# Learning from microworlds: evidence from a fisheries simulation game

Hendrik Stouten<sup>1,2</sup>, Aime Heene<sup>2</sup>, Xavier Gellynck<sup>3</sup> and Hans Polet<sup>1</sup>

<sup>1</sup> Institute for Agriculture and Fisheries Research Ankerstraat 1, B-8400 Ostend, Belgium

<sup>2</sup> Department of Management, Innovation, and Entrepreneurship, Faculty of Economics and Business Administration, Ghent University Tweekerkenstraat 2, B-9000 Ghent, Belgium

> <sup>3</sup> Department of Agricultural Economics, Faculty of Bio-Science Engineering, Ghent University Coupure Links 653, B-9000 Ghent, Belgium

**Research question** 

Do stakeholders in the Belgian fisheries system learn from using a gaming simulation model?

Material & Methods



### <u>STEP 1</u>

### The gaming simulation model

The story behind the game is that the player is the only policy maker in Belgian fisheries and he needs to maximise his votes for the upcoming elections. The way to do this is to demonstrate his policy strategy for the upcoming 20 years to the different stakeholder groups involved in the Belgian fisheries system.

### <u>STEP 2</u>

### Population, sample and recruitment

| Stakeholder group | Organisation                                                             | Population* | Participants | Part. rate |
|-------------------|--------------------------------------------------------------------------|-------------|--------------|------------|
| Policy makers     | The Department of Agriculture and<br>Fisheries of the Flemish Government | 21          | 17           | 81%        |
|                   | The Cabinet of the Flemish Government in charge of sea fisheries         | 3           | 2            | 67%        |
|                   | DG Maritime Affairs and Fisheries (EU)                                   | 69          | 6            | 9%         |
|                   | Cabinet of Commissioner Joe Borg (EU)                                    | 13          | 0            | 0%         |
| Scientists        | Institute of Agricultural and Fisheries<br>Research                      | 35          | 20           | 57%        |
| Fishing industry  | Ship owners and skippers                                                 | ?           | 12           | ?          |

The experimental group of the scientists

| Hv | poth | esis | & F | Resi | ilts |
|----|------|------|-----|------|------|
|    |      |      |     |      |      |

| Нуро              | thesis*                                                                                                                                  | Accepted or rejected |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| H0 <sub>1</sub> : | <pre>Pre-test(exp) = Pre-test(contr) The two randomly selected treatment groups are initially equal.</pre>                               | Accepted             |
| H0 <sub>2</sub> : | Pre-test(stake1) = Pre-test(stake2) = Pre-test(stake3)<br>All stakeholder groups are initially equal related to the dependent variables. | Rejected             |

\*This is a proxy of the population and consists only of the people who are involved directly or indirectly in Belgian fisheries.

### <u>STEP 3</u>

### The Questionaires

### Measuring:

- Subjective knowledge about the impact of policy instruments
- > Attitude towards policy instruments
- Behavioural intention towards policy instruments
- Attitude towards the used microworld
- Perceived internal validity of the microworld
- > Self-reported learning about the impact of policy instruments
- Self-reported learning about fisheries management difficulty

# <u>STEP 4</u>

Five sessions of 'Before after with control group'-experiments

### SESSION (≈ STAKEHOLDER GROUP)

Experimental group\*

**Control group\*** 

Pre-test

Play to learn for gaming competition

#### HO<sub>3</sub>: Post-test(exp) = Post-test(contr)



### HO<sub>4</sub>: Post-test(stake1) = Post-test(stake2) = Post-test(stake3)

All stakeholder groups are (still) the same related to the dependent variables after having played with the microworld.

### HO<sub>5</sub>: Pre-test = Post-test

### Rejected

Rejected

Both treatments caused no changes in subjective knowledge, attitude, and behavioural intention towards policy instruments.

H06:[Post-test(exp) - Pre-test(exp)] = [Post-test(contr) - Pre-test(contr)]AcceptedThe microworld caused no changes in subjective knowledge, attitude, and<br/>behavioural intention towards policy instruments.Accepted

# HO<sub>7</sub>: [Post-test(stake1) - Pre-test(stake1)] = [Post-test(stake2) - Pretest(stake2)] = Post-test(stake3) - Pre-test(stake3)] Stakeholder groups report the same changes in subjective knowledge,

attitude, and behavioural intention towards policy instruments independent from the treatment condition.

\* "Exp" = Experimental condition / "Contr" = Control group / "Stake" = Stakeholder group

# Conclusion

#### Accepted

Post-test

#### Post-test

Pre-test

Gaming competition

Gaming competition

\*Participants were randomly assigned to experimental and control group

# <u>STEP 5</u>

Statistical analyses

Different forms of analysis of variance

This experiment indicates that using the microworld did not result in changes in stakeholders' subjective knowledge, attitude and behavioural intention towards policy instruments in Belgian fisheries management. This outcome is somewhat contradictory to the fact that all stakeholders groups reported that they had learned from the microworld about the effect policy instruments have on the fisheries system and that they had confidence in the microworld and perceived its behaviour as valid.

Institute for Agricultural and Fisheries Research, Animal Sciences – Fisheries ILVO, Section Fishery Gear Research, Ankerstraat 1, 8400 Oostende, Belgium +32(0)59/569824 Chendrik.stouten@ilvo.vlaanderen.be