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Abstract 1	

The Baltic Sea has had a complex salinity history since the last deglaciation. Here we show 2	

how distributions and concentrations of alkenones and their δD values varied with past 3	

fluctuations in salinity in the Baltic Sea over the Holocene by examining a Holocene record 4	

(11.2 to 0.1 cal kyr BP) from the Arkona Basin. Major changes in the alkenone distribution, 5	

i.e. changes in the fractional abundance of the C37:4 alkenone, the C38:2 Et alkenones and the 6	

C36:2 alkenone, the latter which has not been reported in the Baltic Sea previously, correlated 7	

with known changes in salinity. Both alkenone distributions and hydrogen isotopic 8	

composition suggest a shift in haptophyte species composition from lacustrine to brackish 9	

type haptophytes around 7.7-7.2 cal kyr BP, corresponding with a salinity change that 10	

occurred when the connection between the basin and the North Sea was re-established. A 11	

similar salinity change occurred in the Black Sea making it possible to directly compare and 12	

use the δD values and alkenone distributions previously published to corroborate the 13	

interpretations made about salinity changes from the data presented for the Baltic Sea. Low 14	

and variable salinity waters in the Baltic Sea over the Holocene have allowed for alkenones 15	

derived from a variable haptophyte community composition, including low salinity adapted 16	

species, hindering the use of the unsaturation ratios of long-chain alkenones for sea surface 17	

temperature reconstruction. However, these alkenone based indices are potentially useful for 18	

studying variations in salinity, regionally as well as in the past.  19	

 20	
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1. Introduction 23	

Long chain alkenones, biolipids composed of predominantly C37- C39 n-alkyl chains with 24	

di-, tri- or tetra unsaturations and a keto functionality at position C-2 or C-3 (de Leeuw et al., 25	

1980; Rechka and Maxwell, 1988) are produced exclusively by only a few species of 26	

haptophyte algae in both open marine (e.g. Emiliania huxleyi and Geophyrocapsa oceanica; 27	

Volkman et al., 1980, 1995) and coastal or lacustrine regions (e.g. Isochrysis galbana and 28	

Ruttnera (Chrysotilla) lamellosa; Marlowe et al., 1984) and the more recently discovered 29	

‘Greenland haptophyte’ species, so far exclusively found in Greenland and Alaskan lakes 30	

(D’Andrea et al., 2006). An unusual C36 diunsaturated alkenone was also identified by Xu et 31	

al. (2001) in Holocene sediments from the Black Sea and since then Coolen et al. (2009) 32	

reported its biological origin in the Black Sea is most likely a specific strain of E. huxleyi.  33	

Since field sampling and culture experiments demonstrated a relationship between surface 34	

water temperature and the unsaturation ratios of long-chain alkenones, the unsaturation ratios 35	

of sedimentary alkenones have been extensively used as a paleotemperature proxy (Prahl and 36	

Wakeham, 1987; Jensen, 1995; Müller et al., 1998). Two alkenone unsaturation ratios have 37	

been predominantly used in sea surface temperature (SST) reconstructions, the UK
37 (which 38	

includes the relative abundance of di-, tri- and tetra- unsaturated alkenones; Brassell et al., 39	

1986) and the UK’
37 (which excludes the tetra-unsaturated alkenone; Prahl and Wakeham, 40	

1987). Even though this proxy has been successfully applied in marine settings, uncertainties 41	

still exist due to increasing evidence of non-thermal effects on alkenone distribution patterns 42	

such as species and strain composition (Volkman et al., 1995; Conte et al., 1998) and salinity 43	

(Chu et al., 2005; Ono et al., 2012; Chivall et al., 2014). For example, Rosell-Melé (1998) 44	

demonstrated that the amount of C37:4 alkenone compared to the abundance of the other C37 45	

alkenones (%C37:4) in particulate organic matter from Nordic Seas had a stronger correlation 46	

to sea surface salinity (SSS) than SST. Despite these results, the correlation between salinity 47	



and %C37:4 in surface water and sediment trap samples worldwide varies greatly and so there 48	

is no evidence supporting the application of a linear relationship (Sikes and Sicre, 2002), 49	

which would make the use of %C37:4 as a salinity proxy possible. However, it has been 50	

suggested that if the relative abundance of the C37:4 alkenone is over 5% this might be an 51	

indicator of alkenone contributions from haptophyte populations adapted to lower salinity 52	

conditions (Thiel et al., 1997; Rosell-Melé, 1998; Schulz et al., 2000; Bendle et al., 2005). 53	

Therefore, this cut-off value of 5% could be applied when determining if alkenone 54	

unsaturation ratios can be used for paleotemperature reconstructions.  55	

Alkenones are common biomarkers in marine sediments, but occasionally also occur in 56	

lake sediments. In lake settings, such as Lake Van in Turkey (Thiel et al., 1997; Randlett et 57	

al., 2014) and Chinese lakes  (Chu et al., 2005; Song et al., 2016), complications applying 58	

long chain alkenone unsaturation patterns as a temperature proxy have often been noted. 59	

Previous studies have found that alkenone biosynthesizing haptophyte algae are much more 60	

genetically diverse in lacustrine settings than marine and this could affect alkenone 61	

composition and have implications for using alkenone distributions for SST reconstructions 62	

(Zink et al., 2001; Sun et al., 2007; Randlett et al., 2014). In a study of 37 lakes in China, Chu 63	

et al. (2005) demonstrated that the fractional abundance of the C37:4 methyl ketone (i.e. 5-96% 64	

of the sum of C37 alkenones) is much higher than has been observed in marine settings and is 65	

highly variable in the different lakes, complicating the use of the UK
37 SST proxy. Chu et al. 66	

(2005) concluded that, although salinity may be an indirect factor affecting %C37:4, it is 67	

probably not the main factor. A more recent study on lakes in northwestern China (Song et al., 68	

2016) also encountered complications using alkenone unsaturation ratios as a 69	

paleotemperature proxy finding that salinity has a large influence on the occurrence, 70	

concentration and composition of alkenones. The predominance of the C37:4 methyl ketone and 71	

its negative relationship with salinity indicated that its production is probably a response to 72	



low salinity conditions. Consequently, it was suggested that the long chain alkenone 73	

unsaturation ratio omitting C37:4 (UK’
37) yields more accurate SST estimations when used in 74	

lakes. However, recently a new index has been proposed for lacustrine, brackish and estuarine 75	

settings that includes the C37:4 alkenone and instead excludes C37:2 (UK”
37; Zheng et al., 2016). 76	

This study suggests that the di-unsaturated alkenones play a less important role than the tri- 77	

and tetra- in regards to regulating cell functions in accordance with temperature fluctuations 78	

in lower salinity settings. Additionally, an absence of C38 methyl ketones has been observed 79	

in alkenone containing freshwater lakes in China (Song et al., 2016), indicating that perhaps 80	

this could be used as a criterion for identifying alkenone producers coming from freshwater 81	

environments.  82	

Previous studies in brackish settings have shown that since alkenone distributions co-vary  83	

with salinity driven changes in haptophyte species composition, the use of long chain 84	

alkenones is difficult in areas with low and/or fluctuating salinity such as in the Black Sea 85	

(Coolen et al., 2009), Ace Lake in Antarctica (Coolen et al., 2004), the Baltic Sea  (Rosell-86	

Melé, 1998; Schulz et al., 2000; Blanz et al., 2005) and the North Atlantic and Nordic Seas 87	

(Rosell-Melé, 1998).  In Ace Lake, Coolen et al. (2004) demonstrated that as lake chemistry 88	

changed over time, particularly the salinity as it evolved from a freshwater basin to a marine 89	

inlet, the alkenone distributions changed reflecting differences in the haptophyte population as 90	

evident from palaeogenetic signatures. Similarly, in the Black Sea, Coolen et al. (2009) 91	

showed that as salinity increased over the Holocene in the basin that the haptophyte 92	

composition changed as well resulting in erroneous alkenone-derived SST estimates at times. 93	

For the North Atlantic and Nordic Seas, Rosell-Melé (1998) observed that the %C37:4 is 94	

related to salinity as well as temperature changes.  95	

In addition to these studies, culture experiments have been performed and confirm that 96	

alkenone distribution patterns can vary with changing salinity and that this should be taken 97	



into account when using the alkenone unsaturation indices for SST reconstructions (Chu et al., 98	

2005; Ono et al., 2012; Chivall et al., 2014). The results from Chivall et al. (2014) indicate 99	

salinity has an effect on alkenone distributions, but that other factors such as growth phase 100	

and species composition also play a role in whether the long chain alkenone distributions are 101	

affected by salinity. This culture study found a positive correlation between %C37:4 and 102	

salinity, however, they found growth phase has a larger effect on the %C37:4 than salinity.  103	

Further complicating the use of long chain alkenones for SST reconstructions, Ono et al. 104	

(2012) established using culture experiments that salinity had an effect on alkenone 105	

unsaturation ratios at 20°C, but not at 15°C.  106	

In addition to looking at alkenone amounts and distributions to infer salinity changes, 107	

culture studies have shown the hydrogen isotopic composition (δD) of long chain alkenones 108	

strongly depends on salinity as well (Schouten et al., 2005). M’boule et al. (2014) confirmed 109	

in culture experiments involving both I. galbana (a coastal species) and E. huxleyi (an open 110	

ocean species) that a strong linear relationship exists between δD and salinity, suggesting that 111	

δD of alkenones might indeed be used to reconstruct relative shifts in paleosalinity. However, 112	

coastal species, such as I. galbana and Chrysotila lamellosa, have been observed to 113	

fractionate almost 100‰ less against deuterium than more open marine species, such as  E. 114	

huleyi and Gephyrocapsa oceanica, in culture (Schouten et al., 2005; Chivall et al., 2014; 115	

M’boule et al., 2014). The δD of sedimentary alkenones might therefore also be indicative of 116	

specific alkenone producing haptophytes. 117	

The present day Baltic Sea has a large range in salinities (~3.5-32 PSU), with fresher 118	

water in the northeastern part of the basin (including the Gulf of Bothnia and Gulf of Finland) 119	

and saltier water closer to the connection to the North Sea (ICES-CIEM, n.d.) making it an 120	

interesting site to study present-day salinity effects on alkenone production. Schulz et al. 121	

(2000) demonstrated that alkenone unsaturation ratios in surface sediments of the Baltic Sea 122	



have a low correlation to mean annual SST and instead primarily reflect salinity changes. The 123	

authors postulate that lower salinity in parts of the basin causes salinity stress induced 124	

changes in alkenone biosynthesis. This, together with the production of alkenones by 125	

haptophytes adapted to lower salinities, results in distinct alkenone patterns with lower 126	

salinity regions of the basin having patterns more characteristic of freshwater haptophytes or a 127	

mixture of freshwater and marine haptophytes, and saltier regions having distributions that 128	

resemble more marine haptophyte derived alkenones. Blanz et al. (2005) also reported that in 129	

the Baltic Sea salinity-induced stress on E. huxleyi could alter the biosynthesis of alkenones, 130	

thus affecting the use of the alkenone unsaturation ratios as a proxy for SSTs. Also, the 131	

absence of C38 methyl ketones observed in lower salinity water masses in the Baltic Sea has 132	

been observed in Chinese Lakes as well (Song et al., 2016).  133	

Here we determine how alkenone distributions and concentrations, along with the δD of 134	

alkenones, varied with past changes in salinity in the Baltic Sea over the Holocene. Not only 135	

does salinity vary regionally over the Baltic Sea basin today, but the Baltic Sea also has had a 136	

complex salinity history since the last deglaciation and has gone through two fresh water and 137	

two brackish water stages (see Section 2.1 for more details). In this study we examined a 138	

Holocene record from the Arkona Basin to determine if changes in alkenone amounts and 139	

distribution patterns that exist today and correlate with salinity around the basin also existed 140	

in the past and co-varied with historical salinity changes. 141	

  142	

2. Methods 143	

2.1. Historical setting of the Baltic Sea and description of the study site 144	

The Baltic Sea (Fig. 1) is the world’s largest brackish body of water with an area of about 145	

377,000 km2 that is partitioned into multiple sub-basins. The Baltic is almost entirely enclosed 146	



by land with a large freshwater contribution (including precipitation) of 660 km3 yr-1 from a 147	

drainage basin that is 1.6 million km2 (Björck, 1995). An inflow of 475 km3 yr-1 of saltwater 148	

pours in through the only connection to the North Sea, the narrow Straits of Denmark 149	

(Tikkanen and Oksanen, 2002). The Baltic Sea is a fairly shallow basin and on average only 150	

about 54 m deep. The salinity varies greatly in the Baltic Sea ranging from ~3.5 PSU in the 151	

north to ~8 PSU in the Baltic proper and ~32 PSU in the region where the Baltic connects to 152	

the North Sea (ICES-CIEM, n.d.). A permanent halocline exists at about 13-15 m depth, 153	

separating a relatively fresh surface and saline bottom waters. 154	

The development of the Baltic Sea since the last deglaciation has been the focus of many 155	

studies in the last decades (Winterhalter, 1992; Björck, 1995; Jensen, 1995, 1999; Andrén et 156	

al., 2000). Reasons for such intense scientific interest include the shifting bathymetry, 157	

dynamic hydrology and the resulting fluctuating salinity of the Baltic Sea over the Holocene 158	

as the basin went through several different phases. Following deglaciation and before its 159	

present state, the Baltic Sea transformed from the freshwater Baltic Ice Lake (c. 12.6-10.3 ka 160	

BP) to the slightly brackish Yoldia Sea (c. 10.3-9.5 ka BP) into the freshwater Ancylus Lake 161	

(c. 9.5-8.0 ka BP) and then into the brackish Littorina Sea (c. 8.0-3.0 kyr BP) and 162	

subsequently into the Post-Littorina Sea / modern Baltic Sea (Winterhalter, 1992; Björck, 163	

1995; Andrén et al., 2000). The Baltic Ice Lake formed as large areas of the southern Baltic 164	

basin became ice free. Rapid deglaciation resulted in the uplift of the seabed, bringing the 165	

connection of the basin with the North Sea above sea level and causing a large influx of fresh 166	

melt-water into the system (Björck, 1995). A climatic cooling resulted in less meltwater and 167	

the gradually receding ice sheet allowed drainage of the Baltic Ice Lake to occur, lowering the 168	

water level and resulting in a short period of seawater ingression, which characterized the 169	

very slightly brackish Yolidia Sea (Björck et al., 1995; Jensen, 1995). Continued isostatic 170	

rebound caused the basin to be once again cut off from the ocean and resulted in the Ancylus 171	



Lake (Jensen et al., 1999). Then, at around 8,000 years ago, eustatic sea level rise re-opened 172	

the connection with the North Sea through the Danish Straits allowing salt water to flow into 173	

the Ancylus Lake and transforming it into the brackish Littorina Sea (Winterhalter, 1992). 174	

The Ancylus Lake/Littorina Sea transition is a complex period characterized by different 175	

phases of brackish-water pulses, initially weak and eventually resulting in fully established 176	

brackish conditions (15-20‰ in the Baltic proper; Hyvärinen et al., 1988) only after ~2,000 177	

years (Andren et al., 2000). The Littorina Sea phase, which lasted from ~8,000-3,000 BP, is 178	

characterized by a warmer climate and thought to reflect the most marine-like conditions in 179	

the Baltic Sea since deglaciation (Andren et al., 2000). The Post-Littorina Sea/modern Baltic 180	

Sea are a continuation of the Littorina Sea, but with a salinity thought to be almost half (7-8‰ 181	

in the Baltic proper; Hyvärinen et al., 1988) that of the Littorina Sea (Punning et al., 1988). 182	

2.2. Sampling 183	

Two sediment cores were retrieved from the Arkona Basin, which extends from the 184	

Bornholm Basin to the Danish Isles of Falster and Zealand (Fig. 1; Table 1). This basin 185	

represents a boundary between the Straits of Denmark, where high salinity water flows in, and 186	

the lower salinity Baltic Sea basin. The total discharge of brackish water from the basin is on 187	

the order of 950 km3/yr (Björck, 1995). Both sediment cores were 12 m long and collected 188	

using a gravity corer on the R/V “Maria S. Merian” in April of 2006. Sediment core 318310 189	

was recovered at 46 m water depth at 54°50.34’N and 13°32.03’E and core 318340 was 190	

collected nearby at 54°54.77’N and 13°41.44’E at 47 m water depth.  191	

Two surface sediment samples from the Skagerrak obtained using a multi-corer 192	

provided a marine end member for comparison with our Baltic Sea sediment core samples. 193	

The surface sediment samples were collected during R/V “Elisabeth Mann-Borgese” cruise 194	

EMB046 in May 2013. The sampling site for EMB046-10 was positioned at 57°49.74´N and 195	



07°17.66´E from 457 m water depth. Site EMB046-20 was situated a bit to the east of 196	

EMB046-10 at 58°31.60´N and 09°29.09´E from 532 m water depth. 197	

2.3. Loss on ignition (LOI)  198	

The LOI was determined by ashing freeze-dried sediments at 550°C for 3 h. The 199	

resulting mass difference was then calculated in wt.%. Previously, it was demonstrated that 200	

LOI provides an accurate estimate of the total organic carbon content of the sediments in the 201	

Baltic Sea (Leipe et al., 2011). In order to obtain estimates for the total organic carbon (TOC; 202	

%) content to normalize the concentration of ketones in the sediments, LOI values were 203	

divided by 2.5 (i.e. assuming that the organic matter contains on average 40% C; Dean, 1974) 204	

2.4. X-ray fluorescence (XRF) core scanning 205	

 XRF elemental scanning of sediment cores 318310 and 318340 was performed with 206	

an Avaatech XRF scanner (Avaatech, n.d.) at a resolution of 0.5 cm.  207	

2.5. Correlation of sediment cores and age model 208	

 Sediment cores 318310 and 318340 were correlated to each other on the basis of LOI 209	

and XRF-Ca records (Fig. 2). The transition of the Ancylus Lake phase to the Littorina Sea 210	

phase is marked by a substantial increase in the TOC content, coinciding with color change of 211	

the sediment (e.g. Moros et al., 2002; Rößler et al., 2011). Just after the large increase in TOC 212	

(here reflected in the LOI record), there is a maximum in the carbonate content (here reflected 213	

in the maximum in the elemental XRF- Ca record) (Fig. 2), which is caused by the occurrence 214	

and preservation of benthic foraminifera (Moros et al., 2002; Rößler et al., 2011). The 215	

Ancylus Lake regression is also characterized by a clear peak in the LOI (TC) records, which 216	

can be used for correlation purposes (Fig. 2). The transitions, Baltic Ice Lake/ Yoldia Sea and 217	

Yoldia Sea/Ancylus Lake are revealed by marked changes in the elemental XRF-Ca 218	



(carbonate) and bulk density records (Fig. 2; see Moros et al., 2002), and by basin-wide 219	

traceable sandy layers (Moros et al., 2002). 220	

The age model for sediment core 318310 is based on a previous AMS14C date (7.2 cal 221	

kyr BP) on Mytilus edulis close to the base of the Littorina phase (Rößler et al., 2011) and five 222	

additional dates on mollusc shells (Fig. 2).  The age model of the section of sediment core 223	

318340 that was studied (400-840 cm) is based on the carbonate maximum at 380 cm (7.2 cal 224	

kyr BP; Moros et al., 2002; Rößler et al., 2011). The start of the Ancylus Lake/Littorina Sea 225	

transitional phase at 7.7 cal. kyr BP (unpublished results) is revealed by the increase in the 226	

LOI record at 485 cm, and the Ancylus Lake regression at 10.2 cal kyr BP is denoted by the 227	

sharp peak in the LOI record (sandy layer; Moros et al., 2002) at 600 cm. The boundary 228	

between the Yoldia Sea phase and the Ancylus Lake phase (10.6 cal kyr BP; Moros et al., 229	

2002) at 768 cm, and the boundary between the Baltic Ice Sea and Yoldia Sea phases (11.6 230	

cal. kyr BP; Moros et al., 2002) at 895 cm. 231	

2.6. Lipid extraction and analysis 232	

The sediments were freeze dried and ground and homogenized by mortar and pestle 233	

for extraction. In general, 1-3 g of sediment was extracted using a DionexTM accelerated 234	

solvent extractor with dichloromethane/methanol (9:1; v/v) as extraction solvent. The total 235	

lipid extract was dried over a Na2SO4 column and then separated into three fractions using 236	

Al2O3 column chromatography: apolar (eluted with 9:1 v/v hexane/DCM), ketone (1:1 v/v 237	

hexane/DCM), and polar (1:1 v/v DCM/MeOH) fractions. The ketone fraction was then base 238	

hydrolyzed by refluxing the dry fraction in a 1 N KOH in MeOH solution for 1 h after which 239	

the pH was adjusted using a 2 N HCL/MeOH solution. DCM was added and the solution was 240	

washed twice with DCM. The DCM layers were removed and combined to be dried over a 241	

Na2SO4 column. After the addition of a nonadecan-10-one internal standard, the alkenone 242	



fraction was analyzed using gas chromatography (GC) with an Agilent 6890 instrument 243	

equipped with an Agilent CP-Sil 5 CB column (50 m x 0.32 i.d.; 0.12 µm film thickness) and 244	

a temperature program from 70°C increasing at 20°C/min to 200°C and then at 3°C/min to 245	

320°C where it remained stable for 44 min. Alkenones were identified by GC-mass 246	

spectrometry (GC-MS), including the C36:2 alkenone, using an Agilent 7890A GC instrument 247	

equipped with a Agilent 5975C VL mass selective detector (MSD) and by comparing relative 248	

retention times with those of known alkenones of a culture of E. huxleyi. Peak areas were 249	

used to calculate alkenone unsaturation indices and alkenone concentrations were determined 250	

based on peak responses relative to the nonadecan-10-one internal standard.   251	

2.7. Compound specific hydrogen isotope compositions 252	

Alkenone hydrogen isotope analyses were carried out on a subset of the samples, i.e. 253	

those containing sufficient amounts of alkenones, on a Thermo Scientific DELTA+ xl 254	

GC/TC/irMS. The temperature conditions of the GC increased from 70 to 145˚C at 20˚C min-255	

1, then at 8˚C min-1 to 200˚C and to 320˚C at 4˚C min-1, at which it was held isothermal for 20 256	

min using an Agilent CP Sil-5 column (25 m x 0.32 mm) with a film thickness of 0.4 µm and 257	

helium as carrier gas at 1 ml min-1 (constant flow). The high temperature conversion reactor 258	

was set at a temperature of 1425°C. The H3
+ correction factor was determined daily and was 259	

constant at 5.6±0.2 before and 3.8±0.1 after a scheduled power outage and retuning of the 260	

irm. A set of standard n-alkanes with known isotopic composition (Mixture B prepared by 261	

Arndt Schimmelmann, University of Indiana) was analyzed daily prior to analyzing samples 262	

in order to monitor the system performance. Samples were only analyzed when the alkanes in 263	

Mix B had an average deviation from their off-line determined value of <5‰. Squalane was 264	

co-injected as an internal standard with each sample to monitor the accuracy of the alkenone 265	

isotope values. The δD of long chain C37 alkenones were measured as the combined C37 266	

alkenones (δDalkenone) (van der Meer et al., 2013) and the same applies to the C38 alkenones. 267	



The squalane standard yielded an average δDalkenone value of -160.7±2.7, which is stable but 268	

relatively enriched in D compared to its offline determined δD value of -170 ‰, potentially 269	

due to co-eluting compounds in this sample set.  270	

2.8. Calculation of alkenone based proxies  271	

%C37:4 is the contribution of the tetra-unsaturated 37-carbon methyl alkenone (C37:4) to 272	

total C37 alkenone concentrations and calculated according to Rosell-Melé (1998): 273	

%C37:4 = C37:4 / (C37:2 + C37:3 + C37:4) x 100          (1) 274	

The UK
37 index represents the relative abundance of the diunsaturated (C37:2), triunsatured 275	

(C37:3), and tetraunsaturated (C37:4) methyl ketones (Brassell et al., 1986). Later, the 276	

tetraunsaturated methyl ketone (C37:4) was removed from the equation because this compound 277	

was rarely found in open-sea sediments or suspended water column particles and the equation 278	

was modified by Prahl and Wakeham (1987): 279	

UK’
37 = C37:2 / (C37:2 + C37:3)     (2) 280	

2.9. Statistical analysis 281	

Utilizing the R software package for statistical analysis, principle component analysis 282	

(PCA) based on the correlation matrix was executed on the fractional abundances of the eight 283	

alkenones quantified in the sediments studied. Four sediment samples from sediment core 284	

318340 with no alkenones present were omitted from the PCA.  285	

3. Results 286	

3.1. Phases of the Baltic Sea covered in the Arkona Basin record 287	

The XRF (Ca) and LOI (TC) data were used to distinguish different phases captured 288	

by each sediment core in this study (Fig. 2) and to correlate the two sediment cores (see 289	



methods). The sedimentary record for sediment core 318310 covers the upper section of the 290	

freshwater Ancylus Lake stage starting at 10.2 cal kyr BP (642.5 cm), but mostly spans the 291	

brackish phase of the basin beginning from 7.1 cal kyr BP (600-20 cm) (Fig. 2a). From 292	

sediment core 318310 we studied eight sediment samples representing the brackish phase 293	

including the Littorina Sea and Post-Littorina Sea / modern Baltic Sea stage and two samples 294	

representing the Ancylus Lake stage (Fig. 2a; Table 1). To obtain more information on 295	

alkenone occurrence and distribution during the Ancylus Lake stage, we also studied samples 296	

from another sediment core. This core (318340) includes the complete Yoldia Sea stage (11.6-297	

10.6 cal kyr BP; 847.5-780.5 cm), the Ancylus Lake stage (10.6-7.7 cal kyr BP; 750.5-500.5 298	

cm), and the Littorina Sea / Post Littorina Sea stage (7.2 -0 cal kyr BP; 400.5-0 cm) (Fig. 2b). 299	

We analyzed 14 sediment samples from this core spanning depths 840.5-400.5 cm (Fig. 2b; 300	

Table 1).  301	

3.2. Alkenone concentrations and distributions 302	

Total alkenone concentrations were generally higher (i.e. 32±45 µg/g C; 303	

average±standard deviation) in the brackish portion of the Arkona Basin record than for the 304	

freshwater portion of the record (11±17 µg/g C; Table 1). In the latter case, there were also 305	

sediment horizons that did not contain detectable concentrations of alkenones. In the 306	

sediments of the Yoldia Sea phase no alkenones were detected (Table 1). Fig. 3 shows some 307	

typical alkenone distributions from sediment core 318310. Alkenones are comprised of the 308	

more common C37:2, C37:3, and C37:4  methyl (Me) ketones, C38:2 and C38:3  methyl (Me) and 309	

ethyl (Et) ketones, and the uncommon C36:2 Me ketone. This latter alkenone has not been 310	

previously reported in sediments of the Baltic Sea. It is especially relatively abundant in 311	

sediments deposited during the Littorina Sea period. Skagerrak surface sediments (Fig. 1) 312	

were analyzed as a marine end member for comparison with the results obtained from the 313	

Arkona Basin record. We did not detect the presence of the C36:2 alkenone in the Skagerrak 314	



sediments (Fig. 3a; Table 1). In sediment core 318310 a large difference in the relative 315	

abundance of C36, C37 and C38 alkenones is observed from 600 cm depth (c. 7.1 cal kyr BP; 316	

Fig. 3d), which is close to the Ancylus Lake/Littorina Sea transitional phase, to more recent 317	

sediments from the brackish phase of the Baltic Sea, i.e. at 100 cm (0.9 cal kyr, BP) and 50 318	

cm (0.4 cal kyr BP) depth (Fig. 3b-c). For the Skagerrak surface sediments the alkenone 319	

distribution is representative of a more open ocean setting (Fig. 3a). The alkenone distribution 320	

at 50 cm depth (Fig. 3b) is more similar to that of the Skagerrak sample than any of the other 321	

alkenone distributions shown (Fig. 3d), however, there are still a few differences between the 322	

two, such as the absence of the C36:2 alkenone and the lower relative abundance of C37:4  Me in 323	

the Skagerrak sediments.  324	

For a statistical evaluation of alkenone distribution changes, PCA was performed on 325	

the distributions of C36, C37 and C38 alkenones in the different sediments studied. Most of the 326	

variation is explained by principle component 1 (PC1; expressing 41% of the variance), which 327	

is related to the degree of unsaturation of the alkenones with the most unsaturated alkenones 328	

scoring negatively on PC1 (Fig. 4a). This is confirmed by the good correlation (r2 = 0.86) of 329	

the score on PC1 with UK’
37 (Fig. 4e). The variation in PC2 (27%) appears to be mostly 330	

explained by the fractional abundance of the C36:2 alkenone, which scores negatively on PC2 331	

(Fig. 4a). Indeed, the score on PC2 significantly (r2 = 0.77) negatively correlates with the 332	

fractional abundance of the C36:2 alkenone (Fig. 4f). PC3 explains 18% of the variance with 333	

the C38 Et ketones scoring negatively on PC3 (Fig. 4c). PC3 correlates significantly (r2 = 0.77) 334	

negatively with the summed fractional abundance of the C38:3 and C38:2 Et ketones (Fig. 4g).  335	

Most sediments score between -1 and +1 on PC2, however, the Skagerrak sediments 336	

plot more positively (ca. 2.0) and sediments from the core 318310 from the Littorina Sea 337	

phase (sediment core depths 400, 500 and 600 cm) plot more negatively on PC2 (ca. -3.2) 338	

(Fig. 4b). Fig. 5a shows the scores of PC1-3 plotted as a function of age. This reveals that the 339	



score on PC1 is mostly negative for sediments older than 7.2 cal kyr BP and is mostly positive 340	

during the more recent phases of the Baltic Sea (after 7.2 cal kyr BP) (Fig. 5a). The score on 341	

PC2 consistently plots positively throughout the combined record from the Arkona Basin 342	

except for the sediment depths that correspond to the Littorina Sea phase (sediment core 343	

depths 400-600 cm from core 318310, which spans 7.1-3.7 cal kyr BP) and the end of the 344	

Ancylus Lake phase (sediment core depth 400.5 cm in core 318340, which spans 7.1-3.7cal 345	

kyr BP; Fig. 5a-b (Fig. 5a). Two other core 318340 samples that plot slightly negatively for 346	

PC2 are depths 480.5 cm (7.7 cal kyr BP) and 750.5 cm (10.6 cal kyr BP) (Fig. 5a). PC3 347	

scores mostly between -1 and 1 throughout the sediment record and for the Skagerrak 348	

samples, however, some samples that fall within the Ancylus Lake phase plot outside of this 349	

range as does sediment sample 100 cm from record 318310 (0.9 cal kyr BP; Figs. 4d and 5a).  350	

  351	

3.3. δD of alkenones 352	

 We also determined δD values of alkenones on a subset of the samples from sediment 353	

core 318310 (Table 2), which can be an indicator of environmental conditions, mainly salinity 354	

and potentially haptophyte species composition (Schouten et al., 2005; van der Meer et al., 355	

2008, 2015; Chivall et al., 2014; M’boule et al., 2014). The surface sediment samples from 356	

the Skagerrak have similar δD values for the C37 and C38 alkenones that fall between -175 and 357	

-185‰ (Fig. 6; Table 2). In the Arkona Basin the C37 and C38 alkenones have lower δD values 358	

during the more recent brackish phase going back to about 2.7 cal kyr BP, (-212.2±5.5‰) 359	

(Fig. 6; Table 2). However, at the base of the Littorina Sea phase (7.1 cal kyr BP, 600 cm 360	

sediment depth from sediment core 318310), the δD values for C37 (-182.4‰) and C38 361	

alkenones (-170.3‰) are much higher and, in contrast to the other samples, the C37 are more 362	

depleted in D than the C38 alkenones. The obtained δD values of the C36:2 alkenone deposited 363	



during the brackish portion of the record in the Arkona Basin are enriched in D relative to the 364	

C37 and C38 alkenones from the same samples, but similar to those of the C37 and C38 365	

alkenones encountered in the modern day Skagerrak (-169.3±3.0‰).  Just after the Ancylus 366	

Lake/Littorina Sea transition, the δD values of the C36:2 alkenone (-168.7‰) is similar to that 367	

of the C38 alkenones (-170.3‰; Fig. 6; Table 2). 368	

 369	

4. Discussion 370	

4.1. Changes in sources of alkenones and its relation to changes in salinity 371	

The observed changes in the relative abundances of the different alkenones through 372	

time may be a direct response of alkenone biosynthesis to changing environmental conditions 373	

of the Baltic Sea over the Holocene, or alternatively, the changing conditions could result in 374	

changing species composition leading to different alkenone distributions. There are many 375	

characteristics of alkenones that have been linked to haptophyte species composition and/or 376	

environmental conditions. The most important are: 377	

(i) The degree of unsaturation of alkenones is commonly interpreted to be 378	

predominantly dependent on growth temperature (Brassell et al., 1986; Prahl and Wakeham, 379	

1987).  380	

(ii) The relative abundance of the C37:4 alkenone is generally higher in coastal 381	

haptophytes that thrive at lower salinities and this predominance is even more extreme in 382	

freshwater systems  (Rosell-Mele, 1998; Schulz et al., 2000; Blanz et al., 2005; Liu et al., 383	

2008, 2011).  384	

(iii) The ratio of C37/C38 alkenones might be indicative of haptophyte species since 385	

different C37/C38 values were observed for different haptophytes with coastal haptophytes 386	



generally showing higher ratios compared to more open ocean species (Prahl et al., 1988; 387	

Conte et al., 1998; Schulz et al., 2000). However, it has also been shown that environmental 388	

conditions, e.g. temperature, also affect the C37/C38 ratio (Conte et al., 1998; Sun et al., 2007).  	389	

(iv) The presence of the uncommon C36:2 alkenone, which only has been reported in 390	

the Black Sea (Xu et al., 2001; Prahl et al., 2006), Japan Sea (Fujine et al., 2006), and in an 391	

estuary in Florida (Van Soelen et al., 2014). Previous studies suggested it to be an indicator of 392	

brackish conditions (Xu et al., 2001; Fujine et al., 2006) and more recently, Coolen et al. 393	

(2009) proposed its biological origin in the Black Sea is likely a strain of low salinity-adapted 394	

E. huxleyi.  395	

(v) The δD of alkenones, the values of which are characteristic of certain types of 396	

haptophytes, but can also change with changing environmental conditions. Coastal 397	

haptophytes tend to fractionate less than more open marine haptophytes (Schouten et al., 398	

2005; Chivall et al., 2014; M’boule et al., 2014), therefore, δD values can aid in assigning 399	

biological sources of sedimentary alkenones. However, hydrogen isotope fractionation also 400	

depends on environmental factors such as salinity, light intensity and growth rate (Schouten et 401	

al., 2005; Prahl et al., 2006; van der Meer et al., 2008, 2015; Wolhowe et al., 2015).  402	

Some of these parameters were used to assign potential biological sources of the Baltic 403	

Sea sedimentary alkenones. To this end, the Arkona Basin data was compared with that from 404	

surface sediments of the Skagerrak (Figs. 4 and 6). Marine haptophytes, such as E. huxleyi, 405	

living at higher salinities and in more open ocean settings (like the Skagerrak) with a salinity 406	

of approximately 34 PSU (Danielssen et al., 1996) will fractionate at approximately 190‰ 407	

against D. Using a δD of Skagerrak water of ca. 0‰ (Frohlich et al., 1988) the δD values for 408	

the C37 and C38 alkenones are predicted to be ca. -190‰ (Englebrecht and Sachs, 2005; 409	

Schouten et al., 2005; M’boule et al., 2014). The δD value of the C37 and C38 alkenones in the 410	



Skagerrak surface sediments is -180±5‰ (Fig. 6; Table 2), indicating the haptophyte species 411	

in this region are predominantly of the marine type, most likely derived from E. huxleyi.  412	

The alkenones in the sedimentary record of the Arkona Basin up to ca. 2.7 cal kyr BP 413	

have a distribution that is quite similar to that observed in Skagerrak surface sediments (Figs. 414	

3a-c), which is typical of a marine haptophyte such as E. huxleyi. The low %C37:4 during this 415	

time (3.1±2.3%) would also suggest that these alkenones are derived from marine type 416	

haptophytes (i.e. E. huxleyi) (Fig. 5d). However, the C37 and C38 alkenones have substantially 417	

lower δD values (-212±6‰) than found in the Skagerrak surface sediments for the alkenones 418	

(-180±5‰; Fig. 6; Table 2). There are two main factors to consider. Firstly, the present-day 419	

δD of surface waters in the Arkona Basin is ca. -40‰ averaged over the photic zone (Frohlich 420	

et al., 1988), i.e. 40‰ depleted relative to the Skagerrak waters. This will shift the δD values 421	

of alkenones to substantially lower values (e.g., Englebrecht and Sachs, 2005). Secondly, 422	

culture studies have shown that hydrogen isotope fractionation is dependent on salinity, 423	

among other factors, with increased fractionation at lower salinities (e.g. M’boule et al., 424	

2014). The present-day salinity of surface waters of the Arkona Basin is ~10 PSU (ICES-425	

CIEM, n.d.). If E. huxleyi would be able to grow at these low salinities, the alkenone δD value 426	

is estimated at ca. -270‰, which is substantially lower than the measured values for the C37 427	

and C38 alkenones (-212±6‰). This value was arrived upon by extrapolating the isotope 428	

fractionation (α)-salinity relationship to these low salinities (M’boule et al., 2014), and using 429	

the δD value for surface waters of -40‰ over the photic zone (Frohlich et al., 1988). 430	

Consequently, this indicates that an E. huxleyi only origin for the C37 and C38 alkenones in the 431	

sedimentary record of the Arkona basin up to ca. 2.7 cal kyr BP, is unlikely. Haptophyte 432	

species adapted to lower salinities, such as I. galbana or C. lamellosa, fractionate less against 433	

D (Chivall et al., 2014; M’Boule et al., 2014), and the alkenones produced will have a less 434	

negative δD value. For I. galbana (M’boule et al., 2014) a δD value of alkenones of ca. -435	



180‰ can be estimated using a salinity of 10 PSU the δD of surface waters of -40. This value 436	

is higher than the values observed for the C37 and C38 alkenones in the Arkona Basin up to ca. 437	

2.7 cal kyr BP (i.e. between -205 and -220‰). This suggests that these sedimentary alkenones 438	

represent a mixture of alkenones produced by low salinity adapted haptophytes such as I. 439	

galbana and higher salinity adapted haptophytes such as E. huxleyi, with a more substantial 440	

contribution from the low salinity adapted haptophytes. 441	

 The C36:2 alkenone was detected in the Arkona Basin sediments, but not in the 442	

Skagerrak surface sediments (Fig. 3; Table 1). This supports the premise that the C36:2 443	

alkenone is exclusively produced by a low-salinity adapted haptophyte (Coolen et al., 2009). 444	

PCA revealed that the fractional abundance of the C36:2 alkenone is an important factor in the 445	

changing alkenone distributions in the Baltic Sea (Figs. 4a and f); i.e. PC2, explaining 27% of 446	

the total variance, is predominantly determined by the fractional abundance of the C36:2 447	

alkenone (Fig. 4a). In the sedimentary record of the Arkona Basin up to ca. 2.7 cal kyr BP, the 448	

fractional abundance of the C36:2 alkenone amounts to 0.10±0.03 (Figs. 5c; Table 1). From 449	

7.1-3.7 cal kyr BP in the sediment record the fractional abundance of the C36:2 alkenone 450	

increases to 0.51±0.11 and it dominates the alkenone distribution (Figs. 3d and 5c; Table 1). 451	

For the entire period of 7.1-0.1 cal kyr BP the δD values for the C36:2 alkenone show only 452	

minor variation and are similar to the δD values for the C37 and C38 alkenones from the 453	

modern day Skagerrak (-170±3‰; Fig. 6; Table 2). However, for most of the record the δD 454	

value of the C36:2 alkenone is significantly higher than those of the C37 and C38 alkenones. 455	

Since the δD value of the C36:2 alkenone is close to that (-180‰) calculated for I. galbana 456	

using a salinity of 10 PSU and a δD of surface waters of -40‰ (see above) this suggests that it 457	

is derived from a single low-salinity adapted haptophyte species. Previous studies (Coolen et 458	

al., 2009; Van Soelen et al., 2014) have also reported a substantial offset in δD values for C37 459	

and C36:2 alkenones with that of the C36:2 alkenone being significantly higher. Van Soelen et al. 460	



(2014) concluded that the offset in δD values for C37 and C36:2 alkenones found in an estuary 461	

in Florida is evidence that different haptophytes, yet still unknown, are producing the C36:2 462	

alkenone. Interestingly, close to the Ancylus Lake/Littorina Sea transition (7.1 cal kyr BP, 463	

600 cm sediment depth from core 318310), which falls within the period characterized by the 464	

high fractional abundance of the C36:2 alkenone, the δD values for C37 (-182.4‰) and C38 (-465	

170.3‰) alkenones are much higher than in the other Arkona Basin samples and similar to 466	

the δD values of the C36:2 alkenone (Fig. 6; Table 2). This suggests a similar origin for most of 467	

the C36, C37 and C38 alkenones at this time, most likely a low salinity adapted haptophyte 468	

species. This is strongly supported by the deviating alkenone distribution at this time (Fig. 3d) 469	

dominated by the C36:2 alkenone. The observed trends in δD values of alkenones over the 470	

period between 7.1 and 0.1 cal kyr BP, thus, corroborate the idea that during this period in the 471	

Baltic Sea there is more than one alkenone producing haptophyte species.  472	

From circa 7.1-3.7 cal kyr BP, during the Littorina Sea phase in the Baltic Sea, the 473	

C36:2 ratio is highest demonstrating the greatest contribution from these low-salinity adapted 474	

haptophytes and the %C37:4 is more variable during this period ranging from 0.1-13.6%. This 475	

suggests mutable input from non-marine type haptophytes and therefore potentially 476	

fluctuating salinities (Fig. 5d; Table 2). The enrichment in the δD of the C37 and C38 alkenones 477	

corroborates the contribution from non-marine haptophytes as well (Fig 6). Why the %C37:4 478	

and the fractional abundance of the C36:2 alkenone is higher and the C37 and C38 alkenones are 479	

more enriched in D during the Littorina Sea phase than after is not clear since they are both 480	

brackish water periods. Possibly this is related to the period after the Ancylus Lake/Littorina 481	

Sea transition being a time of not only low, but also variable salinity. Perhaps the haptophytes 482	

producing the C36:2 alkenone had a competitive advantage over other haptophytes at this time 483	

because they were better adapted to changing salinities, or alternatively, certain haptophyte 484	

species biosynthesize this compound in response to changing salinities or marine haptophytes 485	



brought in from the North Sea were not yet established. These possibilities suggest that 486	

variable salinity was a characteristic of the Littorina Sea phase.  487	

Prior to 7.1 cal kyr BP in the Arkona Basin sediment record we do not have δD values 488	

of alkenones to report, however, some remarkable changes in the alkenone distributions are 489	

observed. Firstly, the UK’
37 is lower prior to the Ancylus Lake/Littorina Sea transition (Fig. 490	

5e) potentially due to a change in the composition of the haptophyte community as indicated 491	

by the higher fractional abundance of the C37:4 at this time (Fig. 5d; Table 1). Secondly, the 492	

fractional abundance of the C36:2 alkenone is relatively low from 10.7 cal kyr BP up to the 493	

transition (0.02±0.03; Fig. 5c; Table 1). Thirdly, during the transitional phases of this time 494	

period, both the Yoldia Sea phase to Ancylus Lake transition (c. 10.7-10.6 cal kyr BP) and at 495	

the Ancylus Lake/Littorina Sea transition (c. 7.3 cal kyr BP), the alkenone distributions are 496	

dominated by C38 ethyl alkenones (i.e. a low score on PC3; Figs. 4c-d and i.e. summed 497	

average fractional abundance of 0.55±0.03; Fig. 5b; Table 1). The lower fractional abundance 498	

of the C36:2 alkenone during the Ancylus Lake phase, (Fig. 5c; Table 1) suggests that most 499	

likely a change in haptophyte species composition occurred related to salinity. Additionally, 500	

the C36:2 alkenone is absent in the Arkona Basin sedimentary record from 10.2-8.0 cal kyr BP 501	

(Fig. 5c; Table 1). Since it is a potential indicator for the low salinity adapted, but not 502	

freshwater haptophyte species, the presence of the C36:2 alkenone prior to the Anyclus Lake 503	

phase ending suggests marine influxes had already begun in the basin at that time. A diatom 504	

study by Witkowski et al. (2005) reported that the first brackish water inflows began just 505	

before this time period, i.e. between 8.9-8.4 kcal yr BP. The presence of the C36:2 alkenone 506	

from 10.6-10.2 cal kyr BP aligns with the ending of the slightly brackish Yoldia Sea phase. 507	

Lastly, the higher %C37:4 during the Ancylus Lake phase verifies that there was an increase in 508	

freshwater haptophytes during this time. 509	

5.2. Comparison with the Holocene alkenone record of the Black Sea 510	



A previous study of alkenones in the Black Sea (Coolen et al., 2009) reported similar 511	

trends with respect to the fractional abundance of the C36:2 alkenone to those reported here for 512	

the Baltic Sea. The Black Sea experienced a somewhat comparable geological history to the 513	

Baltic Sea. In the early Holocene it was a freshwater lake until a connection was established 514	

with the Aegean and Mediterranean Seas due to the global transgression allowing the influx 515	

of more saline waters (Ryan et al., 1997). The permanent establishment of this connection is 516	

dated at c. 7.2 cal kyr BP (Ryan et al., 1997; Ballard et al., 2000). The resultant increase in 517	

salinity is reflected by the sedimentary sequence revealing a transition from banded clay with 518	

graded sand and silt layers (Unit III) to sapropel mud (Unit II) (Ross et al., 1970). As the 519	

influx of salty Mediterranean waters continued it caused an increase in the surface salinity of 520	

the Black Sea allowing a massive growth of E. huxleyi (Jones and Gagnon, 1994) in the basin 521	

c. 2.7 cal kyr BP, resulting in deposition of a coccolith ooze (Jones and Gagnon, 1994). The 522	

abundance in E. huxleyi at this time has been attributed to a surface water salinity increasing 523	

above 11 PSU and the base of Unit I is generally defined as the horizon that reveals the first 524	

invasion of E. huxleyi, ca. 700 yr earlier (Fig. 7) (Arthur and Dean, 1998; Hay, 1988). 525	

Since the salinity changes in the Baltic Sea and Black Sea occurred around the same 526	

time (~7.2 cal kyr BP), we compared the relative abundance of the C36:2 alkenone from the 527	

Baltic Sea directly to that in the Black Sea reported by Coolen et al. (2009) (Fig. 7a). In both 528	

the Baltic Sea and Black Sea the fractional abundance of the C36:2 alkenone is rapidly 529	

increasing to values of 40-70% just after the inflow of more saline waters started. 530	

Subsequently, a period of sustained high fractional abundances follows in both basins up to 531	

ca. 2.6 cal kyr BP.  The higher resolution record of the Black Sea shows that the period 532	

between 7.0-5.4 cal kyr BP is characterized by the highest values (up to 75%), followed by a 533	

drop to a fractional abundance of ca. 25% for the period 5.0-2.6 cal kyr BP. This latter period 534	

is interrupted by the horizon of the first invasion of E. huxleyi at 3.5 cal kyr BP when the 535	



fractional abundance drops to 5%. For the Baltic Sea the fractional abundance of the C36:2 536	

alkenone is high throughout the 7.0-2.6 cal kyr BP period. In both basins the fractional 537	

abundance of the C36:2 alkenone is substantially reduced in the most recent period (2.6-0.0 cal 538	

kyr BP) although for the Baltic Sea it does not drop to the low values seen in the Black Sea 539	

(i.e. 1%) and it increases towards the present day situation (Fig. 7a). In conclusion, we note a 540	

quite similar behavior for the fractional abundance of the C36:2 alkenone in both enclosed 541	

basins with limited connection to the open ocean. This may relate to a somewhat comparable 542	

response to the global sea level transgression during the Holocene. For the Black Sea 543	

substantial additional data is available for the interpretation of this trend and this may help, by 544	

analogy, to provide a more detailed interpretation of the Baltic Sea record. 545	

Coolen et al. (2006, 2009) provided through ancient DNA analysis clues on the 546	

biological origin of the sedimentary alkenone in the Black Sea. The most extensive record 547	

comes from a site in the western Black Sea. It reveals that during deposition of the base of 548	

Unit II Isochrysis-related haptophytes thrived (Fig. 7c). This fits with the time of the newly 549	

established connection with the Mediterranean since these type of haptophytes are adapted to 550	

low salinity. Subsequently, there is a short period (5.7-4.8 cal kyr BP) where Coolen et al. 551	

(2009) detected both Isochrysis-related haptophytes and E. huxleyi, followed by a period 552	

where only ancient DNA of E. huxleyi was found. When this information is combined with 553	

the record of the fractional abundance of the C36:2 alkenone (Fig. 7a), it is evident that this 554	

alkenone must have been produced by Isochrysis-related haptophytes since the period of 555	

highest fractional abundance (up to 75%) falls in the period where only ancient DNA of 556	

Isochrysis-related haptophytes is detected (Fig. 7). However, the C36:2 alkenone also occurs 557	

(albeit at a substantially reduced fractional abundance) in more recent periods when only 558	

ancient DNA of E. huxleyi is detected, suggesting that this haptophyte may also produce this 559	

alkenone. However, this latter conclusion is at odds with the large difference (90-100‰) in 560	



δD composition of the C36:2 and C37 alkenones as reported by Giosan et al. (2012) for this 561	

section, which indicates clearly distinct biological sources for these alkenones. In fact, when 562	

the δD record of the C36:2 alkenone is combined with the recent determination of the isotopic 563	

fractionation factor α for Isochrysis galbana (M’boule et al., 2014) to estimate palaeosalinity 564	

of the surface waters of the Black Sea over the Holocene, we obtain a record (Fig. 7c; blue 565	

line) that is in good agreement with our general concept of the development of surface salinity 566	

of the Black Sea. In the lowermost part of Unit II the estimated palaeosalinity is only a few 567	

PSU, it subsequently rises to 15 PSU at the Unit I/II transition, reaches a maximum of ca. 26 568	

PSU at 2.0 cal kyr BP and then declines to 17 PSU for the most recent period. These data are 569	

in good agreement with salinity calculations (Fig. 7c) based on δD data of C37 alkenones in 570	

cores from both the western and eastern Black Sea (van der Meer et al., 2008; Giosan et al., 571	

2012) in combination with the isotopic fractionation factor α for E. huxleyi (M’boule et al., 572	

2014). For the period where the fractional abundance of the C36:2 alkenone is still elevated (i.e. 573	

up to 2.6 cal kyr BP) these estimations of paleaosalinity are on the high end (except for the 574	

horizon reflecting the first invasion of E. huxleyi in the Eastern Basin). This is most likely 575	

caused by the fact that the C36:2 alkenone-producing haptophytes are also contributing D-576	

enriched C37 alkenones to the total pool of C37 alkenones, influencing the palaeosalinity 577	

calculation that is based on a 100% origin from E. huxleyi. Hence, the δD data of the C36:2 578	

alkenone in combination with the salinity calculations strongly suggest that the C36:2 alkenone 579	

has been produced by an Isochrysis-related haptophyte and not by a lower salinity adapted 580	

strain of E. huxleyi as suggested previously (Coolen et al., 2009). It remains unclear why 581	

ancient DNA of this haptophyte is only detected for the period 7.4-4.8 cal kyr BP. However, it 582	

is known that Denaturing Gradient Gel Electrophoresis (DGGE), the method used by Coolen 583	

et al. (2009) to detect ancient DNA is only able to quantify the predominant DNA sequences. 584	



Combining the fractional abundance record of the C36:2 alkenone (Fig. 7a) with the 585	

palaeosalinity record (Fig. 7c) now makes it possible to determine the optimal salinity for the 586	

Isochrysis-related haptophyte producing the C36:2 alkenone.  In the Black Sea at salinities from 587	

2-8 PSU, the C36:2 alkenone dominates the alkenone distribution. At a salinity of up to ca. 19 588	

PSU the C36:2 alkenone can still contribute substantially (25%) and above this level it becomes 589	

a minor alkenone. It is clear that salinity is not the only environmental control on the C36:2 590	

alkenone-producing haptophyte since when in recent times salinities drop to ca. 17 PSU, the 591	

C36:2 alkenone still remains a minor alkenone (Fig. 7).  592	

The C36:2 alkenone data of the Black Sea allow the interpretation of the C36:2 alkenone 593	

record of the Baltic Sea in term of changes in salinity. This should be done cautiously since it 594	

is clear that other environmental factors also may have an effect. Nevertheless, the sudden 595	

increase of the fractional abundance of the C36:2 alkenone record at the Ancylus Lake/Littorina 596	

Sea transition is highly comparable to what happened in the Black Sea at the Unit III/II 597	

transition and indicates an incursion of marine waters into the freshwater lakes most probably 598	

by the worldwide sea level transgression, resulting in a modest increase in surface water 599	

salinity to ca. 2 PSU. In the Baltic Sea the fractional abundance of the C36:2 alkenone remains 600	

high until ca. 3.0 cal kyr BP, suggesting that the salinity of the surface waters of the Arkona 601	

Basin increased at a lower rate than in the Black Sea. The lowest fractional abundance of the 602	

C36:2 alkenone is recorded in the Arkona Basin at 0.9 cal kyr BP, suggesting that the salinity 603	

was highest at that time, which corresponds to the medieval climate anomaly (MCA, which 604	

occurred between 950-1,250 BP). This trend is similar to salinity records for the whole Baltic 605	

Sea based on combined proxies and modelling (Gustafsson and Westman, 2002) although the 606	

maximum salinity is thought to be earlier even when we correct for the different age models. 607	

Generally, it is believed that the Littorina phase of the Baltic Sea was more saline than the 608	

post-Littorina phase, however, other studies do not reveal this difference (Andren et al., 2000; 609	



Westman and Sohlenius, 1999; Andrén et al, 2002; Witkowski et al., 2005) or show the 610	

opposite (Emeis et al., 2003).   611	

 612	

5.3 Potential uses of alkenones as environmental indicators for SST  613	

The indices and ratios we have presented in this study all corroborate that a haptophyte 614	

species composition change, most likely driven by a salinity shift, occurred during the Yoldia 615	

Regression (10.6 cal kyr BP), the Ancylus Lake/Littorina Sea transition (7.7-7.2 cal kyr BP), 616	

and at the MCA (0.9 cal kyr BP). The results also indicate that the haptophyte species 617	

composition since 7.2 cal kyr BP in the Baltic Sea basin is a combination of marine (E. 618	

huxleyi type) and low-salinity adapted haptophytes. This designates that higher salinity 619	

conditions have prevailed since the Ancylus Lake/Littorina Sea transition.  620	

To determine how shifts in haptophyte species composition in the Baltic Sea could 621	

affect paleoclimate reconstructions using long chain alkenones, we examined the UK’
37 index 622	

over the Holocene. UK’
37 values changed across the Ancylus Lake/Littorina Sea transition 623	

with lower values (0.24±0.04) during the Ancylus Lake phase and an increase in the UK’
37 624	

index after 7.2 cal kyr BP (0.42±0.15; Fig. 5e; Table 2). This resulted in an increase in 625	

average estimated SSTs based on the UK’
37 index from ~6°C during the Ancylus Lake phase 626	

to ~13°C during the brackish phase. We believe that variations in haptophyte community 627	

composition resulting from fluctuating salinity is most likely responsible for this change in 628	

UK’
37 values and the corresponding unrealistic increase in SST over the Ancylus 629	

Lake/Littorina Sea transition. The highest contribution of the C36:2 alkenone occurred during 630	

the Littorina Sea phase, which indicates salinity was relatively low at that time. The presence 631	

of this alkenone even in the more recent phase of the Baltic Sea is evidence of the continued 632	

contribution from low salinity adapted haptophytes, which are most likely complicating the 633	



use of alkenone unsaturation ratios for SST reconstructions in this region. Schulz et al. (2000) 634	

demonstrated in a study performed in the Baltic Sea that UK’
37 varied regionally depending on 635	

salinity and that higher salinity areas in the Baltic had higher UK’
37 values and vice versa. 636	

Since previous studies have also shown that alkenone distributions co-vary not only with 637	

temperature changes, but also with salinity driven changes in haptophyte species composition 638	

(Coolen et al., 2004, 2009) we cannot apply the UK’
37 index for SST reconstructions in the 639	

Baltic Sea basin over the Holocene. 640	

Interestingly, we observed that during the brackish phase the alkenone distribution at 641	

0.9 cal kyr BP (100 cm depth) is unique compared to the other sediment samples (Fig. 3) from 642	

the brackish phase. This sediment horizon has the lowest contribution of the C36:2 alkenone, 643	

the lowest %C37:4 and the highest fractional abundance of the C38 Et alkenone (Fig. 5b-d; 644	

Tables 1-2), all indicating the increased presence of marine type haptophyte species and 645	

therefore that more marine conditions prevailed in the Baltic Sea at this time. This sample 646	

falls within the MCA, also known as the Medieval Warm Period. The lower contribution of 647	

the C37:3 alkenone compared with C37:2 corroborate that warmer temperatures (Fig. 3c) 648	

occurred during this time, although the minor contribution of Isochrysis-related haptophytes 649	

do not allow absolute SST determination.  650	

 651	

Conclusions 652	

This research demonstrates the usefulness of alkenone distributions along with the δD of the 653	

alkenones for paleosalinity studies in the Baltic Sea and other environments as well. Both 654	

alkenone distributions and hydrogen isotopic composition indicate a shift in haptophyte 655	

species composition in the Arkona Basin of the Baltic Sea from the Ancylus Lake to the 656	

Littorina Sea phase, c. 7.2 cal kyr BP, from lacustrine to brackish type haptophytes, 657	



corresponding to the incursion of marine waters that occurred in the Baltic Sea at that time as 658	

a consequence of the global sea level rise. During the Littorina Sea Phase the fractional 659	

abundance of the C36:2 alkenone remains high, suggesting that salinity did not rise above 8 660	

PSU. From ca. 3.0 cal kyr BP onwards the fractional abundance of the C36:2 alkenone is lower, 661	

suggesting a slightly higher salinity. During this phase there is a substantial offset in δD 662	

values with the C36:2 alkenone substantially more enriched than the C37 alkenones. The 663	

presence of the C36:2 alkenone in the Baltic Sea as well as the δD record suggest it is produced 664	

by a different species of haptophyte adapted to lower salinity conditions that is not 665	

contributing much to the production of C37 and C38 alkenones. The contribution of alkenones 666	

from lower salinity adapted species in the Baltic Sea hinders the use of the UK’
37 index for 667	

SST reconstructions.   668	
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  875	



Figure legends 876	

Figure 1 A map of the Baltic Sea region and sampling sites. The sediment coring sites 877	

318310 and 318340 in the Arkona Basin are designated by blue circles and the two stations in 878	

the Skagerrak where surface sediment samples were collected are indicated by red squares.  879	

Figure 2 Correlation of sediment cores 318310 (left panel) and 318340 (right panel) using Ca 880	

data obtained from XRF analysis (cps; designated by the gold line) and LOI (wt%; designated 881	

by the black line). The red numbers indicate the radiocarbon dates (in cal yr BP) of carbonate 882	

fossils from specific horizons in core 318310. The blue lines indicate tie points used for 883	

correlating both cores (see text). The closed circles along the depth axes indicate the depths of 884	

the sediments analyzed for alkenones in this study.  885	

Figure 3 Partial GC-FID chromatograms displaying alkenone distribution from various 886	

sediment horizons. (a) Sample EMB0461-10-MUC from the Skagerrak shows a typical 887	

marine distribution, (b) a sediment interval from 0.4 cal kyr BP (50 cm depth from core 888	

318310) is from a brackish period and displays a distribution similar to the marine distribution 889	

except with the additional presence of the C36:2 alkenone, (c) the sediment interval from 0.9 890	

cal kyr BP (100 cm depth from core 318310) has a different distribution from the other depths 891	

in both cores with no C37:4 alkenone, C37:3 < C37:2, and a lower contribution of the C36:2 892	

alkenone relative to the C37 alkenones, (d) the sediment interval from 7.1 cal kyr BP (600 cm 893	

depth from core 318310) is from the period immediately following the Ancylus 894	

Lake/Littorina Sea transition and has an alkenone distribution characteristic of lower salinity 895	

haptophytes. Note the high relative abundance of the C36:2 alkenone at this time. The 896	

alkenones are color coded according to the legend with circles designating the C38 alkenones, 897	

triangles signifying the C36:2 alkenone, and squares indicating the C37 alkenones. 898	



Figure 4 Principal component analysis based on the standardized fractional abundances of the 899	

eight alkenones found consistently in the sediments from the Baltic Sea used in this study. 900	

Samples where alkenones were not detected were left out of the PCA. (a) Plot showing the 901	

scores of the alkenones and scores of the different sites on PC1 (41.0%) and PC2 (25.6%). (b) 902	

Displays the scores of the alkenones on PC1 ac PC3 (18.1%) as well as the scores of the 903	

different sites. Scatter plots displaying the correlation of (c) PC1 with UK’
37  (R2=0.86) (d) 904	

negative correlation of PC2 and C36:2 Et (R2=0.77) (e) and negative correlation with PC3 and 905	

the sum of the C38 Et (R2=0.74). 906	

Figure 5 Plots of the combined Arkona Basin record (sediment core 318310 designated by 907	

closed symbols and 318340 by open symbols) with age (cal kyr BP) for (a) PC1-PC3 (b)  908	

summed fractional abundance of the C38 Et alkenones, (c) fractional abundance of the C36:2 909	

alkenone (%) (d) %C37:4, and (e) UK’
37. 910	

Figure 6 δD values of the C36:2, C37 and C38 alkenones plotted against age (cal kyr BP) from 911	

the record 318310 and the two Skagerrak surface sediment samples.  In the Arkona Basin 912	

conditions were fresh until 7.8 cal kyr BP and brackish from 7.1 cal kyr BP onwards. The 913	

sample points in black are for sediments from the Arkona Basin record (sediment core 914	

318310) and the red sample points are for the Skagerrak surface sediments. The circles denote 915	

the δD of the C36:2 alkenones, the squares signify the δD values C37 alkenones and the 916	

diamonds represent the δD of the C38 alkenones. 917	

Figure 7 Comparison of C36:2 alkenone abundance data for the Baltic Sea and the Black Sea 918	

over the Holocene. Top panel (a) shows the fractional abundance of the C36:2 alkenone 919	

relative to the C36-C38 alkenones for the Black Sea (blue circles; data from Coolen et al., 2009) 920	

and Baltic Sea (green triangles; this study). The middle panel (b) shows the haptophyte 921	

community composition in the Black Sea as reconstructed based on DGGE analysis of partial 922	



18S rRNA genes amplified with a specific haptophyte primer set with Isochrysis-related 923	

haptophytes in red and E. huxleyi in blue (data modified from Coolen et al., 2009; note that in 924	

their Fig. 3 relative abundance data is shown based on the relative abundance of all DGGE 925	

bands not only those related to alkenone-producing haptophytes, Coolen, personal 926	

communication). These data are in agreement with earlier haptophyte 18S rRNA gene work 927	

on a box core just penetrating Unit 2 from a deep water site in the eastern Black Sea (Coolen 928	

et al., 2006). The bottom panel (c) shows reconstructed salinities for the Black Sea based on 929	

the hydrogen isotopic compositions of the C36:2 and C37 alkenones. For all data the 930	

fractionation factor α was calculated using a water hydrogen isotopic composition of -20 931	

permille (Swart, 1991). Salinities were reconstructed based on the α-salinity relationship for 932	

Isochrysis galbana (α=0.0019*S+0.836; M’Boule et al., 2014) for the C36:2 alkenone and E. 933	

huxleyi (α=0.0021*S+0.740; M’Boule et al., 2014) for the C37 alkenones. Original alkenone 934	

hydrogen isotope data are for the eastern Black Sea from van der Meer et al. (2008) and for 935	

the western Black Sea from Giosan et al. (2012). The stratigraphy for the Baltic Sea (top) and 936	

Black Sea (bottom) is indicated. TS denotes transition sapropel. Note that the stratigraphy 937	

described for the Black Sea core in the study of Coolen et al. (2009) and Giosan et al. (2012) 938	

has been adjusted to fit the commonly applied stratigraphy for the Black Sea (see lowermost 939	

part of the figure), i.e. the layer of the first invasion of E. huxleyi (grey bar in the other panels) 940	

is taken as the start of Unit 1 deposition (Hay et al., 1992; Arthur et al. 1994; Jones and 941	

Gagnon, 1994). In the sediment core used in the work of Coolen et al. (2009) this layer is not 942	

clearly revealed by an increase of the carbonate content but the alkenone distribution shows a 943	

distinct change at ca. 3,350 cal yr BP (see sudden decrease of the relative abundance of the 944	

C36:2 alkenone in panel a; in addition this horizon is also characterized by a 3-4 fold increase 945	

in total alkenone concentration and the detection of C39 alkenones; Coolen et al., 2009) 946	

towards a composition highly comparable to the upper part of Unit I that is composed of 947	



coccolithic ooze. Their reported radiocarbon date for this section (3,360±68 cal yr BP) is by 948	

this adjustment in good agreement with the reported age of the base of Unit I at other 949	

locations in the Black Sea (Hay et al., 1992; Arthur et al. 1994; Jones and Gagnon, 1994). 950	
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