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ABSTRACT  18 

There are surprisingly few field studies on the role of invasive species on parasite infection patterns in 19 

native hosts. We investigated the role of invasive Pacific oysters (Magallana gigas) in determining 20 

parasite infection levels in native blue mussels (Mytilus edulis) in relation to other environmental and 21 

biotic factors. Using hierarchical field sampling covering three spatial scales along a large intertidal 22 

ecosystem (European Wadden Sea), we found strong spatial differences in infection levels of five 23 

parasite species associated with mussels and oysters. We applied mixed models to analyze the 24 

associations between parasite prevalence and abundance in mussels and oysters, and 12 biological and 25 

environmental factors. For each host-parasite relationship, an optimal model (either a null, one-factor 26 

or two-factor model) was selected based on AIC scores. We found that the density of invasive oysters 27 

contributed to three of the 12 models. Other biological factors such as host size (six models), and the 28 

density of target or alternative host species (five models) contributed more frequently to the best 29 

models. Furthermore, for parasite species infecting both mussels and oysters, parasite population 30 

densities were higher in native mussels, attributed to the higher densities of mussels. Our results 31 

indicate that invasive species can affect parasite infection patterns in native species in the field, but 32 

that their relative contribution may be further mediated by other biological and environmental 33 

parameters. These results stress the usefulness of large-scale field studies for detailed assessments of 34 

the mechanisms underlying the impacts of invasive species on native host communities. 35 
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 INTRODUCTION 40 

Over the last decades, global trade and transport have expanded enormously leading to an 41 

unprecedented introduction of species to new ecosystems (Vitousek et al. 1996; Mack et al. 2000; Bax 42 

et al. 2003; Levine and D’Antonio 2003; Jackson and Grey 2013). Besides the documented direct 43 

effects on species interactions with native organisms, it is increasingly recognised that introduced 44 

species can also alter parasite-host relationships in invaded ecosystems in manifold ways. For 45 



 

example, with many alien organisms their native parasites can be co-introduced to recipient 46 

ecosystems (Daszak et al. 2000; Taraschewski 2006; Lymbery et al. 2014). These introduced parasites 47 

may spill over from introduced to naïve native host species (parasite spillover; Power and Mitchell 48 

2004; Prenter et al. 2004; Kelly et al. 2009), which has already lead to emerging diseases and mass 49 

mortalities of native populations (Daszak et al. 2000; Goedknegt et al. 2016). Furthermore, native 50 

parasites might infect invasive host species in their new range which in turn may increase the disease 51 

risk for native species if the invasive hosts amplify transmission rates, resulting in increased infection 52 

levels in native host populations (parasite spillback; Kelly et al. 2009; Poulin et al. 2011; Telfer and 53 

Brown 2012). Alternatively, invasive host species may be non-competent hosts for native parasites 54 

and instead interfere with transmission processes by removing free-living infectious stages of native 55 

parasites from the environment (e.g., by means of predation or being dead-end hosts; transmission 56 

interference; Johnson and Thieltges 2010; Goedknegt et al. 2016). This can lead to a reduced disease 57 

risk for native host species, a phenomenon similar to dilution effects observed in vector-borne 58 

diseases (Keesing et al. 2006).  59 

Due to the crucial role of invasive species in these parasite infection scenarios, the presence 60 

and abundance of an invader has the potential to affect local parasite infection levels in native hosts 61 

(Kelly et al. 2009; Poulin et al. 2011; Telfer and Brown 2012). While such effects have been studied 62 

experimentally (e.g., Kopp and Jokela 2007; Thieltges et al. 2009, Goedknegt et al. 2015), 63 

surprisingly few studies have attempted to study the effects of invasive species on infection patterns in 64 

native hosts in the field (but see Paterson et al. 2011, 2013 who used a combined approach). Parasite 65 

infection levels in native hosts are not only potentially affected by invasive species but also influenced 66 

by many other factors which have been shown to underlie the generally high spatial heterogeneities in 67 

infection levels observed in the field (Thieltges and Reise 2007; Byers et al. 2008; Wilson et al. 2011; 68 

Galaktionov et al. 2015; Stringer and Linklater 2015). For example, the population density of native 69 

hosts often affects infection patterns across many parasite and host taxa (Arneberg 1998; Galaktionov 70 

et al. 2015; Stringer and Linklater 2015; Searle et al. 2016). Other factors known to affect infection 71 

patterns include host size (Mouritsen et al. 2003; Thieltges and Reise 2007), the supply of free-living 72 

infective stages (often approximated via preceding intermediate host densities for parasites with 73 



 

complex life cycles; Byers et al. 2008; Wilson et al. 2011; Galaktionov et al. 2015) and environmental 74 

variables such as temperature, pH and salinity (Pietrock and Marcogliese 2003; Poulin 2006). The 75 

existence of a multitude of biological and environmental factors driving infection levels, questions the 76 

relative contribution of invasive hosts, or in other words, whether invader presence and abundance 77 

matter for infections in native hosts. Hence, field studies investigating infection patterns in native 78 

hosts in relation to the abundance of invasive species and other factors are desirable.   79 

A suitable model system to investigate the relative importance of invasive species in 80 

determining infection levels in native hosts in the field, is the invasion of the Pacific oyster 81 

(Magallana gigas) along north western European coasts. This bivalve was introduced to Europe in the 82 

1960s to replenish native oyster stocks for aquaculture purposes (Troost 2010), and today Pacific 83 

oyster populations co-occur with native blue mussels (Mytilus edulis) in dense bivalve beds on 84 

intertidal mudflats (Reise 1998; Troost 2010; Ruesink et al. 2005; Buschbaum et al. 2016; Reise et al. 85 

2017). Pacific oysters co-introduced the invasive parasitic copepod Mytilicola orientalis that was 86 

likely co-introduced in large numbers or via multiple introductions and followed a similar invasion 87 

route as oysters (Feis, 2018) and subsequently spilled over to native blue mussels (Pogoda et al. 2012; 88 

Goedknegt et al. 2017). This copepod has a direct life cycle and inhabits the intestines of its host, 89 

causing reductions in the condition of mussels (Goedknegt et al. 2018a), but not in oysters (Katkansky 90 

et al. 1967; Steele and Mulcahy 2001). A congeneric parasitic copepod species, Mytilicola intestinalis, 91 

has been infecting native mussels since its introduction to the region 80 years ago (Caspers 1939; 92 

Hockley 1951; Korringa 1968). While the parasite was first observed in mussels (Mytilus 93 

galloprovincialis) in the Mediterranean Sea (Steuer, 1902), genetic studies could not confirm the 94 

Mediterranean as its native region due to low genetic diversity and a lacking population structure, and, 95 

to date, its origin is still unknown (Feis, 2018). At western European coasts, the parasite does not 96 

seem to infect invasive oysters, making the Pacific oyster a potential sink for M. intestinalis 97 

populations (Elsner et al. 2011; Goedknegt et al. 2017).  Likewise, the Pacific oyster is a not a suitable 98 

host for the native trematodes Himasthla elongata and Renicola roscovita (Thieltges et al. 2008, 99 

2009; Welsh et al. 2014; Goedknegt et al. 2015). Instead, by filtering host-seeking trematode larvae 100 

out of the water column, the  oyster interferes with the transmission between first (snails) and second 101 



 

intermediate hosts (several native bivalve species; Thieltges et al. 2008, 2009; Welsh et al. 2014; 102 

Goedknegt et al. 2015), preventing the parasite species to complete their life cycle in birds, the 103 

definitive host of both trematodes (gulls and waders; Stunkard 1964; Werding 1969; Lauckner 1983; 104 

Galaktionov and Bustnes 1999). Finally, for the native shell boring polychaete Polydora ciliata, 105 

which infects native blue mussels (M. edulis) and common periwinkles (Littorina littorea; 106 

Buschbaum et al. 2007), invasive Pacific oysters act as a new competent host species (Thieltges et al. 107 

2006), potentially increasing infection levels in native mussels via parasite spillback.  108 

In this study, we analysed the relationship between the distribution and abundance of 109 

parasites in native mussels and the abundance of the invasive Pacific oyster (M. gigas) and other 110 

biotic and abiotic factors in the Wadden Sea, a large intertidal soft-bottom ecosystem stretching over 111 

500 km of coastline. Using large-scale field observations we aimed to address the following 112 

questions: 1) What is the distribution and abundance of parasite species associated with parasite 113 

spillover (M. orientalis), spillback (P. ciliata) and transmission interference processes (M. intestinalis, 114 

H. elongata, R. roscovita) in invasive oysters and native mussels along the entire Wadden Sea 115 

ecosystem?; 2) Can the contribution of invasive oysters be unravelled among other biological and 116 

environmental factors determining infection levels in native mussels?, and 3) For parasites infecting 117 

mussel and oyster hosts (M. orientalis and P. ciliata), which host species serves as the dominant host 118 

for the parasite population? By investigating the relative importance of invasive oysters for parasite 119 

infection patterns in native mussels, this study contributes to a better understanding of the role of 120 

invasive species in parasite spillover, spillback and transmission interference processes.  121 

 122 

MATERIAL AND METHODS 123 

Parasite infection patterns  124 

Sampling on hierarchical scales 125 

Sampling took place on eight mixed beds of invasive Pacific oysters (M. gigas) and native blue 126 

mussels (M. edulis) spread over the entire Dutch and German Wadden Sea except for the mid-German 127 

Wadden Sea, which is devoid of mussel beds (Folmer et al. 2014; see Fig. 1; Online Resource 1). 128 

Beds were selected based on geographic distribution and logistical feasibility. The following regions 129 



 

were sampled: West-Netherlands (locations 1 and 2), East-Netherlands (locations 3 and 4), South-130 

Germany (locations 5 and 6) and North-Germany (locations 7 and 8). All beds were sampled in 131 

autumn 2012 (Online Resource 1) as this period is well suited for documenting infection levels of 132 

macroparasites (summer is the main period of production of trematodes (Thieltges and Rick 2006; 133 

Poulin 2006) and parasitic copepods (Grainger 1951) and of the settlement of P. ciliata larvae (Harms 134 

and Anger 1983). 135 

To demarcate a plot, a quadrant of 1 m2 was haphazardly placed four times within each bed at 136 

low tide, at approximately similar tidal heights and with 100 m distance between plots. From each 137 

plot, 20 individuals of each bivalve species (mussels and oysters) were randomly collected for 138 

parasitological analysis. We sampled medium to large size classes of mussels (30-70 mm) and oysters 139 

(40-230 mm), as these size classes are regularly infected with the five parasite species (Brenner et al. 140 

2014; Goedknegt et al. 2017). Our sampling design was hierarchical, resulting in three spatial scales 141 

of observations: region (r = 4), bed nested in region (b(r) = 2, btotal = 8) and plot nested in bed (p(b) = 142 

4, ptotal = 32). In total, 640 individuals of each bivalve species were investigated for parasitic 143 

infections. 144 

Dissection procedures for parasite screening 145 

In the laboratory, mussel and oyster shells were opened and inspected from the inside and outside for 146 

the presence of P. ciliata markings as described in Catherine et al. 1990 and Ambariyanto and Seed 147 

1991. As it was too time-consuming to crack mussel and, especially oyster shells, to find all Polydora 148 

individuals, we did not obtain P. ciliata intensities of both hosts. After shell inspections, host flesh 149 

was stored in labelled plastic bags and frozen at -20°C until further analysis.  150 

We defrosted mussel and oyster flesh in batches (one species from a plot at a time, n = 20) 151 

and screened for the presence of endoparasites. As the mussel is host to four different endoparasite 152 

species (the copepods M. orientalis and M. intestinalis, and the trematodes R. roscovita and H. 153 

elongata; Thieltges et al. 2006; Elsner et al. 2011; Pogoda et al. 2012; Brenner et al. 2014; Goedknegt 154 

et al. 2017) and the oyster only to one (M. orientalis; Elsner et al. 2011; Pogoda et al. 2012; 155 

Goedknegt et al. 2017), the dissection procedures differed between the two hosts. Mussel tissue was 156 



 

inspected for adult copepods under a magnification glass (3-8×), subsequently squeezed between glass 157 

plates and scanned with a stereomicroscope (10-30×) for remaining copepod larvae and metacercarial 158 

stages of trematodes. For oysters, the digestive tissue was first dissected and inspected for copepods, 159 

after which remaining copepods were flushed out of the intestine with water from a squeezing bottle. 160 

Trematode metacercaria were identified according to Werding (1969). The identification of 161 

adult Mytilicola was based on descriptions of Steuer (1902), Mori (1935), Ho and Kim (1992), and 162 

Elsner et al. (2011). However, as morphological species identification is not entirely reliable when 163 

both Mytilicola species have overlapping host ranges and distributions (Elsner et al. 2011; Goedknegt 164 

et al. 2017; Goedknegt et al. 2018b), a subset of Mytilicola specimens originating from blue mussels 165 

were also molecularly identified to species level to support and improve the morphological 166 

identification (see Online Resource 2).  167 

Biological and environmental drivers of parasite infection patterns  168 

Based on existing literature on native parasite-host relationships, we selected a total of 12 potential 169 

biological and environmental drivers of parasite infection patterns for our analyses (see Table 1 for a 170 

literature overview and Goedknegt et al. 2019 for raw data). Densities of oyster, mussel and the first 171 

intermediate snail host (i.e., mature periwinkles L. littorea with a shell length of > 14 mm from base 172 

to apex) for the trematodes R. roscovita and H. elongata) were obtained by taking two cores (Ø 19 173 

cm, ± 20 cm deep) per plot. Core contents were sieved and brought to the lab where host numbers 174 

were determined. The average of the two cores was used as a measure of host density (m-2) per plot. 175 

Host size was defined as the shell length (maximum anteroposterior axis) and measured with Vernier 176 

callipers to the nearest mm. To estimate densities of definitive hosts that play a role in the life cycle of 177 

trematodes,  we used aerial counts (for the common eider Somateria mollissima) and high-tide roots 178 

counts (herring gull Larus argentatus, common gull Larus canus, black-headed gull Chroicocephalus 179 

ridibundus, oystercatcher Haematopus ostralegus) of long-term monitoring programmes from which 180 

we calculated the bird densities per intertidal hectare per location (see Waser 2018 and Online 181 

Resource 3 for details). Estimates of environmental data, salinity and exposure time, were obtained by 182 

means of simulation with the General Estuarine Transport Model (GETM; Burchard and Bolding 183 



 

2002), which was previously used to simulate the hydrodynamics, temperature and salinity for the 184 

entire Wadden Sea (Gräwe et al. 2016). For further details regarding the simulations we refer to 185 

Gräwe et al. (2016) and to Folmer et al. (2016) for post-processing of simulation data.  186 

Statistical analysis 187 

Calculations of infection measures 188 

For each sampled plot and host species, we calculated parasite prevalence (the ratio of infected to 189 

sampled host species), intensity (the mean number of parasites per infected host), abundance (the 190 

mean number of parasites in all hosts), parasite population density m-2 (the product of parasite 191 

abundance and host density m-2) and infected host density m-2 (the product of prevalence and host 192 

density m-2) according to the terminology of Bush et al. (1997).  For P. ciliata only prevalence and 193 

infected host density could be calculated due to missing intensity data. For both Mytilicola species 194 

observations included morphologically as well as molecularly identified individuals, although the 195 

morphological identification error was relatively small (< 10%; see Online Resource 2). When both 196 

identification techniques disagreed on the species identity of an individual copepod, preference was 197 

given to the molecular results.    198 

Spatial infection patterns 199 

We determined how variability in prevalence (modelled as parasite presence/absence) and abundance 200 

(numbers of parasites in individual hosts) in mussels and oysters depended on spatial scale by using 201 

(intercept only) general linear mixed models (GLMMs) following binomial distributions for 202 

prevalence data (package lme4, Bates et al. 2015) and negative binomial distributions for abundance 203 

data (package glmmADMB; Fournier et al. 2012; Skaug et al. 2012) in the statistical software 204 

environment R (R Development Core Team 2015). We did not use intensity, as this measure of 205 

infection can only be obtained from infected hosts, which would have resulted in heavily unbalanced 206 

datasets. In the GLMMs we considered plots to be nested within beds, beds nested within region, and 207 

regions as random effects and calculated the relative variance components for each of these spatial 208 

levels. For parasites infecting both host species (M. orientalis and P. ciliata), we used similar 209 

GLMMs including host species as fixed effect and compared the results with GLMMs without this 210 



 

fixed term using likelihood ratio tests following chi-square distributions. To evaluate potential co-211 

occurrences of parasite in each host species and on the smallest spatial scale (plot level), we used 212 

pairplots and performed nMDS analyses using the vegan package (Oksanen et al. 2019). 213 

Predictors of infection levels  214 

Density of the invasive host (Pacific oysters), density of the native host (blue mussels), host size 215 

(mussel size), tidal exposure time (i.e., the mean fraction of time that the seabed is exposed to the air) 216 

and salinity (PSU) were included as explanatory variables in all parasite models. We did not include 217 

temperature as the range of average summer temperatures (Jun-Sept over the years 2007-2011) in the 218 

Wadden Sea was too small to detect potential effects (16.0-16.5 °C; E. Folmer, unpublished data). For 219 

M. orientalis and P. ciliata which also infect oysters, we additionally included oyster host size in the 220 

models. Furthermore, for P. ciliata, we included the density of the common periwinkle L. littorea, 221 

which serves as an alternative host for this parasite species. Finally, for trematodes with complex life 222 

cycles (H. elongata and R. roscovita), the density of the first intermediate host, the common 223 

periwinkle L. littorea, and of definitive hosts (several bird species; see Table 1) were included.  224 

Prior to the analyses, we inspected all biological and environmental factors for skewed 225 

distributions and applied log10-transformations to linearize relationships when necessary. 226 

Additionally, we examined collinearity with pair plots including Pearson correlations (Online 227 

Resource 4). We conducted a series of nested GLMMs for each parasite/host species combination, 228 

including an intercept only model (null model), to examine the effect of biological and environmental 229 

factors on prevalence (parasite presence-absence) and abundance (number of parasites per individual 230 

host). In all models, the number of explanatory variables was kept to a minimum by including at most 231 

a single explanatory variable as fixed effect in the model. Consequently, each individual GLMM 232 

included parasite prevalence or abundance as response variable, none or one individual driver as 233 

explanatory variable and the hierarchical sampling structure as random effect. Competing models 234 

were compared based on the Akaike Information Criterion corrected for sample sizes (AICc) and the 235 

model with the lowest AICc score was selected as the best driver model. Then, we produced a suite of 236 

models with two fixed effects that contained the fixed effect of the top performing model plus each of 237 



 

the other explanatory variables in turn. Again, the best performing model was chosen based on the 238 

lowest AICc and the forward selection procedure was terminated at this point to avoid overfitting of 239 

the data. Finally, we estimated the Akaike weights of all models tested per parasite-host combination 240 

(MuMIn package; Barton, 2018) to facilitate the interpretation of the AIC model comparisons. 241 

 242 

RESULTS 243 

Spatial distribution of host and parasite species 244 

Invasive Pacific oysters (mean shell length ± SE, 128.5 ± 1.5 mm) and native blue mussels (45.2 ± 245 

0.25 mm) were present at all sampled beds in the Wadden Sea. In all beds mussel densities (mean ± 246 

SE; 1140.8 ± 121.4 m-2) were higher than oyster densities (139.4 ± 11.7 m-2; Online Resource 5). In 247 

addition, all targeted parasite species were found at all locations, although not in each host species at 248 

every single location (Table 2).  Native blue mussels were infected with five parasite species (the 249 

copepods M. orientalis and M. intestinalis, the shell boring polychaete P. ciliata, and trematodes R. 250 

roscovita and H. elongata) with an overall prevalence of 98.4%, while invasive Pacific oysters were 251 

only infected with the invasive M. orientalis and the native P. ciliata, with a total prevalence of 252 

59.8%. Few parasite species tended to co-occur, as was particularly the case for the trematodes H. 253 

elongata and R. roscovita in mussels (Online Resources 6b, 7b, 8a and 8c).  254 

 Some parasite species showed a strong regional pattern in their distribution (M. intestinalis 255 

and R. roscovita, for which the abundances also highly correlated (Online Resource 8c), while for 256 

other species (H. elongata; M. orientalis in mussels and oysters; P. ciliata in oysters) spatial 257 

heterogeneity was high on a more local (bed) level or even on the smallest scale within beds (P. 258 

ciliata in mussels) as indicated by the variance component analyses (Table 3).    259 

Relative contribution of invasive oyster density to infection patterns in native mussels  260 

Pacific oyster density was the factor giving the best fit for M. intestinalis and R. roscovita prevalence 261 

(Table 4) and M. intestinalis abundance (Table 5) in mussels. In the parasitic copepod M. intestinalis, 262 

prevalence and abundance were negatively affected by the density of Pacific oysters. The prevalence 263 



 

of the trematode R. roscovita in mussels increased with oyster density. Oyster density, however, did 264 

not came out in the best fitting models of the other three parasite species. 265 

Regarding other factors driving infection levels in native mussels, host size resulted in five 266 

models as the best explanatory factor driving parasite prevalence and abundance (Table 4 and 5). Host 267 

size was an important factor determining the prevalence of the shell boring polychaete P. ciliata, the 268 

prevalence and abundance of the trematode H. elongata, of abundance of the copepod M. intestinalis 269 

and of the trematode R. roscovita. For the two trematode species, the density of definitive hosts turned 270 

out as an additional explanatory factor of infection levels, in particular the density of common gulls 271 

(L. canus) for the prevalence of R. roscovita and the density of eider ducks (S. mollissima) for the 272 

prevalence of H. elongata (Table 4). However, this pattern was not observed when looking at 273 

trematode abundance (Table 5). Instead, the density of first intermediate host species, of the snail L. 274 

littorea, was identified as one of the best factors driving H. elongata abundances in mussels and the 275 

density of second intermediate host species (of the mussel M. edulis) for abundances in mussels 276 

(Table 5). 277 

Furthermore, the prevalence of P. ciliata in mussels was negatively affected by the density of 278 

the common periwinkle L. littorea, which represents an alternative host species for this shell boring 279 

polychaete worm. For M. orientalis in mussels, none of the prevalence and abundance models 280 

including biological and/or environmental factors was better than the null model (Tables 4 and 5). 281 

Looking at infection levels in Pacific oysters, oyster size had a positive effect on P. ciliata 282 

prevalence. In addition, prevalence and abundance of M. orientalis in oysters were affected by the 283 

environmental factors tidal exposure and salinity (Table 4 and 5).  284 

Importance of oyster hosts for parasite species shared with mussels 285 

Invasive oysters shared two parasite species with the native mussels, the invasive copepod M. 286 

orientalis via spillover effects and the native polychaete P. ciliata via spillback processes. 287 

Interestingly, for each parasite species there was a clear co-occurrence in mussels and oyster hosts on 288 

the plot level (Online Resource 7).  However, M. orientalis was more often present in mussel than in 289 

oyster hosts (ΔDev. = 130.59, p < 0.001), with prevalences being, on average, twice as high in mussels 290 



 

(average ± SD, 50.8 ± 0.2%) compared to oysters (21.7 ± 0.2%). On the other hand, when oysters 291 

were infected with M. orientalis, overall intensities were twice as high (average ± SD, 6.2 ± 4.7) than 292 

when mussels (2.9 ± 1.2) were infected (ΔDev. = 78.96, p < 0.001). In addition, the maximum intensity 293 

of M.  orientalis found in oysters was 75, while in mussels a maximum of 11 copepods was found in 294 

one individual host. These contradicting patterns resulted in almost similar parasite abundances for 295 

mussel (average ± SD, 1.6 ± 1.2) and oyster (1.3 ± 1.2) hosts (ΔDev. = 3.12, p = 0.077). However, as 296 

mussels occurred in generally higher densities than oysters (Online Resource 5), the density of 297 

infected hosts was at all locations larger in mussels than in oysters (Fig. 2a). Consequently, M. 298 

orientalis population densities in the Wadden Sea were much higher in native mussel compared to 299 

invasive oyster hosts (Fig. 3). More specifically, at locations where M. orientalis was abundant (at all 300 

locations, except for location 8 in oysters), parasite population densities were 2-35 times larger in 301 

native mussels than in invasive oysters (Fig. 3).  302 

For the native polychaete P. ciliata, the importance of oyster hosts for the parasite population 303 

density was less clear. Although prevalences of the polychaete were five times higher in oysters 304 

(average ± SD, 57.9 ± 0.4%) than in mussels (10.2 ± 0.11%; ΔDev. = 323.94, p < 0.001), this difference 305 

was buffered by the high population density of mussels, resulting in a lack of an overall pattern in the 306 

density of infected hosts (Fig. 2b). At some locations the density of infected mussels was higher than 307 

infected oysters (locations 5 and 6), while at other locations this pattern was reversed (locations 2 and 308 

8) or densities of infected hosts were similar (locations 3 and 7; Fig. 2b).  309 

 310 

DISCUSSION 311 

Effects of non-native oyster density 312 

Contrary to expectation, Pacific oyster density was not included in most of the best models explaining 313 

parasite prevalence or abundance in native mussels. Oyster density only explained prevalence and 314 

abundance of the copepod M. intestinalis and prevalence of the trematode R. roscovita. In the case of 315 

M. intestinalis, oyster density negatively affected the prevalence and abundance of the parasite in 316 

native mussels. Previous studies have not reported M. intestinalis in invasive oysters (Elsner et al. 317 

2011; Goedknegt et al. 2017) and controlled infections were not successful (Elsner et al. 2011; M. 318 



 

Feis, unpublished results), suggesting that the Pacific oyster is not a competent host for M. 319 

intestinalis. Therefore, oysters may act as a sink (Elsner et al. 2011; Goedknegt et al. 2017). However, 320 

the exact mechanism is yet unknown. In contrast to the negative effects on parasitic copepods, oyster 321 

density had a positive effect on R. roscovita prevalence in native mussels. This was not anticipated 322 

given the known negative effects of oysters on trematode infective stages via transmission 323 

interference (Thieltges et al. 2008, 2009; Goedknegt et al. 2015). The obvious explanation that oyster 324 

density could positively correlate with the densities of the first intermediate snail host of the parasite 325 

does not hold true, as exploratory investigations prior to the statistical analyses could not find any 326 

correlations between both variables. Alternatively, oysters may affect R. roscovita infection levels in 327 

mussels via the three-dimensional matrix structure they create. Most mussels are found deep in the 328 

oyster matrix where they gain protection from predation and detrimental barnacle epibionts 329 

(Eschweiler and Christensen 2011; Buschbaum et al. 2016). Experimental studies indicate that this 330 

position of mussels inside the matrix leads to higher prevalence and intensities of R. roscovita in 331 

mussels compared to conspecifics positioned on top of the matrix (Goedknegt, 2017).  Possibly, at the 332 

bottom of the oyster matrix, first intermediate snail hosts locally produce infective R. roscovita stages 333 

which are concentrated and trapped by the oyster structure (Goedknegt, 2017). With increasing oyster 334 

density, the structural complexity will also increase and likely result in the observed positive effect of 335 

oyster density on infection levels in mussels.  336 

Effects of host size 337 

The lack of oyster density in the best models explaining infection patterns of M. orientalis, P. ciliata 338 

and H. elongata in native mussels suggests that the dynamics of many parasite species are rather 339 

driven by other biotic and environmental drivers than the density of the invasive species. According to 340 

the best models identified in the GLMMs, host size was one of these factors as mussel size was an 341 

important positive driver of P. ciliata and H. elongata prevalence, and of M. intestinalis, H. elongata 342 

and R. roscovita abundance, which was expected according to our hypothesis. A positive relationship 343 

between host size and infection levels could reflect a relationship with host age, with older hosts 344 

accumulating more infections over time, which has been previously suggested for P. ciliata infecting 345 



 

mussels and periwinkles (Ambaryianto and Seed 1991; Warner 1997) and H. elongata infecting 346 

mussels (Nikolaev et al. 2006). However, the positive effect of host size does not necessarily have to 347 

be age-related but can also correspond with the larger shell surface area that is available for P. ciliata 348 

infection and enhanced filtration currents exerted by larger molluscs, enabling these individuals to 349 

inhale larger quantities of free-living infective stages of endoparasites resulting in higher infection 350 

levels (Nikolaev et al. 2006). Furthermore, the low number of smaller mussels with Polydora 351 

markings may be explained by the higher vulnerability of smaller, infected mussels to crab predation 352 

(Ambaryianto and Seed 1991) as has previously also been shown for periwinkles L. littorea 353 

(Buschbaum et al. 2007).  354 

Effects of alternative and obligatory host density 355 

In addition to host size, the density of alternative hosts or obligatory hosts required to complete a life 356 

cycle, turned out to be important biological variables determining infection levels in mussels. For 357 

example, for P. ciliata which infects mussels and oysters, native periwinkles (L. littorea) are an 358 

important alternative host and therefore it is not surprising that snail density also showed to be an 359 

important factor negatively affecting Polydora infections in mussels. When more periwinkles are 360 

present, parasite prevalence in mussels decreases, suggesting that periwinkles are probably a more 361 

important host than native mussels. As this effect was not observed for P. ciliata in oysters, 362 

periwinkles are probably not dominant over the invasive host species, but more experimental work 363 

needs to be conducted to test what the exact host preference of the parasite actually is. For the 364 

trematodes H. elongata and R. roscovita with complex life cycles, densities of upstream and 365 

downstream hosts in the life cycle were identified as important determinants of infection levels in 366 

mussels. Densities of the definitive bird host, more specifically eider ducks (S. mollissima) and 367 

common gulls (L. canus), were respectively driving H. elongata and R. roscovita prevalences. Gull 368 

density was also found to be a driving factor of R. roscovita prevalence and intensity in blue mussels 369 

in the Arctic (Galaktionov et al. 2015). Furthermore, the density of the first intermediate snail host, L. 370 

littorea, was identified to be an important factor to determine H. elongata abundances in the mussel 371 

host, while for R. roscovita the density of the mussel host itself were positively affecting abundances 372 



 

of this parasite. The importance of obligatory hosts as a driving factors of trematode infection levels is 373 

not surprising, as trematodes species require the presence of all three hosts to complete their life cycle 374 

(Werding 1969).  375 

Importance of environmental factors  376 

Regarding environmental factors, tidal exposure and salinity only appeared in the best fitting model of 377 

M. orientalis infecting oysters. Exposure time positively affected M. orientalis prevalences in oysters. 378 

This was surprising, as an inverse relationship between the degree of exposure and infection rates has 379 

previously been found for M. intestinalis in mussels, which was attributed to the shorter submersion 380 

time of hosts in the water, limiting the time window of free-swimming infective copepodid larvae to 381 

locate and infect their host (Bolster 1954; Davey and Gee 1976). On the reasons behind the positive 382 

effect of exposure time on M. orientalis infection levels in oysters we can only speculate. For 383 

example, less submersion time means less exposure to currents directing the larvae away from their 384 

hosts, potentially explaining the effect found. Alternatively, mussels higher on the mudflat might be 385 

present in higher densities, presenting a source of copepodid larvae to the oysters. The negative effect 386 

of salinity confirms earlier findings from the North Pacific where higher prevalences were reported 387 

from mussels (Mytilus trossulus) situated in sheltered estuarine areas compared to mussels at exposed 388 

coastal shores (Goater and Weber 1996). The congeneric species M. intestinalis also prefers reduced 389 

salinities (Korringa 1968), but salinity was not an important driver of M. intestinalis prevalences and 390 

abundances in mussels, suggesting that the invasive M. orientalis may be more sensitive to salinity 391 

changes than M. intestinalis.  392 

Potential other factors 393 

Although we have assessed 12 biological and environmental parameters in this study, additional 394 

factors could play a role in determining parasite infection patterns. Among these factors is local water 395 

flow velocity. For example, higher parasite prevalences were reported from mussels (Mytilus 396 

trossulus) situated in sheltered estuarine areas compared to mussels at exposed coastal shores (Goater 397 

and Weber 1996). Another possible variable driving infection levels is the ambient fauna as it can 398 

play a role in transmission interference, as some species prey upon free-living stages of parasites. For 399 



 

example, crabs, shrimps and barnacles can reduce the number of trematode infective stages in the 400 

water column (Welsh et al. 2014). In addition, sea weeds can physically prevent parasite larvae to 401 

infect the host (Welsh et al. 2014). Finally, parasite species already infecting hosts could either 402 

prevent the establishment of novel parasite species by occupying infection space or, vice versa, make 403 

the host more susceptible to novel infections via detrimental effects on the host. The observed co-404 

occurrence of H. elongata and R. roscovita could be an example of the latter, although the exact 405 

mechanism needs to be fully explored.  406 

 Relative importance of mussel and oyster hosts 407 

For parasites infecting both invasive oysters and native mussels (the copepod M. orientalis and the 408 

polychaete P. ciliata) Pacific oysters were expected to be an important determinant in the distribution 409 

of both parasite populations. Indeed, each parasite species tended to co-occur in oyster and mussel 410 

hosts on the smallest spatial scale. However, in both cases, oyster density did not affect prevalence or 411 

abundance in native mussels. In addition, the calculations of parasite population densities in the two 412 

host species indicated that the oyster as host species might not be as important as previously thought.  413 

At all locations where M. orientalis occurred, mean prevalences were always higher in 414 

mussels but the mean and maximum intensity was higher in oysters. The latter is likely caused by the 415 

larger digestive system is of oysters, providing the intestinal parasite with ample space for multiple 416 

infections, whereas intensities in mussels are limited by mussel size (Goedknegt et al. 2017). 417 

Differences in the relative prevalence and intensity of the invasive copepod lead to almost similar 418 

abundances of M. orientalis in both host species. Nevertheless, when host density was taken into 419 

account, the newly acquired native mussel host appeared to carry the majority of the M. orientalis 420 

population in the Wadden Sea. For P. ciliata, the role of oysters for the total parasite population is less 421 

clear. The native shell boring polychaete occurred in native blue mussels and invasive Pacific oysters 422 

at all sampled locations across the Wadden Sea. Since its introduction in the 1980s/1990s (Reise 423 

1998; Drinkwaard 1999; Troost 2010), invasive oysters became an important host for this native shell 424 

boring polychaete species with average prevalences at present being five times higher in invasive 425 

oysters compared to native mussels. However, when host density was considered, the share of 426 



 

infected hosts was often still higher in blue mussels relative to oysters. As the lack of a protocol 427 

limited us to acquire information on P. ciliata intensities, we do not know how these differences in 428 

prevalence relate to relative P. ciliata abundances in both host species, limiting our knowledge on 429 

host specific parasite population sizes. Therefore, whether this high competence of invasive oysters 430 

results in amplification of infection levels in native mussels (parasite spillback sensu Kelly et al. 431 

2009) is a topic for further studies. In addition, without intensity information, the potential effects of 432 

the parasite on host populations remain to be assessed. The polychaete burrows in mollusc shells, 433 

causing reductions in the shell strength and condition (Kent, 1979, 1981; Buschbaum, 2007) and 434 

makes infected hosts more vulnerable to crab predation (Ambaryianto and Seed 1991). 435 

Conclusions 436 

In this study, we have shown that invasive Pacific oysters can contribute to the distribution and 437 

abundance of parasite infections in native mussels. However, we could not identify invasive oysters as 438 

a universal driver of patterns in parasite infections of native mussels nor as the dominant host for 439 

populations of parasites infecting both native mussels and invasive oysters in the invaded region. For 440 

the two parasite species that were affected by oysters (M. intestinalis negatively and R. roscovita 441 

positively), oysters did not act as a host species, but influenced parasite populations by a more indirect 442 

way (i.e., via the filtering of infective stages or habitat effects). For the other parasite species, 443 

infections were further mediated by other biotic and environmental factors, limiting the role of oysters 444 

in determining infection levels of those parasites. This also seems to be the case in the two parasite 445 

species (M. orientalis and P. ciliata) infecting both oysters and mussels where parasite densities were 446 

mostly higher in the native mussels, suggesting a dominant role of the native species for the parasite 447 

populations of those species. The results of this case study demonstrate the usefulness of large-scale 448 

field studies in identifying the mechanisms underlying the impacts of invasive species on native 449 

parasite-host communities.  450 
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