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Abstract

This paper provides pieces of advice on the practices of quality assurance and quality control in assessing production and
dissolution rates of biogenic silica in marine waters with stable isotope techniques. The objective is to make a rigorous contribution
to the interpretation of 30Si isotopic measurements including modelling and uncertainty analyses. The results are illustrated with
real data taken from Beucher et al. [Beucher, C., Tréguer, P., Corvaisier, R., Hapette, A/-M., Elskens, M., 2004a. Production and
dissolution of biogenic silica in a coastal ecosystem of western Europe. Marine Ecology Progress Series 267:57–69.]. Prior to the
flux rate assessment, there are a number of analytical considerations required for screening between optimal and defective
experimental conditions. Three indexes were proposed to check the relevance of underlying assumptions when dealing with 30Si
tracer enrichment and dilution techniques. Afterwards for extracting rate values from measurements, it is necessary to postulate a
model, and if required an optimization method. Various models and formulae were compared for their precision and accuracy. It
was shown that oversimplified models risk bias when their underlying assumptions are violated, but overly complex models can
misinterpret part of the random noise as relevant processes. Therefore, none of the solutions can a priori be rejected, but each
should statistically be assessed with hypothesis testing. A weighted least squares regression strategy combining an analysis of the
standardized residuals and cost function (sum of the weighted least squares residuals) was used to select optimal solution subsets
corresponding to a given data set, i.e. the solution that uses the most relevant processes and which was tested for the presence of
outliers (observations or measurements with undue influence in the flux rate assessment).
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1. Introduction

Since the pioneering work of Goering et al. (1973),
stable isotopes 29Si and 30Si have been used to assess
transformation rates of biogenic silica (BSiO2) and
silicic acid (H4SiO4) in several marine ecosystems
(Nelson and Gordon, 1982; Nelson et al., 1991). Later
the development of radioactive 32Si isotope measuring
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procedures (Tréguer et al., 1991; Brzezinski and
Phillips, 1997) has significantly improved the measure-
ments of biogenic silica production rates (e.g. Brze-
zinski et al., 1998; Quéguiner, 2001). However, there are
several reasons to further use stable isotopes in routine
measurements; (1) their use remains the only way to
measure silica dissolution rates, and (2) they are not
hazardous. This does not exclude that some inherent
difficulties remain, for example, measuring rates of near
surface silica dissolution with isotope dilution and mass
spectrometry remains a difficult task because this rate
may be low, especially in offshore waters. It is
anticipated that increased experimental ingenuity will
overcome some of these technical difficulties. In that
way, refined analytical methods were recently devel-
oped based on thermal ionisation-mass spectrometry,
TI-MS (Corvaisier et al., 2005) and high resolution-
inductively coupled plasma-mass spectrometry, HR-
ICP-MS (Klemens and Heumann, 2001; Cardinal pers.
comm.).

In order to extract values for the flux rates
(production and dissolution of biogenic silica) from
those measurements, it is necessary to postulate a model.
In addition, an appropriate optimization method should
be chosen with care since the numerical values for the
parameter estimates largely depend upon the criteria and
methods used to match model and measurements
(Janssen and Heuberger, 1995). Because pathways that
control nutrient cycling in aquatic systems are seldom
univocal, there is understandably some disagreement
about the best approach to model these processes
(number of parameters, number of equations…). The
first goal of this paper is to compare the estimation
behaviour of the basic model approach for assessing
silicic acid uptake by phytoplankton (Nelson and
Goering, 1977a) and silica dissolution (Nelson and
Goering, 1977b) with a nonlinear two compartmental
model previously described in Beucher et al. (2004a,b)
and de Brauwere et al. (2005a). Since the notion of a
“true model” is typically a fiction for real-life applica-
tion, usefulness rather than trueness should be the
guiding principle in developing and comparing models.
Clearly, there is a need for criteria allowing an objective
assessment of the model results (Elskens et al., 2005)
and a well-defined model selection strategy (de
Brauwere et al., 2005b). Therefore, the second goal of
this paper is to present a series of data processing
techniques that are relevant from a user's and manage-
ment's perspective. Namely, which strategy should be
applied to select an appropriate model solution? How
can systematic errors or model failure be detected with
real data? What confidence can be placed into the final
model outcome? Which data can be considered as
outliers and should be removed?

The result of this quality assessment is illustrated
with real data reported in Beucher et al. (2004a) and
discussed in relation to quality assurance for research
and development and non-routine analysis.

2. Material and methods

2.1. Experimental design and assumptions

The enrichment and isotope dilution technique,
which is applied for the simultaneous determination of
biosilica production and dissolution rates, involves the
addition of enriched Na2

30SiO3 solutions to a water
sample, and after some period of incubation measuring
(i) the 30Si incorporated into the particulate material
(=uptake) and (ii) the coincident tracer dilution in the
dissolved pool due to dissolution of unlabelled biosilica.
The changes in concentration and isotopic abundance of
H4SiO4 acid and BSiO2 are assessed by measuring them
just after the spike (t=0) and after a given incubation
period, usually 24 h. Isotopic abundance is defined as
100% [30Si]/([28Si] + [29Si] + [30Si]). The analytical
procedures are described in Corvaisier et al. (2005).
Before these measurements can be interpreted, a number
of basic statements about the behaviour of the isotopic
tracer must be postulated: (i) the tracer undergoes the
same transformations (transfer reactions) as the unla-
belled substrate, i.e. isotope effects are negligible, (ii)
there is no exchange of the isotope between the labelled
substance and other substances in the system, (iii) the
tracer is initially not in equilibrium with the system
under study, and its change over time is quantifiable,
(iv) regeneration has the background ratio of abundance,
i.e. it consists of non-enriched compounds, and (v)
the tracer addition does not perturb the steady state
existing in the system as a whole, i.e., there are no
significant perturbations to compartments and their
transformations.

These are basic assumptions in experimental designs
involving isotope enrichment and dilution procedures
(e.g. Harrison, 1983). For silicon isotopes, assumptions
(i–ii) are not seriously violated (De La Rocha et al.,
1997). Although assumptions (i) and (iv) may appear
contradictory, it is not. The rationale of assumption (iv)
is the following. In order to solve the model equations,
the abundance at which dissolution of BSiO2 proceeds
must be fixed. By the uptake of H4SiO4, diatoms build
up their frustules composed of amorphous silica. While
diatoms are alive, an organic coating protects silica
from dissolution (Bidle and Azam, 1999). It is usually
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assumed that only dead diatoms can dissolve. Moreover,
Beucher et al. (2004b) showed that the dissolution rate
correlated to the percentage of dead diatom. It is,
therefore, reasonable that a finite period of time is
required before any of the 30Si-enriched atoms will
appear in the regenerated H4SiO4. The validity of
assumption (iii) may be a problem when long incubation
period is used and abundance of the tracer, as well as
concentration of the labelled substrate change substan-
tially. Violation of assumption (iv) also becomes
significant under these circumstances. For assumption
(v), “true” tracer additions, considered usually as <10%
of the ambient concentration (Dugdale and Goering,
1967), is not always achievable. As a consequence,
changes in substrate concentration and flux rates may be
significant. To what extend violations of those assump-
tions will create significant biases in flux rate calcula-
tions will undoubtedly vary between systems, but
several criteria are useful for screening between optimal
and defective experimental conditions (see Section 2.3).

2.2. Model description

For the sake of clarity all symbols used hereafter are
defined in the glossary and their notations applied
throughout.

2.2.1. The Nelson and Goering formulae
The classical approach for assessing silicic acid uptake

by phytoplankton (Nelson and Goering, 1977a) and silica
dissolution (Nelson and Goering, 1977b) is derived from
the following one compartmental model:

Y
ðϕ;&ϕÞ½C &C� ð1Þ

The differential equations associated with this model
are:

A&C

At
¼ −

ð&CðtÞ−&/Þd/
CðtÞ

AC
At

¼ /

8><
>: ð2Þ

Straightforward integration of Eq. (2) yields the
following mass and isotopic balances:

&CðtÞd CðtÞ ¼ &Cð0Þd Cð0Þ þ &/d /d t
CðtÞ ¼ Cð0Þ þ /d t

�
ð3Þ

Eq. (3) can be rewritten with appropriate symbols for
an enrichment experiment in the particulate phase
according to:

C ¼ BSiO2; &Cð0Þ ¼ 0; &CðtÞ ¼ &BSiO2ðtÞ;
&/ ¼ &H4SiO4ð0Þ; / ¼ u ð4Þ
or for an isotope dilution experiment in the dissolved
phase according to:

C ¼ H4SiO4; &Cð0Þ ¼ &H4SiO4ð0Þ;
&CðtÞ ¼ &H4SiO4ðtÞ; &/ ¼ 0; / ¼ d ð5Þ
From Eqs. (3)–(5), uptake of H4SiO4 and dissolution

rates of BSiO2 can be solved for as follows:

u ¼
BSiO2ðtÞd &BSiO2ðtÞ

td &H4SiO4ð0Þ
BSiO2ð0Þd &BSiO2ðtÞ

td ð&H4SiO4ð0Þ−&BSiO2ðtÞÞ

8>><
>>:

d ¼
H4SiO4ðtÞd ð&H4SiO4ð0Þ−&H4SiO4ðtÞÞ

td &H4SiO4ð0Þ
H4SiO4ð0Þd ð&H4SiO4ð0Þ−&H4SiO4ðtÞÞ

td &H4SiO4ðtÞ

8>><
>>:

ð6Þ

Similar formulae have widely been applied to compute
nitrogen (Dugdale and Goering, 1967; Dugdale and
Wilkerson, 1986; Collos, 1987) and carbon (Collos and
Slawyk, 1985; Legendre and Gosselin, 1996) transport
rates in aquatic systems. It is noted, however, that two dif-
ferent analytical solutions were gathered whether con-
sidering the sample concentration at the beginning or the
end of the incubation. Conceptually, these solutions should
be mathematically equivalent if the model correctly de-
scribed the main features of production and dissolution
processes. In many cases, however, it is an approximation,
and differences between formulae (6) may be ascribed to
concentration changes over the incubation period and iso-
tope dilution effects. To correct for concentration changes,
Nelson and Goering (1977a,b) recommend the use of the
geometric mean in computing rates:

u ¼ ðBSiO2ðOÞd BSiO2ðtÞÞ0:5d &BSiO2ðtÞ
td &H4SiO4ð0Þ

d ¼ ðH4SiO4ð0Þd H4SiO4ðtÞÞ0:5d ð&H4SiO4ð0Þ−&H4SiO4ðtÞÞ
td &H4SiO4ð0Þ

8>>><
>>>:

ð7Þ

Alternatively, it is possible to handle both isotope dilu-
tion and concentration changes with compartmental anal-
ysis (Beucher et al., 2004a,b; de Brauwere et al., 2005a).
2.2.2. Two compartmental model for BSiO2 production
and dissolution

½H4SiO4 &H4SiO4 � W
ðu;&H4SiO4 Þ
ðd;&BSiO2 Þ

½BSiO2 &BSiO2 � ð8Þ

Important features of model (8) are that all Si atoms
that leave the dissolved phase are assumed to appear as
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particulate silica, and that dissolution is regarded as
a process that transfers Si atoms from the particulate to
the dissolved pool. Analogous models or even more
complicated ones were build-up to address the problem
of N cycling in aquatic systems (Elskens et al., 2005).
The differential equations associated with the two
compartment model are:

AH4SiO4

At
¼ d−u

A&H4SiO4

At
¼ −dd

&H4SiO4ðtÞ
H4SiO4ðtÞ

ABSiO2

At
¼ u−d

A&BSiO2

At
¼ dd

&BSiO2ðtÞ
BSiO2ðtÞ þ ud

&H4SiO4ðtÞ−&BSiO2ðtÞ
BSiO2ðtÞ

8>>>>>>>>><
>>>>>>>>>:

ð9Þ
When Eq. (9) is integrated, the relevant model

equations are:

H4SiO4ðtÞ ¼ H4SiO4ð0Þ þ ðd−uÞdt

&H4SiO4 ðtÞ ¼ &H4SiO4 0ð Þd 1þ d−u
H4SiO4ð0Þ d t

� � d
u−d

BSiO2ðtÞ ¼ BSiO2ð0Þ þ ðu−dÞd t

&BSiO2 ðtÞ ¼
&H4SiO4 ð0Þd H4SiO4ð0Þ
BSiO2ð0Þ þ ðu−dÞd t d 1− 1þ d−u

H4SiO4ð0Þ d t
� � u

u−d
 !

8>>>>>>>><
>>>>>>>>:

ð10Þ
There are several methods to extract rates from this

system, since it involves four equations for merely two
unknowns (u and d). Due to random and systematic vari-
ations, there are differences between model results and
measurements. Therefore, the best method is to seek those
parameter-values that minimize all four equations simul-
taneously, instead of solving 1 or 2 equations analytically.
However, due to the second and the fourth equations in Eq.
(10), themodel is nonlinear in the unknowns. To be solved
an iterative optimization algorithm must then be used.

It is noted that with the current experimental design
only the averaged rate over the incubation period can be
determined, i.e. /ðu; dÞ ¼ 1

t

R t
0 /ðtÞd dt. This is true

independently of the chosen model structure. To assess
instantaneous rates ϕ(t), a mechanism (e.g. first, second
order, or saturation kinetic) for the transformation
reactions must be postulated, but this requires time-
series measurements.

2.3. Rules for the screening of experimental conditions

In Section 2.1, we have summarized 5 characteristics
of the behaviour of an “ideal” tracer to perform isotope
enrichment and dilution experiments. Violations of
these assumptions may generate significant biases in
the rate calculations. If isotope equilibrium is reached or
approached during an experiment, one cannot warrant
the flux rate-values (violation of assumption iii). For the
system under study, isotope equilibrium is achieved
after 30Si enrichment, when the abundance of the
particulate phase (BSiO2) and dissolved phase (H4SiO4)
becomes equal; the tracer is then said to be in a steady
state. A useful measure of this is given by the abundance
ratio AR, a rescaled index varying between 0 and 1:

AR ¼ &H4SiO4ðtÞ−&BSiO2ðtÞ
&H4SiO4ð0Þ

ð11Þ

When AR is close to 1, the tracer is far from equili-
brium (optimal conditions). When AR moves towards
zero, the tracer approaches steady state conditions. There
are only informal guidelines for thresholds under which
values of AR should require attention.We suggest to high-
light the data when AR<0.25. Likewise, a simple index
(HL) based on the half-life and incubation period (Δt) can
be used to gauge the validity limit of assumption (iv).

HL ¼ BSiO2ð0Þ
2dddDt

ð12Þ

with BSiO2 the biogenic Si concentration and d the
dissolution rate.

If HL becomes ≤1 (i.e. more than half of the BSiO2

pool is recycled during the incubation time), violation of
assumption (iv) becomes likely, and the data should be
highlighted. Violations of (iii and iv) are often
interrelated, and it is not unusual for a dataset to be
highlighted by both criteria. Under these conditions, the
likelihood of gross errors is so serious that there is no real
alternative than to reject the result of the experiment.
Finally when the tracer addition (TA) is> than 10% of the
ambient H4SiO4 concentration (violation of assumption
v), flux rates should be considered as potential ones.

2.4. Assessment of model accuracy

In order to assess the discrepancy between the
observations yi and the model counterparts fmodel(xi,θ),
we need some way to transform the residual (yi− fmodel

(xi,θ)) to a common scale on which we know what large
and small values are. An obvious approach is to define a
standardized residual:

SRi ¼ yi−fmodelðxi; hÞ
ri

ð13Þ

where σi should express the total standard deviation of
the residual. This is achieved here by linearization of the
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input noise on xi and adding them to the original output
noise on yi (de Brauwere et al., 2005a):

r2i ¼ r2y;i þ
Xn
i¼1

jAfmodelðxi; hÞ
Axi

j2d r2x;i ð14Þ

Substituting the u- and d-estimates from models (1)
and (8) in their corresponding mass balance Eqs. (3) and
(10) yields standardized residuals for concentration and
abundance in the dissolved and particulate phases. We
choose the standardized residuals for two reasons.
Firstly, SRi solves the problem of scaling, i.e. if yi and
σi
2 are good estimates of the population's mean and

variance, then the SRi's can be interpreted as standard
normal deviates. The accuracy of the models towards
measurements was further assessed by inspecting the
SRi distribution for a series of 53 experiments carried
out by Beucher et al. (2004a). If the models correctly
describe the main features of uptake and dissolution
processes, it is expected that RSi-scores will be
symmetrically distributed with a mean of zero. More-
over, the meaning of the scores can be immediately
appreciated, e.g., absolute values of RSi≤1 would be
very common (≈68% of the data) whereas absolute
values of RSi>3 would be very rare (<0.27% of the
data) suggesting either model failure or outlying
measurements. This enables a direct comparison
between models that are solved algebraically and
numerically. Secondly SRi has a natural interpretation
in the context of the residual cost function CF, which is
used to estimate the model parameters in model (8):

CF ¼
Xn
i¼1

SR2
ic

Xn
i¼1

ðNð0; 1ÞÞ2 ¼ v2n−p ð15Þ

Depending on the assumption of the normal distribu-
tion, which outliers apart seems to be justified in
practice, the CF has a chi-squared χ2 distribution with
n−p degrees of freedom (Box, 1970; Rod and Hancil,
1980), where n stands for the number of measurements
and p for the number of parameters in the model. With
this information, it is possible to assess the “probability”
of a residual cost function value. If the residual value
falls beyond a chosen confidence limit, the results should
be rejected for being “unlikely” (de Brauwere et al.,
2005b). For instance, if the residual value is significantly
higher than expected, the remaining difference between
model andmeasurements is too high to be explained only
by stochastic measurement noise. This significant
difference between the expected and observed residual
cost function is an indicator of systematic errors, and is
thus complementary to the SRi approach. Moreover, as
will be discussed later, the cost function approach is also
useful for selecting relevant parameters within a given
model.

2.5. Assessment of model precision

Knowledge of model precision is necessary for the
effective judgment of the model results (e.g. compar-
ison with specification limits) and for inter-comparison
of different model outcomes. From the outset, all the
factors that may contribute to uncertainty in the model
calculations are expressed as standard deviations.
While it cannot always be taken for granted that
there exits a regular functional relationship between
precision and the concentration level of an analyte, the
Horwitz function has shown that the relative standard
deviation (RSD) is useful in evaluating precision over
a wide range of concentration (Horwitz, 1983;
Thompson and Lowthian, 1997). For H4SiO4 determi-
nations, Strickland and Parsons (1968) reported RSD
values close to 2.5%. For BSiO2 determinations,
Ragueneau and Tréguer (1994) reported RSD values
close to 10%. For isotopic analysis, results obtained
on Na2SiO3 standard solution indicated RSD less than
0.5% (Corvaisier et al., 2005). However, actual
precision may be lower than the quoted value,
particularly with 30Si enriched sample that has been
processed through all steps of the incubation protocol.
An overall RSD of 2% appears, therefore, reasonable
in estimating the Si isotopic composition of both
BSiO2 and H4SiO4. Model precision (propagation of
random error in calculations) is assessed with Monte-
Carlo simulations. A number of random deviates (500)
on concentrations and isotopic ratios were generated
by computer assuming normal distributions with
known mean and RSD. For each random deviation,
the Si flux rates were calculated resulting in a
distribution of best fit parameter values from which
the statistical properties can be analyzed, and thus a
quantification of the model precision can be achieved.

3. Results and discussion

3.1. Screening of experimental conditions

An examination of the data according to the rules
defined in Section 2.3 does not indicate any outliers out
of the 53 experiments. The median for the AR, HL and
TA indexes amount to 0.9, 7 and 13, respectively which
are not far from optimal values (AR≈1; HL≫1;
TA≤10%; Fig. 1). However of these experiments, two



Fig. 1. Index values for the series of 53 experiments carried out by Beucher et al. (2004a). Optimal conditions are characterised by AR≈1 (tracer is
not in equilibrium), HL≫1 (T1/2 of BSIO2 is much greater than the incubation period) and TA≤10% (tracer addition is less than 10% of the ambient
H4SIO4). The boxes, whiskers and symbols cover the twenty-fifth to seventy-fifth, the tenth to ninetieth and the fifth to ninety-fifth percentiles,
respectively.
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were characterized by an AR index<0.25, meaning that
the tracer approaches steady state conditions (violation
of assumption iii), two by a HL index<1, meaning that
more than half of the BSIO2 pool was recycled over the
incubation period (violation of assumption iv), and 42
by tracer additions >than 10% of the ambient H4SiO4

(violation of assumption v). There are 12 missing data
for the 30Si abundance of H4SiO4 at the end of the
experiment. Hence, the comparison of model results for
dissolution will be carried out on the 41 remaining data.

3.2. Model comparison

The main aim of model comparison is the identifica-
tion of systematic variations or bias, i.e. does one model
or formula give results that are significantly higher or
lower than the other one? We first consider the analytical
solutions issued from the Nelson and Goering's model
(Eq. (6)), either based on concentrations determined at
the beginning (uNGI, dNGI) or at the end of the
experiment (uNGF, dNGF). From Fig. 2, it appears that
(uNGI, dNGI) are systematically greater than their
corresponding (uNGF, dNGF). For both rates, the absolute
differences between the solutions are log-normally
distributed, and statistically significant in more than
25% (box plot, upper quartile range, Fig. 2). Implicit in
Eq. (6) are the conditions leading to these major
discrepancies (period between May and September
2001):

(
u > 0
dYu

Z

BSiO2ðtÞcBSiO2ð0Þ
&H4SiO4 ð0Þ > &H4SiO4 ð0Þ−&BSiO2 ðtÞ

)
ZuNGIHuNGF

H4SiO4ðtÞcH4SiO4ð0Þ
&H4SiO4 ð0Þ > &H4SiO4 ðtÞ

)
ZdNGIHdNGF

8>>>><
>>>>:
Nelson and Goering (1977a,b) themselves pointed
out that results may differ depending on whether the
initial or final concentration is used in calculations.
Instead, they recommended using the geometric mean of
the concentration over the course of incubation (Eq. (7)).
Fig. 3 compares results from these upgraded formulae
(uNGGM, dNGGM) with those derived from the two
compartmental model (u2CM, d2CM). Clearly uNGGM
yields an underestimated rate since it does not allow for
possible H4SiO4 production during incubation. Put in
another way, any conditions that lead to a significant
BSiO2 dissolution during the experiment tend to dilute
the 30Si at.% enrichment of the H4SiO4 pool, and
therefore to significantly underestimate the uptake rate
(period betweenMay and September 2001, Fig. 3). Only
models such as Eq. (8), which take into account the time
dependence of the isotopic ratio in each compartment,
enable correcting for isotope dilution. The importance
of this process for reliable N uptake assessment was
recognised as well (see Elskens et al., 2005 and re-
ferences therein). Yet when the dissolution rate de-
creases (period between October 2001 and February
2002), much better agreements between uNGGM and
u2CM are found. In contrast herewith, no systematic
variations between dNGGM and d2CM were observed
(Fig. 3). The difference between both rates fluctuates
randomly throughout the sampling period following a
normal distribution. Summarising the aforementioned
results, it can be stated that:

d>0Z &H4SiO4 ð0Þ>&H4SiO4 ðtÞZ uNGGMbu2CM
dY0Z &H4SiO4 ð0Þc&H4SiO4 ðtÞZ uNGGMYu2CM

)
dNGGM¼ d2CMFe

where ε is the random residual term.



Fig. 2. Comparison between rates issued from the Nelson and Goering's formulae either based on concentrations determined at the beginning or at the
end of the experiment (Eq. (6)). The boxes, whiskers and symbols cover the twenty-fifth to seventy-fifth, the tenth to ninetieth and the fifth to ninety-
fifth percentiles, respectively.
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Model comparisons allow identification of bias and
conditions that increase error margins, but do not yield
quantitative information on the reliability of the
solutions. It is important to have some indication of
the quality of the model results, and in particular to
demonstrate their fitness for the purpose in hand. This is
expected to include the degree to which a result would
be expected to agree with other results, normally
irrespective of the parameterization used. Useful
measures of this are the model precision and accuracy.

3.3. Model precision

Model precision concerns the propagation of
experimental uncertainties throughout rate calculations,
and is function of the model parameterizations. Fig. 4
shows the standard uncertainty (SU) on the flux rates
for the whole set of experiments. While there is no
evidence for a systematic difference between models
for SU on the uptake rate (Wilcoxon Signed Rank test,
p=0.06), there is a statistically significant difference
(Wilcoxon Signed Rank test, p≤0.001) for SU on the
dissolution rate with SUNGGM> SU2CM. This is due to
the fact that the two compartment model (8) uses the
whole available information (four equations for two
unknowns), and therefore is better constrained than
model (1), especially when the 30Si abundance of
H4SiO4 at the beginning and end of incubation do not
significantly differ. Monte-Carlo simulations were
performed here to conduct an objective assessment of
the model precision; each models being treated in a
same way (Section 2.5). In both cases, however, valid
approximations of the model uncertainty can be
obtained using simpler forms. For model (1), classical
rules for combining standard uncertainty in linear and
multiplicative expressions are summarized in Ellison et
al. (2000). For model (8), refined uncertainty estima-
tion using the parameter covariance matrix was given
by de Brauwere et al. (2005a).

3.4. Model accuracy

Model accuracy is the closeness of agreement
between the model predictions and the observations,
and incorporates both random and systematic variations.
It provides a measure of the confidence that can be



Fig. 3. Comparison between rates issued from the upgrading formulae of Nelson and Goering (Eq. (7)) and the two compartmental model (Eq. (8)).
The boxes, whiskers and symbols cover the twenty-fifth to seventy-fifth, the tenth to ninetieth and the fifth to ninety-fifth percentiles, respectively.
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placed on a model result. In order to test the model
accuracy, we first utilized the standardized residual
technique (Eq. (13)). For the upgraded Nelson and
Goering's formulae (Eq. (7); Fig. 5a), the RSi-scores do
not behave as standard normal variables. Rather, the
Fig. 4. Standard uncertainty (SU) on flux rates calculations for model (1) and
described in the text. Subscripts u and d stand for uptake and dissolution rate
fifth, the tenth to ninetieth and the fifth to ninety-fifth percentiles, respective
distributions are skewed, medians mainly differ from 0,
and there are too many unacceptable scores. As
discussed in the next section, a high score value can
reflect an outlying measurement. Thought, when more
than 25% of the score distribution is >3, there are
model (8). SU-values were computed with Monte-Carlo simulations as
s. The boxes, whiskers and symbols cover the twenty-fifth to seventy-
ly.



Fig. 5. RSi-scores for models (1) and (8). (A) Upgraded Nelson and Goering's formulae, (B) Outcomes of the two compartment model. Absolute
value of RSi>3 indicates unacceptably poor model performance in terms of accuracy while for a satisfactory performance |RSi|≤2 is required.
The boxes, whiskers and symbols cover the twenty-fifth to seventy-fifth, the tenth to ninetieth and the fifth to ninety-fifth percentiles,
respectively.
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evidence for model failures as observed between May
and September 2001. Under these conditions, the
difference between the model fits and measurements is
too high to be explained by random variations only. On
the other hand, the RSi-scores for the two compartment
model better fit to the ideal zero-centred distribution
(Fig. 5b): there is no evidence of systematic errors.

Some additional values were attached to methods of
combining scores. For example the sum of the squared
standardized residuals (Eq. (15)) yield an interpretable
cost function CF, which behaves as a sample from a χ2

distribution. To check the overall statistical behaviour,
our CF-values for model (8) were compared with the
95–99% percentiles of the χ2 distribution. In addition,
the CF-values were plotted in a histogram, which can
easily be compared with the probability density function
(pdf) of the χ2 distribution (Fig. 6). Two observations
can be made:

(i) Two measurement sets produce a residual CF
greater than the 95th percentile, one of them being
even greater than the 99th percentile. According
to the Analytical Methods Committee (1992), this
means that one result should be rejected
(CF>χ299%) and the other one is questionable
(χ295%<CF≤χ299%). From a statistical point of
view, instead of the expected 5 and 1% that exceed
the 95 and 99th percentiles, respectively, 4 and 2%
do so. This is well acceptable since the 41
measurements do not represent 41 realizations of
the same experiment, but correspond to a one year
time series. Therefore, the variability is not only
due to random noise, but also to environmental
changes.

(ii) Apart from these 2 experiments, it is also obvious
in both pictures that most of the CF-values are
very close to zero. These extreme low values
cause a discrepancy between the histogram and
the pdf of the χ2 function. This is probably due to
an overestimation of the experimental uncertain-
ties. These latter were indeed used in the cost
function to weight the data, which results in a CF-
value that is too small in case of overestimated



Fig. 6. Cost function values for the series of 53 experiments carried out by Beucher et al. (2004a). The histogram enables a comparison with the χ2

probability distribution function (pdf).
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residual variance (Eq. (14)). Fig. 5b suggests that
these overestimations could affect the standard
deviations on H4SiO4 concentration and on 30Si
at.%. For these measurements, the spread of the
RSi distributions is too small. In well behaved
systems, the box (50% of the data) and the dots
(95% of the data) should approximately extend to
±1 and ±2, as reported for the RSi distribution of
BSiO2.

These observations have two main consequences.
First, because the CF-value is probably underestimated,
the chance of making a Type II error (accepting a wrong
model result) increases. Secondly, by propagating
overvalued standard deviation through Monte-Carlo
simulations, the standard uncertainty on the final model
result is overestimated. These points illustrate well the
importance for correct estimations of measurement
repeatability as outlined by ISO guidelines.

3.5. Handling of outliers

Outliers are extreme observations that for one reason
or another do not belong to the other observations in the
dataset. If the model equations are routinely applied to
these data, then the obtained estimates can be seriously
misleading. Hereafter, we present a formal treatment for
detecting outliers with undue influence in parameter
assessment and demonstrate the serious consequences of
failing to detect outliers. The procedure combining the
analysis of standardized residuals and cost function is as
follows:

1. Optimize parameter-values with the two compart-
mental model, and compare the residual CF-value to
the 99%-quantile of the χ2 distribution. If the model
fit is such that CF>χ299% go to 2.

2. Analyse the SRi-scores. If one absolute value of the
scores is close to 3 - (the others being ≤1), remove it
(it is an unusual observation with respect to the
others) and repeat step 1 with one degree of freedom
less (n-p-1). If not go to 3.

3. If several absolute values of the scores are greater
than 2, remove one by one (each time keeping the
other outlying scores) repeating step 1 with one
degree of freedom less (n−p−1). Keep only that
model with the lowest CF-value. If not go to 4.

4. When discrimination between various residual CF-
values is impossible (e.g. all the values are acceptable
and close together), or when the residual cost
function remains greater than >χ299% after data
treatment, one cannot warrant the flux rate-values,
and the results must be discarded.

In order to illustrate steps 2 to 4, we randomly
generated outlying observations in the dataset no. 38 of
Beucher et al., 2004a. Under these conditions, the
reference rates are known, and can be used to validate
the procedure. There are three issues for the interpreta-
tion of this outlier simulation test (Table 1). First, in
most simulations, the CF-values (initial) lead to the
rejection of the model results (>χ299%) and the data
were subsequently processed according to steps 2 to 4.
In the remaining part, the model results were question-
able (χ295%<CF≤χ299%), which is not unusual enough
to justify further data treatments (e.g. Table 1, #11 and
12). Second, the standardized residuals analysis has
revealed in most cases an unusual score with respect to
the values of the others. This score was simply removed
and the data processed according to step 2. In the



Table 1
Results of the outlier simulation test in the dataset no. 38 of Beucher et al. (2004a)

Input and output
variables

Original
value

Simulation
of outlier

New
value

CF initial
df=n−p

Unusual
SRi scores

CF final
df=n−p−1

Model
solution

≤χ295% accepted
H4SiO4 (0) 10.5 #1 9.2 >χ299% H4SiO4 ≤χ295% accepted

#2 12.5 >χ299% H4SiO4 ≤χ295% accepted
æ H4SiO4 (0) 6.3 #3 7.8 >χ299% æ H4SiO4 ≤χ295% Accepted

#4 5.5 >χ299% æ H4SiO4 ≤χ295% Accepted
BSiO2 (0) 3.4 #5 2.4 >χ299% BSiO2 ≤χ295% Accepted

#6 5.4 >χ299% BSiO2 ≤χ295% Accepted
H4SiO4 (t) 10.4 #7 11.7 >χ299% H4SiO4 ≤χ295% Accepted

#8 9.1 >χ299% H4SiO4 ≤χ295% Accepted
æ H4SiO4 (t) 6.1 #9 5.3 >χ2crit,99% æ H4SiO4 ≤χ295% Accepted

#10 7.6 >χ299% æ H4SiO4 ≤χ295% Accepted
BSiO2 (t) 3.8 #11 2.6 ≤χ299% – – Questionable

#12 4.9 ≤χ299% – – Questionable
æ BSiO2 (t) 0.6 #13 0.4 ≤χ295% – – Accepted

#14 4.4 >χ299% æ H4SiO4 ≤χ295% Rejected
æ BSiO2 ≤χ295%

Outliers were randomly generated for each of the input and output variables. Given the degrees of freedom of the system, the procedure described in
the text is useful to detect any outlying observation, but one at a time. Symbols CF = cost function; df = degrees of freedom; SRi = standardized
residuals.
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remaining data, several scores may appear unusual.
Following step 3, the model results corresponding to the
lowest value of the cost function are selected or
discarded when the CF-values do not differ significantly
(e.g. Table 1, #14). Third, the method appears efficient
to prevent undue influence in parameter assessment.
Fig. 7 shows that almost all rate values (u2CM, d2CM),
obtained after outlier removal, fall within the 95%
confidence interval of the original data. There is thus no
evidence of systematic errors. In contrast herewith,
Fig. 7. Flux rates-values for the outlier simulation test. Subscript 2CM stands
detection procedure as described in the text. Subscripts NGI, NGF and NGGM
and Goering’s model.
whenever the Nelson and Goering formulae are
routinely applied the obtained estimates can be seriously
misleading. Given the number of degrees of freedom of
the system, the method outlined above is useful to detect
any outlying observation, but one at a time. It is not
designed for testing several outliers together. It is noted
that while the likelihood of having one outlier (absolute
value of RSi≥3) out of a series of 7 independent
measurements is 2.1%, it decreases to 0.63% or 0.19%
for 2 or 3 concomitant outliers.
for the outcomes of the two compartment models involving the outlier
refer to the outcomes of the routinely applied formulae of the Nelson



Table 2
Results of model selection (MS)

Batch
experiment

Date d nM/h u nM/h d nM/h u nM/h CF Index

Before MS After MS AR HL TA

1 28/04/01 6.0±1.4 22.2±1.1 6.0±1.4 22.2±1.1 sat GS GS 45
2 03/05/01 4.4±1.6 15.3±0.9 <MDL 15.7±1.1 que GS GS 32
3 12/05/01 5.6±1.2 20.8±1.2 5.6±1.2 20.8±1.2 sat GS GS 16
4 21/05/01 3.9±3.0 23.4±1.2 <MDL 22.5±1.6 sat GS GS 22 md
5 28/05/01 20.2±1.9 50.6±2.6 20.2±1.9 50.6±2.6 sat 0.17 GS 19
6 01/06/01 11±3.4 38.9±4.0 <MDL 33.2±2.0 sat GS GS 53 md
7 10/06/01 23.3±2.6 19±7 26.9±2.3 <MDL que GS GS 36
8 19/06/01 6.6±3.5 42.1±3.1 <MDL 37.5±2.4 sat GS GS 17 md
9 27/06/01 10.5±1.7 46.3±2.2 10.5±1.7 46.3±2.2 sat GS GS 18
10 03/07/01 34.7±6.9 84.6±7.6 34.7±6.9 84.6±7.6 sat GS 1.0 21 md
11 10/07/01 27.0±3.6 38.9±4.5 27.0±3.6 38.9±4.5 sat GS 0.8 15
12 18/07/01 25.8±4.8 54.8±4.7 25.8±4.8 54.8±4.7 sat GS GS 13 md
13 26/07/01 13.9±2.1 45.2±3.2 13.9±2.1 45.2±3.2 sat GS GS 17 md
14 02/08/01 6.9±1.0 23.7±2.7 6.9±1.0 23.7±2.7 sat 0.19 GS 25
15 09/08/01 5.6±1.4 20.3±1.4 5.6±1.4 20.3±1.4 sat GS GS 16
16 16/08/01 1.6±1.5 14.9±1.8 <MDL 15.3±1.9 sat GS GS 11
17 24/08/01 1.6±1.9 6.3±1.1 <MDL 7.0±0.8 sat GS GS 13
18 31/08/01 1.4±1.8 2.8±1.2 <MDL 3.6±0.5 sat GS GS GS
19 07/09/01 1.7±1.3 0.7±1.1 <MDL 2.0±0.2 sat GS GS GS
20 14/09/01 −0.1±1.6 1.5±0.9 <MDL 1.4±0.2 sat GS GS GS
21 23/09/01 −4.9±2.2 2.1±1.4 −4.9±2.2 2.1±1.4 uns GS GS 11
22 01/10/01 22.0±2.3 5.7±1.1 <MDL 6.4±0.8 sat GS GS 13
23 08/10/01 2.5±2.1 1.9±1.1 <MDL 2.7±0.7 sat GS GS 12
24 13/10/01 2.2±2.4 2.4±2.2 <MDL 4.2±0.9 sat GS GS GS
25 22/10/01 −0.2±2.0 3.0±1.0 <MDL 3.0±0.4 sat GS GS 13
26 29/10/01 1.5±1.1 1.2±2.2 1.9±1.0 <MDL sat GS GS GS
27 06/11/01 −0.9±3.0 4.9±1.8 <MDL 4.4±0.5 sat GS GS 11
28 12/11/01 3.9±2.4 0.8±1.4 4.4±2.5 <MDL sat GS GS 13
29 20/11/01 2.2±2.8 1.8±1.4 <MDL 2.7±0.3 sat GS GS 13
30 28/11/01 3.7±8.2 1.2±8.9 2.7±3.1 <MDL sat GS GS 11
31 06/12/01 2.4±3.6 0.6±1.6 3.4±2.6 <MDL sat GS GS 11 md
32 12/12/01 −0.5±3.7 0.7±1.7 <MDL 0.4±0.2 sat GS GS GS
33 20/12/01 −2.0±2.2 2.1±1.1 <MDL 1.3±0.2 sat GS GS 12
34 11/01/02 2.6±3.4 0.7±1.4 3.5±2.9 <MDL sat GS GS 16
35 18/01/02 0.9±3.5 1.4±2.0 <MDL 1.9±0.5 sat GS GS GS
36 27/01/02 −0.2±4.8 1.5±2.1 <MDL 1.4±1.2 sat GS GS 11
37 04/02/02 3.4±5.9 6.6±3.5 <MDL 8.3±2.2 sat GS GS GS
38 11/02/02 9.6±6.3 14.1±4.6 <MDL 14.3±2.7 sat GS GS GS
39 18/02/02 0.5±10.1 7.6±5.8 <MDL 7.3±1.8 sat GS GS GS
40 25/02/02 1.2±7.0 5.2±2.6 <MDL 5.6±1.3 sat GS GS 14
41 05/03/02 3.0±5.9 7.4±2.3 <MDL 8.4±0.8 sat GS GS 18
42 11/03/02 7.4±8.8 8.4±3.8 <MDL 11.3±1.0 sat GS GS 18
43 19/03/02 3.2±4.6 9.0±1.8 <MDL 10.0±1.2 sat GS GS 16
44 26/03/02 −1.0±4.5 12.5±2.0 <MDL 12.2±1.0 sat GS GS 21
45 03/04/02 4.7±2.7 11.0±1.5 <MDL 12.6±1.1 sat GS GS 18
46 10/04/02 1.4±2.0 16.7±2.0 <MDL 17.3±2.1 sat GS GS 11
47 17/04/02 0.9±2.4 9.2±1.0 <MDL 9.5±0.9 sat GS GS 16 md
48 23/04/02 2.3±2.7 18.1±1.2 <MDL 17.7±1.5 sat GS GS 18 md
49 02/05/0 3.3±0.9 8.6±0.8 3.3±0.9 8.6±0.8 sat GS GS 16
50 10/05/02 0.8±2.2 7.2±0.7 <MDL 7.4±0.7 sat GS GS 17 md
51 16/05/02 4.6±2.2 8.9±1.2 <MDL 9.7±1.0 sat GS GS 14 md
52 22/05/02 1.2±1.4 3.7±0.7 <MDL 4.0±0.5 GS GS 17 md
53 30/05/02 0.9±1.4 11.4±1.9 <MDL 11.4±2.0 GS GS GS

Datasets from Beucher et al. (2004a). Symbols: CF = cost function, sat = satisfactory (CF≤χ295%), que = questionable (χ295%<CF≤χ299%), uns =
unsatisfactory (CF>χ299%), MDL = model detection limit, AR = abundance ratio, HL = half-life of BSiO2, TA = tracer addition relative to the H4SiO4

ambient level (%), md = missing data, GS = good status for the index under consideration (AR≈1; HL≫1; TA≤10%).
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3.6. Reliability of the model solutions

When judged by the overall performance (precision,
accuracy and robustness), model (1) clearly failed when
compared to Eq. (8). It should be noted, however, that
the analytical solutions of Eq. (1) correspond to peculiar
solutions of Eq. (8) when u or d are equal to 0. Because
such conditions may occur, we do not reject Eq. (1) in
general but need a model selection strategy to decide
when a parameter can be cancelled without losing the
information hidden in the measurements. Put in another
way, oversimplified models such as Eq. (1) risk bias
when their underlying assumptions are violated, but
overly complex models such as Eq. (8) can misinterpret
part of the random noise as relevant processes.

To select optimal solutions subsets corresponding to a
given data set, we applied a procedure recently proposed
by de Brauwere et al. (2005b), combining a statistical
interpretation of the cost function and the principle of
parsimony. The approach provides a sound basis for
model selection because it is well recognized that other
things being equal, the greater the number of parameters,
the greater the extent of nonlinear behaviour, the worse
the model predictability (Ratkowsky, 1990). The
optimized parameter values obtained after model selec-
tion are shown in Table 2. Several remarks can be made:

(i) After selection, uptake and dissolution rates were
respectively removed from the model equations in
respectively 11 and 66% of the experiments. It is
important to appreciate that this does not mean
that the rates equal zero, only that they cannot be
reliably quantified. Hence they should be regarded
as censored data (below the model detection
limit).

(ii) The standard uncertainty on the remaining para-
meters is mostly lower than before selection
(Wilcoxon Signed Rank test, p≤0.001). This is
one of the rewards using model selection: by
reducing the number of parameters, the uncer-
tainty on the remaining parameters decreases.

(iii) Rate values are given for the 12 datasets for which
the 30Si abundance of H4SiO4 or/and BSiO2 was
missing. This is allowed because with one missing
data, there is still one degree of freedom left (n−p
−1) and the model is constrained.

Furthermore, Table 2 summarizes information on the
various index types used to estimate the measurements,
such as the abundance ratio (AR), the half-life of BSiO2

(HL) and the tracer addition (TA). Combined with the
CF approach, this information indicates which reliability
can be given to the final results.

4. Conclusions and final remarks

This paper provides advice on the concepts and
practices of quality assurance and quality control when
validating a model result. Whilst these guidelines were
illustrated with model results based on the 30Si tracer
methodology, they have wider applications, e.g. tracer
enrichment and dilution experiments.

It was emphasized that isotope enrichment and
dilution models belong to a class of compartmental
models for which the governing law is mass conserva-
tion. They are described by a set of differential
equations, and their structure is categorized as stochastic
since any variables in the model can be expressed by a
probability distribution. Therefore, estimating the model
parameters with a weighted least squares technique
allows improving the accuracy of the parameter values,
making them less sensitive to outlying observations.
Standardized residuals that have normal distributions,
and sum of the weighted least square residuals that have
χ2 distributions are matching techniques (easily inter-
pretable with significance tests) for determining whether
a model result is satisfactory or not. Additionally, there
are a number of analytical and experimental considera-
tions on experimental design (abundance ratio, half-life,
tracer addition indexes) and measurement uncertainty
(repeatability of analytical methods), which are needed
for a correct model assessment. Combining these
approaches with significance testing allows us to
judge the quality of the model results.

5. Glossary
Symbols
 Definition
 Units
æ's
 30Si at.% enrichment in the various Si
compartments or associated with the
corresponding flux rates as indicated by the
subscript
%

C
 Concentration of the Si compartments
 μM

BSiO2
 Concentration of biogenic silica
 μM

H4SiO4
 Concentration of silicic acid
 μM

ϕ
 Si flux rates
 μM h−1
u
 Uptake rate of H4SiO4
 μM h−1
d
 Dissolution rate of BSiO2
 μM h−1
(0, t)
 Initial and final times of the incubation period
 h

AR
 Abundance ratio index
 –

HL
 Half-life index of BSiO2
 –

TA
 Tracer addition index
 %

CF
 Cost function (=sum of the squared residuals)
 –

fmodel(xi,ϕ)
 The ith model forecast
 μM or %



285M. Elskens et al. / Marine Chemistry 106 (2007) 272–286
n
 The number of model equations
 –

p
 The number of parameters to be

estimated in a given model

–

SRi
 The standardized residual
 –

SU
 The standard uncertainty
 μM/h

xi
 The ith input variable
 μM or %

yi
 The ith output variable
 μM or %

σi
 Standard deviation of the ith residual
 –

σx,j
 Standard deviation of the jth input variable
 μM or %

σy,j
 Standard deviation of the jth ouput variable
 μM or %

∂yi/∂xj
 The partial differential of yi with respect to xj
 –
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