Nall HO HE FIS P 

Kapellenbank 2012 mbsat04 11 0.40 0.90 0.56 ** 
  mbsat10 6 0.050 0.76 0.93 ** 
  mbsat19 15 0.40 0.92 0.57 ** 
  mbsat64 5 0.25 0.24 -0.042 n.s.
  mbsat84 4 0.050 0.69 0.93 ** 
 2013 mbsat04 11 0.37 0.85 0.56 ** 
  mbsat10 4 0.053 0.68 0.92 ** 
  mbsat19 11 0.58 0.87 0.33 ** 
  mbsat64 4 0.42 0.44 0.045 n.s.
  mbsat84 7 0.32 0.75 0.57 ** 
 2014 mbsat04 14 0.40 0.91 0.56 ** 
  mbsat10 6 0.30 0.65 0.54 ** 
  mbsat19 15 0.60 0.91 0.34 ** 
  mbsat64 8 0.45 0.51 0.12 n.s.
  mbsat84 3 0.15 0.68 0.78 ** 
 2015 mbsat04 11 0.47 0.91 0.48 ** 
  mbsat10 5 0.35 0.61 0.43 * 
  mbsat19 14 0.71 0.94 0.24 * 
  mbsat64 5 0.18 0.50 0.64 ** 
  mbsat84 3 0.12 0.68 0.82 ** 
Suikerplaat 2012 mbsat04 11 0.22 0.87 0.75 ** 
  mbsat10 4 0.17 0.66 0.74 ** 
  mbsat19 15 0.44 0.91 0.52 ** 
  mbsat64 4 0.22 0.46 0.52 * 
  mbsat84 5 0.11 0.72 0.85 ** 
 2013 mbsat04 11 0.33 0.89 0.63 ** 
  mbsat10 4 0.067 0.64 0.90 ** 
  mbsat19 10 0.40 0.86 0.53 ** 
  mbsat64 5 0.20 0.40 0.50 * 
  mbsat84 3 0.067 0.51 0.87 ** 
 2014 mbsat04 9 0.40 0.85 0.53 ** 
  mbsat10 4 0.13 0.58 0.78 ** 
  mbsat19 12 0.40 0.91 0.56 ** 
  mbsat64 5 0.27 0.45 0.40 * 
  mbsat84 4 0.13 0.68 0.81 ** 
 2015 mbsat04 12 0.30 0.91 0.67 ** 
  mbsat10 5 0.15 0.59 0.75 ** 
  mbsat19 15 0.70 0.94 0.26 ** 
  mbsat64 6 0.20 0.49 0.59 ** 
  mbsat84 3 0.10 0.60 0.83 ** 
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Table 4 – Analyses of molecular variance for five microsatellite loci in Limecola balthica from two 

locations in the Western Scheldt in four year classes. Population subdivision as estimated with FST is not 

significant in any of the models. 

A: One-level AMOVA, Kapellenbank versus Suikerplaat 

Source of 

variation 

df Sum of 

squares 

Variance 

components 

Percentage of 

variation 

Fixation index 

Among samples 1 3.42 0.00386 0.21 FST = 0.00214 

(n.s.) 

Among individuals 

within samples 

142 407.35 1.068 59.19 FIS = 0.593 

(p < 0.05) 

Within individuals 144 105.5 0.7326 40.6  

Total 287 516.27 1.805   

B: One-level AMOVA, four year classes at two locations 

Source of 

variation 

df Sum of 

squares 

Variance 

components 

Percentage of 

variation 

 

Among samples 7 19.64 -0.00198 -0.11 FST = -0.0011 

(n.s.) 

Among individuals 

within samples 

136 391.14 1.07169 59.46 FIS = 0.594 

(p < 0.05) 

Within individuals 144 105.5 0.73264 40.65  

Total 287 516.27 1.80234   

C: Two-level AMOVA, Kapellenbank versus Suikerplaat with four year classes 

Source of 

variation 

df Sum of 

squares 

Variance 

components 

Percentage of 

variation 

 

Among groups 1 3.423 0.00504 0.28 FCT = 0.00278 

(n.s.) 

Among samples 

within groups 

6 16.21 -0.00486 -0.27 FSC = -0.0027 

(n.s.) 

Among individuals 

within samples 

136 391.14 1.072 59.39 FIS = 0.594 

(p < 0.05) 

Within individuals 144 105.5 0.733 40.6  

Total 287 516.27 1.805   
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Table 5 - Posterior probabilities (ln Pr(data|K)) of number of groups K according to simulations run with 

Structure version 2.3.4. 

K ln Pr(data|K) 

1 -1900.0 

2 -1962.6 

3 -1989.3 

4 -1951.2 

5 -1985.5 

6 -1975.4 

7 -1956.3 

8 -2063.1 

 

 

Table 6 – Linear model of shell shape of Limecola balthica on Suikerplaat versus Kapellenbank as 

estimated using statsmodels version 0.9.0 in Python version 3. Dependent variable: lnwid (natural log of 

shell width), r2 = 0.769; N = 158, dfmodel = 3, dfresiduals = 154. 

 

 Coefficient Standard error P 

Intercept -1.23 0.195 0.000

Origin 0.59 0.296 0.048

Lnlen 1.14 0.067 0.000

Lnlen * Origin -0.20 0.101 0.045
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8.   Figures 
 

Figure 1 - Results of sampling on the 7th and 8th of February 2018 by Rijkswaterstaat on the map of 

water surrounding ‘de Suikerplaat’ (dark blue). A total of 29 boxcore samples were taken. Size of the 

green circle indicates the number of individuals found. 
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Figure 2 – Allelic variation for five microsatellite loci in Limecola balthica from two locations in the 

Western Scheldt. 
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Figure 3 - Principal Coordinates Analysis (PCoA) showing variability among eight samples of L. balthica in 

the Western Scheldt genotyped for five microsatellite loci. K3 - K6: four year classes from Kapellenbank; 

S3 - S6: four year classes from Suikerplaat. 
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Figure 4 – Plot of Limecola balthica shell shape at Suikerplaat (S) and Kapellenbank (K) with fitted linear 

regression lines per sample. 'Lnwid' = natural log of shell width in mm; 'lnlen' = natural log of maximum 

shell length in mm. 
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9.   Supplement A: raw data 
 

 

Raw data for the project are listed here; 'individual' is the code for the individual Limecola balthica bivalve, where 'K' stands for Kapellenbank and 'S' for 

Suikerplaat, the first digit following indicates the number of years since fertilization, and the last two digits consecutively number the individuals within samples; 

length, height and width (mm) of the shells were measured as in (Luttikhuizen et al. 2003); columns 5-14 give (PCR product) sizes for both alleles of each of five 

microsatellite loci. 

 

individual length height width mbsat04  mbsat10  mbsat19  mbsat64  mbsat84  

K301 13.79 10.51 5.08 434 448 407 411 363 370 197 197 269 269 

K302 14.36 11.5 5.68 418 418 411 411 359 359 195 195 0 0 

K303 15.41 11.59 6.27 #N/A #N/A #N/A #N/A 0 0 0 0 #N/A #N/A

K304 16.29 12.04 7.64 0 0 0 0 372 372 197 197 269 269 

K305 15.88 12.88 6.58 418 418 409 411 365 376 197 199 273 273 

K306 16.07 12.39 6.8 424 430 411 411 363 378 197 197 269 273 

K307 16.57 12.15 7.14 #N/A #N/A 411 411 374 374 197 197 269 269 

K308 15.89 12.21 6.45 424 440 411 411 #N/A #N/A 197 197 273 273 

K309 15.68 12.18 6.87 430 430 407 411 355 374 195 195 273 273 

K310 15.93 12.32 5.71 418 424 411 411 363 372 191 197 #N/A #N/A

K311 15.76 11.95 6.07 418 428 407 411 367 378 193 197 #N/A #N/A

K312 15.53 11.95 6.37 418 440 407 407 372 376 197 197 273 273 

K313 15.48 11.69 5.81 426 426 411 411 359 367 197 197 273 273 

K314 17.47 12.69 7.01 436 440 405 405 365 380 195 195 269 273 

K315 16.89 13.09 7.39 434 434 407 411 367 372 195 195 #N/A #N/A

K316 17.22 13.05 7.65 #N/A #N/A #N/A #N/A #N/A #N/A 197 197 #N/A #N/A

K317 16.82 12.78 7.64 422 436 411 411 361 376 197 197 273 273 

K318 16.56 12.98 5.86 428 428 407 411 353 370 197 197 269 269 
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K401 14.9 11.21 5.44 418 418 407 407 367 374 197 197 273 273 

K402 14.85 11.62 7.43 440 442 411 411 363 376 #N/A #N/A #N/A #N/A

K403 14.8 11.28 6.05 452 452 409 409 351 353 189 197 273 273 

K404 15.46 12.42 6.72 0 0 411 411 #N/A #N/A 195 197 #N/A #N/A

K405 15.32 11.69 6.12 424 424 411 411 #N/A #N/A 195 197 269 273 

K406 15.4 12.01 6.69 420 424 411 413 363 363 197 197 0 0 

K407 18.67 14.02 8.12 414 414 411 411 357 378 197 197 269 269 

K408 18.53 14.09 7.19 420 420 407 411 361 388 197 197 269 269 

K409 17.53 13.39 7.83 418 436 407 411 365 380 197 197 269 273 

K410 17.74 13.33 7.53 416 416 411 417 372 376 193 197 269 269 

K411 18 13.54 8.36 428 428 409 411 363 374 183 195 273 273 

K412 18.51 13.77 7.88 428 432 #N/A #N/A #N/A #N/A 197 197 #N/A #N/A

K413 19.29 14.12 7.84 428 428 #N/A #N/A 370 373 197 199 269 269 

K414 19.28 13.85 8.46 424 424 411 411 367 367 197 197 273 273 

K415 18.57 14.22 8.1 428 428 411 411 363 363 197 197 269 273 

K416 19.33 14.49 8.25 418 428 407 407 361 380 189 197 0 0 

K417 18.91 14.06 7.43 416 430 407 411 365 380 197 197 273 273 

K418 19.31 14.56 7.62 416 422 #N/A #N/A #N/A #N/A 197 197 0 0 

K419 20.6 14.93 8.06 420 452 411 411 357 376 197 203 #N/A #N/A

K420 20.75 15.49 8.12 418 418 411 411 363 363 195 197 273 273 

K501 14.87 11.33 6.25 426 428 #N/A #N/A 372 382 193 197 269 273 

K502 20.14 14.69 7.96 418 418 411 411 0 0 195 195 #N/A #N/A

K503 18.03 14.19 8.87 #N/A #N/A #N/A #N/A 0 0 0 0 #N/A #N/A

K504 16.49 12.85 8.16 #N/A #N/A #N/A #N/A 363 363 197 197 #N/A #N/A

K505 17.58 13.93 8.77 422 422 411 411 370 370 193 197 273 273 

K506 18.1 14.1 8.24 424 424 411 411 374 376 197 197 273 273 

K507 18.63 14.35 8.54 420 434 411 411 359 370 183 197 0 0 
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K508 17.92 13.36 8.09 420 436 #N/A #N/A 0 0 197 197 #N/A #N/A

K509 17.77 13.53 8.08 #N/A #N/A #N/A #N/A #N/A #N/A 193 197 #N/A #N/A

K510 18.5 13.83 8.68 426 434 407 407 374 376 193 197 269 273 

K511 19.74 14.84 8.33 426 434 409 411 363 363 193 197 267 271 

K512 17.62 13.49 8.89 426 426 411 411 370 374 193 197 275 287 

K513 19.73 14.16 8.82 #N/A #N/A 407 407 365 390 197 197 269 269 

K514 19.06 14.37 8.08 #N/A #N/A 407 407 364 370 197 197 #N/A #N/A

K515 18.53 13.94 8.69 418 430 407 407 367 374 197 197 269 269 

K516 20.36 14.54 7.91 434 434 411 411 363 365 197 197 269 269 

K517 20.66 14.82 8.38 434 434 411 411 365 374 197 197 273 273 

K518 19.17 14.45 8.52 #N/A #N/A 411 411 #N/A #N/A 197 197 #N/A #N/A

K519 19.18 13.9 8.55 418 432 407 407 363 382 183 197 269 273 

K520 19.33 14.47 8.59 #N/A #N/A #N/A #N/A #N/A #N/A 197 197 267 273 

K601 18.96 14.21 8.41 418 430 411 411 367 382 197 197 273 273 

K602 19.45 14.99 8.97 #N/A #N/A #N/A #N/A 0 0 197 197 #N/A #N/A

K603 18.46 14.03 8.88 430 430 #N/A #N/A #N/A #N/A 191 197 #N/A #N/A

K604 19.47 15.01 8.91 424 442 409 409 365 365 183 197 269 269 

K605 19.31 15.13 8.93 428 428 #N/A #N/A 388 388 197 197 #N/A #N/A

K606 20.63 15.62 9.4 430 430 411 411 369 380 197 197 273 273 

K607 17.76 13.75 8.77 426 426 411 411 364 364 197 197 269 281 

K608 18.87 13.88 8.4 #N/A #N/A #N/A #N/A #N/A #N/A 197 197 #N/A #N/A

K609 19.99 14.91 9.17 420 438 407 407 361 367 197 197 0 0 

K610 21.17 15.88 9.16 424 424 405 405 365 378 197 197 269 269 

K611 18.97 13.9 8.21 424 430 407 407 365 365 183 197 269 269 

K612 21.5 15.88 9.65 #N/A #N/A #N/A #N/A #N/A #N/A 197 197 #N/A #N/A

K613 19.55 14.58 8.62 420 420 411 411 370 378 189 197 273 273 

K614 20.75 15.22 8.75 418 451 411 411 363 363 197 197 269 269 
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K615 18.76 13.74 8.16 418 418 407 407 374 374 197 197 0 0 

K616 20.4 15.06 8.55 418 428 409 409 365 374 197 197 269 269 

K617 19.52 15.53 8.82 424 436 411 413 359 376 193 197 273 273 

K618 21.02 15.56 8.63 418 436 411 411 382 382 197 197 273 273 

K619 19.79 14.34 7.99 428 428 407 407 357 357 197 197 273 273 

K620 20.62 15.31 8.79 420 420 411 411 374 382 197 197 #N/A #N/A

S301 16.27 12.81 7.63 436 436 407 407 376 382 197 197 269 269 

S302 16.85 12.65 7.4 426 426 407 407 359 380 197 197 273 273 

S303 16.32 12.86 7.04 430 430 405 411 360 363 197 197 #N/A #N/A

S304 17.03 12.98 7.29 #N/A #N/A 411 411 0 0 197 197 269 269 

S305 16.77 13.15 6.88 416 416 411 411 372 374 197 197 269 269 

S306 17.18 13.91 7.3 432 432 411 411 353 374 197 197 269 269 

S307 17.42 14.15 7.75 436 436 411 411 357 357 197 197 0 0 

S308 16.86 14.01 7.17 424 424 407 407 369 369 189 197 269 269 

S309 16.72 13.25 6.94 418 424 407 413 374 382 197 197 269 269 

S310 17.64 14.04 6.83 418 418 411 411 365 365 197 197 0 0 

S311 16.73 13.37 7.3 422 422 407 411 363 382 #N/A #N/A #N/A #N/A

S312 17.11 13.4 7.37 416 418 411 411 365 384 197 197 269 269 

S313 18.06 13.75 7.65 414 426 #N/A #N/A #N/A #N/A 197 197 269 273 

S314 17.75 14.31 7.35 428 428 411 411 365 365 197 197 269 269 

S315 18.09 14.45 7.54 418 418 #N/A #N/A 363 378 #N/A #N/A #N/A #N/A

S316 17.68 14 7.47 432 432 411 411 363 381 0 0 273 273 

S317 17.68 13.36 7.58 418 434 411 411 370 376 193 197 #N/A #N/A

S318 18.1 14.19 7.34 434 434 411 411 363 370 195 195 269 269 

S319 18.33 13.94 7.65 418 432 411 411 357 380 197 199 269 273 

S320 18.13 13.97 7.78 418 422 #N/A #N/A 357 372 189 197 269 269 

S401 17.31 13.12 7.19 432 432 411 413 367 367 193 197 #N/A #N/A
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S402 18.44 14.46 8.4 426 432 #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A

S403 17.5 14.03 7.68 #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A

S404 17.88 13.37 7.18 #N/A #N/A #N/A #N/A #N/A #N/A 197 197 269 269 

S405 17.8 14.04 8.48 412 418 411 411 370 380 197 197 273 289 

S406 17.71 13.62 7.96 428 428 411 411 374 376 195 197 269 269 

S407 19.18 14.41 8.37 432 432 411 411 365 365 197 197 269 269 

S408 19.23 14.76 8.04 418 434 411 411 365 365 197 197 273 273 

S409 19.3 14.45 8.64 432 432 411 411 363 377 197 197 273 273 

S410 19.41 15.09 8.71 #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A

S411 19.44 14.67 8.95 #N/A #N/A 407 407 367 367 197 197 269 273 

S412 19.93 15.42 9.11 422 428 #N/A #N/A 363 363 197 197 #N/A #N/A

S413 20.13 15.46 8.97 410 410 411 411 380 384 197 199 #N/A #N/A

S414 20.1 15.43 8.67 432 434 407 411 380 382 197 197 0 0 

S415 20.16 15.63 8.1 432 434 411 411 347 376 197 199 273 273 

S416 19.51 14.4 7.85 #N/A #N/A #N/A #N/A 376 376 197 197 #N/A #N/A

S417 20.4 16.38 9.23 418 418 411 411 0 0 0 0 #N/A #N/A

S418 20.84 15.42 8.77 #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A

S419 21.25 16.3 9.48 #N/A #N/A #N/A #N/A #N/A #N/A 0 0 #N/A #N/A

S420 20.67 15.68 8.26 #N/A #N/A #N/A #N/A #N/A #N/A 0 0 0 0 

S501 22.56 17.13 8.94 418 446 411 411 365 370 183 197 269 269 

S502 22.61 17.43 9.36 #N/A #N/A 407 407 0 0 197 197 #N/A #N/A

S503 22.99 17.3 8.89 428 428 #N/A #N/A 0 0 0 0 269 269 

S504 21.03 15.74 8.27 #N/A #N/A #N/A #N/A 0 0 0 0 #N/A #N/A

S505 20.27 14.28 9.01 #N/A #N/A #N/A #N/A 0 0 0 0 #N/A #N/A

S506 19.97 15.49 9.73 422 422 #N/A #N/A 374 374 197 197 #N/A #N/A

S507 19.99 14.97 8.27 #N/A #N/A #N/A #N/A 0 0 0 0 #N/A #N/A

S508 20.05 15.15 8.73 432 426 411 411 365 380 0 0 0 0 



25    Smart sediment population genetics                          Luttikhuizen & Schellekens 

S509 20.63 15.66 9.26 #N/A #N/A #N/A #N/A 0 0 189 197 #N/A #N/A

S510 20.24 15.46 8.95 426 426 411 411 370 370 197 197 #N/A #N/A

S511 20.39 14.9 8.94 #N/A #N/A #N/A #N/A #N/A #N/A 197 197 #N/A #N/A

S512 22.18 16.11 10.02 #N/A #N/A #N/A #N/A #N/A #N/A 0 0 #N/A #N/A

S513 21.84 16.34 9.01 424 444 407 407 363 374 197 197 269 269 

S514 21.44 15.91 9.47 #N/A #N/A #N/A #N/A 0 0 197 197 #N/A #N/A

S515 22.11 16.52 9.27 418 418 411 411 374 374 197 197 273 273 

S516 21.59 16.05 8.79 438 438 411 411 359 380 197 197 269 273 

S517 21.53 16.38 9.3 428 434 411 411 357 378 193 197 0 0 

S518 20.58 15.66 8.46 #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A

S519 21.31 16.34 9.08 424 424 411 411 357 359 197 197 #N/A #N/A

S520 20.91 16.57 8.32 428 432 401 411 382 382 197 197 0 0 

S601 23.43 17.5 9.31 0 0 #N/A #N/A 357 374 197 197 271 271 

S602 21.72 16.05 9.56 424 424 411 411 365 365 197 197 269 269 

S603 22 16.51 9.55 418 418 407 407 #N/A #N/A 197 197 273 273 

S604 21.94 16.11 9.58 #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A

S605 21.55 17.13 8.9 420 420 411 411 363 363 197 197 273 273 

S606 21.49 16.43 9.58 #N/A #N/A #N/A #N/A 363 363 193 197 269 269 

S607 21.79 15.72 9.32 418 424 411 411 363 380 197 197 269 269 

S608 22.09 16.45 9.19 432 432 407 407 357 357 197 197 267 271 

S609 21.47 16.74 9.15 432 432 411 413 369 388 197 197 269 269 

S610 21.88 16.32 8.92 420 420 411 411 365 372 193 197 269 273 

S611 20.56 15.65 8.72 418 418 411 411 365 367 193 197 273 273 

S612 20.81 16.47 8.92 424 424 413 413 #N/A #N/A #N/A #N/A 269 269 

S613 20.65 15.57 9.23 #N/A #N/A 0 0 361 374 197 197 273 273 

S614 21.48 16.59 9.06 430 434 411 411 378 378 197 216 273 273 

S615 20.75 15.9 8.95 428 428 411 413 363 363 197 197 #N/A #N/A
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S616 20.36 15.48 8.97 422 430 #N/A #N/A 363 367 0 0 269 269 

S617 21.15 15.91 8.58 0 0 411 411 0 0 197 197 273 273 

S618 21.07 16.21 9.73 #N/A #N/A #N/A #N/A 0 0 #N/A #N/A #N/A #N/A

S619 21.51 16.32 9.75 426 438 407 411 382 386 197 197 #N/A #N/A

S620 20.48 15.48 8.81 0 0 411 411 376 376 0 0 #N/A #N/A

 



Protec�ng and using our blue planet responsibly starts with understanding our changing

seas. NIOZ conducts excellent marine research for society, from the deltas to the 

deepest oceans. Our science and na�onal marine facili�es help scien�fic communi�es 

businesses, ngo’s and policy makers to address some of the biggest challenges ahead. 

NIOZ Royal Netherlands Ins�tute for Sea 

Research is an ins�tute of The Netherlands 

Organiza�on for Scien�fic Research (NWO-I), 

since 2016 in coopera�on with Utrecht 

University (UU).

NIOZ Texel

Landsdiep 4

1797 SZ ’t Horntje, Texel

Postbox 59

1790 AB Den Burg, Texel

Nederland

Telephone: +31(0)222 - 369300

Fax: +31(0)222 - 319674

NIOZ Yerseke

Korringaweg 7

4401 NT Yerseke

Postbox 140

4400 AC  Yerseke

Nederland

Telephone: +31(0)113 - 577417

Fax: +31(0)113 - 573616

www.nioz.nl

NIOZ Report 2019-3

Royal NIOZ is an ins�tute of NWO-I, since 2016 in coopera�on with Utrecht University




