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Abstract (250 words max) 36 

Self-organized spatial patterns occur in many terrestrial, aquatic and marine ecosystems. 37 

Theoretical models and observational studies suggest self-organization is critical for enhanced 38 

ecosystem resilience. Yet, experimental tests of this cross-ecosystem theory are lacking. In this study, 39 

we experimentally test the hypothesis that self-organized pattern formation improves the persistence 40 

of mussel beds (Mytilus edulis) on intertidal flats. In natural beds, mussels generate self-organized 41 

patterns at two different spatial scales: regularly-spaced clusters of mussels at cm-scales driven by 42 

behavioral aggregation, and large-scale regularly-spaced bands at m-scales driven by ecological 43 

feedback mechanisms. To test for the relative importance of these two spatial scales of self-44 

organization on mussel bed persistence, we conducted field manipulations in which we factorially 45 

manipulated small- and/or large-scale patterns. Our results revealed that both forms of self-46 

organization enhanced the stability of mussel beds after settlement, relative to non-organized beds. 47 

Small-scale, behaviorally driven cluster patterns were found to be most crucial for persistence and thus 48 

resistance to wave disturbance, while large-scale patterns facilitated reformation of small-scale 49 

patterns if mussels were dislodged. This study provides experimental evidence that self-organization 50 

can be paramount to enhancing ecosystem persistence and that this effect emerges from the interplay 51 

between large-scale ecological, and small-scale behavioral self-organization. We conclude that 52 

ecosystems hinging upon such interactions are likely to benefit greatly from conservation and 53 

restoration actions that explicitly harness the power of self-organization to increase ecosystem 54 

resistance to disturbance. 55 

  56 
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Significance Statement (120-word-maximum): 57 

Theoretical models suggest that spatial self-organization enhances the resistance of ecosystems to 58 

disturbance. However, experiments investigating this important prediction are lacking. Our paper 59 

provides clear experimental evidence that spatial self-organization profoundly increases the ability of 60 

ecosystems to persist in the face of disturbance. The mechanisms underlying this positive impact of 61 

self-organization is driven by the synergistic interaction between ecological and behavior processes.  62 

Specifically, large-scale banded patterns in mussel beds created by ecological feedback processes 63 

facilitate fast behavioral aggregation of individual mussels into clumps, in turn improving mussel 64 

survival. Our study emphasizes the potential of harnessing spatial self-organization to enhance 65 

restoration success and persistence of threatened ecosystems.  66 

   67 
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\body 68 

Introduction 69 

Formation of regular spatial patterns by habitat-forming organisms, such as clumping and banding, 70 

have been observed in many different ecosystems, from forests (1) to savannahs (2, 3), peat lands (4-71 

6) and intertidal ecosystems (7-10). Theoretical studies have highlighted that local ecological 72 

interactions can explain the formation of large-scale spatial patterns through a process called spatial 73 

self-organization (9, 11, 12) (Figure 1). In this process, regular patterns can emerge when organisms 74 

improve their growth conditions locally through habitat modification, while inhibiting conspecifics at 75 

a larger scale due to competition for resources or other growth restricting interactions (5, 7, 9, 10, 13-76 

19). Other theoretical (6, 13) and a small number of comparative studies (2, 9) predict that formation 77 

of self-organized patterns enhances ecosystem persistence and stability (20-23). The ubiquity of self-78 

organized spatial patterns across ecosystems worldwide (24) suggests that self-organization could be 79 

of universal importance in shaping ecosystem persistence and their resistance to increasing 80 

anthropogenic stressors (25)  81 

Despite well-developed theory predicting that self-organization can enhance ecosystem resistance to 82 

disturbance, there is currently no experimental evidence supporting this idea in any real world 83 

situation.  This lack of experimental support does not only hold back further theoretical advance, but 84 

also hampers its real-world application, potentially explaining why self-organization theory has so far 85 

had very limited impact in conservation or restoration practices. For instance, the practice of dune 86 

restoration still applies an even spread of Ammophila arenaria plant propagules, disregarding the 87 

strong patchy to patterned distribution of Ammophila in many naturally emerging dune systems. 88 

Similarly, Spartina alterniflora propagules are typically planted at a constant and dispersed distance in 89 

salt marsh restoration projects, eliminating facilitation between outplants and reducing overall yield   90 

(25, 26). To further both fundamental, and conservation and restoration science regarding self-91 

organization, there is thus an urgent need for experimental tests of the emergent effects of spatial self-92 

organization on ecosystems stability and persistence, using manipulative techniques.   93 

 94 
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In this paper, we investigated the importance of spatial self-organization on the persistence of mussel 95 

beds in sandy intertidal ecosystems. Mussels in soft-sediment ecosystems form very large (1 to >10 96 

ha) highly patterned beds, in which self-organization occurs at two different scales (9, 13, 27). At a 97 

small scale, mussels make string-shaped clusters that form reticulate patterns (5-10cm wide, Figure 98 

1C) as a result of behavioral aggregation – a process equivalent to the physical process of phase 99 

separation (28). At larger scales, mussels organize in regularly-spaced bands (5-10m wavelength, 100 

Figure 1D) perpendicular to water flow as a consequence of local facilitation and larger-scale 101 

competition for pelagic algae (13). Comparative studies and theoretical models highlight the potential 102 

importance of pattern formation for mussel survival (9) and the persistence of mussel beds on tidal 103 

flats that are regularly exposed to intense wave action and predation (29-31). Mussel beds are thus a 104 

highly tractable system in which to test the general idea that self-organization can enhance ecosystem 105 

persistence. In addition, if this prediction holds, it has direct implications for the management and 106 

restoration of mussel beds, which act as keystone habitat for provisioning of biodiversity (32) as well 107 

as being a marine food source.  108 

Using manipulative experiments, we tested whether spatial self-organization affects the persistence of 109 

mussel beds on intertidal flats, under the natural influence of wave action and predation. In the 110 

summer and in autumn of 2012, we created artificial mussel beds with small-scale and large-scale 111 

spatial patterns, similar to the patterns found in natural conditions, and determined their effect on the 112 

persistence of the mussels. This was tested with four different spatial-organization treatments: beds 113 

with small-scale clusters, large-scale bands, bands and clusters combined and a control treatment 114 

consisting of randomly scattered mussels (Figure 2). To identify the mechanistic processes behind the 115 

differences in persistence in the experiment, we performed an analysis of mussel behavior in both the 116 

laboratory and the field. First, we analyzed how mussel movement on sandy substrates was affected by 117 

mussel density in both the laboratory and the field. In addition, we compared mussel behavior on 118 

sandy and rocky substrate in the laboratory. Our results provide important and novel insights into the 119 

importance of spatial self-organization for ecosystem resilience and how self-organization can be used 120 

to improve the restoration and conservation of natural ecosystems. 121 
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Results  122 

Manipulation of the spatial patterns in artificial mussel beds revealed strong positive effects of self-123 

organization on mussel bed persistence. During the first six days, cover in the control beds, which 124 

lacked any form of self-organization, decreased twice as fast (4.98 ± 1.68  se per day) relative to the 125 

plots with either small-scale or large-scale patterns, or both (0.87 ± 0.19 se per day, Figure 3A and 126 

3B), with significant effects of both large-scale banding (F2,43=4.32; p<0.02), and small-scale 127 

clustering (F1,43=16.42; p<0.001). Moreover, we found a strong interaction between the two scales of 128 

patterning (F2,43=5.17; p<0.01), indicating that the large-scale banded patterns facilitated the formation 129 

of clusters. The experimental results were consistent in both June and October, with the overall 130 

positive effect of clustering and banding being slightly stronger in October (F1,43=6.88; p<0.02). We 131 

observed that the loss rate of mussels decreased strongly over time (F1,43=253.66; p<0.001), most 132 

likely because most of the remaining mussels in the treatments had organized into clusters after the 133 

first few days (Fig. 3C and D). This result highlights the importance of cluster formation for the 134 

resilience of mussel beds following experimental disturbance. 135 

We conducted behavioral experiments in both the laboratory and in the field to unravel the importance 136 

of active mussel movement in cluster formation. The behavioral experiments revealed that limited 137 

ability of mussels to move and aggregate on sand – crucial in determining clump size – underlies 138 

lower resistance of mussels in unpatterned beds. The number of mussels in clumps was significantly 139 

enhanced by both the simulated clustering and banding treatments (χ2=78.44; p<0.001 and 140 

χ2=106.59, p<0.001, respectively) compared to the controls where average clump size was up to 3 141 

times smaller. Moreover, we found a significant interaction between both treatments (χ2=38.28, 142 

p<0.001), as both the banding and the clustering treatments similarly facilitated aggregation (Fig. 143 

4A). In addition, we also identified a significant interaction between the clustering treatment and the 144 

experimental setting (χ2=11.10, p<0.001), as the effect of clustering was marginally lower in the 145 

field compared to laboratory conditions. Apart from forming smaller clumps, we also found 2 to 7 146 

times more individual mussels out of clumps in the controls as illustrated by a significant effect of the 147 

clustering and banding treatments, as well as their interaction, on the number of isolated mussels 148 
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(F1,32=34.96, p<0.001; F1,32=43.93, p<0.001; F1,32=16.88, p<0.001, respectively; Fig. 4B). Similar to 149 

clump size, we also found a significant interaction between bands, clusters and the location 150 

(F1,32=7.65, p=0.009), because effects of self-organization were comparable but slightly lower in the 151 

field.  152 

When the movement of mussels on sand is compared to that on rock in the laboratory, results show 153 

that the inability of mussels to move and aggregate on sand is the key limitation explaining the low 154 

persistence of mussels in the control treatments, where patterns were absent. The clustering and 155 

banding treatments had no significant effect on mussel movement in terms of their average velocity, 156 

but mussels were found to move better on stone than on sand (F1,609=109.23, p<0.001; Fig. 5). 157 

Furthermore, we found significant two-way interactions between banding and substrate, and clusters 158 

and substrate (F1,609=16.91, p<0.001; F1,609=29.57, p<0.0001, respectively), as well as a three-way 159 

interaction between banding, clustering and substrate (F1,609=15.12, p<0.0001). Overall, these results 160 

highlight that when isolated, individual mussels can double their movement velocity when on rock, 161 

allowing for a fast behavioral response to isolation, is in agreement to observations in prior studies (9, 162 

28). In contrast, the movement of mussels on sand is lowered by 26% to 39% when they are isolated. 163 

This highlights that when they are alone and on sand, mussels experience significant restrictions in 164 

their movement, preventing them to form the clumps that are essential for survival, and explaining the 165 

low persistence within the unpatterned mussel treatment, where mussels were scattered over the entire 166 

experimental area. 167 

Discussion 168 

Theoretical models predict that self-organized spatial patterns can have important emergent 169 

consequences for the functioning of ecosystems and their ability to resist disturbance (2, 6, 13, 21, 24, 170 

33, 34). However, experimental validation of these emergent effects is lacking, restricting 171 

advancement and refinement of this cross-ecosystem theory as well as the application of self-172 

organization concepts in the management and restoration of degraded ecosystems (25). In this paper, 173 

we experimentally demonstrate that in mussel beds, self-organization processes enhance mussel 174 

resistance to disturbance and thus the stability of this diversity-enhancing ecosystem on intertidal flats 175 
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(35). This positive feedback occurs because of a synergistic interaction between self-organization 176 

processes occurring at two separate spatial scales. Without any form of self-organization, i.e. when 177 

fully dispersed, field experiments demonstrate that the loss of mussels from the bed is 2.5 to 5 times 178 

higher compared to beds where mussels were aggregated in patterns of any sort. Here, small-scale, 179 

behavior-driven patterns proved crucial for mussel persistence, and the large-scale banded patterns 180 

facilitated aggregation at the small scale. In-depth laboratory analyses identify behavioral self-181 

organization at small spatial scale as the determining factor for the persistence of mussels on the beds; 182 

inability to move and aggregate into clumps in the treatments without any self-organization was found 183 

to underlie the high losses experienced in this treatment. Hence, our results provide unambiguous 184 

experimental support for the emergent effects of spatial self-organization in mussel bed ecosystem, 185 

and highlight the mechanisms that are behind this phenomenon. 186 

Biological complexity at different spatial scales, driven by a multitude of behavioral, population-187 

level or ecosystem-level processes, is a defining characteristic of natural ecosystems. A recent 188 

theoretical study highlighted that the interplay between two different self-organization processes, 189 

created spatial patterns at two different scales in mussel beds, which proved a crucial factor defining 190 

mussel bed persistence (21). Our results provide experimental validation of this prediction. The 191 

formation of small-scale self-organized patterns proved to be crucial for mussel persistence, as clumps 192 

increase resistance to disturbance - dislodgement and predation (9, 36-39). In our experiment, the 193 

large-scale spatial patterns were found to stimulate the formation of small-scale cluster patterns 194 

essential for survival: without large-scale banded patterns, clump formation was hampered, leading to 195 

excessive mussel losses. When aggregated into bands, mussels could aggregate and form the cluster 196 

patterns by using each other as a foothold, a behavior that becomes impossible when fully dispersed 197 

due to the low overall density. Hence, we observed a clear interaction between two scales of pattern 198 

formation in driving mussel bed persistence. 199 

An unexpected result from our experiments was the clear importance of rapidly emerging 200 

behavioral self-organization in determining the persistence of mussel bed. Most studies of regular 201 

patterns in ecosystems suggest a scale-dependent interplay of facilitation and competition as the 202 
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underlying process (5, 7, 10, 13, 14), a slow form of pattern formation that is akin to Turings activator-203 

inhibitor principle (40, 41). In mussels, however, the formation of small-scale patterns results from a 204 

behavioral process that is more similar to the physical process of phase separation (28). Phase 205 

separation occurs for instance during the formation of alloys, where separation between different types 206 

of molecules creates spatial patterns at sub-millimeter scale, which boosts the material strength of 207 

alloys such as steel and bronze (42). Our results highlight that the patterns resulting from the 208 

behavioral self-organization in mussels (49) similarly determine the “strength” of mussel beds to resist 209 

predation and wave action. This highlights the importance of behavioral self-organization, driven by 210 

fast movement processes, as an underappreciated and understudied driver of ecosystem persistence. 211 

Our study adds to a growing body of papers – theoretical or empirical – pointing at the importance 212 

of facilitation and self-organization for the resilience (43, 44), and productivity (45), and biodiversity 213 

of natural ecosystems (35). In many – if not most – human-modified ecosystems, the natural spatial 214 

structure is altered or lost to mowing, drainage, dredging and other forms of interference. Moreover, in 215 

the coming decades, many ecosystems are expected to face further increases in disturbance as a result 216 

of global change (46, 47). Our results highlight that restoration of natural communities in these 217 

human-altered and homogenized ecosystems could be facilitated if 1) the original spatial structure is 218 

restored or conserved, or 2) the self-organization processes that generate these spatial patterns are 219 

restored to their former functioning. This requires a change in management perspectives and 220 

restoration approaches. It is likely insufficient to focus on improving abiotic conditions and removing 221 

dispersal barriers, as these do not recover the facilitative processes that are characteristic to foundation 222 

species such as mussels, cordgrasses or marram grass (25, 26). Instead, restoration approaches should 223 

also aim to restore the functioning of internal positive feedback interactions to facilitate the 224 

persistence of the involved species. This can be done by recovering or approximating the self-225 

organized spatial configuration of the ecosystem that has to be restored. Our study suggests that 226 

harnessing the emergent effects of spatial self-organization can make an important difference in the 227 

restoration of many marine and non-marine ecosystems, such salt marshes (25),  seagrass beds (48) or 228 

arid bushlands (49). 229 
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There has been a recent global surge in promoting habitat restoration as a critical conservation 230 

approach to deal with both climate change and habitat degradation. At the 2014 United Nations 231 

Climate Summit, all nations present pledged to actively restore 350 million acres of degraded 232 

ecosystems by 2030. Critical to the success of this global pledge is (1) the facilitation of regrowth of 233 

ecosystems in degraded areas, and (2) the continued persistence of those systems once they are 234 

initially established. Although restoration of habitats dominated by ecosystem engineers has been 235 

prioritized (50-54), large-scale restoration attempts of ecosystems such as coral reefs, shellfish reefs, 236 

seagrasses, is currently very costly and of limited success (55-59). As many of these ecosystems are 237 

characterized by self-organized spatial patterns generated by habitat forming species, we argue that 238 

harnessing positive interactions and the resulting self-organization processes will be critical in 239 

developing more successful restoration and conservation practices (25, 26, 46, 47, 60). Our paper 240 

provides a strong empirical basis for such a new premise by experimentally demonstrating the 241 

importance of self-organization in mussel bed restoration. Moreover, it highlights the importance of 242 

the interplay of behavioral and ecological processes in driving ecosystem resilience. This points at the 243 

need for an integrated perspective on ecosystem restoration that not only addresses limitation in 244 

organism establishment, but integrates the impact of organism behavior in terms of their effect on 245 

ecosystem resilience (21). 246 

Materials and Methods 247 

Ecological field experiment 248 

To study the effect of self-organization on mussel bed persistence, we set up an experiment in which 249 

we tested the importance of pattern formation on the persistence of transplanted mussels in artificial 250 

beds. We tested for the effect of large-scale self-organization (bands) and small-scale self-organization 251 

(clusters) in a full-factorial design and then measured how treatments affected the persistence of the 252 

bed in the weeks after transplantation.  253 

We set up the experimental beds (3x5m) on the tidal flats near Schiermonnikoog, the eastern 254 

island of the Dutch Wadden Sea (Figure 6) in an area at the same elevation as natural beds (-0.5m, 255 

coordinates: 53°27’9.91”N,6°8’50.07”E). Using mussels from a nearby intertidal mussel bed, 12 plots 256 
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were constructed using an overall density of 2,7 kg/m2 (40kg in total), which is similar to densities 257 

found in natural mussel beds (9). We applied four different spatial treatments in these experimental 258 

beds. The large-scale self-organization was represented by 2 bands of 1 by 3m. Within these bands, 259 

mussels were aggregated by hand in string and cluster patterns to reflect small-scale self-organization. 260 

In the first treatment (control, Figure 2A), all scales of self-organization were present. In the second 261 

treatment (Figure 2B), only clusters were made, and no large-scale, banded patterns were used. In the 262 

third treatment (Figure 2C), only bands were made, within which the mussels were fully dislodged. 263 

Finally, in the control treatment (Figure 2D), neither large- and small-scale self-organization was 264 

implemented, and mussels were randomly dispersed on the plot. Plots were positioned along the low-265 

water line, and the bands were orientated perpendicular to the dominant flow direction. The entire 266 

experiment was replicated 4 times in space yielding 16 beds in total. To test for generality over time, 267 

the experiment was conducted twice, once in summer (June 2012), and once in autumn (October 268 

2012). To measure the change of mussel cover in time, we took aerial pictures at a daily basis during 269 

the first 6 days, and once every 12 days after that, using a camera mounted on a telescopic pole. 270 

Pictures were transformed in black (mussels) and white (bare sand) images using Image J software. 271 

The proportion of black pixels was determined using image J, to provide us with an estimate of mussel 272 

cover for each plot. The development of cover over time was used as a measure of mussel persistence. 273 

Behavioral experiments  274 

To investigate to what extent mussel movement behavior contributes to the observed differences in 275 

self-organization and subsequent persistence, we studied how mussel aggregative movement varied 276 

with the various densities of conspecifics in the different treatments. We first studied mussel 277 

aggregation both under natural and controlled conditions. In a second experiment, we analyzed 278 

aggregative movement in controlled laboratory conditions. 279 

Mesocosm experiment: In the mesocosm, small artificial beds (40x40cm) were set up in two polyester 280 

tanks (120x80cm). As in the previous experiment, 4 spatial treatments were used with 4 replicates per 281 

treatment. To reflect the conditions within the bands of the large-scale self-organization treatment used 282 

in the field, we used a high density of 5.6 kg/m2. To reflect conditions without bands, we lowered the 283 
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density to 2.5 kg/m2. Both densities are within the range of densities found in natural mussel beds (9). 284 

In both densities, we mimicked small-scale self-organization by aggregating mussels by hand in 285 

clumps in half of the units. In the other half, small-scale self-organization was removed by manually 286 

detaching the mussels and placing them randomly on the bed.  287 

Early observations suggested that mussels appeared more restricted in their movement on 288 

sediment compared to the stone surfaces that had been used in prior experiments (Van de Koppel et al 289 

2008, De Jager et al 2011). For this reason we replicated the entire experiments on both solid and 290 

sandy substrate. The experiments were carried out in 80x120x10 cm tanks with a constant supply of 291 

fresh seawater. Each 100 L tank was divided in 2 equal areas on which treatment was randomly 292 

applied to create 4 small artificial mussel beds were created. The bottom of the tanks was covered with 293 

either 5-cm layer of sand or a 50x50cm stone tile. Mussels were collected from wooden poles at the 294 

beach near Vlissingen (The Netherlands) a few days prior to the start of the experiment. Before the 295 

start of the experiments, the mussels were dislodged and added to one of the treatments. Each 296 

experiment was repeated 3 times. 297 

Field experiment: Finally, to test whether laboratory results were an accurately reflected natural 298 

conditions, we repeated the part of laboratory experiment that concerned manipulation of mussels on 299 

sandy substrate. Pilot experiments revealed that visibility nearby the artificial beds on 300 

Schiermonnikoog was too limited to allow for reliable underwater camera observations. The 301 

experiment was therefore moved to a tidal flat in the Eastern Scheldt, in the South of the Netherlands 302 

(51°27’44.85”N,4°4’51.75”E, Figure 6), where water clarity was much higher. We used the same plot 303 

size (~40x40-cm clumps within 50x50-cm plots) and aggregation treatments as in the laboratory and 304 

collected the mussels from the same site a few days prior to the start of the experiment. The 305 

experiment was set up in November 2013 and replicated 2 times.  306 

Data collection: We tracked mussel aggregation and movement in the laboratory using Canon 307 

powershot D10 cameras that were mounted over each tank. For the field, we used Canon powershot 308 

S90 cameras within a Ikelite 6242.95 underwater housing (www.ikelite.com). The cameras took 309 
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pictures every minute for 180 minutes. For each picture, we applied a pixel to cm conversion 310 

coefficient based on the distance of the camera from the bed and its angle. To analyze the effect of the 311 

treatments on the level of aggregation we counted the number of clumps, the number of mussels 312 

within the clumps, and the number of isolated mussels after 24 hours. In the lab, mussel movement 313 

velocity was quantified for 10 random mussels in each experimental unit. Images were processed in 314 

Image J and Matlab to determine the change in position (x,y coordinates) of the mussels, from which 315 

the distance travelled per unit of time was calculated.  316 

Statistical Analyses 317 

Ecological field experiment: All of statistical tests were run in R version 3.2.2. Loss of mussels in the 318 

ecological experiment was studied including 2 different periods: during the first 6 days of experiment 319 

and during the remaining part of experiment. We used analysis of variance (ANOVA) with the four 320 

self-organization treatments, period (first 6 days or remaining days), and sampling month as fixed 321 

factors. 322 

Mussel aggregation analyses: Differences in clump size (i.e. the number of mussels in a clump) was 323 

analyzed using a Generalized Linear Model with a negative binomial distribution, using banding, 324 

clustering and location (field or mesocosm) as fixed factors. The percentage of single, detached 325 

mussels was analyzed using ANOVA with banding, clustering and location (field or mesocosm) as 326 

fixed factors. The percentage of loose mussels was square root-transformed in order to obtain a normal 327 

distribution of the model residuals. 328 

Aggregative movement analyses: Differences in movement on sandy versus rocky substrate were 329 

tested using an ANOVA, with the aggregation treatments and substrate as fixed factors. The data were 330 

square root-transformed in order to obtain normality of the model residuals.  331 

  332 
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 477 

Figure 1: Observations of self-organization in different ecosystems. A: Spotted pattern of in coral reefs 478 

in Australia (© Google Earth). B: Labyrinth pattern of bushy vegetation in Niger (© Google Earth). C: 479 

Banded patterns in seagrasses in Australia (Picture : Marjolijn Christianen), D: Small-scale self-480 

organization in mussel bed in the Netherlands (Picture: Hélène de Paoli). Mussels organize in strings 481 

(5-10cm wide). E: Large-scale self-organisation in mussel beds in the Netherlands (Picture: Hélène de 482 

Paoli). Mussels organize in bands (5-7m wide). 483 

  484 
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 485 

Figure 2: Experimental set up to study the effect of spatial self-organization on persistence of mussel 486 

beds. Artificial beds were set up using a full factorial design, using four treatments: A: Both bands and 487 

clusters, B: Clusters but no bands, C: Bands but no clusters, D: Mussels fully dispersed (control). Note 488 

that for each experimental plot, each treatment was repeated, making a 3 by 5 plot. 489 
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 491 

Figure 3: Persistence of experimental mussel beds in the field over time. A and B: Average cover 492 

decrease (% per day) over the course of the experiment for June and October.  C: Decrease in cover 493 

(% per day) over the first 6 days, and D: in the remaining experimental period. N=28, Mean +/- S.E. 494 

  495 
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 496 

Figure 4: Effect of experimental self-organization treatments on clump formation in laboratory and 497 

field conditions. A: Average number of mussels per clump (Mean +/- SE). B: Average number of 498 

loose, individual mussels (Mean +/-SE). 499 

  500 
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 501 

Figure 5: Average movement velocity of a individual mussels under laboratory conditions (Mean +/- 502 

SE). Isolated individual mussle on a rocky surface increase their velocity, whereas movement on sand 503 

under these consitions is hampered. 504 
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