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Abstract Accurate numerical modeling of biogeo-
chemical ocean dynamics is essential for numerous
applications, including coastal ecosystem science, en-
vironmental management and energy, and climate dy-
namics. Evaluating computational requirements for
such often highly nonlinear and multiscale dynam-
ics is critical. To do so, we complete comprehen-
sive numerical analyses, comparing low- to high-order
discretization schemes, both in time and space, em-
ploying standard and hybrid discontinuous Galerkin
finite element methods, on both straight and new
curved elements. Our analyses and syntheses focus
on nutrient-phytoplankton-zooplankton dynamics un-
der advection and diffusion within an ocean strait or
sill, in an idealized 2D geometry. For the dynamics,
we investigate three biological regimes, one with sin-
gle stable points at all depths and two with stable
limit cycles. We also examine interactions that are
dominated by the biology, by the advection, or that
are balanced. For these regimes and interactions, we
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study the sensitivity to multiple numerical parame-
ters including quadrature-free and quadrature-based
discretizations of the source terms, order of the spa-
tial discretizations of advection and diffusion opera-
tors, order of the temporal discretization in explicit
schemes, and resolution of the spatial mesh, with and
without curved elements. A first finding is that both
quadrature-based and quadrature-free discretizations
give accurate results in well-resolved regions, but the
quadrature-based scheme has smaller errors in under-
resolved regions. We show that low-order temporal
discretizations allow rapidly growing numerical errors
in biological fields. We find that if a spatial discretiza-
tion (mesh resolution and polynomial degree) does not
resolve the solution, oscillations due to discontinuities
in tracer fields can be locally significant for both low-
and high-order discretizations. When the solution is
sufficiently resolved, higher-order schemes on coarser
grids perform better (higher accuracy, less dissipative)
for the same cost than lower-order scheme on finer
grids. This result applies to both passive and reactive
tracers and is confirmed by quantitative analyses of
truncation errors and smoothness of solution fields. To
reduce oscillations in un-resolved regions, we develop
a numerical filter that is active only when and where
the solution is not smooth locally. Finally, we consider
idealized simulations of biological patchiness. Results
reveal that higher-order numerical schemes can main-
tain patches for long-term integrations while lower-
order schemes are much too dissipative and cannot,
even at very high resolutions. Implications for the use
of simulations to better understand biological blooms,
patchiness, and other nonlinear reactive dynamics in
coastal regions with complex bathymetric features are
considerable.
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1 Introduction

Accurate modeling of biogeochemical-physical ocean
dynamics is required for multiple scientific and societal
applications, covering a wide range of time and space
scalves. With the increased understanding of biogeochem-
ical interactions (Lalli and Parsons 1997; Robinson
et al. 2002; Fennel and Neumann 2004), ecosystems
models have substantially improved in the past de-
cades (Fasham et al. 1990; Hofmann and Lascara
1998; Robinson and Lermusiaux 1999; Hofmann
and Friedrichs 2002; Lynch et al. 2009). Coupled
biogeochemical-physical models have been used from
coastal regions (e.g., Anderson et al. 2005; Spitz et al.
2005; Ji et al. 2008; Stow et al. 2009) to basins and
global ocean domains (e.g., Oschlies and Garcon 1998;
Rothstein et al. 2006; Doney et al. 2009). However, in
light of the strong nonlinearities observed in biological
processes, an important subject that has been largely
overlooked is the numerical requirements for such sim-
ulation studies. One of the major objectives of our work
is to address such computational questions for reactive
ocean tracers, directly including the latest advances
in computational fluid dynamics (e.g., Chung 2002;
Ferziger and Peric 2002; Lomax et al. 2003; Cebeci et al.
2005; Karniadakis and Sherwin 2005) and multiscale
ocean modeling (Deleersnijder and Lermusiaux 2008).

Previous numerical ocean studies related to ours
have primarily focused on passive or dynamic (density-
related) tracer advections. The most significant prog-
ress include the results of Hecht et al. (1995), Hanert
et al. (2004), and Budgell et al. (2007), but none of these
advances has dealt with higher-order advection of reac-
tive tracers on unstructured meshes with curved geome-
tries. Iskandarani et al. (2005) applied and studied
high-order schemes for passive tracer and density
dynamics in two dimensions, including Hecht et al.
(1995)’s test and the gravitational adjustment of den-
sity in a channel of constant depth (Haidvogel and
Beckmann 1999), but they did not consider curved
elements. Lévy et al. (2001) assessed five different low-
order finite volume advection schemes for biological
modeling and found a 30% difference in new produc-
tion estimates, highlighting the need for careful nu-
merical studies. In Bernard et al. (2009), high-order
discontinuous Galerkin (DG) methods are used to
solve tidal flows around shallow water islands with non-
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trivial geometries and using curved triangular meshes.
Here, we are interested in biogeochemical tracers with
possibly highly nonlinear reactive or source terms, and
we compare a set of low- to high-order schemes, both
in time and in space. We employ the DG finite ele-
ment method (Cockburn 1998), using both straight and
curved elements, and we study a varied set of numerical
properties. As in previous computational studies, we
restrict our numerical analyses to 2D flows, focusing on
coupled dynamics in idealized straits.

Our ultimate dynamics motivation is to allow quan-
titative simulation studies of fundamental nonlinear
biological-physical dynamics in coastal regions with
complex bathymetric features such as straits, sills,
ridges, and shelfbreaks. Such features strongly affect
flows, and if they are shallow enough, one can expect
biological responses in the euphotic zone. Multiple
physical scales are possible, from rapid tidal effects
to slow water-mass-driven overflows, and biological
resonances at some of these scales are likely. Our
focus is on the numerical requirements prerequisite
to such studies. Our work is partly inspired by our
experience in coastal regions with complex geometries
(Haley and Lermusiaux 2010), especially with steep
shelfbreaks such as the Massachusetts Bay and Stellwa-
gen Bank (Besiktepe et al. 2002), Middle Atlantic Bight
shelfbreak (Lermusiaux 1999), Monterey Bay shelf-
break (Haley et al. 2009), Taiwan region shelfbreak
(Lermusiaux and Xu 2010), and Philippine Archipelago
Straits (Haley and Lermusiaux 2010). The latter effort
particularly motivated the present work, within the
context of the Philippines Experiment (PhilEx) which is
a S-year joint research project focused on interdiscipli-
nary modeling, data assimilation, and dynamical studies
in the straits regions of the Philippine Archipelago to
better understand, model, and predict sub-mesoscale
and mesoscale physical and biogeochemical dynamics
in complex regions. For realistic PhilEx simulations,
we employ our MIT Multidisciplinary Simulation, Es-
timation, and Assimilation Systems (MSEAS-Group
2010). It includes a free surface hydrostatic ocean
model over complex geometries with novel implicit
schemes for telescoping nesting (Haley and Lermusiaux
2010). This physical model is coupled to biological
models (Besiktepe et al. 2002), forced with multiscale
barotropic tides (Logutov and Lermusiaux 2008), and
initialized with new objective mapping schemes specific
for multiconnected domains (Agarwal 2009; Agarwal
and Lermusiaux 2010, in press). The multiresolution
nested domains cover very shallow regions with strong
tides, steep bathymetries, and the deep ocean. The
MSEAS system was employed in real time, assimilat-
ing data sets from ships, gliders, and satellite remote
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sensing and issuing daily physical-biological forecasts
with dynamical descriptions and adaptive sampling
guidance (Lermusiaux et al. 2009). The complex, non-
linear, and multiscale biology in the region confirmed
the need for the present computational studies.

Our work is part of an incubation for the next gen-
eration of ocean modeling systems, focusing on key
numerical questions for biogeochemical dynamics. The
biological model we employ is based on Flierl and
McGillicuddy (2002), Burton (2009), and Ueckermann
(2009). We restrict ourselves to a relatively simple
model to focus on the numerics. However, the model
is complex enough to reveal important characteristics
and to complete a large number of parameter sensi-
tivity studies which we can synthesize. We study three
biological regimes, one with single stable points at all
depths and two with stable limit cycles. We examine
interactions that are dominated by the biology, by
the advection, or that are balanced. We also consider
idealized simulations of biological patchiness which is
commonly observed in the coastal ocean. For these
regimes and interactions, we study a wide range of
temporal and spatial discretizations. In what follows,
we give our dynamical problem statement, definitions,
and notation in Section 2. Our new numerical schemes
and discretization are formulated and studied in
Section 3. The results of our varied numerical and sci-
entific investigations are described in Section 4. Finally,
our conclusions are stated in Section 5.

2 Dynamical problem statement, definitions,
and notation

2.1 Dynamical problem statement

The biological dynamics are governed by the following
advection—diffusion-reaction (ADR) equations:
P

T V. ud) —«V?® =S(d,x,1), inQ (1)

with boundary conditions

® =¢gp, onIp
(ud —xkV®d)-n=gn, only 2)

where ®(x, 1) = [¢'(x, 1), ..., pNe(x, )] is the vector of
N, biological components, u is the prescribed velocity
field, « is a positive diffusivity coefficient, S(®, x, 1)
is the biological reaction terms, and gp, gn are the
boundary conditions for the Dirichlet and Neumann
boundaries, respectively. Equations 1 and 2 are solved
on the domain Q2 € R?, where d is the dimension of

the problem, with boundary 92 = I'p U I'y such that
I'pNIny=40.

Since we are interested in strait dynamics, for the
flowfield u, we assume that earth rotational effects are
negligible, which is true if the ratio of the strait width to
the Rossby radius is small (Pedlosky 1987; Signell 1989;
Cushman-Roisin 1987; Bourgault and Kelley 2004).
Additionally, for uniform geometry across the strait
with a rigid lid approximation, a small Froude number,
and a homogeneous density, the velocity field can be
approximated as a potential flow field. A similar setup
was used by Signell (1989) for tidal flows. The potential
velocity u is obtained by solving for the stream function

V2 =0, inQ 3)
u=Vxy 4
with boundary conditions

Y = hp, on dQ2. %)
2.2 Finite element definitions and notation

We discretize Egs. 1-5 using the DG finite element
method. The first reported use of DG FEM was by
Reed and Hill (1973) where DG was used to solve the
steady-state neutron transport equation. However, DG
drew little attention until a series of papers (Cockburn
and Shu 1989, 1998b; Cockburn et al. 1989, 1990), where
the Runge—Kutta DG methods were described. The ex-
tension of DG to higher-order derivatives by Bassi and
Rebay (1997) made the method applicable to solving
advection—diffusion equations, which can be extended
to solving the Navier-Stokes equations. Since the late
1990s, DG has seen a number of realistic applications
in aerospace, solid mechanics, and electromagnetism to
name a few. For a review on the use of such schemes
in next-generation physical ocean models, we refer to
Pain et al. (2005), Slingo et al. (2009), and Ueckermann
(2009).

In this section, we first describe the notation used for
the domain and the discrete elements. Then we define
the notation used for the solution on the element inte-
rior and on the element interfaces. Next, we described
the discontinuous polynomial spaces and the necessary
inner products for the DG discretization, followed by
the discontinuous finite element space and inner prod-
uct for the hybridized discontinuous Galerkin (HDG)
method. A set of terms is also defined.

The basic domain notation is illustrated in Fig. 1. We
let 7, = UK; be a finite collection of nonoverlapping
elements, K;, that discretizes the domain 2, where &
denotes the characteristic size of an element. Also,
let 97, = {0K : K € 7,} be the set of interfaces of all
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Fig. 1 Notation for domain and triangular elements

elements. For two elements K™ and K~ belonging to
T, we define e=3dKT N3JK~ # @ as the unique in-
terior interface between elements Kt and K~. For a
single element K belonging to 7, e = dK NIQ # @ is
a boundary interface. Let ¢, and 82 denote the set of
unique interior and boundary interfaces, respectively,
such that ¢, = 82 U ;. We note that in the interior 97,
contains two interfaces, d K™ and 9K, at the same
location (one for each element), whereas the set ¢, only
contains a single interface, e, at the same location.

K" and K~ have outward pointing normals n* and
n-, respectively. We then let vector and scalar quanti-
ties (q*, u*) be the traces of (q,u) on the interface e
from the interior of K*. The mean value {{.}} and jumps
[.1 on the interior interface e € ¢, for scalar and vector
quantities are then defined as

{ul) = W +u)/2
[un]] =uwrn™ +u 0.

flqh =@ +q7)/2
lq-al=q"-0"+q -0"

On the set of boundary interfaces e € ¢ (with outward
facing normal i on 92), we set

lq =¢q u} =u
[q-n]] = q-fn [un] = un.

since here q and u are single-valued. Note that the
jump in a vector is a scalar (involving only the normal
component of the vector), whereas the jump in a scalar
is a vector. Additionally, the jump will be zero for a
continuous function.

The main difference between continuous Galerkin
(CG) and DG lies in the approximation subspaces used.
DG uses bases that are in normed space L?(2) while
CG uses bases that are in the Hilbert space H'(2), that
is, the function has to be continuous across elements.
For a function f(x) to be in L?*(R), it has to satisfy
Jo f(x)?dQ < oo, whereas a function in H'() has to
belong to a smaller space satisfying [, f(x)* + V f(x) x
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V f(x)d2 < co. Let PP(D) denote the set of polyno-
mials of maximum degree p existing on a domain D.
For example, we will be using p2 to denote a second
degree polynomial basis, which will result in a third-
order accurate scheme. We introduce the discontinuous
finite element spaces defined as

Wy = {we LX(Q): w ke PP(K), VK € T}
V2 = {ve (LXQ)?: v ke (PP(K)!, VK € T,)

where W, is a scalar space, V) is a vector space of
dimension d, and L?(D) is the space of square inte-
grable functions f(x) such that [, f(x)?dD < oo on
domain D.

Finally, we define the inner products over continu-
ous domains D € R? and 9D € R4~ as

(q.V)p = [pq-vdD (u, w)p = [, uwdD

(q,V)op = [,pq-vddD (u,w)yp = [, ,uwddD  (6)

for vector functions q, v and scalar functions u, w. Over
discontinuous domains, we also define

@07, =Y @V (wwhy =Y wwhk, (7)

KeT), KeT),

for vector or scalar functions g, v defined on 7;,, and u, v
defined on 97},.

To use the HDG framework for solving Egs. 3-5, we
will require the traced finite element space existing on
the interfaces ¢

My = {ue L&) : ple € PP(e), Ve € &4} .

We also set M) (gp)={ue M, :u=Pgp on I'p},
where P is the L? projection into the space {u]soVu €
M}}. Note that M, is continuous on the interface, e,
shared by K+ and K—, but discontinuous at the borders
between different interfaces. We will also require the
additional inner product on this discontinuous domain

(1 m)e = D (i e (®)

eeey

for vector or scalar functions u, n defined on ¢y,

2.3 Comparing numerical codes: defining efficiency,
accuracy, and performance

To be clear, we use the term “efficiency” or “cost” to re-
fer exclusively to the computational resources (elapsed
time, memory) required for a simulation, and we do not
use “efficiency” to imply any degree of correctness of
the solution. We reserve the term “accuracy” to refer to
the correctness of the solution. Finally, here we also use
the term “performance” as the combined consideration
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between efficiency and accuracy (Chapra and Canale
2006).

Comparing different numerical schemes is not a
straightforward task (see Kubatko et al. 2009). First,
results are not universally applicable and are generally
problem dependent. After focusing on a particular class
of problems, the usual approach is to fix the compu-
tational efficiency of both schemes and then compare
the accuracy, or vice versa. The scheme that performs
better will then have a superior accuracy, since the
efficiency will be the same for both. However, the
efficiency of the scheme is dependent on its implemen-
tation, as well as the computer architecture on which
the simulations are performed. A simple approach,
then, is to fix the number of degrees of freedom (DOFs)
of the different schemes, that is, having the same num-
ber of unconstrained parameters in both schemes. Be-
cause the DOFs are related to computational efficiency,
this approach is useful for comparing similar numeri-
cal schemes with different implementations. However,
it is not a good approach when comparing different
numerical schemes where the computational cost per
DOF is inherently and significantly different between
the schemes, which is the case for comparisons between
high-order and low-order schemes. Finally, conclusions
drawn about the performance is also dependent on
the particular definition of accuracy. The accuracy is
normally defined in terms of a quantity useful to a
particular researcher. Thus, researchers with different
quantities of interest may draw different conclusions
about the performance of a scheme. We address
the efficiency issue by presenting results for multiple
efficiencies, and we address the accuracy issue by using
generic global error measures (see Section 3.5) and by
using difference plots.

3 Numerical methodology

In this section, we first derive the basic FE formula-
tions for Egs. 1-5, using the notation from Section 2.2.
Starting with Egs. 1 and 2, we multiply each biological
component by test function w and integrate over the
domain. We seek approximations @, = [¢;, .. .(b;lv‘] of
® such that for all K € 7y,

(ﬂ, w) +(V x (), wg — (kV®p, w)
K
= (S(®p, x, 1), w) g, Yw € P(K). 9)

where each component ¢ € W/. We set ¢ =
Z?/:”l ¢§(t)9j(x) where qj}([) are Np time varying
coefficients with Np corresponding spatial basis

functions, 6;(x) € P(K). For convenience, we use
Einstein summation notation ®;, = ®;6;, where the
sum over the repeated index j is implied and we let
b= (1), 0, = 0;(x).

To obtain our finite-element formulation of Egs. 3—
5, we multiply by test functions w and v and integrate
over the domain. We seek approximations v, € W} of
v and w, € V? of usuch that for all K € 7y,

(V2¥n, w) . =0, Vw € P(K), (10)

W Vg = (VX Y, Vg, Vve (PK)? (11)

Next, we describe in detail the discretization of the
source terms in Section 3.1, since one of the novel
aspects of our work is the high-order schemes for ocean
biogeochemical simulations. Our spatial discretizations
are derived in Section 3.2 for the advection terms,
Section 3.3 for the diffusive terms, and our tempo-
ral discretizations given in Section 3.4. The calcula-
tion of error norms is outlined in Section 3.5. Finally,
brief details of our implementation are presented in
Section 3.6, and our method for generating high-order
curved meshes is described in Section 3.7.

3.1 Source term discretization

Quadrature-based integration approximates a definite
integral by a weighted sum of function evaluations
at discrete points (quadrature points). For exam-
ple, Gaussian quadrature using N, points can exactly
evaluate polynomials of degree 2N, — 1. Quadrature-
free methods avoid evaluating the weighted sum by
using approximations and/or analytically evaluating
definite integrals, and the solution to the definite in-
tegral is used directly in numerical implementations.
For more details, see for example, Hesthaven and
Warburton (2008). We further restrict the definition
of “quadrature-free” to mean exact integration on the
original polynomial basis. It is possible to use an ex-
panded basis to evaluate the source terms, but addi-
tional cost is involved to interpolate the solution unto
the higher degree basis. For the source term discretiza-
tion, either approach could be used, and we will exam-
ine the impact of this choice.

To discretize the source terms with a quadrature-
based approach, consider the source term for a single
biological component i:

(Si(q)ha X;, ), wk)K = (Si(q)jej, X, 1), wk)K
~ S (®0;(x), Xi, 1) wi (X)),
= Wki [Sl (CD,(’D]I, X;, [) wi],-] (12)
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where x; are the locations of the N, quadrature points
with corresponding weights w;, Wy; = wi(x;) are the
values of the test functions evaluated at the quadrature
points, and © ; = 6;(x;) are the values of the basis func-
tions evaluated at the quadrature points. To evaluate
this integral numerically, we pre-compute the matrix
W e RN»*Ns Because a reference element is used, the
corresponding Jacobians at the quadrature points J;
also need to be calculated, and these are multiplied
together with the weights (w). The integration over an
element is performed as a matrix—vector multiplication
with O(2N,Np) operations for a single biological com-
ponent. In addition, we need to consider the interpo-
lation of the values of ®; unto the quadrature points,
©;®;, resulting in an additional O(2N;Np) for each
biological component. Finally, we have to evaluate the
function describing the source terms at the quadrature
points. The quadrature-based algorithm thus has a total
of O(4N.N¢Np) + N C, operations per element, where
C; is the cost of evaluating the source terms.

Alternatively, to discretize the source terms with a
quadrature-free approach using the original basis, we
use

(S (@, %, 0, wi) o & (8" (@ X, 1) 0, wi)
= (0), wi) & S (@, x,1)
= MkjSi (CDJ', Xj, l) (13)

where x; are the locations of the Np nodal points and
we can pre-compute the element local mass matrix
My = (0, wi) g such that M € RVN»*Nr_ Note that, for
straight-sided elements, the mass matrix computed on
the reference matrix can be used and multiplied by the
element local scalar Jacobian. However, on elements
with curved boundaries, a mass matrix using the el-
ement local spatially variable Jacobian is computed.
In the quadrature-free case, we approximate the inte-
gral by essentially fitting the function S'(®, x, 1) on the
polynomial space spanned by 6. For a nodal basis, the
coefficients of the basis are the values of the source
terms evaluated at discrete points. Since these source
term values at nodal points do not depend continuously
on space, the second equality in Eq. 13 follows. This ap-
proach introduces an aliasing error since S'(®, x, £) may
contain complicated functions which are not captured
in span{6}. The operation count for this approach scales
as O2N.N,N,) + N,C,if we need to multiply through
by the mass matrix. If the number of quadrature points
are equal to the number of basis functions, N, = N,
and the cost of evaluating the source terms is small,
then the quadrature-free algorithm is two times more
efficient in terms of total operations.

@ Springer

However, we can normally eliminate the mass matrix
multiplication in front of the source term since there is
also a mass matrix in front of the % term, Mkjaai;l’ =
MiS' (@), x;, 1) — ddiil’ = §'(®;,x;,t). Note that the
mass matrix cannot be eliminated for all the terms in
the partial differential equation (PDE), for example, a
matrix will remain in front of the discretized advection
operator. However, the operation count for evaluating
the source terms of the quadrature-free algorithm re-
duces to N,C;. Therefore, from an efficiency perspec-
tive, it is desirable to use a quadrature-free algorithm.

The accuracy of the quadrature-based integration is
limited by the quadrature rule used and the number
of quadrature points N,. Choosing a greater number
of quadrature points, any desirable accuracy can be
obtained, at the cost of reduced efficiency. Conversely,
the accuracy of the quadrature-free integration is lim-
ited by the order of basis function used, and poten-
tially large errors can be introduced due to inexact
integration.

The biological source terms are the origin of non-
linear and nonhomogeneous dynamics for the whole
PDE. They can lead to high-accuracy discretization
requirements in the other terms of the PDE in both
space and time. This is discussed in the next sections
(Sections 3.2-3.4).

3.2 Spatial discretization of advection operators

Integrating the advection terms (V- (ud;), w)g by
parts and using the divergence theorem, we obtain the
weak form of the advection operator

(V- (udy), w)x = — (udy, Vw) g + 0y, - i, V),
(14)

where the formulation is complete once we specify the
value of the flux u®,. Here we use the upwind flux

. . 1 A
ud;, -n=u-nfd,) — Elul [ @Al (15)

The same quadrature versus quadrature-free discus-
sion is relevant to the advection terms. However, here
we choose to use a quadrature-based scheme to ensure
the accuracy of the advection part of the discretization.
Since we are focusing on evaluating the accuracy of
the source terms, we do not want the additional con-
sideration about the accuracy of the advection opera-
tors to complicate the discussion. Note, however, that
considerable efficiency can be gained for the advection
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terms as well if a quadrature-free scheme is employed
(Hesthaven and Warburton 2008). We then let

— (udy, Vwi) g + (ll/@ -n, Vwk>3K

~ D [(,0,) 7]

+ > Wi [(“75,-(9;-) ~ﬁ,~wf]§] (16)
ecK

where Dy; = Vwi(x;) and the superscript (.)¢ indicates
that the quantity is defined on an element interface and
u; = u,;0; is the flow-field evaluated at the quadrature
points.

3.3 Spatial discretization of diffusive operators

To discretize the diffusive operator (kV2®;, w) ., we
follow the standard practice with DG and consider the
canonical problem

—V . (kV)p = s.

Introducing the auxiliary variable q = —«V¢, this
equation is re-written as two coupled first-order
equations

V.q=s
q+«Vep =0.

Multiplying these equations by the appropriate test
functions, integrating by parts, and applying the diver-
gence theorem, we obtain the finite element formula-
tion for all K € 7,

— (qn, VW)k + (g - B, w), . = (s, w)k Yw € P(K)
(7)

(k7'qn.w) g — (@. V- V)i

n (g?h, v- ﬁ)aK -0 Vv € (P(K))* (18)

where we have multiplied by «~' so that it does not
appear as part of the flux (or interface) terms. This
formulation is complete once we specify the form of
the flux terms at the interfaces, q and én. The diffusive
fluxes for DG schemes are normally reported in the
form

an = {{qn}} — Ciill¢pnll + Ciollgy - 0]l (19)

én = f{on} — Ciz - [@nn]l — Caallgy, - 1] (20)

Biogeochemical diffusive fluxes Using explicit time
integration to solve Eq. 1, we do not need to invert a

matrix in Eq. 9, in which case we utilize the local dis-
continuous Galerkin fluxes (Cockburn and Shu 1998a)

ﬁi
2 k
although many other choices exist.

Chi=1 Cp= Cy =0, (21)

Potential flows For solving Eq. 3, a matrix inversion
is required in Eq. 10, in which case we discretize the
diffusive operators using the novel HDG method. For
the full derivation of these equations, including more
specific implementation details, refer to Cockburn et al.
(2009) and Nguyen et al. (2009). The premise of HDG is
to recognize that one can solve Eqs. 17-18 locally on an
element as long as the flux quantities are known. Within
an HDG framework, the local element unknowns are
parameterized in terms of a new variable Aj € Mf 0,
where the notation M/ (0) refers to the space M! that
is zero-valued on the boundaries of the domain. The
fluxes are expressed as

~ _|Pgp,ong]
Pn = { An, on g (22)
4n = qu + T(¢n — G, on 7, (23)

where 7 is a tune-able stabilization parameter and P
is, again, the L? projection into the space {u|yoVu €
M,’l7 }. Now, once 1, is known, Eqgs. 17-18 can be solved
efficiently on each element independently. What re-
mains is an equation for A,, which can be found by
enforcing continuity of the normal diffusive flux

<Hqﬁﬂs M)é‘h = (ng H‘)F[w (24)

Note that this is an equation with globally coupled un-
knowns. However, the number of unknowns is greatly
reduced compared to the original system, since only
unknowns on the interfaces ¢, are involved.

This solution method involves three steps:

1. The inversion of local operators on each element to
form both the right-hand-side vector and the global
matrix

2. The global solution to find A,

3. The local reconstruction of the solution on the
element

The local operations are efficient because inver-
sions are done on matrices which are of dimension
RUFON,x(U+dDN, This procedure dramatically increases
the efficiency of solving elliptic problems with DG
where implicit time integration is required. Addition-
ally, when the stabilization parameter for this choice
of fluxes is chosen optimally (r ~ O(1)), the optimal
convergence rate of O(p + 1) is obtained for both the
gradient (q) and the solution (¢; Nguyen et al. 2009).
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This allows a post-processing procedure that can pro-
duce a solution u;, which converges at O(p + 2).

Reporting the fluxes for HDG in the standard form
we have from Nguyen et al. (2009), the following

the- 1 [zn]
Ch=——- Cop==z(—"").
Ty 27 (t++t—)

Cy = (25)

3.4 Temporal discretization

Motivated by strong nonlinearities in biogeochemical
dynamics, an objective of this study is to evaluate
effects of temporal discretization errors on the accu-
racy of numerical simulations. We investigate fourth-
order, second-order, and first-order schemes in time.
Specifically, for the majority of this work, we will use
the following four-stage low-storage fourth-order accu-
rate Runge—Kutta scheme for explicit time integration

At 0D

O = D)+ — —
4 0t )

o — o) + At 0P
B 30t g

D = D(t) + AL 9P
o 2 a[ (bh

0P
O(t+ At) = D) + At —
3t | e

It is implemented in a four-stage for loop, where the
solution at the initial time ®(¢) is saved in a temporary
array and the array containing the solution is updated
using the three intermediate ®“~¢ variables.

We evaluate the temporal discretization error by
considering a second accurate explicit Runge—Kutta
scheme

o0 = o+ 20 20
- 2 ot

(1)

0o

b
da

and the first-order-accurate explicit Euler scheme

P
O(t+ At) = O(t) + At E

[old

In each case, 33;? is evaluated using the right-hand-

side spatial PDE.
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3.5 Error norm calculation

Unless indicated otherwise, the global domain L? norm

lel, = (/g ede)% is calculated using the quadrature-
based approach as described in Section 3.1. That is, the
numerical solution is interpolated unto the quadrature
points, the error e = ¢, — ¢ is evaluated, and then mul-
tiplied by the quadrature weights and summed for an
approximate integration. In some cases, we evaluate
the global error using an interpolation approach (simi-
lar to quadrature-free), and this is mentioned when we
do. In these cases, the error is evaluated at the nodal
points, then the error is interpolated to the quadrature
points, multiplied by quadrature weights, and summed.
Where ambiguous, we indicate the quadrature-based
error evaluation using ||e||(2lp (quadrature points) and the
interpolated error evaluation using [e[3¢ (nodal points).

The infinity norm |e|,, = max|e| is calculated by
evaluating the error at nodal points and taking the
maximum absolute value.

3.6 Implementation

The discretized equations were implemented for 2D tri-
angular elements. Even though our codes are efficient,
our implementation is not fully optimized, in particular,
the higher-order simulations would most benefit from
further optimization (e.g., see Lambrechts et al. 2010).
This is fine for our purposes since if we find that our
high-order implementations are more accurate for the
same cost/efficiency than lower-order schemes, then
further optimization would only accentuate this result.

The correctness of our implementation is verified
by performing convergence studies using analytical test
cases on curved and straight geometries. The imple-
mentation of each discretized operator is verified both
separately and collectively. Results of some of the con-
vergence studies are shown in Sections 4.1 and 4.2.

For the polynomial spaces restricted on each element
PP(K), a nodal basis with N, = w nodal points
is used in two dimensions and N, = (p + 1) nodal
points in one dimension. The total number of DOFs
can then be calculated by multiplying the number of
nodal points by the number of elements. The node
locations are chosen according the method described
in Hesthaven and Warburton (2008). More specifically,
we have the basis 6; such that

0;(xi) = 8;;

where x; are the nodal locations. This basis is con-
structed for the reference element [0, 0], [1, 0], [0, 1],
and an isoparametric coordinate mapping is used for
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arbitrary triangles. The isoparametric coordinate map-
ping is described through the element nodal locations
in the problem reference frame.

To integrate polynomials of degree p > 10, cuba-
ture rules (multidimensional quadrature rules) are con-
structed on triangles by using tensor products of 1D
Gauss quadrature rules. For p < 10, we use tabulated
rules from Solin et al. (2003) and Strang and Fix (1973).

In all cases, we utilize the Galerkin approach, that is,
we choose the test functions to be the same as the basis
functions, w; = 0;.

3.7 Higher-order mesh generation

Since higher-order DG schemes have more degrees of
freedom per element, a coarse mesh with large ele-
ments is required to keep a similar performance across
discretizations. To obtain an accurate solution with a
coarse, high-order discretization, it is necessary to use
curved boundary interfaces, as will be demonstrated
in Section 4.3. Here we describe our new method for
creating such a coarse, high-order curved mesh.

When curving the boundary of an element, care
needs to be taken because it is possible to create an
element where two of the interfaces cross. The left
triangular element shown in Fig. 2 has the true circular
geometry crossing one of the straight interfaces. To
avoid this situation, we need to ensure that

h < 2p(x)sin(®), (26)

where £ is the length of the element side bordering the
boundary, p(x) = % is the radius of curvature of
the boundary described by f(x), and 6 is the minimum
angle of the two angles on the edge bordering the
boundary. The element shown on the right side of Fig. 2
illustrates this limiting case for an equilateral triangle,
but our condition (26) is trivially extended to arbitrary

triangles as shown by the dashed lines.

Fig. 2 Minimum triangle angle criterion (26) demonstrated on
a circle with equilateral triangles. #; = 2p does not satisfy the
criterion, h, = 2/3p satisfies the criterion, and k3 = 2p sin(r/3)
demonstrates the limiting case. This result can be extended to
arbitrary triangles as shown by the dashed lines

Using our criteria (Eq. 26), we define the minimum
edge spacing on the boundary as /iy, = 2p sin(30°) =
p. Then, we let the minimum edge length grow linearly
by a certain percentage (fit to 12% here) away from
the boundary up to a specified minimum edge length.
Using these criteria, we create coarse base meshes,
then uniformly refine these meshes to obtain finer dis-
cretizations. To create the meshes, we primarily used
the free mesher Distmesh (Persson and Strang 2004),
but we also used Gmsh (Geuzaine and Remacle 2009).
Distmesh uses an implicit geometry representation, that
is, we define the geometry by a distance function that
gives the distance between a queried point and the
nearest boundary. Using Distmesh, we create meshes
with straight sides.

To curve the boundary interfaces, we use the same
distance function provided to Distmesh and numeri-
cally calculate the gradient of the distance function to
the boundary. The normalized gradient vector provides
the direction of translation, but to determine the magni-
tude of the translation, a weight needs to be applied to
the calculated distance. That is, p{" = p{" + Wd g5,
where d is the distance from the point p¢@ to the
boundary and W is the weight. Now, points on the
straight boundary interface are translated to the true,
curved boundary with a weight 1, and points on inte-
rior interfaces are not translated, i.e., having weights
0. Points in the volume have weights defined by the
same weighting functions used to create the nodal basis,
that is

Ween 233 2hs
e =
: 2034+ ) \ 200 4 A

where the point is defined by the barycentric coordi-
nates A; corresponding to vertices i and e; is the curved
boundary interface defined by vertices 2 and 3. For
details of this blending function, see Hesthaven and
Warburton (2008).

The base mesh with three mesh refinements is shown
in Fig. 3, and details of the base mesh for a curved
and straight mesh boundary are shown in Fig. 4. Us-
ing our criterion Ay, = p, the minimum theoretical
edge length for our geometry, that is a Gaussian bump
defined by H(x) = e‘xz, 1S Amin = 0.25. The mesh shown
in Fig. 3a has a minimum edge length of Ay, = 0.2418,
close to the theoretical value.

4 Numerical studies and scientific implications

Biogeochemical models may contain a large number
of biological or chemical components (Hofmann and
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Fig. 3 aThe base mesh (g1) with 350 elements. b First (g2) (1,400
elements). ¢ Second (g3) (5,600 elements). d Third (g4) (22,400 el-
ements) and fourth (g5) (89,600 elements) grid refinements. The

Fig. 4 Details of (gl) using a a curved and b straight mesh for a
p = 8 nodal basis
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more-refined meshes are used for lower-order schemes whereas
less-refined meshes are used for higher-order schemes such that
the cost of the two schemes are comparable

Friedrichs 2002). The simplest models often only use
nutrient, phytoplankton, and zooplankton as compo-
nents and are commonly called NPZ models. More
complicated models (Besiktepe et al. 2002) can be
adaptive and contain many components. Each com-
ponent requires the solution of an ADR equation of
the form 1. The source terms describe the commonly
nonlinear “reactions” and may lead to stationary, pe-
riodic, or chaotic dynamics. For this numerical work,
a nondimensional version of a NPZ model (Flierl and
McGillicuddy 2002) is used since it contains all charac-
teristics required for our studies:

a[jf +V x (W¢y) — V x EVqu
_ e —¢‘fPffjc* b dbh + 585,
N s
+ (1 —a)gigy (1 —e ) 27)
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Ak 1
V * gk V —V *
Py +V x (u*¢}) X P. bp
T
— g9y (1—e7%) (28)
g% 1
\V4 * gk ) v —V *
pye + V X (“ ¢Z) X P, b7
= —dy ¢ +agie (1 — 67U*¢;’) (29)
where ¢EKN’PVZ) — (p(l‘j\;’:]); M; — %, u; — Llflzl-l]" x* = %,

=% t*:%; the parameters are explained in

Table 1; the nondimensional groups with values are
given in Table 2 with P, the Peclet number and D* the
aspect ratio; the subscripts (.)y, (.\)p, (.)z refer to nu-
trients, phytoplankton, and zooplankton, respectively;
V= 3; + ;7, and lowercase z* refers to the depth
coordinate which is positive upward with z* = 0 at the
surface. Note that not all three equations (Egs. 27—
29) are required since the biological model satisfies the
following conservation law for total nutrients, assuming
a closed ocean system:

oy =1—¢p—9¢7. (30)

The first equation (Eq. 27), for example, could be
eliminated in favor of Eq. 30; however, here we still
use Eqg. 30 to check the conservation of the numerical
schemes.

The domain setup is depicted in Fig. 5 for the
geometric parameter values given in Table 2. With
this setup, an upwelling of nutrients is created (see

Table 1 NPZ equation parameter descriptions and units

Parameter Description Units

u Phytoplankton uptake rate 1/day

ks Saturation concentration umol/L
of phytoplankton

dp Mortality rate of phytoplankton 1/day

dz Mortality rate of zooplankton 1/day

g Grazing rate of zooplankton L/(umol day

a Assimilation (efficiency) rate

h e-folding depth for light m
(photosynthesis)

v Parameter for Ivlev form L/pmol
of grazing function

N7 Total biomass umol/L

u Average inlet velocity km/day

H Height of bathymetry m

D Total maximum depth m

L Effective width of bathymetry km

K Diffusion tensor (vertical and m?/s

horizontal diffusion different)

Table 2 Values of the Parameter Value

dimensionless numbers " =

entering the NPZ equations ur=ur 75

(Eq. 29) that are used in the k* = ks [l l Li|

examples for this manuscript YNt 30° 50" 100
dp =dpt 0.2

dy =dzt 1
+ 87 12,5
v
a*=a 04
h
h* = ¥ 0.34
*®
Bracketed triplets of values Y= 'Al—{iv [03.0.5.1]
correspond to the three bio Pe=— 00
cases [1, 2, 3]. The other 'Z)
values are the same for the D* = i 2

three cases

Section 4.4), and the study of idealized biological
blooms, which may occur in straits or sills, can be stud-
ied. In total, we consider three sets of parameter values,
differing by the nondimensional parameters v* and k.
In the absence of advection and diffusion, they lead to
Eq. 29 with at most one physically relevant steady-state
solution (Burton 2009). The three sets of nondimen-
sional parameters v* and k} correspond to biological
dynamics with single stable points at all depths (bio
case 1: k¥ = 1/30, v* = 0.3), with stable limit cycles for
depths around z* = 0.4 — 0.9 and single stable points
elsewhere (bio case 2: k¥ = 1/50, v* = 0.5) and stable
limit cycles everywhere in the euphotic zone (bio case
3: k¥ =1/100, v* = 0.1). The middle parameter values,
bio case 2, correspond to those values used by Flierl and
McGillicuddy (2002): They are idealized and not meant
to represent a specific ocean region. We note that bi-
ological models with discontinuities in stable solutions
are not always representative of nature. However, biol-
ogy of interest is likely to have intrinsic oscillatory or
chaotic time dependence, e.g., Flier]l and McGillicuddy
(2002). For our purposes, we address these issues by
considering three sets of parameter values and so cover
a range of biological dynamics. To handle nonphysi-
cal negative concentrations due to numerics, we use

—>

Inlet Outlet

cl
o

Fig. 5 Test case domain with idealized strait bottom geometry

described by H(x) = He 12
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max(0, ¢y p z,) when evaluating the source terms. In
the absence of advection, a timescale of T = 1[days] is
used, while in the presence of advection, the advective
timescale T, = L/u is used, where u = f[nlet |uldz is the
average inlet velocity.

In our numerical study, we need to characterize the
three dynamical regimes and their behavior since these
properties affect numerical errors. Specifically, for each
dynamical regime, we study the three limiting balances
of terms in Eqs. 27-29: biological terms dominating,
advection terms dominating, and advection and biolog-
ical terms balancing. When biological terms dominate,
the advection is slow, and the problem reduces to a
1D problem, studied in Section 4.1. When advection is
fast, the biology is unimportant, and we study this case
in Section 4.3, with the generated flowfield studied in
Section 4.2. Finally, the case where the advection and
biological terms are approximately balanced is studied
in Section 4.4, with the effect of biological patches
demonstrated in Section 4.5. Since the timescale of
biology varies in depth, the advection and biological
terms can only be exactly balanced for one depth. While
this results in many choices of approximately balanced
terms, we will focus on one parameter set where 7, =
12.5 days. For more details on biological dynamics in
straits, we refer to Burton (2009). Finally, capabilities
of numerical filtering for higher-order schemes are ex-
amined in Section 4.6.

Results in this section will be reported for various
grid and polynomial degree combinations, and the no-
tation (grid number, polynomial degree) is used to
denote this information. For example, (g2, p4) refers
to the second grid (Fig. 3b) with a fourth degree basis
function. We provide a table with the number of DOFs
and computational time estimates for the test cases we
completed Table 3. In what follows, we show the results
of (g1, p6) and (g2, pS) for our high-order simulations
and compare them to (g4, p1). Normalizing by the av-

erage computational time of (g4, p1), these simulations
have relative computational times of 0.34, 1, and 1.2
for (gl, p6), (g4, pl), and (g2, p5), respectively (see
Table 3). Following the discussion in Sections 2.3 and
3.6, we note that, in terms of efficiency, (g4, pl) and
(g2, p5) are comparable (in fact, (g2, p5) would be
cheaper if fully optimized, see Section 3.6). (g1, p6)
is included because it is comparable in accuracy to
(g4, pl) and it highlights the effect of under-resolution
(here g1) when using higher-order schemes (here p6).

4.1 1D biogeochemical source terms studies

In this section, we first illustrate the convergence of our
numerical implementation. Following this, we examine
the numerical behavior of the biological source terms
using three tests: perturbations of steady states, vertical
resolution, and high-order bases.

Numerical convergence in space and time Since an
analytical solution to Eq. 29 does not exist, we ver-
ify the spatial implementation of the quadrature-
free and quadrature-based source terms using the
analytical test problem % —2";27? = S(z,t) on Qe
[—100, 0] integrating until t = /200, with solution ¢ =
sin(f) cos?(r/50z) (for an appropriately chosen S(z, ).
We use a sufficiently small timestep, such that the
errors are dominated by the spatial discretization. The
results are shown in Table 4, with the norm of the error
e = ¢ — ¢ calculated as described in Section 3.5. From
Table 4, we note that our implementation converges at
the optimal rates for both the quadrature-based and
quadrature-free treatments. While the error numbers
are for a special case and not those for Eqs. 27-29,
they show that the solution using quadratures is more
accurate than the solution without quadratures, and this
result will be generally expected.

Table 3 Normalized

- Degree Grid 1 Grid 2 Grid 3 Grid 4 Grid 5
run-times and DOFs for .
. . . of basis
various grids/polynomial
degree basis functions, for the 1 0.0014 0.014 0.12 1.0 8.2
simulations in Section 4.4 (1,050) (4,200) (16,800) (67,200) (268,800)
2 0.007 0.057 0.51 42
(2,100) (8,400) (33,600) (134,400)
3 0.026 0.21 1.8
(3,500) (14,000) (56,000)
4 0.062 0.51 4.1
(5,250) (21,000) (84,000)
The ti lized b 0.15 1.2
e times are normalized by
the (g4, p1) run-time, and (7,350) (29,400)
- 6 0.34 31
numbers in parentheses are
the DOFs (9,800) (39,200)
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Table 4 Spatial convergence of 1D DG solver used to evaluate the source terms using N;, elements
Degree Ny =10 Ny =20
llell> Order llell> Order
Quadrature-based p=1 5.550e—003 1.9 1.409¢—003 2.0
p=2 5.901e—004 29 7.491e—005 3.0
p=3 4.690e—005 39 3.019e—006 4.0
p=4 2.976e—006 4.9 9.673e—008 49
Quadrature-free p=1 1.340e—002 1.9 3.435e—003 2.0
p=2 1.068e—003 29 1.332e—004 3.0
p=3 7.464e—005 39 4.724e—006 4.0
p=4 4.282e—006 5.0 1.274e—007 5.1

The L2 norm (see Section 3.5) of the error, e = ¢, — ¢, is smaller for the quadrature-based scheme, but the order of convergence is the
same for both. Order of convergence is computed in a standard way, e.g., Chapra and Canale (2006)

We verify the implementation of the fourth-order
low-storage Runge—Kutta time integrator using the or-
dinary differential equation 30—"; =¢ on Q € [-100, 0]
integrating up to a time ¢ = 1, with solution ¢ = ¢ge’.
Here we choose ¢y = 1, such that the spatial discretiza-
tion does not affect the error. The results are given
in Table 5, from which we note that our implementa-
tion converges at the optimal rate for this low-storage
Runge—Kutta scheme. While this test corresponds to
exponential biological growth, as above, the error val-
ues are of course not those that would occur for

Egs. 27-29.

Perturbations of steady states The purpose of these
studies is to examine how the biological dynamics
behave as a result of perturbations away from the
steady state. Perturbations will arise due to the forcing
and dynamics and due to numerical reasons in the
more complicated tests in Section 4.4, and it is impor-
tant to understand how these perturbations will affect
the biological dynamics. All three different biological
regimes were examined in these perturbation tests. We
focus on the behavior of the 1D dynamics for the
time interval * = [0, 250] because this corresponds to
the residence time of the biology for the dynamics in
Section 4.4. We initialize all tests using a perturbed or
unperturbed exact steady state, which can be found by
setting &2 + V. (w*®*) — V. 3-VO* =0 in Egs. 27-
29. The steady-state solution is perturbed by setting
(DZ*P,Z)permrb =(1+ y)@fp’z)swady, where y is some con-
stant, and using Eq. 30. Where required, we impose

*
q)( P, Z)steady

¢y + ¢p < 1, by setting ®Tp 7)ot = G rgngeg - LIS
initialization is done numerically by setting the value of
the numerical solution equal to the calculated solution
at the nodal points.

First we ensure that the exact steady-state solution
can be maintained, and then we initialize with a pertur-
bation from the exact steady state, and the results are
reported in Table 6. For these runs we used 100, second-
order accurate linear elements (p = 1), which roughly
corresponds to the resolution at the inlet for (g5, p1).
We find that the steady solution can be maintained for
all cases up to machine precision for the quadrature-
free implementation when evaluating the error at the
nodal points. This is because we initialized the numeri-
cal simulation using the exactly calculated steady state
at the nodal points. Note that the quadrature-based
scheme has a smaller difference than the quadrature-
free version when evaluating the error at the quadra-
ture points, except for the case with stable limit cycles in
the euphotic zone (bio case 3). Because the quadrature
version evaluates the source term at the quadrature
points and the interpolation of the solution onto the
quadrature points is not exactly at the analytical steady
state, the source terms are nonzero, and the solution
evolves. If the source-terms were polynomials of lower
degree than the basis in the z direction, this would not
happen.

Finally, Table 6 gives a rough description of the
dynamical properties of the equations. Here the norm
of the initial difference, | D;||,, should be compared to
the norm of the final difference at quadrature points

Table 5 Temporal convergence of 1D DG solver using NV, timesteps (different values of N; given only to show that the order does not

vary with N; but the absolute error of course changes)

Integration N; =16 Ny =32 N; =64
scheme llell2 Order llell2 Order llell2 Order
RK4 5.683e—006 3.9 3.646e—007 4.0 2.308e—008 4.0

Order is computed using Chapra and Canale (2006)
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Table 6 Difference between analytical steady-state solution, and perturbed solution at r* = 250

Stability y x 100% 1 Dil3F I D3 1Dy 118° | Dyl | Dy |5 | Dy 3
Single stable points 0 0.361 0.000 0.296 0.361 0.117 0.000
0.05 0.361 0.014 0.296 0.361 0.117 0.002
0.50 0.377 0.126 0.295 0.363 0.122 0.015
5.00 0.906 0.860 0.318 0.402 0.208 0.141
Stable limit cycles at 0 0.364 0.000 0.352 0.364 0.015 0.000
bottom of euphotic zone 0.05 0.366 0.017 0.353 0.365 0.019 0.011
0.50 0.410 0.169 0.377 0.387 0.116 0.112
5.00 1.360 1.29 1.01 0.974 0.945 0.915
Stable limit cycles in whole 0 0.109 0.000 0.112 0.109 0.038 0.000
euphotic zone 0.05 0.111 0.021 0.637 0.517 0.736 0.619
0.50 0.234 0.205 1.40 1.20 1.51 1.36
5.00 1.880 1.88 2.39 217 2.51 2.37

Here D = 2=%0 « 100% is the percent error per area in the domain. The column | D;|, gives the initial difference, D, indicates using

Jo 1dQ

quadratures, Dy indicates quadrature-free, ||.||gp indicates the error evaluated at quadrature points, H.Ilfzld indicates the error evaluated

at nodal points

for the quadrature-based treatment and at the nodal
points for the quadrature-free implementation. For the
case with single stable points (bio case 1), the initial
difference of the perturbed solution to the analytical
steady state is greater than the final difference, which
indicates that the solution is approaching the calculated
steady-state value. For the case with stable limit cycles
in the euphotic zone (bio case 3), the final difference
is greater than the initial perturbed difference, showing
the solution is logically not approaching the steady state
but instead spiraling outward toward the stable limit
cycles present at each depth. Additionally, plotting the
solution (Fig. 6) profile for the largest perturbation, we
can see that the perturbed solution tends toward the
steady state for the entire column for bio case 1, only
for the top part of the water column for bio case 2
and nowhere for bio case 3. Thus, the parameter set
with limit cycles in the euphotic zone (bio case 3) has
the most structure in the vertical and will require the
most resolution to model accurately. Also, numerical
perturbations will be most important for bio case 3
because the differences will grow away from the calcu-
lated steady state, as opposed to decaying.

Vertical resolution By varying the resolution of the
problem, we found that a minimum of 25 degrees of
freedom were necessary to roughly capture the vertical
structure of the biological model dynamics at the final
time. For the tests in Section 4.4, (g1, p6) has approxi-
mately 21 degrees of freedom, indicating that it will be
under-resolved.

High-order bases We find that the quadrature-based
treatment of the source terms results in large jumps
of the solution between elements. This is illustrated in
Fig. 7 after 500 time units of integration using a 15th
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degree polynomial and three elements. The problem
is amplified when using a uniform nodal spacing, due
to a larger interpolation error. Also, increasing the
number of quadrature points used for integration did
not solve this problem. The problem originates from
the discontinuous jump in the solution, causing oscil-
lations known as Gibbs phenomena. Note that both
simulations are initialized in the same manner, but the
Gibbs oscillations can only be “seen” when evaluating
the initial condition at points other than the nodes. The
quadrature-based integration, then, “sees” these oscil-
lations because the source terms are evaluated at the
quadrature points. Using the quadrature-free approach
for this 1D problem essentially decouples the vertical
nodes, so numerically, the quadrature-free version does
not “see” the oscillations. The Gibbs oscillations would
have occurred in the quadrature-free scheme if the
initialization was done at the quadrature points instead.
This example illustrates one of the drawbacks of using
increasingly higher-order schemes, that is, without spe-
cial treatment, large oscillations occur for nonsmooth
functions. Using lower order but on a finer discretiza-
tion (more elements) can be a better strategy if special
treatment is not used. This issue is further addressed in
Sections 4.4 and 4.6.

In this section, we showed that, with our implemen-
tation, both the quadrature-based and quadrature-free
treatment of the source terms give accurate, convergent
results (see Table 4), although the absolute error of
the quadrature-based implementation is smaller than
the quadrature-free implementation. Then we showed
that the analytical steady-state solution could be main-
tained and illustrated the dynamical behavior of three
different biological parameter sets through perturba-
tions of the steady-state solutions. With the vertical
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resolution tests, we found a minimum of 25 degrees of
freedom necessary to roughly capture the vertical solu-
tion features of our particular setup. Finally, we showed
that oscillations can occur solely due to numerics for a
high-order discretization. While the quadrature-based
algorithm was shown to be more accurate, the oscil-
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Fig. 6 Solution profiles at all depths with y =5%. Magenta
crosses show the analytical steady-state solution, the thick black
dashed lines show the initial condition, green circles show the
profile at t* = 250, and thin blue lines show the profile at t* = 125.
Plotted for biological dynamics with a single stable points at all
depths, b stable limit cycles at bottom of euphotic zone, and
¢ stable limit cycles in entire euphotic zone. The quadrature-
based solution is plotted at the quadrature points, whereas the
quadrature-free solution is plotted at the nodal points
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Fig. 7 Solution profiles for all depths at * = 500 using a 15th
degree polynomial and three elements with y = 5% for dynamics
with stable limit cycles at the bottom of the euphotic zone. As
in Fig. 6, the magenta crosses show the analytical steady-state
solution, thick black dashed lines show the initial condition, green
circles show the profile at * = 250, and thin blue lines give the
profile at * = 125. The solution is plotted at the quadrature
points for the quadrature version, and at the nodal points for
the quadrature-free (i.e., where the source terms are evaluated).
a Uses well-behaved (Gauss-Lobatto) nodal points, b uses uni-
form nodal points

lations at element interfaces and the added numerical
cost need to be considered. The additional accuracy
may be warranted when a bifurcation of the solution
could occur, or when the solution is under-resolved. As
a whole, a key result is that, for any numerical scheme,
careful numerical studies should be performed in one
dimension to understand the potential errors arising
from the nonlinear source term discretization before
proceeding with advective models.

4.2 Flow field convergence
A potential flow-field is calculated by solving Eq. 3 us-

ing HDG as described in Section 3.3. Once v is found,
we take u = [y, —y,]. The value of v is specified
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on all boundaries. The top and bottom boundaries
are specified as constants ¥ = yrop and ¥ = Yy The
inlet and outlet stream functions are specified to vary
linearly in z*, i.e., ¥ = Yiop + 2% (Ybor — Yiop)/ D*. For
the advection-dominating cases in Section 4.3, periodic
boundaries are used, in which case the values of
are equal at the inlet and outlet, with no need for
boundary conditions. A flowfield specific to the grid
and polynomial degree is used for all simulations.

We perform a convergence study on steady
flowfields to verify that we are indeed obtaining
near-optimal O(p + 1) convergence (Cockburn et al.
2009; Nguyen et al. 2009), for the gradients of ¥ used
for the flowfield u. To evaluate the convergence,
reference solutions using (g5, p2) and (g2, p8) are
calculated, both giving similar results. The error was
evaluated by considering the point-wise solution at
all interior vertices of grid 1. That is, the solution was
averaged across all element-local solutions touching
the vertex and compared to the reference solutions.
The point-wise error calculated using (g2, p8) as
the true solution is plotted in Fig. 8 for multiple
grids and polynomial bases. Using this point-wise
error calculation, we obtained near-optimal rate of
convergence. When the domain boundary nodes are
included, nonoptimal (smaller and larger) rates of
convergence were found for p > 1. This may be due
to variations in the discretizations of the domain
boundary for the different grids/polynomial bases.
Similarly, when the |.|, or |.|~ norms are considered,
we find near-optimal convergence for p = 1, but not

~—P=1
P22
----P=3

P=4
——P=5
—~—P=6

i Optimal
10 8 1 L p
1 2 3 4

Grid number

Fig. 8 Illustrating the convergence of the flow-field error. The
point-wise error calculated using (g2, p8) as the true solution for
multiple grids and polynomial bases. Note that HDG gives near-
optimal convergence for the derivative quantities u = [{;, —]
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for p > 1. When the domain boundary is not curved,
the flowfields with p > 1 have both the same rate of
convergence and error magnitude as p = 1 using any
of the error metrics mentioned. This shows that curved
boundaries are essential for an accurate high-order
solution. Also, by using HDG, we have a velocity
field defined on the same grid with the same order of
accuracy as our complete solution scheme for the ADR
equations.

Therefore, by using HDG with boundary-curved el-
ements we obtain an accurate, high-order convergent
potential flowfield for our geometry.

4.3 Tracer advection over bump test case results

We study tracer advection without source terms to
evaluate the behavior of our numerical scheme when
advection dominates. We do not illustrate here the
convergence of the resolution (our results as shown in
Sections 4.1 and 4.2). Instead we focus on numerical
advection artifacts that may affect the behavior of the
biology. We examine three cases: a uniform tracer, a
tracer with a discontinuous jump in the vertical, and
a tracer with a discontinuous jump in the horizontal
and a linear horizontal gradient. The first case exam-
ines the divergence of the flowfield. The second case
examines the behavior of the scheme in the presence
of a horizontal jump, which occurs at the edge of the
euphotic zone for our choices of parameters. Note that
because we initialize by setting the numerical initial
condition at the nodes equal to an analytical initial con-
dition with a jump and the jump does not necessarily
occur at element boundaries, the assigned numerical
initial condition contains oscillations. The number of
oscillations increases with the polynomial degree but is
present at all orders. Also, the straightness of the inter-
face is affected by the grid resolution. The third case
examines the behavior of the scheme in the presence
of a horizontal jump and horizontal gradient, which is a
numerical test for frontal dynamics. Unlike the second
case, the assigned initial condition for the third case
does not contain oscillations because the jump occurs
at element boundaries. All cases evolve in a periodic
domain. In all cases, the flow is left to right, and the
duration of the simulation is determined by the time
the mean inlet velocity would take to travel through
the domain. One of the objectives of these tests is to
compare schemes at the same overall cost, for example,
a lower-order scheme is used on a higher-resolution
grid.

The results for the reference solution, (gl, p5);
low-order solution, (g4, p1); and high-order solutions,
(g2, p5) and (g1, p6) on curved meshes, are shown in
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Fig. 9. In the top plot (case 1), we find that oscil-
lations exceeding 10~* are less localized for the low-
order schemes than for the high-order schemes. From
the middle and bottom plots (cases 2-3), we see that
the higher-order schemes have larger magnitude oscil-
lations around the jumps (as expected from the ini-
tialization). However, the sharpness of the interfaces
are comparable between (g1, p5) and (g2, p5) and also
between (g4, pl) and (g1, p6). Running a lower-order
case (g3, pl) with 16,800 DOFs (not shown) resulted
in a much more diffuse solution compared to (g1, p6),
even though (g1, p6) is as under-resolved. The higher-
order discretization with fewer degrees of freedom is
therefore less numerically dissipative, illustrating one
of the advantages of a high-order scheme.

The locations where the solution is outside of the
intervals [0.9999, 1.0001], [0, 1], and [—2, 3] for cases
1, 2, and 3, respectively, are plotted in Fig. 10. From

a) Op

*

Fig. 9 Solution of three passive tracer cases, on a (g5, pl) with
268,800 DOFs, b (g4, pl) with 67,200 DOFs, ¢ (g2, pS) with
29,400 DOFs, and d (g1, p6) with 9,800 DOFs with curved bound-
aries. Top plots show advection of a constant tracer, middle

this figure, we see that the smallest magnitude and
most localized errors for case 1 happen with high-order
schemes using curved boundaries. The largest magni-
tude errors occur for high-order schemes using straight
boundaries, and the least localized errors occur for
low-order schemes. From case 2, we see that for both
high- and low-order schemes, the initial oscillations do
not remain close to the jump but spread through the
domain, although the amplitude of the radiated oscilla-
tions are at least an order of magnitude smaller than
the initialized oscillations. In case 3, we see that the
high- and low-order schemes have similar performance,
both developing numerical oscillations with the same
order of magnitude around the jump. The absolute
magnitude of the oscillations is approximately half the
size with low order compared to high order and can be
explained by the greater number of degrees of freedom
with the low-order case. From these plots, we note that

1.0001

is advection of tracer with vertical jump, and bottom is advec-
tion with a horizontal jump and horizontal gradient. Note that
b (g4, pl) and ¢ (g2, p5) have similar costs while d (g1, p6) is
much cheaper and under-resolved (see Table 3 for costs)
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Fig. 10 Field values outside initially specified fields with
a (g5, pl), b (g4, pl), ¢ (g2, p5) on curved mesh, d (g1, p6)
on curved mesh, e (g2, p5) on straight mesh, and f (g1, p6) on
straight mesh. For each case (a—e), the fop plot shows advection
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of a constant tracer with interval [0.9999, 1.0001], middle is advec-
tion of tracer with vertical jump and interval [0, 1], and bottom is
advection with a horizontal gradient and horizontal jump with
interval [—2, 3]
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the magnitude of the oscillations are within 20% of the
solution, and this could have a significant effect on the
biology. This illustrates that discontinuous or highly
nonsmooth functions caused by physics or biology are
problematic. In the context of this work, the jump will
be smoother for the test cases in Section 4.4 where we
examine the case for approximately balanced advection
and biological source terms. Alternatively, a shock-
capturing (see, for example, Hoteit et al. 2004; Persson
and Peraire 2006; Krivodonova 2007), filtering (for ex-
ample, Hesthaven and Kirby 2008), or postprocessing
technique could be used to handle the discontinuity
(see, for example, Cockburn et al. 2003; Qiu and Shu
2005). In Section 4.6, we illustrate how a filtering ap-
proach can be used to damp oscillations for high-order
schemes. Note that special treatment is required for
both high- and low-order schemes, with a slope-limiting
procedure more often used for the latter.

We note that the large oscillations in case 1 for
the high-order scheme happen only down-stream from
the peak. This is because we do not ensure that the
definition for the discrete divergence is the same in
the equations calculating the potential flow field and
the tracer/biological ADR equations (see, for example,
Dawson et al. 2004). Therefore, we expect to see dis-
cretization errors appearing in the ADR discrete diver-
gence operator, which are advected downstream. Ex-
amining the normalized discrete divergence as defined
in the ADR equations, (%), of curved and straight
meshes with (g1, p6) and (g4, p1), we found that the
largest divergence errors occurs for the higher-order
scheme on the straight mesh. The normalized diver-
gence, in this case, was of O(1) near the peak, and
Vu

Tl | ~ (.56 for the domain. The normalized diver-

gence for the low-order and high-order curved schemes
were of O(1072) near the peak, with the maximum error
for the low-order scheme approximately half the size
of the high-order scheme. However, the error for the
high-order scheme was more localized, resulting in a

, ~ 0.044, than that

lower volume-averaged error H %

of the low-order scheme which was H % H2 ~ 0.11. This
reveals that it is important to use a curved mesh for
higher-order schemes: The resultant flow field is then
less numerically divergent than a flow field solved with
a low-order finely resolved scheme. Without using a
curved mesh, the divergence can be of the same order
as the velocity near the geometry, which may excite
nonphysical biological dynamics downstream of the
peak. In our case (in Section 4.4), the peak was beneath
the euphotic zone and thus using a straight boundary
representation would not cause problems; however, in

the general case, this result cannot be overlooked. Of
course, our advection scheme is conservative, but to
also be constancy preserving, the numerical flow field
needs to be discretely divergence-free.

Since the (gl, p6) simulations took less computa-
tional time than (g4, p1) and because the (g2, p5) simu-
lation had a sharper interface, these results suggest that
higher-order schemes performs better than the lower-
order schemes for the advection dominated case, as
long as curved boundaries are used.

4.4 Full NPZ equations

In this section, we explore the case where the ad-
vection and biological source terms are approximately
balanced. We examine effects of low-order and high-
order temporal discretizations in Section 4.4.1. In
Section 4.4.2, we illustrate the difference between using
a quadrature-based and quadrature-free scheme to dis-
cretize the nonlinear biological source terms. Finally,
in Section 4.4.3, we study effects of spatial resolution,
through both grid resolution and polynomial degree.

We still study the three biological parameter sets:
single stable points, stable limit cycles at the bottom of
the euphotic zone, and stable limit cycles for the entire
euphotic zone, as given in Table 2. Since the timescale
of biology varies in depth, the advection and biological
source terms can only be balanced for one depth. While
this results in many choices of approximately balanced
parameter sets, we focus on one where 7, = 12.5 days.
For these tests, the inlet is specified as the steady-state
solution with a smoothed discontinuity. The disconti-
nuity is smoothed by fitting it with a cubic polynomial
which can be resolved on (g1, p6). The fit is biased such
that 3/4 of the polynomial is below the euphotic zone.
For the outlet boundary, we use % = 0. Also these
results are compared to a (g5, p1) simulation, which is
taken as the true solution.

The final solution fields for the three different
regimes of biological dynamics (from Table 2) and
using quadrature-based source terms for (g5, pl) (the
reference solution) is plotted in Fig. 11. The results
show that idealized strait bathymetry effectively per-
turbs the biology away from the inlet conditions. The
case with single stable points (bio case 1) adjusts back
to the stable equilibrium, whereas the two cases with
limit cycles show complex structures in the vertical.
In all cases, a phytoplankton bloom over the bump is

observed.
To qualitatively evaluate the effect of refining the

grid or polynomial degree, we show the solution field
for phytoplankton for (g3, pl), (g3, p2), (g4, pl), and
(g4, p2) in Fig. 12, and these discretizations have
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Fig. 11 Biological dynamics at r* =20 (with 7, = 12.5 days)
using (g5, pl). Biolocial dynamics with a single stable points,
b stable limit cycles for depths z* = 0.4-0.9, and ¢ stable limit

16,800, 33,600, 67,200, and 134,400 DOFs, respectively.
This figure shows that the solution is converging with
increased resolution. More quantitative comparisons
are completed next.

4.4.1 Comparing low-order and high-order
temporal discretizations

We compare the solutions using fourth-order Runge—
Kutta, second-order Runge—Kutta, and first-order Ex-
plicit Euler on (g2, p4) for the biology with stable limit
cycles in the euphotic zone (bio case 3). The differences
of the lower-order schemes compared to fourth-order
Runge-Kutta at * =40 is plotted in Fig. 13 for the
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Zooplankton

0.5

:
:

cycles in whole euphotic zone. This is the reference solution
against which all other solutions are compared

phytoplankton field. Note that the timestep size for the
first-order scheme is half of the second-order scheme,
such that the cost of the two are the same. For this test
case, we used periodic boundary conditions. From the
figure, we note that the major differences occur within
the euphotic zone. The stable explicit timestep for the
second-order scheme is set by the Courant condition
for the advection discretization, and since the largest
velocity occurs in the smallest element for this dis-
cretization, the timestep size is approximately four or-
ders of magnitude smaller than the biological timescale.
Therefore, it is expected that temporal errors in the
source term should be small even for the low-order
scheme. Nonetheless, we still observe differences be-
tween the first-, second-, and fourth-order schemes. We
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Fig. 12 Phytoplankton fields at time ¢* =20 (with 7, =
12.5 days), as computed using four different spatial resolutions
and order of the FE scheme: a (g3, p1), (16,800 DOFs) b (g3, p2)
(33,600 DOFs), ¢ (g4, p1) (67,200 DOFs), and d (g4, p2) (134,400
DOFs). All fields are for biological dynamics with stable limit
cycles in the euphotic zone (bio case 3 in Table 2)

found that the difference at * = 40 is approximately
two orders of magnitude larger than at * = 20, which
indicates that the errors are growing quickly. For the
first-order scheme, the maximum error is of O(1) att* =
40. This suggests that a low-order time discretization
may result in significant errors when long integration
times or fast biological timescales are involved. For
example, the latter occurs in coastal applications. As
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4

b) 0. I— 1x10
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Fig. 13 Temporal discretization differences for phytoplankton
field with stable limit cycles in euphotic zone at t* = 40 using pe-
riodic boundary conditions and on spatial grid (g4, p2). a “First-
order Euler” minus “fourth-order Runge—Kutta” and b “second-
order Runge—Kutta” minus “fourth-order Runge-Kutta”

another example, for stiff biogeochemical source terms,
Burchard et al. (2005) found that even fourth Runge-
Kutta integration is insufficient to maintain the nonneg-
ativity of the biological components. They suggest that
positivity preserving Patankar—-Runge—Kutta schemes
should be used to obtain a nonnegative, conservative
solution.

4.4.2 Comparing quadrature-based and quadrature-free
source terms

In Section 4.1, we found that the greatest difference be-
tween the quadrature and quadrature-free treatment of
the source terms occurred for the biological parameter
set with stable limit cycles in the euphotic zone (i.e.,
bio case 3). Here we examine this case for full ADR
dynamics using the (g1, p6) discretization. Note that
we obtained the same results and conclusions with the
(g4, pl) and (g5, p2) discretizations (not shown). Plot-
ting the difference (quadrature-free minus quadrature-
based) of the solution in Fig. 14 for (g1, p6), we see
that the largest differences occur near the outlet of
the domain where the mesh solution is under-resolved.
The quadrature-based solution is more accurate in the
under-resolved region because the source-term integral
is more accurately evaluated, and this was verified
by comparing the errors of the two schemes. How-
ever, where the solution is sufficiently resolved, the
quadrature-free and quadrature-based treatments of

a)o
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“N-1
Bk 6 & B 10 0
) g N—F
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) . - Mo2
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Fig. 14 Zooplankton fields at * = 20 computed using (g1, p6)
and a quadrature-based source terms and b quadrature-free
source terms. ¢ The difference between the quadrature-free and
quadrature-based source-term simulations. The biological dy-
namics used has stable limit cycles within the euphotic zone (bio
case 3)
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the source terms have similar accuracy, that is, they
differ by approximately 0.1%. From the 1D studies,
we found that the quadrature-free algorithm was less
oscillatory at element interfaces than the quadrature-
based algorithm, and we observed the same effect in
these 2D simulations for p > 7 on gl, although the
difference between quadrature-free and quadrature-
based was less drastic. The largest differences between
the quadrature-based and quadrature-free schemes did
occur at element boundaries, and the quadrature-based
algorithm was more accurate when under-resolved.

Using Eq. 30, we verify the conservation of the
scheme. The results for the quadrature-free and
quadrature-based source terms were similar up to
floating point precision. Also, we find that the con-
servation error is dominated by the flow field diver-
gence error. Therefore, the conservation properties
of the source term discretization does not affect the
choice between quadrature-free and quadrature-based
algorithms.

Because the quadrature-free and quadrature-based
algorithms had similar accuracy in well-resolved re-
gions, we recommend using the quadrature-free treat-
ment in these regions because of the improved
efficiency. However, when the solution is poorly re-
solved, the quadrature-based treatment of the source
terms is more accurate. Now, depending on the to-
tal solution cost of a particular numerical scheme, a
finer resolution quadrature-free scheme may be more
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Fig. 15 Difference between zooplankton fields at r* =20
(with 7, = 12.5 days) computed using (g5, pl) and a (g4, pl),
b (g2, p5), and ¢ (g1, p6). This shows the locations of the larg-
est numerical errors for the high-order and low-order schemes.
The biological dynamics used have single stable points at all
depths (bio case 1)
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efficient for the same accuracy than a quadrature-based
scheme.

4.4.3 Comparing low-order and high-order spatial
discretizations

Figure 15 shows the differences between the reference
solution and the solutions using other grids and poly-
nomial degrees in Fig. 15 for zooplankton. We see that
the (g2, p5) simulation has the smallest differences and
is therefore the most accurate. This is a key result
since it indicates that when the solution is resolved, for
the same cost/efficiency, a higher-order scheme on a
coarser grid performs better than a lower-order scheme
on a finer grid. Results for the biological dynamics with
limit cycles at the bottom of the euphotic zone (bio case
2) are similar, but for the biology with limit cycles in the
entire euphotic zone (bio case 3), both high- and low-
order schemes are under-resolved for x* > 7, especially
for the (g1, p6) scheme. The differences between a fine
grid solution (g5, p1) and the low-order and high-order
schemes are plotted in Fig. 16 for zooplankton. From
Fig. 16, we note that the errors in the low-order scheme
are more localized in the x* > 7 region. However, the
differences for (g4, pl) and (g2, p5) are similar in the
x* > 7 region. The (g1, p6) scheme has the least local-
ized and largest magnitude errors in the x* > 7 region.
However, as plotted in Fig. 17 where the solution is
smooth and the biology has less structure in the vertical,
both the high-order schemes are more accurate than the
low-order scheme. Particularly, note the solution near
the surface for x* < 7 in Fig. 17.
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Fig. 16 As Fig. 15, but for the biological dynamics with stable
limit cycles within the euphotic zone (bio case 3)
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Fig. 17 As Fig. 16, but zoomed in the region above the bathym-
etry. The difference between zooplankton fields using (g5, p1)
and a (g4, pl1),b (g2, p5), and ¢ (g1, p6)

We examine the error characteristics of these
fields more closely by considering the truncated
Taylor expansions of the true solution. By the
mean value theorem, the truncation error for

(g4, pD) is &

point x,, and for (g2, p5) and (gl, p6) these terms

6 7
are %7! (;’—x + ;—y) #(x;) and ’;—Z (% + %) #(x;) for
unknown points X, and X¢, where A is the characteristic
discretization length of an element. Now, we can
examine the approximate truncation error by running
simulations (g4, p2), (g2, p6), and (gl, p7) and
evaluating the highest-order nonzero derivatives of the
approximate solution ¢;. To evaluate the derivatives,
we interpolate the solution onto an orthogonal modal
polynomial basis, that is, we find the coefficients a;;
such that ¢, = ), ¢ = Zij a;j Pij, where Pj; is a modal
orthogonal polynomial with maximum degree of i on
x and j on y, for a maximum total degree of i+ j.

2
(%4—%) ¢(x,) for some unknown

2
The derivatives then evaluate as 5, (8% + %) bn(x,) =

6
1 d ) _ ..
Yt g (ﬁ + B_y> Pn(Xe) =D iy jgai  and

7
1 (Bix + Biy) on(Xe) = >, i_;a;j, that is, we simply
need to sum the coefficients of the modal orthogonal
polynomial basis which correspond to terms with total
degree of 2, 6, and 7, respectively. Since the coefficients
of the polynomials are evaluated on the reference
element, & ~ 1 will be the same for all elements. Also,
while this approach gives an estimate of the leading
order truncated term, it does not give an exact value.
In our case, we are not interested in a rigorous error
estimator, but instead we only require an estimate of
the error to aid the discussion.

Our approach is similar to that followed by Mavriplis
(1989), where Legendre polynomials were used instead.
The author proposed a smoothness estimator, where
the coefficients g;; are fit to the exponentially decaying
function a(i + j) = Ce’ P, There the author claims
that 0 < —1 indicates good resolution or smooth func-
tions and ¢ > —1 indicates poor resolution or non-
smooth functions. The adaptive strategy used was to
increase the polynomial degree for elements with o <
—1 and to refine the mesh for elements with o > —1,
if the error level in that element was insufficient. We
evaluate this smoothness indicator o on (g1, p7) by
doing a least squares fit of the coefficients to Ce? ™7 In
regions where the magnitude of the solution is close to
0, that is below the euphotic zone for the zooplankton
field, a;; Vi, j will be small, and the smoothness indicator
o will not be accurate. The approximate size of the
truncated derivative terms along with the smoothness
indicator are plotted in Fig. 18. Only the smoothness
indicators calculated on (g2, p5) and (g1, p7) are plot-
ted since the accuracy of the smoothness indicator
improves with the number of terms in the polynomial
expansion and is not accurately represented on (g4, p2)
(Mavriplis 1989).

From Fig. 18, we note that the largest differences
in Fig. 16 correspond to the regions with the largest
approximate truncations errors in Fig. 18. Also, in the
region x* > 7 where the low-order solution is more
accurate than (g1, p6), we have o > —1, which suggests
that refining the elements instead of the order of accu-
racy is more appropriate. After one level of refinement
on (g2, p5), we see that the smoothness indicator shows
a smaller region of nonsmooth elements. This illustrates
that the smoothness is defined in terms of the numerical
discretization and is not solely a function of the solution
field. Also note in the region where the high-order
solution is more accurate (see Fig. 17), the approximate
derivative of the truncation term is small in both fields
and o < —1, suggesting that a higher degree polynomial
basis is more appropriate in this region. This shows
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Fig. 18 Approximate truncation errors for zooplankton fields
at t* = 20 (with 7, = 12.5 days). Calculated on a (g4, p2) using
loglo(ziﬂ-:2 aij), on b g2, p6 using 10g10(2i+j:(, a;j), and on
¢ gl, p7 using log10(2i+j:7 a;j). d, e Smoothness indicator o
calculated on d (g2, p6) and e (g1, p7) . The biological dynamics
used has stable limit cycles within the euphotic zone (bio case 3)

that our mesh is not optimized in terms of the solu-
tion field and highlights the importance of using both
mesh refinement and polynomial basis adaptation to
generate an optimal discretization for complex biolog-
ical ocean dynamics. Also, this shows that whether a
coarsely discretized higher-order scheme is better than
a finely discretized lower-order scheme depends on the
smoothness of the solution and can vary spatially across
the solution. The benefit from a higher-order solution
is as follows: When the solution is smooth, increasing
the polynomial degree causes the error to decrease
exponentially, whereas the error would only decrease
algebraically if decreasing the element size. The cost
of increasing the polynomial degree also scales alge-
braically, and because of this, a higher-order scheme
performs better for smooth or well-resolved fields. Us-
ing our implementation, the (gl, p6) simulation took
approximately 0.34 of the time taken by the (g4, pl)
simulation. We also ran (g3, pl), which was approx-
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imately three times more efficient than (g1, p6), but
this solution (not shown) was less than 1% accurate
for the majority of the domain. When the solution is
not resolved (i.e., not smooth for the grid resolution
or polynomial degree chosen), higher-order schemes
will lead to Gibbs oscillations and filtering is required
(see Section 4.6), while lower-order schemes may “look
good” but will be very dissipative. When the solution
is resolved (i.e., smooth enough for the grid resolution
or polynomial degree chosen), higher-order discretiza-
tions perform better than lower-order ones: They are
more accurate and less dissipative for the same cost.

Finally, we note that the approximate truncation
error and smoothness metrics were different for the
different biological components. Therefore, the opti-
mal discretization for one component is not the same
as the optimal discretization for another component.
Ueckermann (2009) proposed a scheme that uses a
different order basis function for different biological
components, but also cautions that an incurred inter-
polation cost needs to be considered for adaptation
strategies.

4.5 Evolution of biological patch

In this section, we demonstrate how biological activity
can enhance the differences between low-order and
high-order discretizations beyond the effect of numer-
ical dissipation alone. For this example, we modify
bio case 1 (single stable points at all depths) from
Section 4.4 by introducing a vertical column, or
“patch”, of biology that uses the parameters from bio
case 2 (stable limit cycles at depths z* = 0.4-0.9 and
single stable points elsewhere). This is easily done in
the dimensional form of the equations by increasing the
value of N7 locally in the patch. Such situations occur
frequently in nature, e.g., an eddy or front upwelling
additional nutrients locally toward the surface. The
initial condition and boundary condition is the same as
in bio case 1 (the steady-state solution with smoothed
discontinuity), except inside the patch where the initial
conditions for bio case 2 are used instead, that is:

* %
¢(patch) - ¢(bi0 case 1)

_arreat

+ [(bzkbio case 2) ¢(*bio case 1)] e 26H ’ (31)

where ¢E“patch) is the initial condition used for this ex-
ample, @g, case 1) 1S the steady state with smoothed
discontinuity for bio case 1, and ¢fi;; . 2, 18 the steady
state with smoothed discontinuity for bio case 2. Note
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that, for this example, we nondimensionalize ¢* =
/\% by the total biomass for bio case 1. In addi-
tion, we superimpose a periodic velocity onto the mean

velocity,

u* =u’_ [145-sign{cos(0.16m1*)}], (32)

— “mean

where u* is now the velocity used for this example and
u’ ... is the potential flowfield solved from Section 4.2.
The superimposed velocity increases the distance trav-
eled, as well as the number of time integration steps
(due to the CFL condition), and therefore has the effect
of increasing the numerical dissipation.

Figure 19 plots the phytoplankton fields and total
biomass for (g2, p5) and (g4, pl) around the patch, as
well as the difference of the solution, (g2, p5) minus
(g4, pl), at t* = 14.4. We do not use the (g5, pl) so-
lution (as was done in Section 4.4) for the difference
plots here because we found that even (g5, pl) is
more dissipated than (g2, p5) and therefore (g2, p5)

7 8 9 10

* ®

X X

117 8 9

Fig. 19 Detail around the biological patch with stable limit cycles
at the bottom of the euphotic zone at time t* = 14.4 for a the
phytoplankton fields and b the total biomass. The solution for
(g2, p5) is plotted on the left, (g4, pl) in the middle, and the

=

is more accurate inside the biological patch where our
calculations are performed. These results show that the
total biomass peak is not maintained by the low-order
scheme, (g4, pl), and the details in the phytoplankton
fields are also dissipated. Since these simulations do not
contain physical diffusion, any diffusion is due to the
numerical scheme, and therefore, the (g2, p5) solution
is more accurate than (g4, p1) because it does maintain
the total biomass peak. Apart from the effects of the
periodic velocity, the solution inside the patch should
resemble that of Fig. 11b), and (g2, p5) resembles this
solution more closely than (g4, p1).

While some of the differences between the (g2, p5)
and (g4, p1) simulations can be accredited solely to the
numerical dissipation, the error due to numerical dissi-
pation is amplified by the change in biological activity.
To illustrate this point, we show in Fig. 20 the relative
normed difference between the total biomass of the
two solutions (Qj, Eq. 33), the sum of relative normed
differences between the biological components (Q5,
Eq. 34), the relative normed difference in production

1.5 0.2
~ 0.1
v -y
; 0
e "
0.2
0.2
0.1
0
0.1
-0.2
10 11 7 8 9 10 11

*

X

difference between the solutions, [(g2, p5) — (g4, p1)], is plotted
on the right. This shows that (g2, p5) correctly maintains the full
peak of the biological patch, while (g4, p1) does not, leading to
large differences in the phytoplankton fields
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Difference

Difference

Fig. 20 The relative normed difference between the total bio-
mass of the two solutions (Q;, Eq. 33), the sum of relative
normed differences between the biological components (Q»,
Eq. 34), the relative normed difference in production (Q3, Eq.
35), and the relative normed difference in grazing (Qa, Eq. 36)
over time from * = 0 to t* = 14.4. This shows that the difference
in biological components is amplified beyond the effect of numer-
ical dissipation due to differences in the source terms such as the
production and grazing

(O3, Eq. 35), and the relative normed difference in
grazing (Q4, Eq. 36)

patch
{03 +05+0% ) 0 5~ 103+ 65497} 1o |
1= tch
l{or+eptoy -5
(33)
patch
B 2 I=(N.P.27) ‘)¢7,(g2,p5) — Bl g1.p4) 5 a4
2= . . . patch ( )
H {¢N +¢pt+ o7 — 1}(g4,p1) 2
Y e patch
Ures' M qu‘bN*} _ {u*ez*/h* ¢*P¢N*}
0; = H{ Ntk S gaps VR S gapr |,
3=
N . patch
U*ez*/h*ﬁLﬁN*}
H{ P T gap
(35)
ey g patch
4= H {ag:ﬁ(ﬁ*Z(1 —e” ¢P)}g2p5_ {agtd)*z(l —e” ¢P)}g4pl 2
- e patch ’
llgioya—cen, |
(36)
1
where ||e||§atCh = ( fpamh e’dx*dz*)” with the patch

area determined from (g4, pl) and the quantity
{5 + &5+ ¢ — 1}||12)atCh gives the size of the
difference between the base solution and the solution
inside the patch since the base number of nutrients
(nondimensionalized to 1) is subtracted out.
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Since our numerical scheme conserves the total bio-
mass, the first quantity, O, gives a quantitative esti-
mate of the numerical dissipation error only. The sec-
ond quantity, Q,, should be the same as Q; if the only
difference is due to numerical dissipation. However,
from Fig. 20, we note that Q, > Q;, which means the
differences in dissipation is amplified by nonlinearities
and the biology. This is explained by the differences
in biological terms in the two simulations, for example,
in the production and grazing terms, Q3 and Q4. Also,
note that these differences are growing over time, and
for longer integration periods, the differences will be
even greater. As a final note, the initial differences
between the two solutions are due to interpolation
errors, since the polynomial representation and number
of degrees of freedom are not the same for the two
simulations.

The example shows that the numerical dissipation
due to a lower-order numerical scheme can be am-
plified by the biological reaction terms. This is sig-
nificant since for accurate biological ocean science
through numerical simulations, it is important to main-
tain the amplitudes of biological patches. This is
particularly true for biology with multiple attractors,
where relatively small perturbations can lead to vastly
different solutions. The conclusion is that for the same
cost, higher-order schemes on coarser grids are more
accurate than lower-order schemes on finer grids.

4.6 Filtering based on smoothness index

Based on the results in Section 4.4 and on the paper
by Hesthaven and Kirby (2008), we created a selective
exponential filter. We found that the default filter was
described in Hesthaven and Kirby (2008), which is
applied at every timestep, to result in a diffuse inter-
face, even for high-order filters. This prompted us to
develop the following filter. Consider a modal repre-
sentation of the numerical solution, ¢, = }_; a;; P;; (e.g.
Ueckermann 2009). After each time integration step,
the solution on every element is modified as follows:

¢r =Y _o(miai; Py, (37)

i

where

_ exp(—omfj), if SI >0
"‘{ I, ifSI<0 (38)
ajj .
SI=——— —exp(—(+ )+ 1) (39)

max;y j>1(dij)
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Fig. 21 Solution of three passive tracer cases as Fig. 9, for a
(g2, p5) and b (g1, p6) but using our selective exponential filter
(37) with s = 5. Field values outside initially specified fields as

i+
_ 40
T+ (40)
o = —log(0.01), (41)

with s being the order of the filter and SI the smooth-
ness index.

This results in a filter that is applied only when
the smoothness index indicates that the solution is not
smooth. The smoothness index relies on information
about the decay rate of the modal coefficients, so it
cannot be used for lower-order schemes. Using this new
filter, we obtain a solution where spurious numerical
oscillations are no longer generated by the numerical
scheme and the interfaces are not significantly diffused.
The new errors plots are shown in Fig. 21. We also

Fig. 10, with ¢ (g2, p5) and d (g1, p6) using the same filter. For
each case a—d, the filter damps the initialized oscillations of cases
1 and 2 and no oscillations are created in case 3

verified that this filter does not affect smooth regions of
the domain with other idealized test cases (not shown).

While this filter looks promising, additional verifi-
cation is needed, and a number of improvements are
also possible. In particular, determining the strength or
order, s, of the filter in an optimal manner is an open
question. Also, selectively applying the filter only in
directions where the solution is nonsmooth is a topic
of future research.

5 Conclusions

We completed a set of computational studies for the
modeling of multiscale biogeochemical dynamics in
coastal ocean regions with complex bathymetric fea-
tures, utilizing recent advances in computational fluid
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dynamics. Specifically, we compared low- to high-order
discretization schemes, both in time and space, em-
ploying standard and hybrid discontinuous Galerkin
finite element methods, on both straight and curved
elements. We studied the effects of a varied set of
numerical properties including quadrature-free and
quadrature-based discretizations of the source terms,
order of the spatial discretizations of advection and
diffusion operators, order of the temporal discretiza-
tion in explicit schemes, and resolution of the spatial
mesh, with and without our new curved elements. We
verified the convergence of our numerical schemes for
both the biology and flow fields, validated the codes on
analytical solutions, and completed a rigorous trunca-
tion error analysis.

Our numerical analyses concentrated on the nonlin-
ear nutrient—-phytoplankton-zooplankton dynamics un-
der advection and diffusion within an ocean strait or sill,
in an idealized 2D geometry. We first nondimensional-
ized the PDEs, evaluated stability regions, and selected
three biological dynamical regimes: single stable points
at all depths, stable limit cycles at the bottom of the
euphotic zone, and stable limit cycles within the whole
euphotic zone (the latter two cases have limit cycles
that are depth and light dependent). We evaluated the
effects of numerical parameters on the three biological
regimes but illustrated only the most relevant results.
In addition, for each of these biological regimes, we
examined three types of coupled physics—biology inter-
actions: biological terms dominating, advection terms
dominating, and advection and biological terms balanc-
ing. For the advection-dominating case, we studied the
advection over a strait of a uniform tracer, horizontal
front and vertical front. For the balanced situation,
relatively common in the real ocean, we considered
biological dynamics that were either as fast as (e.g.,
coastal ocean) or slower than advection time scales.

In the regime where biological terms dominate, we
found that both the quadrature-based and quadrature-
free treatment of the source terms give accurate, con-
vergent results, although the quadrature-based algo-
rithm had slightly smaller errors. We also showed that
oscillations can occur solely due to numerics (Gibbs-
like phenomena) for a high-order discretizations. A
key result is that, for any numerical scheme, care-
ful 1D studies should be performed to understand
the potential errors from the nonlinear source-term
discretization.

For the advection-dominating regime, we confirmed
the flow field convergence and using passive tracers
studied numerical advection artifacts that would also
affect the biology. We found that for discretizations
that do not resolve the solution, oscillations due to
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discontinuities in the tracers could be large for both
low-order and high-order discretizations but can be
damped using a filtering approach for the high-order
case. However, our results suggested that when the
solution is resolved enough, higher-order schemes on
coarser grids perform better (higher accuracy, less dis-
sipative) for the same cost than lower-order scheme on
finer grids, as long as curved boundaries were used.

For the case of approximately balanced advection
and biological terms, we compared low- and high-
order temporal and spatial discretizations and studied
quadrature-based and quadrature-free discretizations
of the source terms. We found that for lower-order tem-
poral discretizations, the errors grew rapidly and would
lead to inaccurate solutions for applications with faster
biological timescales or longer integration times. We
also showed that the quadrature-based source-term dis-
cretization was more accurate in regions where the so-
lution was under-resolved, but in well-resolved regions,
there was only a 0.1% discrepancy, and the quadrature-
free algorithm could be used for efficiency purposes.
By quantitatively evaluating the truncation error and
smoothness of the solution fields, we confirmed that
higher-order spatial discretizations were more accurate
in regions where the solution was smooth (i.e., re-
solved enough) but less accurate where nonsmooth
(un-resolved) due to Gibbs-like oscillations. To reduce
these oscillations, we developed a new numerical filter
that is active only when and where the solution is not
smooth locally, using a smoothness indicator. Finally,
we demonstrated the importance of nondissipative nu-
merical schemes when biological patches are present
which is common in the real ocean. First, we found
that effects of numerical dissipation were amplified by
biological activity, causing dissipation errors to increase
faster with integration time. Higher-order spatial dis-
cretizations were more accurate when modeling bio-
logical patches because they maintained the patches
while lower-order schemes did not. For resolved biol-
ogy (e.g., asin Fig. 15), higher-order schemes on coarser
grids were for the same cost more accurate than lower-
order schemes on finer grids. This conclusion is most
important for longer-term simulations. It has major im-
plications for fundamental studies of biological bloom:s,
patchiness, and other nonlinear dynamics in coastal re-
gions with complex bathymetric features such as straits,
sills, ridges, and shelfbreaks. One can expect similar
implications for longer-term eddy-resolving ecosystem
studies or climate applications.

Based on our results, future research directions are
to further develop schemes to reduce Gibbs-like oscilla-
tions without significant loss of accuracy and efficiency
(e.g., Persson and Peraire 2006). Without oscillation
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limiters or filtering, the optimal performance could be
obtained by using different polynomial degree basis
functions in the domain, where low-order elements
could be used in nonsmooth regions while high-order
elements could be used in smooth regions. Because the
smoothness can be determined from the discretization,
an adaptive grid and polynomial degree scheme could
be developed. Another possibility in this case could
be to increase the grid resolution and decrease the
order of schemes (e.g., medium-order schemes, i.e.,
(g3, p3) or (g3, p4)) up to the point when numerical
oscillations reach the size of other errors. Another
research direction is to develop and evaluate schemes
that would preserve the nonnegativity of the biological
solution. Our results can now be utilized for ideal-
ized studies of biological dynamics in straits or sills.
Uncertainty quantifications (Lermusiaux 2006; Sapsis
and Lermusiaux 2009) as well as adaptive model learn-
ing (Lermusiaux 2007) for biological predictions would
also be useful. Finally, we are now well positioned
to implement these new methods in 3D ocean mod-
eling systems (e.g., MSEAS Group 2010) for realis-
tic coupled biogeochemical-physical ocean science and
applications.
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