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Abstract Redox conditions and organic matter control marine methylmercury (MeHg) production. The
Black Sea is the world’s largest and deepest anoxic basin and is thus ideal to study Hg species along the
extended redox gradient. Here we present new dissolved Hg and MeHg data from the 2013 GEOTRACES
MEDBlack cruise (GN04_leg2) that we integrated into a numerical 1-D model, to track the fate and dynamics
of Hg and MeHg. Contrary to a previous study, our new data show highest MeHg concentrations in the
permanently anoxic waters. Observed MeHg/Hg percentage (range 9–57%) in the anoxic waters is
comparable to other subsurface maxima in oxic open-ocean waters. With the modeling we tested for various
Hgmethylation and demethylation scenarios along the redox gradient. The results show that Hgmethylation
must occur in the anoxic waters. The model was then used to simulate the time evolution (1850–2050) of
Hg species in the Black Sea. Our findings quantify (1) inputs and outputs of HgT (~31 and ~28 kmol yr�1) and
MeHgT (~5 and ~4 kmol yr�1) to the basin, (2) the extent of net demethylation occurring in oxic
(~1 kmol yr�1) and suboxic water (~6 kmol yr�1), (3) and the net Hg methylation in the anoxic waters of the
Black Sea (~11 kmol yr�1). Themodel was also used to estimate the amount of anthropogenic Hg (85–93%) in
the Black Sea.

1. Introduction

The ubiquitous presence of mercury (Hg) in the environment is a matter of concern due to the transformation
of inorganic oxidized Hg (HgII) into methylmercury (MeHg), which is a biomagnifying neurotoxin (Clarkson &
Magos, 2006; Cossa et al., 2012; Fitzgerald et al., 2007; Hammerschmidt & Fitzgerald, 2006). As humans are
exposed to MeHg through fish consumption (Oken et al., 2012) understanding the mechanisms underlying
MeHg production, degradation, transport, and accumulation in the marine environment is crucial.

Hg methylation is thought to be a primarily microbially driven process that occurs in marine sediments
(Bouchet et al., 2013; Hammerschmidt et al., 2004; Hollweg et al., 2009, 2010; Monperrus, Tessier, Point,
et al., 2007; Schartup et al., 2013) and the marine water column (Cossa et al., 2009; Heimbürger et al., 2010;
Mason & Fitzgerald, 1990; Monperrus, Tessier, Point, et al., 2007; Monperrus, Tessier, Amouroux, et al., 2007;
Sunderland et al., 2009) during remineralization of natural organic matter (NOM). NOM, which includes dis-
solved and particulate organic matter (i.e., DOM and POM, respectively), affects Hg methylation both acting
as an electron donor for microbial activity and controlling Hg partitioning (Drott et al., 2007). Indeed, in the
marine environment, Hg is effectively scavenged and transported by POM and also by authigenic Fe hydro-
xide and Mn oxide minerals (hereafter Fe/Mn oxides) and lithogenic particles (Lamborg et al., 2016). While
sinking, particles undergo degradation, which prompts the release of dissolved HgII making it bioavailable
to microbes (Cossa et al., 2009; Heimbürger et al., 2010; Muresan et al., 2007; Sunderland et al., 2009).
Biogeochemical controls on Hg methylation rates are thus related both to the composition and the activity
of the microbial community and to the speciation and partitioning of HgII (Cossa et al., 2014; Merritt &
Amirbahman, 2009), with a critical role played by redox conditions, NOM availability, and quality (Bravo
et al., 2017; Cossa et al., 2014; Schartup, Ndu, et al., 2015). Previous studies have used chemical equilibrium
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modeling to explain the observed oxic or suboxic MeHg maxima in sediment and stratified water. These
studies, which include a previous assessment of Hg species in the Black Sea water column, have concluded
that methylation is hindered above sulfide concentrations of ~10 μM due to a shift of Hg speciation from
neutral to charged species that makes it unavailable to microbes (Benoit, Gilmour, et al., 1999; Benoit,
Mason, & Gilmour, 1999; Benoit et al., 2001; Lamborg et al., 2008). However, there is a lack of consensus on
the relevance of the methylation process under different redox conditions. Hg methylation is known to be
mediated by anaerobic bacteria (Gilmour et al., 2013); however, methylation in euxinic (i.e., anoxic and
sulfidic) environments is not a well-understood process (Hsu-Kim et al., 2013; Merritt & Amirbahman,
2009), which has been shown to occur in sediments and lake water (Drott et al., 2007; Eckley &
Hintelmann, 2006; Hollweg et al., 2009; King et al., 2000). The occurrence of Hg methylation in oxic waters
was not discussed by Lamborg et al. (2008) for the Black Sea but has been shown to occur in other basins
(Lehnherr et al., 2011; Monperrus, Tessier, Amouroux, et al., 2007; Schartup, Balcom, et al., 2015; Sharif
et al., 2014). MeHg demethylation seems to occur at less variable rates among various environments, and
the capacity of bacteria to demethylate seems to be more widespread (Heyes et al., 2006).

The Black Sea is ideal for investigating biogeochemical cycles under changing redox conditions because its
waters encompass oxic, suboxic, and anoxic conditions (Schijf et al., 1991), with gradients stretched over sev-
eral tens of meters. The Black Sea is a deep, semienclosed basin (Figure 1a, maps are plotted with Ocean Data
View (Schlitzer, 2016), with permanently stratified water owing to the hydrological balance between the
inflow of water from the Mediterranean Sea via the Marmara Sea-Bosporus system and freshwater inputs
(Figure 1b and Text S1 in the supporting information) (Özsoy & Ünlüata, 1997). The surface circulation of
the Black Sea is driven by two large cyclonic gyres in the eastern and western basin, which are connected
to each other by the Rim Current that homogenizes surface waters (Murray et al., 2007). Vertical mixing is
weak, and when oxygen depletion occurs, bacterial remineralization of NOM is driven by a sequence of
alternative electron acceptors according to a sequence that is fixed across systems (O2 > N O�

3

>MnOx> FeOx> SO4) (Froelich et al., 1979). Hence, the redox progression along the Black Sea water column
is similar to the one in sedimentary environments and hypoxic basins worldwide, with the advantage that the
redox layers of the Black Sea are quite stable throughout the year and are stretched over a scale of several
tens of meters; these are thus easier to discern.

Figure 1. (a) The Black Sea with the 2013 GEOTRACES MedBlack cruise stations (red dots, the yellow dot indicates the position of the high-resolution profile). The Rim
Current is shown in black lines. (b) Schematic description of the 1-D water budget for the Black Sea (after Özsoy & Ünlüata, 1997) as used in the model; sublayers are
given on the right side (O1–O4 belong to the oxic layer, S is the suboxic layer, and A1–A4 belong to the anoxic layer).
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The sequence of redox reactions driving NOM remineralization in thewater column ismirrored by the concen-
tration profiles of the electron acceptors (Figure 2). The upper part of the oxic layer (OL) is euphotic (~50 m
depth) with high O2 concentrations (~300 μM), while below, in the aphotic waters, O2 is gradually consumed
by nitrifying bacteria (oxycline), as revealed by increasing NO�

3 concentrations (Oguz et al., 2000). The suboxic
layer (SOL) at a depth of approximately 100 m is where concentrations of both oxygen and sulfides are extre-
mely low (O2 < 20 μM, HS� < 1 μM). The upper boundary of the anoxic layer (AOL) occurs at a depth of
approximately 140 m, and sulfide levels increase within the AOL down to the seabed (2,200 m depth)
(Murray et al., 2007). The boundaries between the redox layers occur at variable depths, depending on the
bathymetry and hydrographical region, but they are distributed along isopycnals (Konovalov et al., 1997).
Therefore, the use of density (σ, see section 2.2) as a vertical coordinate has been a standard approach in stu-
dies dealing with the Black Sea since the early 1990s (Konovalov et al., 2004).

This paper aims to understand Hg speciation along a redox gradient by focusing on the pathways of MeHg
production and transport. We integrated novel marine Hg and MeHg observations from the 2013 GEOTRACES
MEDBlack cruise with a fate and transport 1-Dmodel for Hg species (Melaku Canu et al., 2015) adapted from the

Figure 2. Biogeochemical features of the water column (stations 1–10) illustrated by the observed vertical profiles of
temperature (T), salinity (S), oxygen (O2), hydrogen sulfide (HS�) beam attenuation coefficient (as a proxy of suspended
particulate matter), dissolved manganese (MnD), dissolved iron (FeD), nitrate (NO�

3 ), dissolved Hg (HgD), and MeHg
(MeHgD). The potential density anomaly (σθ = σ(S, θ, 0) – 1,000, kg m�3) is used as a vertical axis to study homogeneous
water masses (see main text). The boundaries of the redox layers computed from the cruise data set are shown in each
panel (OL = oxic layer; SOL = suboxic layer; AOL = anoxic layer).
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WASP7 Hgmodel /MERC7 sub-model (Wool et al., 2001) and already succefully applied in shallow waters (Canu
& Rosati 2017; Melaku Canu et al., 2015). One-dimensional (1-D) modeling has widely been used to investigate
the biogeochemical and ecological features of the basin (Grégoire & Soetaert, 2010; Konovalov et al., 2004;
Lamborg et al., 2008; Oguz et al., 2000; Yakushev et al., 2007). The implementation of the WASP7 model
requires a careful compilation of Hg fluxes within the basin, which includes exchanges with the Marmara
Sea, rivers and the atmosphere, and water-sediment exchanges and burial (Figure 3). We computed the
budget of Hg species and used the model to assess the occurrence of Hg methylation and MeHg
demethylation along the extended redox gradient of the Black Sea water column. Furthermore, we ran
additional simulations to test the hypothesis that Hg methylation occurs exclusively in suboxic waters and is
inhibited in the anoxic waters, as proposed by Lamborg et al. (2008). The authors detected a MeHg
maximum in the SOL and very low levels in the AOL during a previous assessment of Hg species dynamics in
the Black Sea. The model was also used to estimate the amount of anthropogenic Hg in the Black Sea water.

2. Materials and Methods
2.1. Sampling and Laboratory Analysis

Samples were collected during the second leg of the 2013 GEOTRACES MEDBlack (GA04-leg2) cruise in the
Black Sea. The research vessel Pelagia occupied 12 full-depth stations in the Black Sea along an east-west
transect between 13 and 25 July 2013. High-resolution vertical profiles, including one ultrahigh-resolution

Figure 3. Overview of Hg species and processes simulated in the WASP7 MERCmodel. HgT is total Hg (HgII + Hg0 + MeHg).
HgP and MeHgP are Hg

II and MeHg bound to particulate organic matter or silt, while HgD and MeHgD are dissolved forms
of HgII and MeHg (ionic and dissolved organic carbon complexed). Transformations (dashed arrows) include photoche-
mical (HgII photoreduction, Hg0 photooxidation, and MeHg photodemethylation) and biological (methylation and
demethylation) processes. Transport processes include atmospheric deposition and evasion, input from rivers, exchange
driven by advection and diffusion, and transport of HgP and MeHgP (settling, deposition, and burial).

Global Biogeochemical Cycles 10.1002/2017GB005700

ROSATI ET AL. 4



profile (5 m steps), were sampled using a titanium ultraclean conductivity-temperature-depth frame (De Baar
et al., 2008) equipped with 24 × 24 L polyvinylidene fluoride samplers. Samples were filtered (0.2 μm,
Sartobran 300), drawn directly into individual precleaned 250 mL perfluoroalkoxy Teflon bottles (Savillex
Purillex™), and acidified to 0.4% (v:v) with double-distilled HCl. We also sampled one station (40.8333°N,
27.56667°E, Figure 1a) in the Marmara Sea (Mediterranean Sea) during the first leg of the 2013 GEOTRACES
MEDBlack cruise (GA04-leg1) to obtain HgD and MeHgD data that we used to parametrize the inflow and out-
flow to the Black Sea.

Total HgD was measured in a 35 mL aliquot following the USEPA 1631 method, which was modified for
ultralow-level seawater measurements (Heimbürger et al., 2015). Potassium bromide (Sigma-Aldrich, USA)
and potassium bromate (Sigma-Aldrich, USA) were heated for 4 h at 250°C to remove Hg traces before pre-
paring a BrCl solution with freshly double-distilled HCl. We used a custom-made semi-automatic single gold
trap setup coupled to a cold vapor atomic fluorescence spectrometer (Brooks Rand Model III, USA), modified
with a mirrored quartz cuvette (Hellma Optics, Germany).

We measured dissolved methylmercury (MeHgD) as the sum of monomethylmercury and dimethylmercury
(MMHg + DMHg). MeHgD was analyzed via isotope dilution (ID) using a high-sensitivity coupled gas
chromatograph-sector field ICP-MS (GC-SF-ICP-MS) (Heimbürger et al., 2015). Briefly, enriched spikes of
199iHg and 201MeHg (ISC Science, Spain) were added to a 115 mL aliquot of the seawater samples. After 24 h
equilibration, the pH was adjusted to 3.9 with NH3 (ULTREX® II Ultrapure Reagent, J.T. Baker, USA) and a buffer
solution of acetic acid (glacial, ULTREX® II Ultrapure Reagent, J.T. Baker, USA)/sodium acetate (J.T. Baker, USA).
Sodium tetra propyl borate (1 mL, 1%, v:v; Merseburger Spezialchemikalien, Germany) was then added to
200 μL hexane (Sigma-Aldrich, USA). The glass bottles were hermetically sealed with Teflon-lined caps and vig-
orously shaken for 15 min. The organic phase was recovered, and 2 μL was injected into the GC (Thermo Trace
Ultra) coupled to a SF-ICP-MS (Thermo Element XR). Initial results indicated undetectable amounts of MeHg in
the anoxic waters. However, we also did not recover the added isotopic spikes, indicating that our method was
not appropriate for anoxic samples. Another acidified aliquot was oxygenated for 15 min after the spike addi-
tion and equilibration but prior to the derivatization step. This led to full spike recovery and significant amounts
of MeHg detected in all samples. The detection limit was 0.025 and 0.001 pM for HgD and MeHgD, respectively.

We took GEOTRACES intercalibration samples on 15 July 2013 in the western gyre (31.402°E; 42.521°N), in the
oxic waters near the chlorophyll maximum (45 m depth) and sent these out to 25 participating laboratories.
Our results compare well to consensus values: HgT = 0.92 ± 0.36 pM, n = 17, MeHgT = 0.57 ± 0.36 pM, n = 9. We
measured the GEOTRACES intercalibration sample three times for HgT and obtained 0.98, 0.95, and 0.96 pM,
on 10 September 2013, 15 December 2013, and 30 October 2014, respectively. We determined 0.091 and
0.063 pM of MeHg on 10 September 2013 and 15 December 2013, respectively.

2.2. Vertical Discretization of the Data Set

We analyzed the vertical distribution of physical properties, nutrients, and metals at 10 deep stations of the
2013 GEOTRACES MEDBlack cruise (Gerringa et al., 2016; Margolin et al., 2016), excluding station 12, which is
in the Bosporus Strait, and station 11, which is shallow and influenced by the Mediterranean inflow. Many
authors (e.g., Konovalov & Murray, 2001) have already observed that, due to the distribution of water masses
along isopycnals, the profiles of several variables show a strong similarity when plotted against density but
differ when depth is used (Figures 2, S1, and S2). As depth increases, the adiabatic compression on water
molecules causes a temperature increase that leads to an apparent decrease in density (ρ(S, T, p), kg m�3).
To compare the density of two parcels of water from different depths, is recommended the use of potential
density anomaly (σθ = σ(S, θ, 0)� 1000, kgm�3), which is computed from potential temperature (θ) defined as
“the temperature that a water parcel would have if moved adiabatically to another pressure” (Talley et al.,
2011). To exclude possible outliers, we first analyzed HgD andMeHgD profiles (up to 2,160mdepth; σθ = 17.25)
by discretizing the water column using fine resolution (Table S1). This partitioning is appropriate to handle
outliers and define the average concentration profile of metals and nutrients, but it is too detailed for our
modeling purposes. A vertical discretization model (Table 1 and Figure 1b) was used in order to decompose
the water column into its redox layers (OL, SOL, and AOL), further dividing some layers to properly represent
the water balance of the system and simulate the evolution of the target variables (Hg, MeHg, and POM).
Thus, the OL and AOL were divided into four sublayers each (namely, from O1 to O4, and from A1 to A4),
and the sediments were divided into two sublayers (SED1 and SED2).
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2.3. Model Structure

The WASP7 Hg model/MERC7 submodel (Wool et al., 2001) is a dynamic process-based model designed to
simulate the Hg cycle within a system of well-mixed discrete spatial units (layers) of water and sediment as
well as the exchanges of the system with its boundaries. This model has been already adapted and success-
fully applied to a shallow environment in a 2D configuration (Canu & Rosati, 2017; Melaku Canu et al., 2015),
and is here used in a 1D configuration to explore Hg dynamics along an extended redox gradient.

Figure 3 shows the conceptual model of the processes that affect the evolution of the state variables (Table S2).
Modeled Hg species (Table S3) include dissolved and particulate compounds of oxidized Hg (HgII), elemental
mercury (Hg0), and methylmercury (MeHg), whereas dimethylmercury (DMHg) is not explicitly considered.
Dissolved species include Hg0, dissolved organic carbon (DOC)-complexed species of HgII and MeHg (i.e.,

HgDOC and MeHgDOC), and their ionic species (HgCl�3 ;HgCl
2�
4 ; and MeHgCl) in marine environments (Morel

et al., 1998). Particulate species involve only HgII and MMHg, which in the model can be adsorbed to POM
(HgPOM and MMHgPOM) or silt (Hgsilt and MMHgsilt); silt represents inorganic particles, and POM is used to
represent both organic particles and Fe/Mn oxides that are subjected to precipitation and dissolution.
POM is modeled as a state variable that can be produced and decomposed according to the formulas given
in Table S4, while DOC is modeled as constant in time, with different concentrations in each box according to
Ducklow et al. (2007) and Margolin et al. (2016).

Hereafter, we refer to total Hg (HgT) and total MeHg (MeHgT) as the sum of all Hg and MeHg species in the
dissolved and particulate phases. We refer to dissolved Hg (HgD) to indicate the sum of all dissolved species

(Hg0, HgDOC, MeHgDOC, HgCl
�
3 , HgCl

2�
4 ; and MeHgCl), while dissolved HgII and MeHg (HgIID and MeHgD) will be

used to indicate, respectively, the sum of HgDOC� HgCln andMeHgDOC�MeHgCl. We will refer to particulate
Hg (HgP) as the sum of inorganic Hg particle-bounded species (HgPOM and Hgsilt) and refer to particulate
MeHg (MeHgP) as the sum of MeHgPOM and MeHgsilt.

The main transport (i.e., diffusion, advection, volatilization, deposition, settling, and burial) and transforma-
tion (i.e., biotic methylation and demethylation, photoreduction, photooxidation, and photodemethylation)
processes related to the Hg cycle are considered in the model (Tables S3–S6). Resuspension does not occur
in the deep water of the Black Sea due to low turbulence (Stanev & Kandilarov, 2012), and thus, it is not
included in our model (Table S7). Transport processes (Tables S5) are described through advective water
fluxes, diffusion coefficients, and transport mediated by particles. Hg transformation processes (Tables S6)
are modeled using first-order kinetics, through a reaction constant (kr) modulated based on environmental
forcing such as temperature and light intensity.

2.4. Model Physical and Biological Setting

We represent the Black Sea as a 1-D vertical system with nine layers of water and two layers of sediment
(Table 1). Since we aimed to simulate the dynamics in the offshore basin of the Black Sea, the shelf area

Table 1
Physicochemical Properties of Water and Sediment Layers and Sublayers

Redox layer Model layer Depth (m) σθ (kg m�3) Volume (m3) Ez
a (m2 s�1) O2 (μM) HS�(μM) Hg (pM) MeHg (pM) MeHg/Hg (%)

OL (oxic layer) O1 0–20 10.50–12.05 5.9 × 1012 1.1 × 10�5 246 0 1.86 0.12 8.5
O2 20–40 12.05–14.25 5.9 × 1012 1.1 × 10�5 315 0 2.13 0.14 6.4
O3 40–55 14.25–15.18 4.5 × 1012 9.5 × 10�6 165 0 1.77 0.12 9.9
O4 55–75 15.18–15.64 5.9 × 1012 9.5 × 10�6 31.3 0 1.90 0.11 5.5

SOL (suboxic layer) S 75–100 15.64–16.2 7.4 × 1012 9.5 × 10�6 3.5 0.1 2.06 0.16 10.9
AOL (anoxic layer) A1 100–280 16.2–16.6 5.3 × 1013 1.0 × 10�5 0 15 3.16 0.80 28.6

A2 280–460 16.6–17.04 5.3 × 1013 1.0 × 10�5 0 97 2.81 0.55 21.8
A3 460–1460 17.04–17.24 2.9 × 1014 5.5 × 10�6 0 317 3.71 0.75 21.0
A4 1460–1810 17.24–17.25 1.0 × 1014 8.7 × 10�6 0 421 3.71 0.74 20.6

Sediment SED1 8.8 × 109 —
SED2 2.0 × 1010 —

Note. For each model layer are given: the depth and density range, the volume, the vertical eddy diffusivity (Ez) and the observed average concentrations of oxy-
gen, sulfide, dissolved Hg and MeHg, and the MeHg%.
aEz: vertical eddy diffusivity from Konovalov et al. (2004).
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was excluded from analysis (~30% of surface area) (Panin & Jipa, 2002), constraining the model domain to
represent 70% of the volume of the upper water and 100% of the deep water, overall accounting for 99%
of the total volume. The steady state balance of water masses (Text S1 and Figure 1b) was arranged according
to Özsoy and Ünlüata (1997), and turbulent vertical diffusion (Ez; Table 1) was set according to Konovalov et al.
(2004). Monthly averaged data for solar irradiation, day length, and sea surface temperature for the Black Sea
in the year 2013 (Gencarelli et al., 2015; Grell et al., 2005) were used as forcing for photoreactions, biological
reactions, and volatilization. To satisfy the sediment balance of the Black Sea (Text S2, Figure S3, and Tables S4
and S8), we considered silt and POM exchanges with the Marmara Sea (Mediterranean Sea) (Çoban-Yıldız
et al., 2000, 2006), loadings from rivers and the Azov Sea (Agapov et al., 2012; Berlinsky et al., 2006;
Chasovnikov et al., 2012; Jaoshvili, 2002; Ovsienko et al., 2012; Panin & Jipa, 2002; Tescari et al., 2006) and
internal POM production and degradation, including both primary production (Agirbas et al., 2014) and che-
mosynthesis (Nyffeler et al., 2007; Yılmaz et al., 2006). POM degradation rates were calibrated in agreement
with the carbon budget (Deuser, 1971; Grégoire & Soetaert, 2010; Margolin et al., 2016), and 80% of sus-
pended particles in the model is POM, in agreement with Stanev and Kandilarov (2012). Total suspended par-
ticles were calibrated to match concentrations (Figure S4) estimated from the beam attenuation coefficients
(Karageorgis et al., 2008, 2009) measured during the cruise, which are in good agreement with those given in
Stanev and Kandilarov (2012). For the sediment compartment, two layers were modeled: a 3 cm deep fluffy
layer with porosity of ~0.96 (Yücel et al., 2012) on top of a 7 cm deep layer of more consolidated sediment.

2.5. Mercury Species Data and Time Dynamic Model Implementation

To simulate the historical evolution of Hg dynamics in the Black Sea in our 1-D model, we took into account
the inputs and outputs of the system, transport mediated by water and sediment, and transformation pro-
cesses (Tables S2–S8). We chose to reconstruct past inputs into the Black Sea because the residence time
of the deep water has been estimated to be between 330 and 1,500 years (Murray et al., 2007), and thus,
present-day concentrations in the deep water must reflect processes that have occurred over long periods.
As anthropogenic Hg emissions increased dramatically with the onset of the industrial revolution (Amos
et al., 2015), we estimated the temporal evolution of Hg inputs beginning in 1850, assuming that prior inputs
are negligible for the Hg dynamics in the Black Sea. We gathered information about Hg species loads, bound-
ary concentrations, and fluxes for the year 2013 (Tables S7–S9) and rescaled riverine and atmospheric Hg
input according to historical anthropogenic enrichment factors estimated for global emissions and the
deposition of Hg (Amos et al., 2015; Horowitz et al., 2014). The model was initialized at a pristine level, with
0.14 pM of HgII, 0.02 pM of Hg0 in surface waters, and 0.3 pM of HgII in the waters below 100 m depth
(Zhang Jaeglé, & Thompson, 2014); water MeHg was assumed to be 5% of HgT. Hg sediment concentration
was set to 235 pmol g�1 (47 ng g�1) based on the background Hg concentrations of sediment cores taken
during the 2013 GEOTRACES MEDBlack cruise. The background Hg levels are 3.4 times lower than present-
day surface level and do not show any influence of preindustrial Hg enrichments, supporting the idea that
anthropogenic Hg inputs to the Black Sea prior 1850 are negligible. The simulation was projected to the year
2050, assuming that future Hg input will remain constant at 2013 levels.

Atmospheric concentrations of HgII and Hg0 and fluxes of HgII deposition (Table S7) over the Black Sea (year
2013) were computed with the Weather Research and Forecasting Model with Chemistry-Hg atmospheric
model (Gencarelli et al., 2014, 2015, 2017). The atmospheric model was forced with the chemical initial and
boundary conditions for Hg species taken from the ECHMERIT model (De Simone et al., 2014, 2016; Jung
et al., 2009), and the model domain was adapted to include the entire Black Sea surface area; further informa-
tion is given in Text S3 (Arctic Monitoring and Assessment Programme/United Nations Environmental
Programme, 2013; Emmons et al., 2010; Gårdfeldt et al., 2003; Grell et al., 2005; Lin et al., 2006; Neu &
Prather, 2012; Salzmann & Lawrence, 2006; Sandu & Sander, 2006; Wanninkhof, 1992; Wesely, 1989). Marine
boundary conditions for Hg and MeHg were characterized based on measured concentrations in the
Marmara Sea (Table S7) and hydrodynamics (Figure 1b and Text S1); Hg0 concentrations were assumed to
be 10% of HgT (Fantozzi et al., 2013; Gårdfeldt et al., 2003; Kotnik et al., 2015; Soerensen et al., 2013).
Photoreaction rates (Table S9) are internally adjusted for the light conditions following Soerensen, Schartup,
et al. (2016). These processes are relatively well constrained; others are much less: (1) the partitioning of Hg,
which is parameterized through the partition coefficient (kD, l/kg) for which a wide range is reported in the lit-
erature (Han, Lehman, et al., 2007; Han, Obraztsova, et al., 2007; Hollweg et al., 2010; Lamborg et al., 2016; Liu
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et al., 2015; Muresan et al., 2007; Schartup et al., 2014, Schartup, Balcom, et al., 2015); (2) the Hg river inputs
(Tables S7 and S8) (Amos et al., 2014; Soerensen, Schartup, et al., 2016; Woitke et al., 2003; Zhang et al.,
2015), with the fraction of river MeHg being generally low (~5% of HgT) (Balogh et al., 2003; Mason et al.,
2012; Paller et al., 2004; Sharif et al., 2014; Soerensen, Jacob, et al., 2016, Soerensen, Schartup, et al., 2016);
and (3) Hg methylation and MeHg demethylation (Hsu-Kim et al., 2013; Semeniuk & Dastoor, 2017).

A separated model setup was implemented to simulate the preanthropogenic cycle of Hg in the Black Sea by
running two additional simulations forced only with natural Hg inputs (upper and lower estimates). Natural
river inputs were assumed to be 0.4%–16% of present-day inputs (corresponding to HgP = 0.01–0.1 nmol g�1

that is in the lower range of the assessment by Amos et al. (2014)) and natural Hg atmospheric deposition to
be 13–20% of present-day deposition (Zhang, Jaeglé, Thompson, & Streets, 2014). Results of these simula-
tions were used to estimate the anthropogenic Hg in the Black Sea relative to the base simulation.

2.6. Model Calibration and Analysis of Uncertainties in Parameters and Model Output

Monte Carlo analysis (i.e., analysis of an ensemble of numerical simulations) can be useful to estimate uncer-
tain model parameters while maintaining a reasonable fit to observations (Beck, 1987; Cossarini & Solidoro,
2008; Jørgensen, 1994; Pianosi et al., 2016; Soetaert & Herman, 2009). Here we constrained themost uncertain
processes/parameters to observed concentration of HgD and MeHgD in the water column and HgT in sedi-
ment, by using a two steps procedure involving an ensemble of simulations. In the first step, we derived
the most likely estimates of river loads and partition coefficient (kD) against water HgD and sediment HgT
observations. In the second step, the model was refined and calibrated to observational data of water
MeHgD and HgD, by tuning the Hg methylation and demethylation rates (km and kdm). The agreement
between modeled (modi) and observed (obsi) concentrations in waters and sediment for the reference year
(2013) was evaluated for each sensitivity simulation by computing the Pearson’s correlation coefficients (r)
and the root-mean-square errors (RMSE, equation (1)).

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ni¼1 obsi � modið Þ2

n

s
(1)

As a first step, we run an ensemble of simulations excluding biotic production and degradation of MeHg
within the system. Each simulation was performed by using the same values for all parameters but for kD
and the time-variable river load (Lr(t)), which were varied within a large interval, namely, kD 5 × 105–
6.2 × 105 l/kg, and Lr(2013) 15–40 kmol/yr (Lr(t) were derived from Lr(2003) by backward scaling, according to
Horowitz et al. (2014), to simulate the historical evolution). Then we compared each simulation against obser-
vations and rejected all the simulations that have r < 0.9, RMSE for water HgD > 0.8 pM, and RMSE for sedi-
ment HgT> 300 pmol g�1. The subset of remaining simulations (the ones with a good fit to observations) was
retained, and the corresponding parameters values were used to estimate the distribution (given as
mean ± standard error (SE)) of: Lr(2013) = 25 ± 2.5 kmol yr�1 and kD = 5.6 × 105 ± 9.3 × 104 l/kg. The simulation
from this subset that reproduces the average water HgD and sediment HgT concentrations is hereafter
referred to as reference simulation. The other simulations with a good fit to observations were used to com-
pute the SE of modeled concentrations, which is related to the uncertainties in kD and L Lr(2013).

In the second step, we performed a second ensemble of simulations, starting from the reference simulation
obtained in step 1 and adding in Hg methylation and MeHg demethylation rates (km and kdm) in the different
water layers. In this case we identified the variability interval by selecting km and kdm values for different redox
conditions within literature ranges (Table S10) (Hollweg et al., 2009; Lehnherr et al., 2011; Monperrus, Tessier,
Amouroux, et al., 2007; Rodríguez Martín-Doimeadios et al., 2004; Whalin et al., 2007) and by varying the selected
rates by ±50% (Table 2). To gain insights into the significance of these processes in the redox layers of the Black
Sea (OL, SOL and AOL), we set up three different scenarios (Table 2) based on the following hypotheses:

1. ubiquitous Hg methylation and MeHg demethylation;
2. Hg methylation is limited to the SOL, ubiquitous MeHg demethylation;
3. Hg methylation and MeHg demethylation are both limited to the SOL.

As before, we rejected the simulations that did not have a sufficient fit with the data and used the subset of
retained simulation (those having r for water MeHgD and HgD > 0.9 as well as RMSE for water
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MeHgD< 0.2 pM and RMSE for water HgD< 0.35 pM). Obviously, to take into consideration the uncertainties
in km and kdm values produces some variability in model output. However, from the analysis of the second
ensemble of simulations it turned out that such variability is significantly smaller than the one related to
the parameters variation in the first calibration step (not shown) and that the tuning of km and kdm
induced minor variations in the fit against water HgD and sediment HgT. Finally, we selected the model
ensemble giving the best fit to data and use that to define the fluxes and related uncertainties in a budget
of Hg species in the Black Sea.

3. Results and Discussion
3.1. Observations

HgD and MeHgD vertical profiles show similar behavior across the 10 deep stations sampled in the Black Sea
(Figures 2, S1, and S2), suggesting that all stations can be described in terms of a similar dynamic along the
vertical dimension. Thus, a 1-D representation of the system seems suitable to capture the most important
dynamics of Hg in the Black Sea. Concentrations in the OL and SOL are lowest (HgD = 1.9 ± 0.6 pM;
MeHgD = 0.13 ± 0.05 pM) and do not differ from each other (Wilcoxon signed-rank test; p value>0.05), while
concentrations in the AOL (HgD = 3.4 ± 0.6 pM; MeHgD = 0.71 ± 0.17 pM) are significantly higher (Wilcoxon
signed-rank test; p value <0.05). Both HgD and MeHgD concentrations exhibit two maxima in the AOL: the
first one is just below the SOL-AOL interface and the second one in the deep part of the AOL. While the
HgD and MeHgD profiles mimic each other, the relative MeHg increase from SOL to AOL (+340%) is more
important than the HgD increase (+62%), suggesting that production of MeHg occurs in the AOL. Figure 2
shows the vertical distribution of HgD, MeHgD, and other biogeochemical variables against σθ, while
Figure 4 shows the distribution of MeHgD against depth along the cruise transect. The average concentra-
tions of HgD, MeHgD, O2, and HS� are given in Table 1, and the complete data set of Hg and MeHg observa-
tions is available in Table S11.

The first maxima of HgD and MeHgD (Figures 2 and 5) occur at 100–200 m depth in the upper part of the AOL
(σθ 16.3–16.5). We found that the HgD and MeHgD maxima are broadly coincident with the FeD and/or MnD
(Figure 5) in the Black Sea water column, as previously observed for HgD and MnD/FeD (Lamborg et al., 2008)
as well as for HgT and FeD/MnD (Cossa & Coquery, 2005). The association between Hg species and Mn/Fe
redox cycles is usually explained by the “shuttle theory” that postulates a transportation process based on
Mn/Fe oxides (Neretin et al., 2003). According to this theory, Hg is scavenged from surface layers by POM
and Mn/Fe oxides and settles toward the bottom of the SOL, where oxide reduction drives NOM reminerali-
zation, causing HgD release. Reduced Mn/Fe diffuses upward and is oxidized at the top of the SOL; likewise,
HgD released in the AOL diffuses upward and is scavenged by oxides. Therefore, Hg species are trapped in
this cycle between the SOL and AOL. This process has been invoked to explain the distribution of phosphates
in the Black Sea (Dellwig et al., 2010; Pakhomova & Yakushev, 2013; Shaffer, 1986) and the distribution of Hg
species in stratified water bodies with anoxic bottomwater (Cossa & Coquery, 2005; Han, Lehman, et al., 2007;
Mason et al., 1993). The partition coefficients (KD) of Hg to oxides have been shown to be higher than the
range generally observed in sediments; Lamborg et al. (2016) estimated a KD-Mn = 108.3, and KD-Fe = 107.6

for HgT in the ocean. In the Black Sea, Mn is much more abundant than Fe (Figures 2 and 5) and likely

Table 2
Parameterization of Hg Methylation (km) and MeHg Demethylation (kdm) in the Simulations: a) Ubiquitous km and kdm; b) km Limited to the SOL and Ubiquitous kdm;
c) km and kdm Limited to the SOL

Layer

a) Ubiquitous Hg methylation
and MeHg demethylation

b) Hg methylation in the SOL, ubiquitous
MeHg demethylation

c) Hg methylation and MeHg demethylation
limited to the SOL

km (d�1) kdm (d�1) km (d�1) kdm (d�1) km (d�1) kdm (d�1)

OL 4 × 10�3 [±50%] 1.0 × 10�1 [±50%] 0 1.7 × 10�2 [±50%] 0 0
SOL 1.6 × 10�2 [±50%] 2.1 × 10�1 [±50%] 1.6 × 10�2 [±50%] 2.1 × 10�1 [±50%] 1.6 × 10�2 [±50%] 2.1 × 10�1 [±50%]
AOL 3.3 × 10�3 [±50%] 1.5 × 10�2 [±50%] 0 1.5 × 10�2 [±50%] 0 0

Note. See Table S10 for literature ranges of km and kdm under different redox conditions. OL = oxic layer; SOL = suboxic layer; AOL =anoxic layer.
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plays a major role. As shown in Figure 5, concentrations of dissolvedMn (MnD) in the Black Sea rise in the SOL,
peak below the SOL-AOL interface (σθ ~ 16.3) and remain elevated and constant until the seabed. Fe oxide
reduction follows Mn oxide reduction in the sequence of electron acceptors used by bacteria for NOM
remineralization (Froelich et al., 1979); indeed, the increase in dissolved Fe concentrations (FeD) is deeper
than that of MnD, and FeD concentrations are maximal at σθ ~ 16.5. Below σθ ~ 16.5, FeD decreases due to
precipitation as FeS(s) or FeS2(s); at this depth, there is a local minimum of HgD and MeHgD concentrations
(Figures 2, S1 and S2), which might be due to their partial pyritization (coprecipitation) in the formation of
FeS2 (Huerta-Diaz & Morse, 1992; Morse & Luther, 1999). This process has also been proposed also for the

Figure 4. Distribution of MeHgD (pM) along 2013 GEOTRACES MEDBlack cruise transect. The numbers of the sampling stations (Figure 1) are given on the top of the
figure. Black dots indicates sampling points. The contours of the oxic layer (OL), suboxic layer (SOL), and anoxic layer (AOL) are indicated by white lines.

Figure 5. High-resolution profiles of dissolved Hg (HgD), and MeHg (MeHgD), oxygen (O2), hydrogen sulfide (HS�), nitrates (NO�
3 ), phosphates (PO

3�
4 ), manganese

(MnD), and iron (FeD) at station 5 (Figure 1). OL = oxic layer; SOL = suboxic layer; AOL = anoxic layer.
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cycling of Hg species in the Pettaquamscutt Estuary (Mason et al., 1993), while in Offatts Bayou (USA), it has
been suggested to affect the water profile of HgII but not that of MeHg; this is likely because higher POM con-
centrations in the shallow bay outcompete FeS2 for binding sites (Han, Lehman, et al., 2007).

Our high-resolution profiles (Figure 5), with 5 m sampling intervals covering the extended redox gradient
from oxic waters (40 m depth) to anoxic waters (160 m depth) at station 5, allowed us to further resolve
Hg distributions. The high-resolution HgD maximum (3.9 pM at 130 m depth) is shallower at the interface
of the SOL and AOL, just below the PO4

3� peak. The high-resolution MeHgD maximum (0.83 pM at 145 m
depth) is 15 m deeper, coinciding with the MnD peak, well within the AOL. Mercury methylation may be high-
est here because of the continuous supply of HgD during the dissolution of Mn oxides. The MeHg/Hg percen-
tage increases further with depth in the AOL, reaching 39% at a 160 m depth. It is remarkable that the
MeHg/Hg percentages are comparable to other open-ocean subsurface maxima in oxic waters (Bowman
et al., 2015, 2016; Cossa et al., 2009, 2011; Ganachaud et al., 2017; Hammerschmidt & Bowman, 2012;
Heimbürger et al., 2015; Kim et al., 2017; Munson et al., 2015; Sunderland et al., 2009; Wang et al., 2012).

In the deeper part of the AOL (σθ > 17.04), HgD and MeHgD concentrations increase to a second maximum
(Figures 2, S1 and S2), whichmight be due to the enhanced solubility of Hg species in the presence of sulfides
and DOM (Han, Lehman, et al., 2007; Mason et al., 1993; Ravichandran et al., 1998, 1999; Skyllberg, 2008;
Slowey, 2010; Sunderland et al., 2006; Waples et al., 2005) and to net in situ methylation, which is favored
by DOM (Graham et al., 2012; Moreau et al., 2015; Schaefer & Morel, 2009; Schaefer et al., 2011). It has been
shown that in sulfidic systems, some DOM components (thiols, humic acids, and cysteine) delay or inhibit
HgS(s) precipitation and favor its dissolution, leading to the formation of nanoparticles smaller than 0.2 μm
(Deonarine & Hsu-Kim, 2009; Gerbig et al., 2011; Slowey, 2010): these nanoparticles can be methylated
(Jonsson et al., 2012; Kucharzyk et al., 2015; Zhang, Kucharzyk, et al., 2014; Zhang et al., 2012). These processes
appear to be favored by low Hg/DOM ratios and may provide a mechanistic explanation for the second max-
imum of MeHgD that we observed in the AOL, where the ratio Hg/DOM is as low as ~0.2 nmol Hg/mg DOM.
Recent research has also shown that MeHg adsorbed to reduced sulfur groups on minerals (FeSm, HgS(s) and
CdS(s)) and organic (thiols) surfaces can be methylated to dimethylmercury (DMHg) (Jonsson et al., 2016). We
measured DMHg at stations 2 and 5. The results (not shown) were near the detection limit, and we therefore
conclude that the DMHg is only a minor fraction of the MeHg pool in the Black Sea, in agreement with
Lamborg et al. (2008), who found DMHg to be less than 10% of MeHg. Therefore, we only considered the
dominant MMHg species in the numerical model (labeled as MeHg).

While our observations of two deepmaxima of HgD are consistent with previous findings for both filtered and
unfiltered Hg in the Black Sea (Cossa & Coquery, 2005; Lamborg et al., 2008), the distribution of MeHgD differs
from that observed in the western gyre by Lamborg et al. (2008), who detected only a shallow MeHgD
maximum at σθ ~ 16.2 and decreasing concentrations toward the seabed. We believe that this discrepancy
is due to different analytical methodologies. We applied an IDmethod that can assess recovery of the analytes
(section 2.1), while Lamborg et al. (2008) did not use ID. Their method might not have been efficient for the
analysis of anoxic Black Sea waters. On the other hand, our observations are consistent with the distribution
of MeHg along the stratified water column of the Gotland Sea (Baltic Sea) (Soerensen, Schartup, et al., 2016)
and the seasonally anoxic waters of Offatts Bayou (USA) (Han, Lehman, et al., 2007), where concentrations
are minimal above the halocline and maximal in anoxic water. Sulfide levels in these two systems are lower
but comparable (150–200 μM) to those of the Black Sea (Han, Lehman, et al., 2007; Neretin et al., 2003).

3.2. Modeled Concentrations and Fluxes

The three ensembles of simulations referring to scenarios a, b, and c were all derived adding Hg methylation
and MeHg demethylation in the same reference simulation, which was obtained from the first step of calibra-
tion against concentrations of HgD in water (Figure 6a) and HgT in the sediment (Figure 6b). The three scenar-
ios a, b, and c represent different hypotheses for Hg methylation and MeHg demethylation occurrence along
the redox gradient (Table 2), which were explored during the second step of calibration by varying km and
kdm values.

Results show that the ensemble of simulations (a), representing ubiquitous Hg methylation and MeHg
demethylation (Figure 7a), reproduces best the MeHgD profiles observed during the cruise (r = 0.98 ± 0.01;
RMSE = 0.15 ± 0.07 pM). When Hg methylation is considered to be limited to the SOL (Figures 7b and 7c),
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Figure 6. (a) HgD profiles in the water column observed during the cruise (black circles and bars: average and standard
deviation of the 10 deep stations) and modeled (gray dashed lines: profiles from all simulations; yellow area: range esti-
mated from the subset of simulations retained from the Monte Carlo ensemble (see section 2.6); blue triangles: reference
simulation) by varying the river load and kD. The potential density anomaly (σθ = σ(S, θ, 0) – 1,000, kg m�3) is used as
the vertical coordinate, and the corresponding depths are shown on the left y axes; (b) HgT concentrations in surface
sediment (0–3 cm) observed during the cruise (gray box plot) and modeled (yellow box plot); each box plot indicates the
median (thick bar), the interquartile range (box height), and the extremes of the distribution (whiskers). OL = oxic layer;
SOL = suboxic layer; AOL = anoxic layer.

Figure 7. Distribution of MeHgD in the water column observed during the cruise (black dots, black circles and bars: data
points, means, and standard deviation of the 10 deep stations) and range of modeled concentration (shaded areas) pro-
files from different simulations (gray dashed lines) run assuming: (a) ubiquitous km and kdm (green area), (b) km limited to
the suboxic layer (SOL) and ubiquitous kdm (blue area), (c) km and kdm limited to the suboxic layer (pink area), (d) all of
the previous (Table 2). The potential density anomaly (σθ = σ(S, θ, 0) – 1,000, kg m�3) is used as the vertical coordinate,
and the corresponding depths are shown on the left y axes. OL = oxic layer; SOL = suboxic layer; AOL = anoxic layer.
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themodel cannot be tuned to reproduce the observed vertical MeHg distribution. The ensemble of simulations
(b) have r = �0.5 ± 0.08 and RMSE = 0.47 ± 0.01 pM, while simulations (c) have a better fit (r = 0.93 and
RMSE = 0.34 ± 0.06 pM) but still significantly worse than (a). We conclude that observations and modeling
falsify the hypotheses (b) and (c) and corroborate the hypothesis (a), that is, ubiquitous methylation and
demethylation. Therefore, the setup (a) defines the most likely model given the available data.

We used the best model setup (scenario a), to compute concentrations and fluxes of Hg species (values are
given as mean ± SE) in water and sediment of the Black Sea for the 2013 (Figure 8) and for the whole simula-
tion period (1850–2050; Figure 9).

In its present state, HgT inputs to the water column (31 ± 2.5 kmol yr�1) are estimated to exceed the outputs
(28 ± 2.8 kmol yr�1). The system is not at steady state, the ΔHgT(2014–2013) (difference of Hg pool between
2014 and 2013) is negative in the OL (�0.3 kmol yr�1) and positive in the SOL and AOL (+0.04 and
+0.52 kmol yr�1). Themost relevant input is riverine load (77%, 24.5 ± 2.5 kmol yr�1), followed by atmospheric
deposition (17%, 5.3 kmol yr�1). Little HgT comes from sediment via pore water diffusion (4%,
1.4 ± 0.02 kmol yr�1) from the Marmara Sea inflow (3%, ~0.9 kmol yr�1) and from the Azov Sea (1%,
~0.4 kmol yr�1, not shown). The main loss of Hg from the water (74%) is the settling and deposition of
20.9 ± 1.2 kmol yr�1 of HgP and MeHgP. Evasion of Hg0 (23%, 5.4 ± 0.5 kmol yr�1) roughly compensates HgII

deposition, and theoutflowto theMarmaraSeaaccounts for 6%(1.4±0.1kmol yr�1). The26%ofHg thatdepos-
its to the sediment is buried below a 10 cm depth (4.1 ± 0.3 kmol yr�1), while 8% moves back to the water
through pore water diffusion; the remainder constitutes the sediment reservoir. The modeled reservoir of

Figure 8. Budget for Hg species in the Black Sea. Modeled amount (kmol) and fluxes (kmol yr�1) of HgT (black), Hg
II (blue)

and MeHgT (pink) species in water and sediment layers, given as mean ± SE. HgT and MeHgT reservoirs (black and pink
squares) are given on the right side. Hg0 (dark cyan) is produced upon net photoreduction in oxic waters and mostly evade
to the atmosphere; its pool is a minor fraction of the HgT pool and is thus omitted here. Settling, deposition and burial of
HgP and MeHgP are represented by green circles and arrows. Fluffy arrows represent exchanges due to turbulent and
molecular diffusion. Dashed arrows indicate methylation and demethylation. Thick arrows show exchanges at the model
boundaries (atmospheric deposition and evasion, river load, and inflow-outflow to the Marmara Sea). On the right side
depth and density scale are shown. OL = oxic layer; SOL = suboxic layer; AOL = anoxic layer.
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HgD in thewater column is 1675 ± 320 kmol (~320 ± 64 t), 23%ofwhich (358 ± 49 kmol; ~77 ± 10 t) is present as
MeHgD; themismatch betweenmodeled andmeasured concentrations for themeanmodeled concentrations
amounts to ~143 kmol for HgD and ~6.8 kmol for MeHgD.

Our budget of HgT in the Black Sea (Figures 8 and 9a), built on biogeochemical modeling and measurements
along10 stations, is here compared to thebudgetofHgTestimatedbyLamborget al. (2008)basedonwater col-
umnmeasurements at two sites in the Black Sea. The highestmismatch between the twobudgets is in the esti-
mate of Mediterranean inflow-outflow and Hg0 evasion. Our estimate of inflow (~0.9 kmol yr�1 of HgT) and
outflow (1.5 ± 0.1 kmol yr�1), based on water columnmeasurements on both sides, implies a small net export
of Hg species (~0.6 kmol yr�1 of HgT) to the Mediterranean Sea, while in the budget of Lamborg et al. (2008) a
net input of 5 kmol yr�1 is estimated, assuming high concentrations in the Marmara inflow (24 pM) that are
not supported by observations. Our estimate of Hg0 evasion from thewater (5.4 ± 0.5 kmol yr�1) is much lower
thanthe93kmolyr�1estimatedbyLamborgetal. (2008). TheconcentrationsofHg0measuredbyLamborgetal.
(2008) in surfacewater (0.3 pM) are slightly higher than the 0.2 pMmodeled in our simulation. The evasion rate
estimated by Lamborg et al. (2008) and computed by our model (respectively, ~600 pmol m�2d�1 and
~50 pmol m�2d�1) lies in the upper and lower range of the rates observed in coastal, shelf, and ocean stations
(Anderssonetal., 2007;Gårdfeldtetal., 2003; Soerensenetal., 2013). TheatmosphericHgdeposition to theBlack
Sea (5.3 kmol yr�1 over the surface area of ourmodel)modeled through theWeather Research andForecasting
ModelwithChemistrymodel isclose to the8kmolyr�1estimatedbyLamborgetal. (2008). Themodeleddeposi-
tion rate (3.6 μg m�2 yr�1) is within the range estimated for the Mediterranean Sea (Arctic Monitoring and
Assessment Programme/United Nations Environmental Programme, 2013; Gencarelli et al., 2015). The riverine
load (24.5±2.5kmolyr�1) ishigher than the8kmolyr�1 estimatedbyLamborgetal. (2008),whoacknowledged
that the flux was likely higher. The scarcity of observations from the Black Sea tributaries calls for a more
thorough investigation. HgD diffusion from pore water has a small overall impact on our budget

Figure 9. Modeled temporal evolution of (a) HgT and (b) MeHg fluxes to the Black Sea after 3 years model spin-up, along with modeled (c) HgT and (d) MeHgT con-
centrations in the water layers for 1850–2050. The vertical dotted lines indicate the reference year (2013). OL = oxic layer; SOL = suboxic layer; AOL = anoxic layer.

Global Biogeochemical Cycles 10.1002/2017GB005700

ROSATI ET AL. 14



(1.4 ± 0.1 kmol yr�1) and is lower than, but consistent with, the 4 kmol yr�1 predicted by Lamborg et al. (2008),
who also included the contribution of shelf sediments.

Our model also simulates the time evolution of MeHg fluxes and concentrations (Figures 9b and 9d); thus,
here we provide the first attempt —to the best of or knowledge —to quantify the cycle of this important
compound in the Black Sea. For the 2013 MeHg budget (Figure 8), the estimated inputs to the water
(~5.2 ± 0.6 kmol yr�1) are larger than the outputs (4.5 ± 0.5 kmol yr�1), and the bulk of MeHg
(~3.8 ± 1.3 kmol yr�1) comes from in situ methylation in the AOL. Net MeHg demethylation occurs in the
OL (~1.1 kmol yr�1) and SOL (~6.2 kmol yr�1) and net Hg methylation in the AOL (~11.1 kmol y�1). In the
OL, 0.1–0.3% of the HgII pool is methylated and 3–8% of the MeHg pool is demethylated on a daily basis;
MeHg has a turnover time of 11–33 d�1. In the SOL, both processes are most efficient: every day 0.7–1.4%
of the HgII pool is demethylated and 9–27% of the MeHg pool is methylated; MeHg has a turnover time of
4–11 d�1. In the AOL, Hg methylation involve 0.1–0.3% of the HgII pool, and MeHg demethylation 0.4–1%
of the MeHg pool; the turnover time of MeHg is 100–240 d�1.

Rivers account for 1.1 kmol yr�1 of MeHg (20% of total inputs), while minimal contributions come from the
Marmara and Azov Seas, which together account for 1.6% (0.06 and 0.04 kmol yr�1). The diffusion of MeHgD
is predicted to be a sink for the water rather than a source, transferring 0.1 ± 0.01 kmol yr�1 to the sediment
(3% of outputs). Approximately 4.4 ± 0.6 kmol yr�1 of MeHg leaves thewater column after settling and deposi-
tion, while 0.04 ± 0.01 kmol yr�1 moves to the Marmara Sea, transported by the Mediterranean outflow.
According to our budget, methylation in the AOL is the most relevant source of MeHg to the basin. Thus, this
process needs to be further investigated in the field. Based on the Fe peak in the upper AOL, methylation
may be driven by Fe-reducing bacteria, which have been reported to prompt Hg desorption and methylation
by using Fe oxides as electron acceptors (Hellal et al., 2015; Kerin et al., 2006; Schaefer et al., 2011; Si et al.,
2015), whereas sulfate-reducing bacteria (Benoit et al., 2001; King et al., 2000; Moreau et al., 2015; Schaefer
et al., 2014) are likely to contribute significantly to Hg methylation in the lower part of the AOL, where
HS�> 100 μMand increases with depth. However, they could also play a role in Hgmethylation within aggre-
gates settling from the SOL to the AOL (section 3.1). Large aggregates of precipitates, organic, and inorganic
matter that form in the SOL and sink also operate also as carriers of bacteria (Fuchsman et al., 2011). While Hg
methylation and MeHg demethylation are thought to involve mainly dissolved Hg species, they have been
detected in particles and marine snow aggregates and at particle surfaces under laboratory conditions
(Jonsson et al., 2016; Ortiz et al., 2015). It has been proposed that in the Black Sea, all S cyclingmay occur within
the microniches offered by marine snow aggregates (Fuchsman et al., 2011), and Hg methylation may occur
within marine snow aggregates formed in the SOL that settle toward the AOL as well as at the surface of FeS
and HgS minerals that precipitate in the AOL. Based on the recent identification of new bacterial strains able
to methylate Hg (Gilmour et al., 2013), there are other potential candidates for Hg methylation in the AOL of
the Black Sea. These are methanogens and the species Desulfitobacterium metallireducens (genus Firmicutes),
which can use either Mn or Fe oxides as electron acceptors (Villemur et al., 2006). Both methanogens andMn-
reducing bacteria are abundant in the water of the lower SOL and in the upper part of the AOL (Fuchsman
et al., 2011; Pimenov & Neretin, 2006).

The idea that Hg methylation occurs in the euxinic waters of the Black Sea is in contrast with previous studies,
which suggested thatmethylation is hindered at HS�> 10 μM (Benoit et al., 2001; Benoit, Gilmour, et al., 1999;
Benoit, Mason, & Gilmour, 1999; Lamborg et al., 2008). Such inhibition would be due to a shift in inorganic Hg
speciation from a neutral complex (HgS0) to charged species (e.g., HgHS�2 ) that cannot diffuse through micro-
bial cell membranes. This implies that bacterial Hg uptake depends on passive diffusion through the cell, while
it has been shown that it can be an energy-dependent transport mediated by carrier proteins and favored by
some thiols such as cysteine (Schaefer et al., 2011, 2014; Schaefer &Morel, 2009).Many authors have noted that
binding and solubility constants used to model the interactions among Hg/sulfide and Hg/DOM are highly
uncertain (Drott et al., 2007; Hsu-Kim et al., 2013; Merritt & Amirbahman, 2009; Skyllberg, 2008). Furthermore,
as discussed in section 3.1, Hg speciation in the presence of sulfides is affected by DOM composition, which
can delay or inhibit the precipitation of HgS(s) and enhance its dissolution. HgS nanoparticles formunder these
conditions, which are very reactive particles at the surfaces of which Hgmethylation occurs (Deonarine & Hsu-
Kim, 2009; Gerbig et al., 2011; Hsu-Kim et al., 2013; Jonsson et al., 2012; Kucharzyk et al., 2015; Ravichandran
et al., 1998, 1999; Skyllberg, 2008; Slowey, 2010; Waples et al., 2005; Zhang, Kucharzyk, et al., 2014; Zhang
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et al., 2012). Beyond the methylation of HgS nanoparticles observed in laboratory experiments, there is evi-
dence that adds weight to the argument for methylation under sulfidic conditions. Coquery et al. (2003)
observed maximum levels of MeHgD in the anoxic water of a tropical reservoir and attributed these to in situ
methylation by sulfate-reducing bacteria. Eckley and Hintelmann (2006) detected methylation only under
hypoxic-anoxic conditions in a group of seasonally stratified lakes, with maximal rates just below the oxycline
that remained elevated to the bottom of the lake (HS� up to 30 μM). Hollweg et al. (2009) detected Hgmethy-
lation in the sedimentsof theChesapeakeBayat sulfide levels ashighas 100–1,000μM, though ratesweremax-
imal at HS� ~ 1 μM.Merritt and Amirbahman (2008) reported aMeHgmaximumwith HS� ranging from 0.5 to
30 μM in the pore water of the Penobscot River Estuary. In the sediment of Passamaquoddy Bay, Sunderland
et al. (2006) observed the highest MeHg/Hg ratio in the zone with sulfide levels between 1,300 and
6,000 μM. Moreover, Hg methylation at millimolar levels of sulfides has been detected in sediment samples
and in pure cultures of bacteria (Drott et al., 2007; King et al., 2000; Langer et al., 2001).

Some authors have pointed out that the decrease in Hg methylation with depth, frequently observed in pore
water and sediment profiles, might be attributable to the limitation of available NOM substrates (electron
donors) rather than to increasing sulfide levels (Drott et al., 2007; Merritt & Amirbahman, 2009). This could
explain why profiles of MeHg in the Black Sea water column differ from profiles often observed in pore waters
and sediments that exhibit surface or subsurface maxima. In the upper part of the AOL, microbial activity is
high due to the NOM produced at the lower boundary of the SOL by chemosynthetic bacteria (Pimenov &
Neretin, 2006; Yılmaz et al., 2006).

The temporal evolution of HgT concentrations (Figure 9c) in the OL and SOL shows a fast response to changes
in atmospheric and riverine loadings and follows the seasonal signal of atmospheric Hg deposition. In the
AOL, HgT concentrations increase more slowly due to the longer times needed for Hg transport to deep water
but are almost linear with time, as the net HgT flux from the SOL to AOL is larger than the flux from the AOL to
sediment (Figure 8). Similarly to HgT, MeHgT tends to increase with time in the AOL (Figure 9d), where it exhi-
bits maximal concentrations. However, the MeHgT distribution in the water column differs from HgT, and
throughout the simulation, concentrations are lower in the OL and SOL and highest in the AOL. This is because
MeHgT is much less affected by external loadings and is rather controlled by in situ production and degrada-
tion in the water column. The analysis of time evolution highlights that, in spite of a reduction in anthropo-
genic Hg input since the 1970s (Figures 9a and 9b), the model predicts the retention and accumulation of
Hg species in the AOL, likely due to the “Mn shuttle” transportation process described in section 3.1. Briefly,
Mn/Fe oxides in the SOL act as a barrier that limits upward diffusion and favors downward transport of Hg spe-
cies associated with settling oxides, which are reduced and dissolved in the AOL releasing Hg species. In our
model, odixe precipitation and dissolution are represented in a simplified fashion by parametrizing the pro-
duction of POM within the SOL and its degradation in the first AOL sublayer (Text S2 and Figure S3).

Themodeled pool of Hg from natural sources in the Black Sea is between 122 and 268 kmol. By difference with
our base simulation, anthropogenic Hg is 1,517–1,663 kmol and accounts for 85%–93% of the water Hg pool.

4. Conclusions

During the 2013 GOETRACES MEDBlack cruise, we measured Hg and MeHg concentrations along the
stretched redox gradient of the Black Sea water column. The new measurements were integrated into a
numerical model to better understand MeHg production, Hg species cycling in the Black Sea, and their tem-
poral evolution. A comparison between observational data and ensembles of simulations was performed to
calibrate the model estimating the most likely value for the uncertain model parameters and their errors, as
well as the uncertainty in model output due to parameters uncertainty. Such a comparison also allowed us to
reject the hypothesis that Hg methylation is limited to the suboxic water of the Black Sea, and rather, it sup-
ports the idea that both Hg methylation and MeHg demethylation occur ubiquitously.

Contrary to a previous assessment (Lamborg et al., 2008), we found the highest MeHg concentrations in the
permanently anoxic waters of the Black Sea. These new observations, backed with numerical modeling and
mass balance calculations, indicate that Hg methylation in anoxic water is likely to be the primary MeHg
source to the basin. Our findings offer additional theoretical and empirical support to increasing evidence
that Hg can be methylated under sulfidic conditions, when the NOM pool of the system is bioavailable to
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bacteria and contains functional groups that may inhibit the precipitation of HgS. MeHg percentages are
highest in anoxic waters (up to 57%) and comparable to other open-ocean subsurface maxima in oxic waters.

According to our budget, inputs of Hg species to the Black Sea water column exceed outputs. Inflows and
outflows to the Mediterranean Sea, as well as flux from sediment, are slight. The main source of HgII is river
load followed by atmospheric deposition, while MeHg mostly comes from in situ methylation in anoxic
waters. Most of the Hg in the Black Sea water column (85–93%) is of anthropogenic origin. During the time
span of the simulation (1850–2050), modeled concentrations of Hg and MeHg increase in the deepest layers
of the Black Sea (AOL), owing to recycling between suboxic and anoxic water that limits upward diffusion.

Overall, concentrations of Hg species in the Black Sea water column appear to depend on the balance
between (1) the amount of HgT (mostly HgII) that enters surface layers, is scavenged, and is transported to
the SOL; (2) the recycling of Hg and MeHg between the SOL and AOL, driven by precipitation and dissolution
of Mn, which causes increased Hg andMeHgwith time; (3) the net production of MeHg in the AOL; and (4) the
transport toward the sediment of the particulate fraction, which is the only removal pathway from deep
waters and concerns only a small fraction of the total pool.

Results suggest that also in other water bodies, the hypoxic-anoxic conditions induced at the bottom of the
water column by summer stratification could promote methylation over areas much larger than previously
thought, generating a significant amount of MeHg that would then be advected to the rest of the water col-
umn during the subsequent mixing period.
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