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Abstract

The effect of grid-spacing on the quality of species abundance maps is explored for species that show zero-

inflation and spatial autocorrelation. Using a zero-inflated Poisson mixture model multiple fields of the

prevalence parameter π and the intensity parameter µ were simulated. A selected field was sampled by grid-

sampling with 200, 400, 800, 1600, and 3200 m grid-spacing and used to predict at a fixed set of validation

locations by simple kriging with an external drift. The external drift variables were silt, silt squared and

altitude. The estimated sampling distribution of MSE against grid-spacing shows that beyond a spacing of

1600 m the mean of MSE increases at a much faster rate. Based on these findings the 1600 m grid which

consists of 446 locations for our study area of 2400 km2 gives a compromise between sampling costs and

prediction accuracy.

Keywords: count data; generalized linear geostatistical modeling; autocorrelation; zero-inflation;

grid-spacing

1. Introduction

The relationship between species and their environment is generally described by species distribution

models; in particular, by habitat suitability or environmental niche models (Guisan and Thuiller, 2005).

Such models are constructed using survey data available at a limited set of sampling locations and allow

one to create predictive species distribution maps on the basis of environmental data which are usually5

available for a much larger set of locations (Guisan and Zimmermann, 2000). The number of sampling

locations is known to affect the accuracy of the species distribution models and maps (Stockwell and Peterson,

2002; Wisz et al., 2008). Knowledge of the trade-off function between number of sampling locations and

accuracy of the predictions is usually not obtained a priori. If number of samples is too low, accuracy will
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suffer by an unknown ammount: if sampling intensity is too high, the design will be unnecessarily costly.10

(Caughlan and Oakley, 2001; Reynolds et al., 2011).

Several studies evaluated effects of sample size on the accuracy of species distribution models (Stockwell and Peterson,

2002; Pearson et al., 2007; Wisz et al., 2008; Hanberry et al., 2012). For example, Stockwell and Peterson

(2002) assessed sample size requirements for modelling bird species in Mexico by random sampling between

1 and 100 locations. Wisz et al. (2008) considered three sample sizes (10, 30, and 100 locations) to evaluate15

the quality of model predictions using data for 46 species obtained from natural history collections. Finally,

Hanberry et al. (2012) used sample sizes ranging from 30 to 2500 locations to model tree species in northeas-

ten Minnesota. All these studies consider presence–absence maps, but often, predictive species abundance

maps in the form of numerical or biomass density are to be preferred, because they are more informative than

presence–absence maps (Vieira et al., 2012; Cozzi et al., 2013). Fortin et al. (1989) constructed such maps20

using sugar-maple tree density data gathered in southwestern Québec. The authors evaluated the ability to

predict spatial patterns using different sample sizes and designs. They considered two sample sizes of 50 and

64 points, both derived from a 200-point dataset.

Using real datasets only, as Fortin et al. (1989) did, limits comparison between the effects of different

sample designs and sample number sizes as well as uncertainties in the model’s parameter values. These25

limitations were recognised in recent studies, such as those by Perner and Schueler (2004); Rachowicz et al.

(2006); Bijleveld et al. (2012) and Foster et al. (2014). An updated approach is to first simulate a spatial field

resembling reality as much as possible, a peseudo-reality, which is then subsequently sampled using different

sampling designs. The performance of sampling designs is then compared by confronting predictions with

simulated values that serve as ground-truth. Zurell et al. (2010) call this the virtual ecologist approach.30

Following this approach, Bijleveld et al. (2012) used the results of an existing intertidal benthic monitoring

programme to construct various spatial models with an exponential spatial autocorrelation function. With

these models they simulated virtual populations with a Normal distribution and sampled these populations

using different sampling designs. They provided a trade-off function between sampling distance and prediction

error which was rather flat for those virtual species that hardly showed spatial autocorrelation, but much35

steeper for species with strong spatial autocorrelation. The assumed normality of the data was clearly violated

by the empirical data because of the many zero observations.

The assumption of normality is a common practice, because when dealing with species abundance (count)

data the more obvious Poisson distribution is rarely applicable. Ecological count data have two properties

that ask for a specific treatment, other than relying on the classical assumption of independent and nor-40

mally distributed data. These properties are zero-inflation (Martin et al., 2005; Clarke and Green, 1988;

Lewis et al., 2011) and spatial autocorrelation, i.e. nearby observations are more similar than observations

far apart, even when environmental conditions do not differ. Hitherto most studies have dealt with these two

properties, but only one at a time (Tyre et al., 2003; Bijleveld et al., 2012).

For example, the first property was accounted by Tyre et al. (2003) who considered the zero-inflated45
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negative binomial model, but ignored autocorrelation. Ignoring spatial autocorrelation in simulation studies

on how sampling designs affect the accuracy of estimates of population- or model parameters or the accuracy

of spatial predictions, may lead to biased estimates of this accuracy (Legendre et al., 2002).

Contrary to Tyre et al. (2003), the Bijleveld et al. (2012) study took account of the autocorrelation by

using a stochastic model that included spatial autocorrelation of the error. But, as mentioned earlier, they50

simulated normally distributed data. Clearly, there is a need to integrate both properties in a single study

and to examine how zero-inflation and autocorrelation may affect recommendations for the optimal sampling

design, sample size, and distance between samples.

Studies that simultaneously address zero-inflation and autocorrelation for species abundances (see e.g.

Recta et al., 2012; Boyd et al., 2015) do not treat the question of optimal sampling design. We attempt to55

fill this gap by following a paper by Lyashevska et al. (2016) in simulating fields with zero-inflated, spatially

autocorrelated count data, and sampling the fields repeatedly with different sampling designs. More specifi-

cally, we will sample the fields by grid-sampling with a varying spacing. The aim of this paper is to quantify

the trade-off between grid-spacing and accuracy of predictions of species-abundance model parameters on a

fine grid for mapping, for species that show zero-inflation and spatial autocorrelation. Most species will show60

these two properties (see Martin et al., 2005, and references therein).

2. Materials and methods

2.1. Data

Data used in this paper were zero-inflated (66% are zeros) and autocorrelated counts of a benthic species

Macoma balthica (Fig. 1a) that were collected in the yearly Synoptic Intertidal Benthic Surveys (SIBES)65

monitoring programme conducted in the Dutch Wadden Sea (Bijleveld et al., 2012; Compton et al., 2013).

The study area, bordered by the barrier islands on the north and by the mainland coast on the south, is formed

by intertidal and subtidal mudflats and gullies. The monitoring network consists of 3451 permanent locations

on intertidal mudflats at the nodes of a 500 m grid. The square grid is supplemented by 578 locations. These

locations were selected by first selecting 578 out of the 3451 grid-points by simple random sampling without70

replacement. Then at each selected grid-point one point was selected at a uniformly distributed distance

between 0 and 250 m distance from the grid-point, in a direction randomly chosen from the four directions

defined by the grid-lines (Bijleveld et al., 2012). The total sample size was 4029 locations.

The most important determinants of habitat structure used for mapping the abundance were sediment

texture characteristic, more specifically the mass fraction of silt, and altitude (Amsterdam Ordnance Datum,75

Rijkswaterstaat 1). To be used as a predictor in mapping, the covariate must be known everywhere in the

study area. Therefore the mass fraction of silt was interpolated by inverse distance weighting in ArcGIS 10.0.

1www.rijkswaterstaat.nl
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2.2. Overview of evaluation method

The starting point of the our procedure for evaluating the sampling designs is a model for the spatial

distribution of the zero-inflated and autocorrelated count data. This spatial distribution is modelled through

a spatial zero-inflated Poisson mixture model(ZIP)(Lambert, 1992; Agarwal et al., 2002):

P (Yi = y|ηi) =











πi + (1 − πi)exp(−µi) y = 0

(1− πi)
exp(−µi)µ

y

i

y! y = 1, 2, 3, . . .

(1)

where Yi is the count at location i, ηi is spatially dependent random effect, πi the probability of a Bernoulli

zero at location i, and 1 − πi is the probability of a Poisson count, either zero or non-zero. The intensity80

(mean number of individuals) of the Poisson process at location i is µi. The first part of the model is the

overall probability of zero (Hilbe and Greene, 2007).

The parameters πi and µi at location i are random variables modelled by the following submodels:

logit(πi) = log(
πi

1− πi

) = xT
B,iβB + ηB,i

log(µi) = xT
P,iβP + ηP,i (2)

with xB,i and xP,i vectors with covariates at location i, βB and βP vectors with regression coefficients, and

ηB,i, ηP,i residuals of the spatial trend. Note that the model parameters can be modelled by different sets of85

covariates.

The residuals ηB,i, ηP,i at any location i are random variables. The probability distribution of the residuals

at all locations in the study area was modelled as





ηB

ηP



 ∼ N









0

0



 ,





CB 0

0 CP







 (3)

with CB and CP covariance matrices. So note that we assumed that the Bernoulli and Poisson residuals were

independent. Testing for this assumption we revealed a weak correlation of 0.3. For both random residuals

we further assumed isotropy, so that the covariance of the residuals at any two locations was modelled as a

function of the distance h between the two locations. For instance, for the Bernoulli residuals, the covariance

was modelled as

CB(h) = σ2
BρB(h;φB) + τ2B (4)

with σ2
B the partial sill, φB the range (distance parameter), τ2B the nugget, and ρB the correlation function,

for instance exponential or spherical (Webster and Oliver, 2007).90

The two submodels in 2 are generalised linear mixed models, as they are the sum of a linear combination

of covariates describing a spatial trend (fixed effect) and a spatially autocorrelated residual (random effect).

Diggle (2007) names this type of models as generalised linear geostatistical models.

4



Following Diggle (2007), the sum of the trend and residual, representing the transformed model parameter,

is referred to as the signal S, for instance SB,i = xT
B,iβB + ηB,i. For convenience, all the parameters in95

one model, including the type of correlation function, are collected in a vector: θB = (βB, φB, τ
2
B, σ

2
B, ρB)

and θP = (βP, φP, τ
2
P, σ

2
P, ρP). To avoid confusion the model parameters θB and θP are referred to as

hyperparameters; with model parameters we mean the parameters π and µ.

The aim of evaluating the sampling strategy is to map the prevalence parameter π of the Bernoulli

distribution and the intensity parameter µ of the Poisson distribution. Please note that the objective is not100

to predict the species abundance counts, but to use the observed counts in the sample to estimate, at the

desired sites i, the expected counts conditional on the values xi of the covariates and the random effects

ηi that express spatial dependence. We believe that predicting the counts themselves is not feasible in our

situation, and not of practical relevance.

Our evaluation procedure is as follows. The SIBES data are used to estimate the parameters of a ZIP105

model. Several steps are involved in estimation. First, a ZIP model is fitted by maximum likelihood assuming

that both residuals ηB,i and ηP,i are spatially independent. The fitted model parameters are then used to

classify a zero count either as a Bernoulli or a Poisson zero, and to construct two datasets: the Bernoulli

dataset with zeros (absent) and ones (present), and the Poisson subset, containing the SIBES locations with a

one in the Bernoulli dataset, with counts. In the next step these two data sets are used to fit the two submodels110

for the parameters πi and µi, but now accounting for spatial autocorrelation. This is done by simulating

a large sample of signals SB and SP at the SIBES locations by Markov chain Monte Carlo (MCMC) using

initial estimates of the hyperparameters, followed by Monte Carlo Maximum Likelihood (MCML) estimation

of the hyperparameters. The final MCML estimates of the hyperparameters are used to simulate signals SB

and SP at the SIBES locations conditional on the observations at these locations.115

The fitted hyperparameters are then used to simulate the Bernoulli signal (SB) and Poisson signal (SP)

at the nodes of a very fine square grid with a spacing of 100 m covering the study area. This grid is extended

with 1000 randomly selected validation locations in between the grid-points.

In the next step the simulated signals at the grid-nodes and validation points are used to simulate fields

with count data. One field with statistics closest to those of the SIBES data is selected, and underlying SB120

and SP fields are repeatedly sampled by grid-sampling. A range of grid-spacings is applied. Each selected

grid is used to predict the model parameters πi and µi at the validation locations. By comparing these

predictions with the true (original) model parameters at the validation points the quality of the predictions

is assessed. More details on all steps but the first (estimation of ZIP model parameters) are given below. For

details on the first step we refer to Lyashevska et al. (2016).125

1. The simulated signals SB at the nodes of 100 m grid extended with 1000 validation locations are

backtransformed using the inverse of the link function in Eq. 2 to give 100 fields of the prevalence

parameter π of the Bernoulli distribution. The same procedure is followed for the SP to give 100 fields

of the intensity parameter µ of the Poisson distribution.
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2. Apart from the field with zero-inflated counts, the two underlying fields with simulated prevalence130

parameter values π and simulated intensity parameter values µ are selected, as these are needed in the

validation. Fig. 1 shows a map of the product of π and µ, representing the unconditional intensity

(unconditional expected count), and a map of the SIBES count data. There is a clear resemblance

between the two maps.

(a)

(b)

Figure 1: Empirical species abundance map of Macoma balthica (a) and unconditional intensity map (b) conditionally simulated
to the nodes of 100 m grid.

3. The two underlying fields are sampled on a grid with a spacing of 200, 400, 800, 1600, and 3200 m.135

For each grid-spacing 100 samples are randomly selected. The corresponding number of grid-points

was on average 28505, 7130, 1783, 446, and 110, respectively. An overlay is made of the selected grids
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which are then used in prediction of the prevalence parameter π and the intensity parameter µ at the

validation locations.

4. The model parameters π and µ at the 1000 validation locations are predicted by the same method140

as used in simulating our pseudo-reality, being simple kriging with an external drift, using silt, silt-

squared and altitude as external drift variables. Ideally, for each grid-sample the hyperparameters are

estimated from the ‘pseudo-observations’ of zero-inflated counts at the grid-points with Markov chain

Monte Carlo maximum likelihood (MCML). Using these hyperparameters signals SB and SP should

be simulated again conditional on the simulated counts (pseudo-observations). However, this is not145

feasible due to the computing time involved. Therefore, in predicting from the selected grid-points

to the validation points we used the hyperparameters that were also used to simulate all 100 fields.

These hyperparameters (referred to hereafter as the parent-hyperparameters) were estimated by MCML

from the SIBES data. In practice these hyperparameters are unknown, so that by using the unknown

parent-hyperparameters we ignore the contribution of uncertainty about the hyperparameters to the150

uncertainty about the predictions.

To obtain a rough idea about this contribution, per grid-spacing four grid-samples are selected that

are used to estimate the hyperparameters. As a consequence the hyperparameters are not fixed but

vary between the four samples of a given grid-spacing. The hyperparameters are not estimated from

the pseudo-observations of zero-inflated counts at the selected grid-points, but from the Bernoulli and155

Poisson signals at these points. In doing so we avoid the time-demanding MCML estimation. By using

the simulated signals as observations the hyperparameters can be estimated by Residual Maximum

Likelihood (REML). We are aware that this estimation procedure does not reflect practice either, and

that the contribution of uncertainty about the hyperparameters will be underestimated, but we see it

as a first attempt within reasonable computing time.160

2.3. Quality measures

The quality of the predicted prevalence parameters was quantified by the Mean Squared Error (MSE);

for instance for the prevalence parameter π this MSE equals :

MSE(π) =
1

n

n
∑

i=1

{π̂i − πi}
2

(5)

with n the number of validation points (n = 1000), π̂i the predicted prevalence parameter at location i and

πi the ‘pseudo-observed’ intensity parameter. For intensity parameter µ MSE is computed from the subset

of validation points with a simulated value of 1 for the presence/absence indicator (species present). This

subset contains 211 points. MSE was also calculated for the product of π and µ, representing unconditional165

intensity (intensity not conditioned on presence). For this product again all 1000 validation points are used.
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For each grid-spacing we have 100 grid-samples. All 100 grid-samples are used in prediction with the fixed

parent-hyperparameters θB and θP (no sample-specific estimation), leading to 100 estimates of MSE(π),

MSE(µ) and MSE(π · µ). The distribution of these 100 estimates is an estimate of the sampling distribution

of the estimated mean quality of model-based predictions of the model parameters π and µ. Only five grid-170

samples are used in prediction with variable sample-specific estimates of the hyperparameters θB and θP, so

these five estimates give a very rough estimate of the sampling distribution only.

3. Results

3.1. Prevalence

The mean of the 100 MSEs (1 MSE per grid of a given spacing) of the predicted species prevalence175

parameter π increased with increasing grid-spacing (Fig. 2a). Using the fixed parent-hyperparameters the

increase was from 0.006 at 200 m to 0.008 at 3200 m. The variance of MSE between the 100 grid samples

was small for all grid-spacings.

The mean of the five MSE values using hyperparameters estimated from the grid-samples, was for all

spacings larger than the mean of MSE using the fixed parent-hyperparameters, especially for the largest180

spacing of 3200 m. This shows that the contribution of uncertainty about the hyperparameters to the

uncertainty about the predictions was substantial. Remarkable is the strong increase of the mean MSE

beyond a spacing of 1600 m.

3.2. Intensity

Similar to the prevalence parameter π, the mean of MSE of the predicted intensity parameter µ increased185

with increasing grid-spacing (Fig. 2b). Using fixed parent-hyperparameters the increase was from 14.73 at

200 m to 28.84 at 3200 m (Fig. 2b). Using hyperparameters estimated from the grid-samples, the mean of

MSE increased even more, from 15.89 for 400 m (compared with 15.73 at 400 m for fixed hyperparameters)

to 32.32 at 3200 m.

The graph of the MSE for the product of π and µ, the unconditional intensity, is very similar to the graph190

for the prevalence parameter π. For the first four spacings the increase of the mean MSE was very modest,

but beyond a spacing of 1600 m, the increase was much stronger (Fig. 2c).

4. Discussion and conclusions

The aim of this paper was to quantify the effect of grid-spacing on the quality of spatial predictions of

the abundance of species that show zero-inflation and spatial autocorrelation. We proposed an approach in195

which multiple fields of the prevalance parameter π and the intensity parameter µ of a zero-inflated Poisson

mixture model are simulated by generalized linear geostatistical models. These fields were used to simulate

pseudo-realities of zero-inflated autocorrelated counts. One pseudo-reality was then selected with summary

8



(a) (b)

(c)

Figure 2: The MSE for predicted prevalence (π) (a), predicted intensity (µ) (b) and predicted unconditional intensity (π ·µ) (c) as
a function of grid-spacing for 200, 400, 800, 1600, and 3200 m. Predictions were obtained by simple kriging with an external drift
with fixed parent-hyperparameters (blue) and hyperparameters estimated from a sample (red). All 100 grid-samples were used
in prediction with fixed parent-hyperparameters and only five grid-samples were used in prediction with variable sample-specific
estimates. The first grid-spacing (200 m) with estimated hyperparameters could not be estimated due to memory constraints.
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statistics that were close to summary-statistics of the available data. This pseudo-reality was then sampled

by the sampling design under study, in this study grid-sampling at various grid-spacings. A selected sample200

was used to predict at a fixed set of validation locations and to compute the MSE of the predictions of π

and µ. By repeating the selection of samples and the prediction at the validation points, an estimate of the

sampling distribution of MSE is obtained.

To construct the graph with the estimated sampling distribution of MSE against grid-spacing the hyper-

parameters that were used to simulate the pseudo-reality were also used in spatial prediction at the validation205

points. As a consequence, this graph shows the effect of the grid-spacing given the model. This is common

practice in designing spatial samples for mapping by kriging. McBratney and Webster (1981) optimized the

spacing of grids using as an evaluation criterion the maximum kriging variance as obtained with ordinary

kriging. Uncertainty about the variogram used in ordinary kriging is not accounted for. van Groenigen et al.

(1999) optimized the spatial coordinates of a given number of sampling locations for ordinary kriging, also210

assuming that the variogram is known. Brus and Heuvelink (2007) did the same for kriging with an external

drift (KED). This study resembles the study described here, apart from that a linear mixed model is used

instead of a generalized linear mixed model. The variance as computed with KED does account for uncer-

tainty about the trend coefficients, but does not account for uncertainty about the variogram parameters, so

also in this study the contribution of uncertainty about the variogram parameters is ignored.215

Alternatively, in order to account for the uncertainty about the hyperparameters in estimating the MSE,

the hyperparameters that are used in prediction are estimated from the samples. By repeatedly selecting

samples with a given sampling design, estimating the hyperparameters, and predicting at the validation

points, a sampling distribution of the MSE is obtained with a mean that will be larger than that of the

sampling distribution of MSE obtained with the fixed parent-hyperparameters. The difference in the sampling220

distributions of MSE reflects the contribution of the uncertainty about the hyperparameters to uncertainty

about the predictions due to sampling errors in the estimated hyperparameters.

This procedure for evaluating sampling designs is relatively simple and versatile. However, the applica-

bility of this approach in our case study was hampered by the computing time involved in estimating the

hyperparameters from a sample. In the proposed model for the zero-inflated counts spatial dependency is225

introduced at the level of the model parameters π and µ, which cannot be directly observed. Besides, both

model parameters are non-linearly related to environmental covariates. The parameters of such model can

be estimated by Monte Carlo Maximum Likelihood (MCML), which involves repeated simulation of long

Markov chains, which is time consuming. As an approximation we estimated the hyperparameters by REML

from the unobservable model parameters π and µ at the selected sampling locations. Most likely this approx-230

imation underestimates the contribution of the uncertainty about the hyperparameters to the uncertainty

about the predictions, but it is a first attempt within reasonable computing time. To improve the quality of

the estimated MSEs at various grid-spacings a more efficient procedure for estimating the hyperparameters is

needed. We welcome research into estimation of the hyperparameters of a ZIP mixture model by integrated
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nested Laplacian approximation, as proposed by Rue et al. (2009).235

For the time being we must base our decisions on the graphs as presented in Figs 2a, 2b and 2c. The

graphs of the prevalence parameter π and of the unconditional intensity π · µ show that beyond a spacing of

1600 m the mean of MSE starts increasing at a much faster rate. This is especially true for the MSEs obtained

with hyperparameters estimated from the samples. Based on these findings the 1600 m grid which consists

of 446 locations for our study area of 2400 km2 seems to be a good compromise between sampling costs240

and prediction accuracy. The increase in accuracy of the 800 m grid does not seem to outweigh the fourfold

increase in number of sampling units taken. But of course the optimal spacing can only be determined when

sampling costs and accuracy are defined in a common unit.
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